ON LIMITING CASE OF THE STEIN-WEISS TYPE INEQUALITY FOR THE B-RIESZ POTENTIALS *)

Emin V. Guliyev

Abstract

In this paper we study the Riesz potentials (B-Riesz potentials) generated by the Laplace-Bessel differential operator $\Delta_B = \sum_{k=1}^{n} \frac{\partial^2}{\partial x_k^2} + \frac{\gamma}{x_n} \frac{\partial}{\partial x_n}$, $\gamma > 0$, in the weighted Lebesgue spaces $L_{p,|x|^{\beta},\gamma}$. We establish an inequality of Stein-Weiss type for the B-Riesz potentials in the limiting case, and obtain the boundedness of the B-Riesz potential operator from the space $L_{p,|x|^{\beta},\gamma}$ to $BMO_{|x|^{-\lambda},\gamma}$.

Mathematics Subject Classification: Primary 42B20, 42B25, 42B35

Key Words and Phrases: Laplace-Bessel differential operator, generalized shift operator, B-Riesz potential, weighted B-BMO spaces, Stein-Weiss type inequality, weighted Lebesgue space

Introduction

The classical Riesz potential is an important technical tool in harmonic analysis, theory of functions and partial differential equations. The potential and related topics associated with the Laplace-Bessel differential operator

$$\Delta_B = \sum_{k=1}^{n} \frac{\partial^2}{\partial x_k^2} + \frac{\gamma}{x_n} \frac{\partial}{\partial x_n}, \quad \gamma > 0$$

*)Emin Guliyev’s research partially supported by the grant of INTAS YS Collaborative Call with Azerbaijan 2005 (INTAS Ref. Nr 05-113-4436).
have been the research areas of many mathematicians such as K. Stempak [11], I. Kipriyanov [8], A.D. Gadjej and I.A. Aliev [1], A.D. Gadjej and V.S. Guliyev [2], E.V. Guliyev [3], V.S. Guliyev [4]-[6] and others.

In this paper we study Riesz potentials (B-Riesz potentials) generated by the Laplace-Bessel differential operator Δ_B in weighted Lebesgue spaces. We establish the inequality of Stein-Weiss type (see [10]) for B-Riesz potentials in the limiting case. We obtain the boundedness of the B-Riesz potential operator from the spaces $L^p, |x|^{-\lambda, \gamma}$ to $BMO, |x|^{-\lambda, \gamma}$ in the limiting case.

1. Definitions, notation and preliminaries

Let $\mathbb{R}^n_+ = \{x \in \mathbb{R}^n : x = (x_1, \ldots, x_n), x_n > 0\}$ and $B(x, r) = \{y \in \mathbb{R}^n_+ : |x - y| < r, r > 0\}, B_r \equiv B(0, r)$, and let $B(x, r)$.

For a measurable set $A \subset \mathbb{R}^n_+$, let $|A|_\gamma = \int_A x_\gamma dx$, then $|B_r|_\gamma = \omega(n, \gamma) r^n + 1$, where

$$\omega(n, \gamma) = \int_{B_1} x_\gamma dx = \frac{\pi^{(n-1)/2} \Gamma((\gamma + 1)/2)}{2 \Gamma((n + \gamma - 2)/2)}.$$

Denote by T^y the generalized shift operator (B-shift operator) acting according to the law

$$T^y f(x) = C_\gamma \int_0^\pi f(x' - y', (x_n, y_n)\beta) \sin^{\gamma - 1} \beta d\beta,$$

where

$$(x_n, y_n)\beta = \sqrt{x_n^2 + y_n^2 - 2x_n y_n \cos \beta} \quad \text{and} \quad C_\gamma = \frac{\Gamma((\gamma + 1)/2)}{\sqrt{\pi} \Gamma(\gamma/2)} = \frac{2}{\pi} \omega(2, \gamma).$$

We remark that the generalized shift operator T^y is closely connected with the Laplace-Bessel differential operator Δ_B (for example, $n = 1$ – see [9], and $n > 1$ – [8] for details).

Let $L_{p,\gamma}(\mathbb{R}^n_+)$ be the space of measurable functions on \mathbb{R}^n_+ with finite norm

$$\|f\|_{L_{p,\gamma}} = \|f\|_{L_{p,\gamma}(\mathbb{R}^n_+)} = \left(\int_{\mathbb{R}^n_+} |f(x)|^p x_\gamma dx\right)^{1/p}, \quad 1 \leq p < \infty.$$

For $p = \infty$ the space $L_{\infty,\gamma}(\mathbb{R}^n_+)$ is defined by means of the usual modification

$$\|f\|_{L_{\infty,\gamma}} = \|f\|_{L_{\infty}} = \text{ess sup}_{x \in \mathbb{R}^n_+} |f(x)|.$$

Lemma 1. ([2]) Let $0 < \alpha < n + \gamma$. Then

$$|T^y|x|^{\alpha-n-\gamma} - |y|^{\alpha-n-\gamma} \leq 2^{\alpha+\gamma+1-\alpha}|y|^{\alpha-n-\gamma-1}|x| $$

for $2|x| \leq |y|$.
ON LIMITING CASE OF THE STEIN-WEISS TYPE . . . 41

Definition 1. Let \(1 \leq p < \infty \). We denote by \(W_{L_{p,\gamma}}(\mathbb{R}^n) \) the weak \(L_{p,\gamma} \) space defined as the set of locally integrable functions \(f \) with the finite norms

\[
\|f\|_{W_{L_{p,\gamma}}} = \sup_{r>0} \frac{f^{1/p}(r)}{r^{\gamma}},
\]

where \(f^{1/p}(r) = \left| \{ x \in \mathbb{R}^n_+ : |f(x)| > r \} \right|^{\gamma} \).

Let \(v \) be a non-negative and measurable function on \(\mathbb{R}^n_+ \), and \(L_{p,v,\gamma}(\mathbb{R}^n_+) \) be the weighted \(L_{p,\gamma} \)-space of all measurable functions \(f \) on \(\mathbb{R}^n_+ \) for which

\[
\|f\|_{L_{p,v,\gamma}} \equiv \|vf\|_{L_{p,\gamma}}(\mathbb{R}^n_+) < \infty.
\]

We denote by \(W_{L_{p,v,\gamma}}(\mathbb{R}^n_+) \) the weighted weak Lebesgue space which is the class of all measurable functions \(f : \mathbb{R}^n_+ \to \mathbb{R} \), for which

\[
\|f\|_{W_{L_{p,v,\gamma}}} \equiv \|vf\|_{W_{L_{p,\gamma}}}(\mathbb{R}^n_+) < \infty.
\]

The \(B - BMO \) space (see [5]) \(BMO_\gamma(\mathbb{R}^n_+) \), and weighted \(B - BMO \) space, \(BMO_{w,\gamma}(\mathbb{R}^n_+) \), are defined as the set of locally integrable functions \(f \) with finite norms

\[
\|f\|_{*,\gamma} = \sup_{r>0, \ x \in \mathbb{R}^n_+} |B_r|^{-1} \int_{B_r} |T_y f(x) - f_{B_r}(x)| y_\gamma^n dy < \infty,
\]

and

\[
\|f\|_{*,w,\gamma} = \sup_{r>0, \ x \in \mathbb{R}^n_+} w(B_r)^{-1} \int_{B_r} |T_y f(x) - f_{B_r}(x)| y_\gamma^n dy < \infty,
\]

respectively, where

\[
f_{B_r}(x) = |B_r|^{-1} \int_{B_r} T_y f(x) y_\gamma^n dy \quad \text{and} \quad w(B_r) = \int_{B_r} w(x) x_\gamma^n dx.
\]

Consider the \(B \)-Riesz potential

\[
I_{\alpha,\gamma} f(x) = \int_{\mathbb{R}^n_+} T_y |x|^{n-\alpha-\gamma} f(y) y_\gamma^n dy, \quad 0 < \alpha < n + \gamma
\]

and the modified \(B \)-Riesz potential

\[
\tilde{I}_{\alpha,\gamma} f(x) = \int_{\mathbb{R}^n_+} \left(T_y |x|^{n-\alpha-\gamma} - |y|^{n-\alpha-\gamma} \chi_{B_1}(y) \right) f(y) y_\gamma^n dy.
\]

For the \(B \)-Riesz potential the following Stein-Weiss type theorem was proved by A.D. Gadjiev and V.S. Guliyev in [2].
Theorem A. Let $0 < \alpha < n + \gamma$, $1 \leq p \leq q < \infty$, $\beta < \frac{n+\gamma}{p}$ ($\beta \leq 0$, if $p = 1$), $\lambda < \frac{n+\gamma}{q}$ ($\lambda \leq 0$, if $q = \infty$), $\alpha \geq \beta + \lambda \geq 0$ ($\beta + \lambda > 0$, if $p = q$).

1) If $1 < p < \frac{n+\gamma}{\alpha - \beta - \lambda}$, then the condition $\frac{1}{p} = \frac{1}{q} = \frac{\alpha - \beta - \lambda}{n+\gamma}$ is necessary and sufficient for the boundedness of $I_{\alpha, \gamma}$ from $L_{p, |x|^\alpha, \gamma}(\mathbb{R}^n_+)$ to $L_{q, |x|^{-\lambda}, \gamma}(\mathbb{R}^n_+)$.

2) If $p = 1$, then the condition $1 - \frac{1}{q} = \frac{\alpha - \beta - \lambda}{n+\gamma}$ is necessary and sufficient for the boundedness of $I_{\alpha, \gamma}$ from $L_{1, |x|^\alpha, \gamma}(\mathbb{R}^n_+)$ to $WL_{q, |x|^{-\lambda}, \gamma}(\mathbb{R}^n_+)$.

Definition 2. The weight function w belongs to the class $A_{p, \gamma}(\mathbb{R}^n_+)$ for $1 < p < \infty$, if

$$
\sup_{x \in \mathbb{R}^n_+, r > 0} \left(\frac{|B(x, r)|^{-1}}{B(x, r)} \int_{B(x, r)} w(y) y_\gamma^p dy \right) \times \left(\frac{|B(x, r)|^{-1}}{B(x, r)} \int_{B(x, r)} w^{-\frac{1}{p-1}}(y) y_\gamma^\gamma dy \right)^{p-1} < \infty,
$$

and w belongs to $A_{1, \gamma}(\mathbb{R}^n_+)$, if there exists a positive constant C such that for any $x \in \mathbb{R}^n_+$ and $r > 0$

$$
|B(x, r)|^{-1} \int_{B(x, r)} w(y) y_\gamma^\gamma dy \leq C \operatorname{ess sup}_{y \in B(x, r)} w(y).
$$

The properties of the class $A_{p, \gamma}(\mathbb{R}^n_+)$ are analogous to those of the Muckenhoupt classes. In particular, if $w \in A_{p, \gamma}(\mathbb{R}^n_+)$, then $w \in A_{p, \gamma}(\mathbb{R}^n_+)$ for a certain sufficiently small $\varepsilon > 0$ and $w \in A_{p, \gamma}(\mathbb{R}^n_+)$ for any $p > p_1$.

Note that, $|x|^{\alpha} \in A_{p, \gamma}(\mathbb{R}^n_+)$, $1 < p < \infty$, if and only if $-\frac{n+\gamma}{p} < \alpha < \frac{n+\gamma}{p}$ and $|x|^{\alpha} \in A_{1, \gamma}(\mathbb{R}^n_+)$, if and only if $-n - \gamma < \alpha \leq 0$.

For the B-maximal function (see [4, 5])

$$
M_{\gamma}f(x) = \sup_{r > 0} |B_r|^{-1} \int_{B_r} T^\gamma f(x) y_\gamma^\gamma dy
$$

the following analogue of Muckenhoupt theorem (see [7]) was proved by E.V. Guliyev in [3].

Theorem B. 1. If $f \in L_{1, w, \gamma}(\mathbb{R}^n_+)$, $w \in A_{1, \gamma}$, then $M_{\gamma}f \in WL_{1, w, \gamma}(\mathbb{R}^n_+)$ and

$$
\|M_{\gamma}f\|_{WL_{1, w, \gamma}} \leq C_{1, w, \gamma}\|f\|_{L_{1, w, \gamma}},
$$

where $C_{1, w, \gamma}$ depends only on w, γ and n.

2. If \(f \in L_{p,w,\gamma}(\mathbb{R}^n_+) \), \(w \in A_{p,\gamma} \), \(1 < p < \infty \), then \(M_\gamma f \in L_{p,w,\gamma}(\mathbb{R}^n_+) \) and
\[
\|M_\gamma f\|_{L_{p,w,\gamma}} \leq C_{p,w,\gamma}\|f\|_{L_{p,w,\gamma}},
\]
where \(C_{p,w,\gamma} \) depends only on \(w \), \(p \), \(\gamma \) and \(n \).

2. Main result

Our main result is the following Stein-Weiss type theorem for the \(B \)-Riesz potential in the limiting case \(p = (n + \gamma)/(\alpha - \beta - \lambda) \). We prove that the modified \(B \)-Riesz potential operator \(\tilde{I}_\alpha \) is bounded from the space \(L_{p,|x|^{\beta},\gamma}(\mathbb{R}^n_+) \) to the weighted \(B \)-BMO space \(BMO_{|x|^{-\lambda},\gamma}(\mathbb{R}^n_+) \).

Theorem 1. Let \(0 < \alpha < n + \gamma \), \(1 < p = (n + \gamma)/(\alpha - \beta - \lambda) \), \(\beta < (n + \gamma)/p' \), \(\alpha \geq \beta + \lambda \geq 0 \). Then the operator \(\tilde{I}_\alpha \) is bounded from \(L_{p,|x|^{\beta},\gamma}(\mathbb{R}^n_+) \) to \(BMO_{|x|^{-\lambda},\gamma}(\mathbb{R}^n_+) \).

Moreover, for \(f \in L_{p,|x|^{\beta},\gamma}(\mathbb{R}^n_+) \) the integral \(I_{\alpha,\gamma}f \) exists almost everywhere, then \(I_{\alpha,\gamma} \in BMO_{|x|^{-\lambda},\gamma}(\mathbb{R}^n_+) \) and the following inequality is valid
\[
\|I_{\alpha,\gamma}f\|_{BMO_{|x|^{-\lambda},\gamma}} \leq C\|f\|_{L_{p,|x|^{\beta},\gamma}},
\]
where \(C > 0 \) is independent of \(f \).

Proof. Let \(f \in L_{p,|x|^{\beta},\gamma}(\mathbb{R}^n_+) \), \(1 < p = (n + \gamma)/(\alpha - \beta - \lambda) \). For given \(t > 0 \) we denote
\[
f_1(x) = f(x)\chi_{B_{2t}}(x), \quad f_2(x) = f(x) - f_1(x),
\]
where \(\chi_{B_{2t}} \) is the characteristic function of the set \(B_{2t} \). Then
\[
\tilde{I}_{\alpha,\gamma}f(x) = \tilde{I}_{\alpha,\gamma}f_1(x) + \tilde{I}_{\alpha,\gamma}f_2(x) = F_1(x) + F_2(x),
\]
where
\[
F_1(x) = \int_{B_{2t}} \left(T_{y,|x|^{\alpha-n-\gamma}} - |y|^{\alpha-n-\gamma}\chi_{B_1}(y) \right) f(y)y_\alpha dy,
\]
\[
F_2(x) = \int_{\mathbb{R}^n} (y,|x|^{\alpha-n-\gamma}) f(y)y_\alpha dy.
\]
Note that the function \(f_1 \) has compact support and thus
\[
a_1 = -\int_{B_{2t}\setminus B_{\min(1,2t)}} |y|^{\alpha-n-\gamma} f(y)y_\alpha dy
\]
is finite.
Note also that
\[F_1(x) - a_1 = \int_{B_2t} T^y|\alpha - n - \gamma f(y)y_n^\gamma dy - \int_{B_2t \setminus B_{\min(1,2t)}} |y|^{\alpha - n - \gamma} f(y)y_n^\gamma dy \]
\[+ \int_{B_2t \setminus B_{\min(1,2t)}} |y|^{\alpha - n - \gamma} f(y)y_n^\gamma dy = \int_{\mathbb{R}_t^n} T^y|\alpha - n - \gamma f_1(y)y_n^\gamma dy = I_{n,\gamma}f_1(x). \]

Therefore
\[|F_1(x) - a_1| \leq \int_{\mathbb{R}_t^n} |y|^{\alpha - n - \gamma} |T^y f_1(x)| y_n^\gamma dy = \int_{B(x,2t)} |y|^{\alpha - n - \gamma} |T^y f(x)| y_n^\gamma dy. \]

Further, for \(x \in B_t, \ y \in B(x,2t) \) we have
\[|y| \leq |x| + |x - y| < 3t. \]

Consequently, we have
\[|F_1(x) - a_1| \leq \int_{B_{3t}} |y|^{\alpha - n - \gamma} |T^y f(x)| y_n^\gamma dy, \tag{5} \]
if \(x \in B_t. \)

By Theorem B and inequality (5), for \((\alpha - \beta - \lambda)p = n + \gamma\) we have
\[t^{\alpha - n - \gamma - \lambda} \int_{B_t} |T^z F_1(x) - a_1| z_n^\gamma dz \]
\[\leq Ct^{\alpha - n - \gamma - \lambda} \int_{B_{3t}} T^z \left(\int_{B_{3t}} |y|^{\alpha - n - \gamma} T^y |f(x)| y_n^\gamma dy \right) z_n^\gamma dz \]
\[\leq Ct^{\alpha - n - \gamma - \lambda} \cdot t^{(n+\gamma)/p'} \left(\int_{B_t} T^z (M_\gamma(f(x)))^p z_n^\gamma dz \right)^{1/p} \]
\[\leq Ct^\beta \left(\int_{B_t} T^z (M_\gamma(f(x)))^p z_n^\gamma dz \right)^{1/p} \leq C \left(\int_{B_t} |z|^{\beta p} T^z (M_\gamma(f(x)))^p z_n^\gamma dz \right)^{1/p} \]
\[= C \left(\int_{\mathbb{R}_t^n} T^z \chi_{B_t} |x|^{\beta p} (M_\gamma(f(x)))^p z_n^\gamma dz \right)^{1/p} \]
\[= C \left(\int_{\mathbb{R}_t^n} |z|^{\beta p} (M_\gamma(f(x)))^p z_n^\gamma dz \right)^{1/p} \leq C \|f\|_{L_p,|x|^{\beta,\gamma}}. \tag{6} \]

Denote
\[a_2 = \int_{B_{\max(1,2t)} \setminus B_{2t}} |y|^{\alpha - n - \gamma} f(y)y_n^\gamma dy, \]
and estimate $|F_2(x) - a_2|$ for $x \in B_t$:

$$|F_2(x) - a_2| \leq \int_{B_{2t}} |f(y)| |T^y x|^{\alpha - n - \gamma} - |y|^{\alpha - n - \gamma} y_n^\gamma dy.$$

Applying Lemma 1 and Hölder’s inequality we get

$$|F_2(x) - a_2| \leq 2^{n+\gamma-\alpha+1}|x| \int_{B_{2t}} |f(y)||y|^{\alpha - n - \gamma - 1} y_n^\gamma dy$$

$$\leq 2^{n+\gamma-\alpha+1}|x| \left(\int_{B_t} |y|^\beta |f(y)|^{\beta} y_n^\gamma dy \right)^{1/p} \times \left(\int_{B_t} |y|^{(-\beta+\alpha-n-\gamma-1)p'} y_n^\gamma dy \right)^{1/p'}$$

$$\leq C|x|t^{\alpha-\beta-1-n-\gamma/p} \|f\|_{L_{\gamma,|x|^\beta,\gamma}} \leq C|x|t^{\lambda-1} \|f\|_{L_{\gamma,|x|^\beta,\gamma}} \leq C|x|^{\lambda} \|f\|_{L_{\gamma,|x|^\beta,\gamma}}.$$

Note that if $|x| \leq t$ and $|z| \leq 2t$, then $T^z |x| \leq |x| + |z| \leq 3t$. Thus for $(\alpha - \beta - \lambda)p = Q$ we obtain

$$|T^z F_2(x) - a_2| \leq T^z |F_2(x) - a_2| \leq C|x|^{\lambda} \|f\|_{L_{\gamma,|x|^\beta,\gamma}}.$$

(7)

Denote

$$a_f = a_1 + a_2 = \int_{B_{\max(1,2t)}} |y|^{\alpha - n - \gamma} f(y) y_n^\gamma dy.$$

Finally, from (6) and (7) we have

$$\sup_{x,t} t^{n-\gamma-\lambda} \int_{B_t} T^y \tilde{I}_{\alpha,\gamma} f(x) - a_f y_n^\gamma dy \leq C \|f\|_{L_{\gamma,|x|^\beta,\gamma}}.$$

Thus,

$$\|\tilde{I}_{\alpha,\gamma} f\|_{BMO_{|x|^{-\lambda,\gamma}}} \leq 2C \sup_{x,t} t^{n-\gamma-\lambda} \int_{B_t} T^y \tilde{I}_{\alpha,\gamma} f(x) - a_f y_n^\gamma dy \leq C \|f\|_{L_{\gamma,|x|^\beta,\gamma}}.$$

Thus Theorem 1 is proved.

\[\square\]

Corollary 1. ([4, 5]) Let $0 < \alpha < n + \gamma$, $1 < p = (n + \gamma)/\alpha$. Then the operator $\tilde{I}_{\alpha,\gamma}$ is bounded from $L_{p,\gamma}(\mathbb{R}^n_+)$ to $BMO_{\gamma}(\mathbb{R}^n_+)$. Moreover, for $f \in L_{p,\gamma}(\mathbb{R}^n_+)$ the integral $I_{\alpha,\gamma} f$ exists almost everywhere, then $I_{\alpha,\gamma} f \in BMO_{\gamma}(\mathbb{R}^n_+)$ and the following inequality is valid

$$\|I_{\alpha,\gamma} f\|_{BMO_{\gamma}} \leq C \|f\|_{L_{p,\gamma}},$$

where $C > 0$ is independent of f.

Acknowledgements. The author expresses his thanks to Prof. A.D. Gadjiyev and Prof. V.S. Guliyev for the helpful comments on the manuscript of this paper. Thanks are due also to the referee for carefully checking the manuscript, and for the valuable comments and suggestions.

References

Institute of Mathematics and Mechanics
Academy of Sciences of Azerbaijan

Received: May 21, 2008
F. Agayev St. 9, Baku, AZ 1141 AZERBAIJAN
e-mail: emin@guliyev.com