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Abstract

In this paper a method is developed and implemented to provide the simulated maximum
likelihood estimation of latent di�usions based on discrete data. The method is applicable to
di�usions that either have latent elements in the state vector or are only observed at discrete time
with a noise. Latent di�usions are very important in practical applications in �nancial economics.
The proposed approach synthesizes the closed form method of Aït-Sahalia (2008) and the e�cient
importance sampler of Richard and Zhang (2007). It does not require any in�ll observations to
be introduced and hence is computationally tractable. The Monte Carlo study shows that the
method works well in �nite sample. The empirical applications illustrate usefulness of the method
and �nd no evidence of in�nite variance in the importance sampler.

JEL classi�cation: C11, C15, G12
Keywords: Closed-form approximation; Di�usion Model; E�cient importance sampler

1 Introduction

Di�usion models have proven to be very useful in economics and �nance. For example, it provides

a convenient mathematical framework for the development of �nancial economics and option pricing

theory (Black and Scholes, 1973; Heston, 1993; Du�e and Kan, 1996) and for a separate treatment of

stock variables and �ow variables in macroeconomics (Bergstrom, 1984). Not surprisingly, estimation

of di�usion models has received a great deal of attention in econometrics. One main di�culty in

estimating di�usion models is that, although the model is formulated in continuous time, the observed

∗Kleppe gratefully acknowledges the hospitality during his research visit to Sim Kee Boon Institute for Financial
Economics at Singapore Management University. Yu gratefully acknowledges support from the Singapore Ministry of
Education AcRF Tier 2 fund under Grant No. T206B4301-RS. We are grateful to Yacine Aït-Sahalia for providing the
data applied in the second example, and to Roman Liesenfeld for comments. A previous version of this paper circulated
under the title �Estimating the GARCH di�usion model: Simulated maximum likelihood in continuous time�.
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data are always collected in discrete time. This misalignment renders the calculation of likelihood and

exact moments di�cult. In particular, the di�culty in calculating the likelihood function is due to

the lack of an analytical expression for the transition probability density (TPD). A simple solution

to this misalignment is to discretize the continuous time model using the Euler-Maruyama (EM)

method. However, the EM approximation introduces discretization bias, with the magnitude of the

bias depending on the length of the sampling interval which in general is �xed.

Many methods have been proposed to reduce the discretization bias. Motivated by the fact that the

discretization bias is smaller if the sampling intervals are shorter, the so-called in�ll method introduces

additional latent variables holding the value of the di�usion at time points between the observations.

To obtain the required TPD at the original frequency, these latent observations are integrated out

from the product of the TPDs for the increased frequency. As the integrations are high dimensional,

importance sampling is often used to evaluate the integrals numerically. This is the basic idea behind

the in�ll maximum likelihood method of Pedersen (1995) and Durham and Gallant (2002). The more

latent variables are introduced, the �ner the partition becomes and consequently the discretization

bias is reduced. However, as the dimension of the integration goes up the computational cost of

achieving a speci�ed numerical accuracy increases.

Aït-Sahalia (1999, 2002b) proposed a powerful alternative to address the problem of the dis-

cretization bias. The procedure is based on a series of closed-form expressions that can approximate

arbitrarily well the true TPD at the original frequency as the number of the terms in the series ex-

pansion increases. It has been shown that in all practical situations this closed-form approach is able

to approximate the TPD very accurately even with only a few terms included in the series expansion;

see Aït-Sahalia (1999, 2002b) and Aït-Sahalia (2008). In addition, the approach is computationally

e�cient because it does not require in�ll observations or any Monte Carlo simulations. Aït-Sahalia

(2008) generalized the technique to irreducible di�usions and multivariate di�usions.

While the closed-form method can essentially remove the discretization bias completely and is

computationally inexpensive, a key assumption for its implementation is that the state variables,

that are assumed to follow a di�usion, are observable. When some or all of the state variables are

latent, the closed-form approach is not directly applicable. Examples of useful latent di�usion models

include the entire class of continuous time stochastic volatility models with the volatility being the

latent state; see Hull and White (1987), Heston (1993), Andersen and Lund (1997) and Du�e et al.

(2000). A second example is the continuous time stochastic mean model of Balduzzi et al. (1998), in
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which the mean is the latent state. Thirdly, the presence of market microstructure noise prevents the

state variables from being directly observed. Hence, extension of the closed-form maximum likelihood

estimation (MLE) method to cover latent di�usion models is important.

In this paper, we extend the closed-form MLE method of Aït-Sahalia (2008) to estimate models

involving latent di�usions. The approach synthesizes the closed form method and the e�cient im-

portance sampler (EIS) of Richard and Zhang (2007) to provide the so-called simulated maximum

likelihood (SML) estimator.

To deal with the challenge of latent variables in the context of continuous time stochastic volatility,

Jones (2003) and Aït-Sahalia and Kimmel (2007) proposed to estimate the model using data from both

the underlying spot and the options markets. Option prices were used to extract volatility, making

the integration of volatility out of the joint TPDs unnecessary. It is well known that option prices

are derived from the risk-neutral measure. Consequently, a bene�t of using data from both the spot

market and the options market jointly is that one can learn about the physical and the risk-neutral

measures. However, this bene�t comes at expense. To connect the physical and the risk-neutral

measures, the functional form of the market price of risk has to be speci�ed. If one's interest is to

learn about the physical measure only, the implied volatility is less useful. Moreover, in some cases,

such as for models with stochastic mean, it is not clear how to extract latent variables from derivative

prices. In contrast, our SML approach does not rely on option pricing data and hence it allows us to

estimate the model in the physical measure without worrying about the potential mis-speci�cation of

the market price of risk.

The paper is organized as follows. Section 2 discusses two classes of models and introduces the

estimation method. Section 3 explains how to implement the method in two distinct examples, the

GARCH di�usion model and a CEV model observed with a noise. In addition, in Section 3 we also

examine the accuracy of the method using simulated data. In Section 4, we apply this estimation

method to real data. Section 5 concludes.

2 Methodology

2.1 Model speci�cations

Let the time-homogeneous di�usion be denoted by
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dXτ = a(Xτ ; θ)dτ + b(Xτ ; θ)dBτ , (1)

where Xτ and a(Xτ ) are q-vectors, and b(Xτ ) is a q × q matrix, with Bτ being an q-dimensional

uncorrelated Brownian motion. θ is the vector of parameters to be estimated. We assume that (1)

admits a unique solution. Let xt = Xt∆ (t = 1, . . . , T ) be the value of Xτ which is sampled at

frequency 1/∆ and x = (x1, . . . , xT ) be the collection of such values. We consider two di�erent cases

for the latent structure of x, and the implications for likelihood inference about θ:

Case 1 xt is partly observed. Denote the observed part of xt by yt, and the latent part by zt, so that

xt = [yt zt]
′. The likelihood is given as

L(θ|y) = p(y; θ) =

ˆ
p(y, z; θ)dz, (2)

where y = (y1, · · · , yT ) and z = (z1, · · · , zT ), and p represents a generic probability density.

Case 2 The entire xt is unobserved, but an observation vector yt, associated with xt, is available. Denote

by p(yt|xt; θ) the conditional density of yt given xt. Jointly, x and y constitute a discrete time

state space model, with likelihood function given by the integral

L(θ|y) = p(y; θ) =

ˆ [ T∏
t=1

p(yt|xt; θ)

]
p(x; θ)dx. (3)

In both cases, the calculation, and later the maximization of l(θ|y) := logL(θ|y) pose two sub-

stantial problems. Firstly, p(x; θ) is available in closed form only in very special cases. Secondly, both

(2) and (3) involve integration over high-dimensional spaces, with neither of the integrals having a

closed form expression. To overcome these obstacles, we use the closed form expansions of Aït-Sahalia

(2008) and the EIS algorithm of Richard and Zhang (2007), respectively, as outlined in Section 2.3.

From now on, we make the dependence on the parameter vector θ implicit in the notation.

2.2 Transition density function approximations

Due to the Markovian property of the solution process Xτ , the joint probability density function

(PDF) of x, conditional on x0, may be written as
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p(x|x0) =

T∏
t=1

pt(xt|xt−1), (4)

where pt = pt(xt|xt−1) is the TPD associated with (1). As the TPD of (1) has a closed form expression

only for a few special cases, approximations are inevitable in general, and we shall denote by p̄t =

p̄t(xt|xt−1), a generic TPD approximation. The approximate joint PDF of x is simply obtained by

substituting p̄t for pt in (4).

One simple way to approximate the TPD is to use the EM approximation, de�ned by

p̄
(E)
t (xt|xt−1) = N (xt;xt−1 + ∆a(xt−1),∆b(xt−1)b(xt−1)′)

where N (x;m,Σ) is the PDF of N(m,Σ), evaluated at x. However, for �xed ∆ the EM approximation

may lead to an unacceptable discretization bias.

It is known from the di�erential equation literature that the discretization bias decreases as the

sampling interval decreases. One way of making the sampling interval arbitrarily small is to further

partition the original interval into the su�ciently �ne subintervals so that the discretization bias

becomes negligible at the increased frequency. Consequently, one inevitably introduces latent variables

between xt−1 and xt. To calculate pt, we express it as the product of the TPDs evaluated via the EM

method at the increased frequency. However, these latent observations must be integrated out. When

the partition becomes �ner, the discretization bias is closer to 0 but the dimension of the required

integrations becomes higher. Pedersen (1995) proposed an importance sampling technique, based on

the multivariate standard normal, to evaluate the integral numerically. Durham and Gallant (2002)

suggests ways to improve computational e�ciency of this simulated in�ll ML method of Pedersen.

In this paper we bypass in�ll simulations by employing the closed-form expansion approximations

to TPDs for irreducible di�usions of Aït-Sahalia (2008). Though more cumbersome to derive, the

Aït-Sahalia expansions are attractive in that they have closed form with adjustable accuracy. This

enables us to study the errors resulting from applying the EM-TPDs by considering a sequence of

Aït-Sahalia expansions.

The Aït-Sahalia expansions of order K have the form

log p̄
(K)
t (xt|xt−1) ≡ −q

2
log(2π∆)−Dv(xt) +

C
j−1

−1 (xt|xt−1)

∆
+

K∑
k=0

Cjkk (xt|xt−1)
∆k

k!
,
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where

Dv(x) =
1

2
log(Det(b(x)b(x)′)).

Clearly, the expansion has the interpretation as a functional power series in ∆ (plus some additional

terms). Increasing precision in the sense described in Aït-Sahalia (2008) is obtained by increasing K.

The coe�cients Cjkk are polynomials of the form

Cjkk (r|s) =
∑
|i|≤jk

c
(k)
i (r1 − s1)i1(r2 − s2)i2 · · · (rq − sq)iq ,

where i = (i1, . . . , im) is a multi-index with trace |i| at most jk = 2(K − k).1 The form of the

coe�cients c
(k)
i are found by solving both the Forward- and Backward Kolmogorov partial di�erential

equations to the appropriate orders in ∆ using the algorithms outlined in Aït-Sahalia (2008). The

actual expressions for Cjkk for each particular model are in general complicated, and we obtained these

using the symbolic manipulation software Maple. Their exact speci�cation is available upon request

in computer form from the authors.

It is worth noticing that the Aït-Sahalia expansions are not proper densities as they do not exactly

integrate to one. However, in our experience the expansions are very accurate for the models considered

here, so that a re-normalization is unnecessary.

2.3 E�cient importance sampling

The second obstacle faced is the calculation of the marginalization integrals as in (2) and (3), for

which no closed form expression can be found. Again we need approximation. What we propose is to

use a Monte Carlo integration method, namely, the EIS method of Richard and Zhang (2007). The

EIS is chosen as it does not rely on a global near-Gaussian kernel assumption of the integrand, which

is required by the Laplace approximation (Shephard and Pitt (1997); Durbin and Koopman (1997)).

Here we shall explain a version of the EIS with restricted generality, relying on Gaussian local

samplers, as this will su�ce for our needs. The choice of locally Gaussian samplers relies on the obser-

vation that the TPDs of di�usions can often be approximated quite accurately by Gaussian densities

for �short� time steps ∆. For the examples considered here, we show later that the sparsely parame-

terized locally Gaussian samplers su�ce to get well-performing importance sampling procedures. For

1We follow Aït-Sahalia and Kimmel (2007)s 2(K − k) rather than Aït-Sahalia (2008)s 2(K + 1− k) on the choice of
polynomial order for computational convenience.
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ease of exposition, we shall restrict ourselves to univariate latent states, but multivariate latent states

are possible using multivariate locally Gaussian EIS samplers (Liesenfeld and Richard, 2003). For a

more general exposition of the EIS we refer to Richard and Zhang (2007).

Let the integrand in the integral I that we wish to approximate have a simple factorization

I =

ˆ
ϕ(λ(T ))dλ(T ) =

ˆ T∏
t=0

ϕt(λt|λt−1)dλ(T ), λ(T ) = (λ0, . . . , λT ),

with λt ∈ R, which is the case for the problems considered here. For notational ease, ϕ0(λ0|λ−1) =

ϕ(λ0). Our aim is to �nd an importance density m(λ(T )) so that the importance sampling estimate,

represented by the right hand side of

I =

ˆ
ϕ(λ(T ))

m(λ(T ))
m(λ(T ))dλ(T ) ≈ Î =

1

M

M∑
j=1

ϕ(λ
(j)
(T ))

m(λ
(j)
(T ))

, λ
(j)
(T ) ∼ i.i.d. m(λ(T )), (5)

has as small variance as possible, under the restriction that sampling from m is computationally easy.

The smaller the variance of ϕ(λ(T ))/m(λ(T )), the smaller value for M , the number of random draws,

is needed. The EIS restricts the importance density m(λ(T )) to have a Markovian structure

m(λ(T )) = m0(λ0)

T∏
t=1

mt(λt|λt−1), (6)

with each factor mt speci�ed as

mt(λt|λt−1;at) =
kt(λt|λt−1)ψt(λt;at)

χt(λt−1;at)
, at = (at,1, at,2)′, (7)

ψt(λt;at) = exp(at,1λt + at,2λ
2
t ), (8)

χt(λt−1;at) =

ˆ
kt(λt|λt−1)ψt(λt;at)dλt, (9)

log kt(λt|λt−1) =

2∑
q=0

F (q)(λt−1)

q!
(λt − λ∗(λt−1))q, (10)

with m0(λ0|λ−1) ≡ m(λ0), and correspondingly for the other expressions. The de�nitions of F (q) and

λ∗ will be given below. Notice that mt is a Gaussian density with mean and variance given as

µt = −F
(1) − F (2)λ∗ + at,1
F (2) + 2at,2

, Σt = − 1

F (2) + 2at,2
, (11)
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which makes sampling from (6) conceptually simple and computationally fast.

Flexibility in m(λ(T )) = m(λ(T );a) is introduced by the parameters a = (a0, · · · ,aT ), and the aim

of the EIS is to choose at to minimize the variance of Î. Plugging (7) into (5), we obtain

I = χ0(a0)

ˆ [ T∏
t=0

ϕt(λt|λt−1)χt+1(λt;at+1)

kt(λt|λt−1)ψt(λt;at)

]
m(λ(T );a)dλ(T ), (12)

where χT+1 ≡ 1. The EIS proceeds by introducing draws
{
λ

(j)
(T )

}M
j=1
∼ m(λ(T );a), and minimizes the

Monte Carlo variance of the logarithm of each factor in the product of (12) as

ât, ĉt = arg min
at,ct

M∑
j=1

[
log

(
ϕt(λ

(j)
t |λ

(j)
t−1)χt+1(λ

(j)
t ;at+1)

kt(λ
(j)
t |λ

(j)
t−1)

)
− ct − at,1λ(j)

t − at,2(λ
(j)
t )2

]2

, (13)

for t = T, T − 1, . . . , 0. Clearly, due to the parameterization of mt, the above minimization problem

is a linear least squares problem, which admits the application of computationally attractive linear

regression routines to calculate the solutions.2

2.4 EIS samplers for di�usion models

With the generic EIS algorithm in place, we are ready to specify the functional form of ϕt and kt for

the two models at hand.

2.4.1 Case 1

In this case, the latent state is denoted by λt = zt, and we write p̄t(xt|xt−1) = p̄t(zt, yt|zt−1, yt−1).

The components in the integrand may be written as

ϕt(zt|zt−1) =


p̄0(z0) for t = 0,

p̄t(zt, yt|zt−1, yt−1) for t = 1, . . . , T.

The initial sampler kernel kt is obtained using a second order Taylor approximation around an expan-

sion point z∗(zt−1) as

2As the draws
{
λ
(j)
(T )

}M

j=1
themselves depend on a, the regression problems should be regarded as a �xed point

condition, towards we generate a convergent sequence (Richard and Zhang, 2007).
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log p̄t(zt, yt|zt−1, yt−1) =

2∑
q=0

F
(q)
t (zt−1)

q!
(zt − z∗(zt−1))q︸ ︷︷ ︸

log kt(zt|zt−1)

+Qt(zt|zt−1),

F
(q)
t (zt−1) ≡

[
∂q

∂zqt
log p̄t(zt, yt|zt−1, yt−1)

]
zt=z∗(zt−1)

.

For the EM-TPD, this reduces to kt = p̄t. For the Aït-Sahalia expansions, �nding kt is mainly a

matter of rearranging the polynomial terms in ascending order in (zt − z∗(zt−1)) rather than in ∆.

However, the non-linear function Dv(xt) needs to be Taylor expanded. Still, no additional error is

committed since all the residual variation is retained in Qt. The expansion point z∗(zt−1) should be

chosen so the kt closely approximates p̄(zt|yt, zt−1, yt−1). In the GARCH di�usion model considered

below, we set z∗(zt−1) = Ep̄(E) [zt|yt, zt−1, yt−1] which has a simple closed form expression. Under

these speci�cations, the EIS regresses

logQt(z
(j)
t |z

(j)
t−1)χt+1(z

(j)
t ;at+1) on constant + z

(j)
t + (z

(j)
t )2, t = T, . . . , 1. (14)

The handling of the initial latent state z0 is model speci�c. One possibility is to treat z0 as �xed and

known. In the GARCH di�usion example considered below, p̄0 is taken to be a Gaussian approximation

to p(Zτ ). This leads to k0 = p̄0 and an initial regression of

logχ1(z
(j)
0 ) on constant + z

(j)
0 + (z

(j)
0 )2. (15)

2.4.2 Case 2

In this case, the whole di�usion state is unobserved and λt = xt. The factorization of the integrand

based on approximate TPDs may be written as

ϕt(xt|xt−1) =


p̄0(x0) for t = 0,

p̄t(xt|xt−1)g(yt|xt) for t = 1, . . . , T.

For t = 1, . . . , T, the initial sampler kernel kt is again obtained as a second order Taylor-approximation

of log p̄t around an expansion point x∗(xt−1), i.e.
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log p̄t(xt|xt−1) =

2∑
q=0

F
(q)
t (xt−1)

q!
(xt − x∗(xt−1))q︸ ︷︷ ︸

log kt(xt|xt−1)

+Qt(xt|xt−1),

F
(q)
t (xt−1) ≡

[
dq

dxqt
log p̄t(xt|xt−1)

]
xt=x∗(xt−1)

.

In the CEV di�usion model considered below, the expansion point is simply set to x∗ = xt−1. The

regression problem (13) reduces to regressing

logQt(x
(j)
t |x

(j)
t−1)g(yt|x(j)

t )χt+1(x
(j)
t ;at+1) on constant + x

(j)
t + (x

(j)
t )2, t = T, . . . , 1.

and x0 is treated as known and �xed.

3 Speci�c models and simulation Study

To examine the performance of the proposed procedure, we estimate two di�usion models using

simulated data. The �rst model is the GARCH di�usion of Nelson (1990), a special case of Case 1.

The second model is the CEV di�usion observed with an i.i.d. noise, a special case of Case 2.

For both models, the algorithms are implemented in FORTRAN90. Following Skaug (2002) and

Bastani and Guerrieri (2008), we use algorithmic di�erentiation to generate code for the exact gradient

of the simulated likelihood function. A line searching BFGS-quasi-Newton optimizer (Nocedal and

Wright, 1999) is applied to maximize the simulated likelihood function using function values and exact

gradients.

3.1 The GARCH di�usion model

Let Yt denote the log-price of some asset, and Vt the volatility of this asset. Then the GARCH di�usion

model is given by

d


Yt

Vt

 =


a

α+ βVt

 dt+


√

(1− ρ2)Vt ρ
√
Vt

0 σVt



dBt,1

dBt,2

 , (16)
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where Bt,1 and Bt,2 denote a pair of independent canonical Brownian motions. The parameters to be

determined are θ = [α, β, σ, ρ, a]. Provided that β < 0, the volatility process Vt is mean reverting to

the long run mean, −α/β. The stationary distribution is the inverse Gamma with shape parameter

α̃ = 1−2β/σ2 and scale parameter β̃ = 2α/σ2 (see e.g. Nelson (1990) and Barone-Adesi et al. (2005)).

The parameter ρ ∈ (−1, 1) represents the so called leverage e�ect (Yu, 2005). The model was �rst

obtained by Nelson as a continuous time limit of the discrete time GARCH(1,1) model of Bollerslev

(1986). Duan and Yeh (2011) recently showed that this model provides much better empirical �t to

actual data than the square root stochastic volatility model of Heston (1993).

For convenience, we follow Aït-Sahalia (2002b) and Durham and Gallant (2002) and apply the

variance stabilizing transformation to Vt, so that the transformed volatility has constant in�nitesimal

variance. There are two reasons for doing this. Firstly, it appears that p(zt|yt, zt−1, yt−1) is better

approximated by a Gaussian importance distribution. Secondly, it is our experience that the Aït-

Sahalia expansions converge faster when the domain of the di�usion is doubly unbounded. We de�ne

Zt = log(Vt) and apply Ito's lemma to �nd the joint dynamics of Yt and Zt

d


Yt

Zt

 =


a

(β − 1
2σ

2) + α exp(−Zt)

 dt+


√

(1− ρ2) exp
(

1
2Zt
)

ρ exp
(

1
2Zt
)

0 σ



dBt,1

dBt,2

 .
(17)

We assume that only Yt is observed at discrete times with time step ∆. Moreover, the log-volatility

Zt is assumed to be unobserved. The initial density p0 does have a closed form, namely the density

of the logarithm of inverse Gamma variate, but we take p̄0 to be the Gaussian Laplace approximation

to p0, i.e. the Gaussian density with the same mode and same second derivative as p0 at the common

mode. The mean and the standard deviation characterizing are given, respectively, as

− log

(
σ2 − 2β

2α

)
and

σ2

σ2 − 2β
. (18)

This simpli�cation is mainly done for convenience when constructing the importance sampler, and the

errors committed are asymptotically small when T increases. We proceed with studying the statistical

properties of the SML estimator for this model.

The setup for the study is as follows. We generate daily data (i.e. ∆ = 1/252) and use sample

size T = 2, 022 (matching the sample size in the real data discussed later) corresponding to roughly
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8 years of data. We simulate 1,000 data sets using the EM scheme with time step ∆/256. Since the

time step is so small, the data can be regarded as coming from the continuous time model. We shall

use the acronyms EUL for the method based on EM-TPDs and AS1, AS2 and AS3 for the method

based on the closed-form expansions with K = 1, 2 and 3. For the SML, we consistently use M = 16

draws both for the MC study and the empirical study. (S)ML estimators are obtained when volatility

is assumed to be observed and also assumed to be latent.

This simulation study setup is designed to attempt to heuristically disentangle the three main

sources of statistical bias involved in this problem.

• The discretization error generated by the Euler method. As we employ a sequence of polynomial

expansions in addition to the EM discretization, the discretization error may be assessed accu-

rately by comparing the EM method and the closed-form method with higher order polynomial

expansions.

• The �nite sample bias of using the integrated likelihood function. It is well known that ML

tends to produce a �nite sample bias for the mean reversion parameter for completely observed

di�usion processes. In particular, Phillips and Yu (2009) show that the ML estimate tends to

be biased towards a faster mean reversion. This claim may be checked in our ML estimates of

β when the volatility is observed or unobserved.

• The errors generated from the Monte Carlo simulation at the EIS stage when volatility is assumed

to be latent. This is possible because when volatility is observed, we do not need to integrate

out latent variable and the closed-form method is directly applicable to (Yt, Zt). Hence, the

comparison of two sets of estimators, one based on observed volatility and one based on unob-

served volatility, tells us whether faith can be put into the importance sampler. This source

of errors will also be addressed in Section 4.1, where we test the �niteness of the variance of

the importance sampling weights, and thus assess the convergence properties of the proposed

importance sampling algorithm.

The parameter estimates obtained under AS2 for the real data discussed in Section 4.1 are used as

the �true parameters� throughout the complete experiment. The mean computing times for locating

the SML estimates ranges from 43 seconds (EUL) to 103 seconds (AS3) on a Dell PowerEdge R200

computer with an Intel Xeon X3330 2.66GHz Quad core processor. The routines for evaluating µt, Σt

and Qt are distributed on the four cores of the computer. A total of 12 EIS iterations were used, with
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method α β σ ρ a

true parameters 9.4753e-02 -1.1754e+00 3.2607e+00 -8.4668e-01 -1.8307e-02

observed log-volatility

EUL -1.1348e-02 1.3205e-01 -5.3359e-02 3.4870e-03 2.1317e-02

(3.2606e-02) (9.8615e-01) (3.6189e-02) (5.1728e-03) (8.2130e-02)

AS1 -3.5503e-03 1.2237e-01 -2.2063e-03 -4.3671e-05 4.6145e-03

(2.2912e-02) (9.4922e-01) (3.6171e-02) (5.1024e-03) (5.9712e-02)

AS2 -1.6758e-03 4.1729e-02 -2.2890e-03 -1.4109e-04 3.8146e-03

(2.3461e-02) (9.8974e-01) (3.6064e-02) (5.1145e-03) (6.1019e-02)

AS3 -1.4217e-03 3.5122e-02 -2.7328e-03 -6.9178e-05 3.3318e-03

(2.3029e-02) (9.8181e-01) (3.5930e-02) (5.1032e-03) (6.0604e-02)

unobserved log-volatility

EUL 1.7676e-03 -5.5798e-01 -2.0729e-01 2.8468e-02 1.4380e-02

(1.9159e-02) (1.1675e+00) (2.4401e-01) (4.6443e-02) (4.3687e-02)

AS1 4.4984e-04 5.5142e-02 -4.5956e-02 -4.3213e-03 -6.4342e-03

(1.8587e-02) (9.4814e-01) (2.5800e-01) (3.6043e-02) (4.4929e-02)

AS2 4.7073e-03 -1.0854e-01 -1.2901e-02 -6.7084e-03 -6.5838e-03

(1.9204e-02) (1.0473e+00) (2.6269e-01) (3.6248e-02) (4.4012e-02)

AS3 4.3914e-03 -1.1067e-01 -1.4859e-02 -5.8453e-03 -5.9800e-03

(1.9189e-02) (1.0458e+00) (2.6225e-01) (3.5774e-02) (4.4464e-02)

Table 1: Results from the Monte Carlo experiment for the GARCH di�usion. All results are based
on 1,000 simulated data sets using the parameters given in the �True parameters� row. The bias
(no parenthesis) is calculated as the average of the estimates minus the true parameter. Statistical
standard errors are given in parenthesizes.

the 6 �rst iterations based on the EM approximation to ensure greater stability and faster convergence

of the algorithm. In addition, we provide the following starting conditions

a
(0)
t,1 =

1

2
log(max(y2

t+1, 0.00001)/∆), t = 0, . . . , T − 1, (19)

a
(0)
t,2 = −1

4
, t = 0, . . . , T − 1, (20)

so that ψt(zt;a
(0)
t ) is close to be proportional to p̄(E)(yt+1|zt) for t = 0, . . . , T − 1. We also set

a
(0)
T,1 = a

(0)
T,2 = 0 initially.

Table 1 reports the bias (θ̂−θ) and the standard error of each estimate across the 1,000 simulation
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replica. We see that there are di�erences in the estimates when volatility is assumed to be observed

from those when volatility is assumed to be latent. A relatively more striking di�erence is the under-

estimation of σ under the EM-TPDs, whereas the bias is smaller for the polynomial expansions. This

observation seems to be consistent with what has been found in Aït-Sahalia (1999). In addition, we

see a larger bias in ρ for the EUL-based routines that seem to be mitigated when the expansions are

applied. The expected bias towards faster mean reversion is seen as an overestimation of −β in the

EUL, AS2 and AS3 procedures. Interestingly this does not occur when the volatility is observed. The

estimates obtained using AS2 and AS3 are consistently more similar than the others, suggesting these

approximations represent su�ciently precise approximations to the true TPDs for our needs.

Comparing the estimators obtained with and without observed volatility, we see that the loss of

statistical precision is most signi�cant for the σ and ρ parameters where a ten-fold increase in the

standard error is seen. The parameters governing the linear drift of the volatility, α and β, have

similar statistical standard errors when the log-volatility is integrated out.

3.2 CEV di�usion observed with noise

In this example, we shall consider the constant elasticity of volatility (CEV) short term interest rate

model of Chan et al. (1992), but disturb it with an independent and identically distributed (i.i.d.)

noise. The model for the (unobserved true) interest rate Rτ is speci�ed as

dRτ = (α+ βRτ )dτ + σRγτdBτ , (21)

and we assume we have noisy observations

yt = rt + σyεt, rt = Rt∆, εt ∼ i.i.d. N(0, 1), t = 1, . . . , T (22)

Here θ = [α, β, σ, γ, σy] is the parameter vector to be determined. The reason why the interest rate

data are contaminated may be the presence of microstructure e�ects. In the case of interest rates, one

obvious reason why microstructure e�ects may be important is due to the discreteness in interest rates.

For example, The Federal Reserve, the central bank of the United States, only changes the discount

rate by multiples of 25 basis points. In the case of measuring volatility, microstructure e�ects have

motivated Zhang et al. (2005), Aït-Sahalia et al. (2005) and many others to introduce methods to

construct new realized volatility estimates for integrated volatility. In the case of measuring jump
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intensity, microstructure e�ects have motivated Duan and Fulop (2007) to use a model of the same

structure as in (21) and (22).

For computational convenience, we again transform the latent process rτ to a process with constant

volatility term by introducing the transformation x̃(r) = (r1−γ − 1)/(1 − γ) and its inverse r̃(x) =

(1+x(1−γ))1/(1−γ). By Ito's lemma, the variance stabilized process Xτ = x̃(Rτ ) solves the stochastic

di�erential equation

dXτ =

[
αr̃(Xτ )−γ + βr̃(Xτ )1−γ − 1

2
σ2γr̃(Xτ )γ−1

]
dτ + σdBτ . (23)

Correspondingly, the conditional PDF of the observations has the form

g(yt|xt) ∝ exp

(
− (yt − r̃(xt))2

2σ2
y

)
. (24)

Together, the latent model (23) at discrete times and the observation noise speci�cation (24) constitute

a state space system, which is a special case of Case 2. We start by considering a Monte Carlo study

using simulated daily data (∆ = 1/252).

In this simulation study we focus on the e�ect of failing to account for measurement errors when

estimating di�usions using SML, as well as the e�ect of using di�erent TPD approximations. We

employ EUL, AS1 and AS2 as the latter appears to have su�cient precision for the model considered.

We use M = 16 in all the replications.

Data are simulated from the model using the EM discretization with time-step ∆/256. The

computing times ranges from 11 seconds for EUL-based SML to 70 seconds for AS2-based SML to

maximize a likelihood. The initial observation z0 is set to z̃(y1). We use 4 EIS iterations, and the

initial value of a is set to

a
(0)
t,1 =

yγ+1
t − y2γ

t

σ2
y(1− γ)

, t = 1, . . . , T, (25)

a
(0)
t,2 = − y

2γ
t

2σ2
y

, t = 1, . . . , T, (26)

so that ψt(xt;a
(0)
t ) is proportional to Laplace approximation of xt 7→ g(yt|xt).

Table 2 reports the bias (θ̂ − θ) and the standard error of each estimate across 1,000 replications

under three scenarios. In the �rst scenario, we estimate the model given by (21) and (22) based on

yt. In the second scenario, we estimate the model given by (21) based on non-noisy observations of
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method α β σ γ σy

true parameters 9.6539e-03 -1.6434e-01 4.2469e-01 1.2011e+00 5.2280e-04

simulated maximum likelihood based on yt

EUL 2.2690e-02 -4.1369e-01 1.5406e-02 -3.6380e-03 -7.6361e-07

(2.4675e-02) (4.1536e-01) (1.4114e-01) (1.0211e-01) (3.0504e-05)

AS1 2.2750e-02 -4.1475e-01 1.4157e-02 -4.9749e-03 -7.6071e-07

(2.4746e-02) (4.1672e-01) (1.4037e-01) (1.0206e-01) (3.0515e-05)

AS2 2.2757e-02 -4.1485e-01 1.4152e-02 -4.9786e-03 -7.6064e-07

(2.4764e-02) (4.1682e-01) (1.4037e-01) (1.0206e-01) (3.0515e-05)

direct maximum likelihood based on rt = R∆t

AS2 2.2499e-02 -4.0999e-01 5.5807e-03 -1.6990e-03

(2.4664e-02) (4.1483e-01) (8.2960e-02) (6.1734e-02)

direct maximum likelihood based on yt

AS2 5.8644e-02 -1.1586e+00 -2.9275e-01 -5.5309e-01

(4.2077e-02) (1.0056e+00) (7.0651e-02) (1.8096e-01)

Table 2: Results from the Monte Carlo experiment for the CEV di�usion. All results are based on
1,000 simulated data sets using the parameters given in the �true parameters� row. Estimated bias
(no parenthesis) is calculated as the average of the estimates minus the true parameters. Statistical
standard errors are given in parenthesizes.

the di�usion rt. This scenario is empirically infeasible in high frequencies because rt is not observed.

In the third scenario, we estimate the model given by (21) based on noisy observations yt without

accounting for the noise in model speci�cation. This is mis-speci�ed model which enables us to

examine the impact of the microstructure noise on the estimated dynamics.

From Table 2 we see that the results from all the estimation procedures are fairly similar in scenario

1, suggesting that low-order expansions are adequate for this model. Also, very little loss of statistical

accuracy incurs by adjusting for noise, when comparing scenario 1 to scenario 2. As in the previous

example, the bias in the drift structure is quite large and points towards a faster mean reversion.

Comparing scenario 1 to scenario 3, we see that large biases occur in all the estimated parameters,

even when the noise is very small. The most striking �nding is that the average of the estimates of

γ is close to half of the true parameter. Interestingly, this is the case for the empirical application

considered below.
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method α β σ ρ a log-likelihood

EUL 7.8793e-02 -1.6783e+00 2.7119e+00 -7.6605e-01 1.3710e-02 6529.3

(1.9159e-02) (1.1675e+00) (2.4401e-01) (4.6443e-02) (4.3687e-02)

[4.1061e-04] [1.3876e-02] [6.3125e-03] [9.4707e-04] [2.5174e-04] [1.1699e-01]

AS1 9.0781e-02 -9.9313e-01 3.2343e+00 -8.5153e-01 -1.9521e-02 6544.2

(1.8587e-02) (9.4814e-01) (2.5800e-01) (3.6043e-02) (4.4929e-02)

[3.8931e-04] [9.5332e-03] [7.4181e-03] [5.2175e-04] [2.2926e-04] [1.2579e-01]

AS2 9.4753e-02 -1.1754e+00 3.2607e+00 -8.4668e-01 -1.8307e-02 6544.4

(1.9204e-02) (1.0473e+00) (2.6269e-01) (3.6248e-02) (4.4012e-02)

[5.0388e-04] [1.1149e-02] [8.7445e-03] [5.2126e-04] [2.1651e-04] [1.2594e-01]

AS3 9.4624e-02 -1.1833e+00 3.2542e+00 -8.4561e-01 -1.8226e-02 6544.4

(1.9189e-02) (1.0458e+00) (2.6225e-01) (3.5774e-02) (4.4464e-02)

[4.9865e-04] [1.1067e-02] [8.5580e-03] [5.3222e-04] [2.3434e-04] [1.2573e-01]

Table 3: Parameter estimates and log-likelihood values for the GARCH di�usion �tted to S&P500
data using the four di�erent estimation procedures. The parameter estimates are taken as the mean
over 100 random seeds in the importance sampler. Statistical standard errors taken from Table 1 with
unobserved log-volatility, and are presented in parenthesizes. The estimates of the standard errors
due to the EIS MC variation are included in square parenthesizes.

4 Empirical Applications

To illustrate the proposed procedure in practice, we �t the two di�usion models to real data.

4.1 GARCH di�usion

In the �rst empirical application, we �t the GARCH di�usion (17) to the daily Standard & Poor

500 sampled from January 3, 2003 to January 13, 2011. The time-series of daily (i.e ∆ = 1/252)

log-returns consists of a total of T = 2022 observations.

Parameter estimates using the four di�erent estimation procedures are presented in Table 3. The

estimates are calculated as the mean across 100 estimates with di�erent random seeds in the impor-

tance sampler. In addition to parameter estimates and statistical standard errors taken from Table

1, we also present standard errors induced by the EIS-Monte Carlo methods and also known as the

Monte Carlo standard errors in the literature. As seen, the Monte Carlo standard errors are small

comparing with statistical standard errors.

From Table 3, we see that the parameter estimates for three expansion-based SML methods are
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fairly consistent. However, there are substantial di�erences between the EUL and the expansion-

based SML methods in the estimates of the parameters and the log-likelihood values. These �ndings

reinforce the simulation study. The SML estimate of ρ is much larger in magnitude than what has

been found in the literature using data from earlier periods. The estimated ρ is around -0.85 in the

AS1-AS3 while it is only -0.32 when Yu (2005) �tted the log-normal stochastic volatility model to

S&P 500 data between 1980 and 1987. However, the estimated ρ is similar to what has been found in

Aït-Sahalia et al (2011) based on options data collected in a similar sample period. Moreover, we see

that the di�erence in the parameter estimates between AS2 and AS3 is less than that between AS1

and AS2. This suggests that K = 2 is su�cient in the closed-form expansions.

In addition to estimating parameters, we have also considered some tests for a �nite variance of

importance weights in the SML procedures. Recall that to have
√
M convergence and asymptotic nor-

mality of the integral estimate (5), a �nite variance of the importance weights wj = ϕ(λ
(j)
(T ))/m(λ

(j)
(T )) is

required. Recently, Koopman et al. (2009) proposed several tests for �nite variance based on extreme

value theory. In the present paper we apply some of their methods. Throughout this section, we con-

sider the scaled importance weights w′ = exp(logw − 6545) for AS1-AS3 and w′ = exp(logw − 6526)

for EUL as the values of w are too large for the �oating point numerics used. This re-scaling does not

a�ect the results presented, as the test statistics are invariant under re-scaling.

The tests are based on N = 1000 ×M = 16, 000 importance weights obtained by evaluating the

EIS procedures 1000 times on the real data at the parameter estimates obtained from AS2. The 100

largest scaled weights, along with a histogram of the scaled weights are presented in Figures 1 and 2

for each of the four SML procedures. These preliminary diagnostics do not suggest in�nite variance

problems under any of the SML procedures.

More formal tests can be based on the peak over threshold methodology for i.i.d. observations.

A caveat here is that the importance weights are not exactly independent when they stem from the

same EIS evaluation. Still, since the tests are invariant to a reordering of the data, we disregard this

fact and proceed as if the data were i.i.d. Let {w′(j)} denote the scaled weights sorted in descending

order. We de�ne the �over threshold� weights (OTW) as ui = w′(i)−w
′
(N−k), i = 1, . . . , k where k is a

tuning parameter. Our aim is to measure the tail thickness of the OTWs as only the tails determine

the �niteness of variance. The central tool for inference is the generalized Pareto distribution with

density

f(u; ξ, b) =
1

b

(
1− ξ u

b

)− 1
ξ−1

, u ≥ 0 (27)
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Figure 1: Finite variance diagnostics for EUL and AS1 for the GARCH di�usion model. The left
hand side panels present the 100 largest scaled weights. The middle panels are histograms of all the
scaled weights. The right hand side panel plots the maximum likelihood estimates of ξ (solid) along
with 95% con�dence bands (dashed) for di�erent values of the truncation parameter k.
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Figure 2: Finite variance diagnostics for AS2 and AS3 for the GARCH di�usion model. The left hand
side panels present the 100 largest scaled weights. The middle panels are histograms of all the scaled
weights. The right hand side panel plots the maximum likelihood estimates of ξ (solid) along with
95% con�dence bands (dashed) for di�erent values of the truncation parameter k.
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for which we �t to {ui}ki=1 using two di�erent methods. The parameter ξ determines the tail thick-

ness, and in particular ξ < 1/2 corresponds to a �nite variance. For ξ < 0, the Generalized Pareto

distribution has �nite support and, hence, trivially �nite variance. The parameter b is a scale pa-

rameter, whose actual value is of little interest for our application. ML estimates of ξ are plotted in

the rightmost plots of Figures 1 and 2 along with 95% con�dence bands for values of k ranging from

[0.01N ] to [0.5N ] where [·] denotes the integer part.3 From the Figures, we see that the MLEs of ξ

stay consistently below 1/2 for any reasonable truncation parameter k.

In addition to the ML estimation of ξ, we apply Hill's estimator (see Hill (1975) and Phillips et al.

(1996)) for ξ in the Generalized Pareto distribution. This estimator is given as

ξH =
1

k

k∑
j=1

logw′(N−j+1) − logw′(N−k), (28)

and has a known asymptotically normal limit under some conditions on the relative growth of N and

k. We follow Monahan (1993) and Koopman et al. (2009) and use k = [2N1/3] and k = [4N1/3]

for this test. The test is asymptotically standard normal under the null hypothesis that the true

ξ = 1/2, i.e. borderline in�nite variance in the weights. Large (comparing with the standard normal

distribution) negative test statistics suggest rejection towards smaller values of ξ and �nite variance.

The Monahan test statistics are smaller than −5.8 for k = [2N1/3] and −8.1 for k = [4N1/3] for all

four SML methods considered. We again see strong evidence against the null hypothesis. All in all,

the tests for �nite variance of the importance weights conclusively points towards �nite variance.

4.2 CEV di�usion observed with noise

In the second empirical application, we �t the CEV di�usion plus noise (23-24) to the Eurodollar

interest rate data between 1983 and 1995 (T = 3082). The same data were used previously by

Aït-Sahalia (1996).

A result obtained from the simulation study is that the form of the estimated volatility is highly

altered when the noise is accounted for. This is also seen in the estimates presented in Table 4 for

the real data. We see that the estimates for γ is nearly doubled when the noise is accounted for,

suggesting that the noise is highly material. Since the models are nested, it is also reasonable to

compare the log-likelihoods, and we �nd a di�erence of around 83 which gives a strong rejection of

3ML estimates and con�dence intervals where obtained using the gpfit-function in MATLAB.
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method α β σ γ σy log-likelihood

EUL 9.7251e-03 -1.6562e-01 4.2497e-01 1.2014e+00 5.2279e-04 16146.12

(2.4675e-02) (4.1536e-01) (1.4114e-01) (1.0211e-01) (3.0504e-05)

[3.9971e-06] [6.4930e-05] [3.2958e-04] [3.1883e-04] [1.0117e-07] [9.7087e-02]

AS1 9.6332e-03 -1.6396e-01 4.2470e-01 1.2011e+00 5.2281e-04 16146.11

(2.4746e-02) (4.1672e-01) (1.4037e-01) (1.0206e-01) (3.0515e-05)

[4.6649e-06] [7.7315e-05] [3.2980e-04] [3.1930e-04] [1.0122e-07] [9.7043e-02]

AS2 9.6539e-03 -1.6434e-01 4.2469e-01 1.2011e+00 5.2280e-04 16146.11

(2.4764e-02) (4.1682e-01) (1.4037e-01) (1.0206e-01) (3.0515e-05)

[4.6262e-06] [7.5769e-05] [3.2996e-04] [3.1945e-04] [1.0131e-07] [9.7051e-02]

AS2 2.3050e-02 -3.6689e-01 1.3655e-01 6.8788e-01 0 16063.34

(4.2077e-02) (1.0056e+00) (7.0651e-02) (1.8096e-01)

Table 4: Parameter estimates and log-likelihood values for the Eurodollar interest rate data using the
three di�erent estimation SML procedures, along with direct estimation with σn = 0. The parameter
estimates are taken as the mean over 100 replications using di�erent random seeds in the importance
sampler. Statistical standard errors taken from Table 2 and are presented in parenthesizes. The
estimates of the standard errors due to the EIS MC variation are included in brackets.

the model without noise.

The estimates for AS1 and AS2 are quite similar, suggesting that AS1 should be su�cient for these

ranges of parameters and ∆. Looking at the values for the MC variation, we see that the algorithm

performs very well, even with the modest M = 16 simulation paths.

As for the previous model, we also perform some diagnostics on the variance of the importance

weights. The scaled weights are given as w′ = exp(logw − 16146), and the tests are based on N =

1000×M = 16, 000 draws obtained based on the real data and parameters equal to those in Table 4.

Diagnostics plots are given in Figures 3 and 4 and show no signs of in�nite variances, with estimated

ξ safely below 1/2. For the Monahan tests we get −6.3 for the test statistic when k = [2N1/3] and

−8.6 when k = [4N1/3] for all three methods considered. Thus there is no evidence of in�nite variance

from any of the tests.

5 Concluding Remarks

This paper extends the closed-form method of Aït-Sahalia (2008) to estimate the di�usion models with

latent variables. The method synthesizes the closed form method and the e�cient importance sampler
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Figure 3: Finite variance diagnostics for EUL and AS1 for the CEV model. The left hand side panels
present the 100 largest scaled weights. The middle panels are histograms of all the scaled weights. The
right hand side panel plots the maximum likelihood estimates of ξ (solid) along with 95% con�dence
bands (dashed) for di�erent values of the truncation parameter k.
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of Richard and Zhang (2007). It does not require any in�ll observations and hence is computationally

appealing. The method was illustrated using two classes of models. In the �rst class, the state variable

is only partially observed. This class includes the stochastic volatility models and the stochastic mean

models. It also includes the combinations of the two speci�cations as advocated by Du�e and Kan

(1996) and Dai and Singleton (2000). The second class assumes that the variable, which follows a

di�usion, is observed with a noise. In the simulation study and the empirical study, the method was

used to estimate the GARCH di�usion and the CEV di�usion with noise. The Monte Carlo study

shows that the method works well in �nite sample. For the progressively precise TPD-approximations,

we see that there is a decreasing di�erence in the resulting SML estimates, suggesting that arbitrarily

accurate approximations to the exact continuous time likelihood based on discrete data can be pro-

duced. Of course, there is a trade-o� between decreasing the discretization bias and containing the

computational cost. As a reference, the AS2 expansion for the GARCH di�usion requires about 200

lines of machine generated FORTRAN90 code to be evaluated, whereas the corresponding �gure for AS3

is about 700. The empirical applications illustrate usefulness of the method and there is no evidence

of in�nite variance in the importance sampler.

In the literature, Durham and Gallant (2002) has introduced a SML method to estimate continuous

time stochastic volatility models using spot prices only. While both their method and ours are based

on simulations, there are several key di�erences between the two methods. First, while our method

employs the closed-form method to control the discretization bias, the method of Durham and Gallant

(2002) uses in�ll observations which are in turn integrated out using importance sampler. When there

is no latent state in the di�usion, however, Aït-Sahalia (2002a) showed that the closed-form method

is not only more accurate but also computationally faster than the in�ll method. Second, Durham

and Gallant (2002) only applied the SML method to estimate continuous time stochastic volatility

models. In this paper, we implement our method in two classes of models.

To control the discretization bias in latent di�usions, in addition to the SML approach of Durham

and Gallant (2002), Bayesian Markov Chain Monte Carlo (MCMC) may also be used. See Eraker

(2001) and Stramer et al (2010) for the studies. The later reference is especially relevant to the

present paper because it uses the closed form method in connection to MCMC in the context of latent

factors to alleviate the need for in�ll simulations. However, their method is Bayesian and the sampling

algorithms are unrelated.

There should be scopes for applying the current methodology to a broader class of models, including
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Figure 4: Finite variance diagnostics for AS2 for the CEV model. The left hand side panels present
the 100 largest scaled weights. The middle panels are histograms of all the scaled weights. The right
hand side panel plots the maximum likelihood estimates of ξ (solid) along with 95% con�dence bands
(dashed) for di�erent values of the truncation parameter k.

multiple latent state variables. Once the EIS framework is implemented, it is relatively easy to adapt

to new models using symbolic manipulation software to generate code for the model speci�c µt, Σt and

Qt. However, the sampling interval ∆ and the degree of deviation from the normality of the latent

process are important parameters for whether this would be successful. It is well known that for

Brownian motion driven stochastic di�erential equations, the TPD converges to a normal distribution

as ∆ → 0, and thus the above proposed methodology should produce precise results for su�ciently

small ∆. However, this limit argument may not be of practical interest as data may be available only

for large ∆. If this is the case, one may wish to consider exchange the locally Gaussian importance

density with a more problem speci�c non-Gaussian importance density.

Another possible direction for future research may be to employ the EIS importance density as the

proposal for updating blocks of latent states in an Independent Metropolis-Hastings algorithm. This

approach may be applied either in a Gibbs sampler-based MCMC algorithm for estimating parameters,

or for providing smoothed estimates of latent states. See Liesenfeld and Richard (2006) for a discussion

of MCMC based on the EIS.
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Finally, one may wish to allow for jumps either in the volatility process or in the price process or

both. Yu (2007) provides the corresponding TPD-expansions for jump-di�usions. Coping with jumps

in the EIS framework can be done using the Mixture EIS framework of Kleppe and Liesenfeld (2011).
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