

\textbf{p–SEQUENTIAL SPACES AND CLEAVABILITY}

Ljubiša R. D. Kočinac*

Communicated by J. Jayne

Dedicated to the memory of Professor D. Doitchinov

\textsc{Abstract.} We consider some relations between \(p \)-sequential-like properties and cleavability of topological spaces. Under a special assumption we give an very easy proof of the following result of A.V. Arhangel’skii (the main result in \cite{1}): if a (countably) compact space \(X \) is cleavable over the class of sequential spaces, then \(X \) is also sequential.

All spaces in this paper are assumed to be Hausdorff. Recall some definitions that we shall use.

Let \(\mathcal{F} \) be a filter on \(\omega \). A sequence \((x_n : n \in \omega)\) in a space \(X \), \(\mathcal{F}\text{-converges} \) to a point \(x \) in \(X \) if for every neighbourhood \(U \) of \(x \), the set \(\{ n \in \omega : x_n \in U \} \) belongs to \(\mathcal{F} \) [2]. We shall consider \(p \)-sequential and \(p \)-Fréchet-Urysohn spaces for \(p \in \omega^* = \beta\omega \setminus \omega \). A space \(X \) is said to be \(p\text{-sequential} \) if for every non-closed subset \(A \) of \(X \) there exist a point \(x \in X \setminus A \) and a sequence \((x_n)\) in \(A \) which \(p\text{-converges} \) to \(x \). \(X \) is an \(FU(p)\text{-space} \) if for every \(A \subset X \) and every \(x \in \overline{A} \) there

\textit{1991 Mathematics Subject Classification:} 54A20, 54C05, 54D30, 54D55

\textit{Key words:} \(p\)-sequential space, \(FU(p)\)-space, sequential space, cleavability, \(p \)-closed space, \(p \)-compact space

*Supported by the Serbian Scientific Foundation, grant No 04M01
is a sequence \((x_n)\) in \(A\) which \(p\)-converges to \(x\) (see [10]; different generalizations of these notions were considered in [7, 8, 3, 4, 11]).

If \(\mathcal{P}\) is a class of topological spaces and \(\mathcal{M}\) is a class of (continuous) mappings, then a space \(X\) is said to be \(\mathcal{M}\)-cleavable (resp. \(\mathcal{M}\)-pointwise cleavable) over \(\mathcal{P}\) if for every \(A \subset X\) (resp. every \(x \in X\)) there exist \(Y \in \mathcal{P}\) and \(f \in \mathcal{M}\), \(f : X \to Y\), such that \(f(X) = Y\) and \(f^{-1}f(A) = A\) (resp. \(f^{-1}f(x) = \{x\}\)) (see [1, 9]).

Definition 1. Let \(p \in \omega^*\).

(a) ([2]) A space \(X\) is said to be \(p\)-compact provided every sequence in \(X\) has a \(p\)-limit point. If \(X\) is \(p\)-compact for every \(p \in \omega^*\) one says that \(X\) is ultracompact.

(b) ([5]) A space \(X\) is called \(p\)-closed if every \(p\)-compact subspace of \(X\) is closed.

It was remarked in [5] that if a space \(X\) admits a continuous bijection onto a \(p\)-closed space, then \(X\) is \(p\)-closed. We give the following (simple, but useful in what follows) generalization of this fact.

Proposition 2. If a space \(X\) is cleavable over the class \(\mathcal{K}\) of all \(p\)-closed spaces, then \(X\) is a \(p\)-closed space.

Proof. Let \(A\) be a \(p\)-compact subspace of \(X\). Choose a \(p\)-closed space \(Y\) and a continuous mapping \(f : X \to Y\) such that \(f^{-1}f(A) = A\). The set \(f(A)\) is \(p\)-compact in \(Y\) and thus it is closed. Then the set \(f^{-1}f(A)\) is closed in \(X\), i.e. \(X\) is a \(p\)-closed space. \(\square\)

Proposition 3. If a \(p\)-compact space \(X\) is cleavable over the class of \(p\)-closed spaces, then \(X\) is \(p\)-sequential.

Proof. By the previous proposition \(X\) is \(p\)-closed. But \(p\)-compact \(p\)-closed spaces are precisely \(p\)-sequential spaces [5]. \(\square\)

Every \(p\)-sequential space is \(p\)-closed. Therefore, we have this

Corollary 4. If a \(p\)-compact space \(X\) is cleavable over the class of \(p\)-sequential spaces, then \(X\) is \(p\)-sequential.
Theorem 5. If a compact space X is cleavable over the class \mathcal{K} of ccc p-sequential spaces, then X is weakly $FU(\omega^*)$-space (i.e. X is a $FU(q)$-space for some $q \in \omega^*$).

Proof. By Corollary 4 X is p-sequential, so its tightness is countable. On the other hand, every $Y \in \mathcal{K}$ has cardinality $\leq 2^\omega$ because Y is a compact p-sequential space and for such spaces Y we have $|Y| \leq 2^{c(Y)}$ [6, Th. 3]. Hence, X is cleavable over a class of spaces having cardinality $\leq 2^\omega$. According to a known result [1, 9] the cardinality of X is $\leq 2^\omega$. Theorem 3.12 in [3] guarantees now that there is a $q \in \omega^*$ for which X is a $FU(q)$-space. \square

A similar result is the following one.

Theorem 6. If a separable p-compact space X is cleavable over the class \mathcal{K} of p-closed spaces, then X is a weakly $FU(\omega^*)$-space (and p-sequential).

Proof. X is a p-compact p-closed space (and so p-sequential). By the formula $|X| \leq d(X)^\omega$ for every p-compact p-closed space X, we conclude $|X| \leq 2^\omega$. Since X is a p-sequential space, its tightness is countable. Again by Theorem 3.12 in [3] we have that X is a weakly $FU(\omega^*)$-space. \square

Theorem 7. If a space X is closed pointwise cleavable over the class of $FU(p)$-spaces, then X is also a $FU(p)$-space.

Proof. Let A be a subset of X and $x \in \overline{A}$. Choose a $FU(p)$-space Y and a closed continuous mapping $f : X \rightarrow Y$ such that $f^{-1}(y) = \{x\}$. There is a sequence $(y_n) \subset f(A)$ which p-converges to $f(x) \in \overline{f(A)} \setminus f(A)$. For every $n \in \omega$ take a point $x_n \in f^{-1}(y_n) \cap A$. Then the sequence $(x_n) \subset A$ p-converges to x. Indeed, let U be any neighbourhood of x. Since f is closed and $\{x\} = f^{-1}(y)$ there is a neighbourhood V of $f(x)$ such that $f^{-1}(V) \subset U$. Because of $\{n \in \omega : y_n \in V\} \in p$ and $\{n \in \omega : x_n \in U\} \supset \{n \in \omega : y_n \in V\}$ we have that the set $\{n \in \omega : x_n \in U\} \in p$, i.e. (x_n) p-converges to x. \square

We need now the following lemma.

Lemma 8. Every countably compact p-sequential space X is p-compact.
Proof. Let \((x_n)\) be a sequence in \(X\). Since \(X\) is countably compact, there exists an accumulation point \(x\) of this sequence. The set \(A = \{x_n : n \in \omega\} \cup \{x\}\) is not closed as \(x \in \overline{A} \setminus A\). Since \(X\) is \(p\)-sequential, there is a sequence \((a_k) \subset A\), \(a_k = x_{n_k}\), which \(p\)-converges to a point \(y \in \overline{A} \setminus A\). This means that for every neighbourhood \(U\) of \(y\) the set \(\{n_k : a_k = x_{n_k} \in U\}\) belongs to \(p\). Clearly, then because of \(\{n \in \omega : x_n \in U\} \supset \{n_k : x_{n_k} \in U\}\) we have \(\{n \in \omega : x_n \in U\} \in p\). Therefore, \((x_n)\) \(p\)-converges to \(y\) and \(X\) is \(p\)-compact. \(\square\)

Recall that a space \(X\) is called \(\omega\)-bounded if the closure of every countable subset of \(X\) is compact.

Theorem 9. If a countably compact regular space \(X\) is closed pointwise cleavable over the class \(\mathcal{C}\) of Fréchet-Urysohn spaces, then \(X\) is \(\omega\)-bounded.

Proof. Every \(Y \in \mathcal{C}\) is a \(FU(p)\)-space for every \(p \in \omega^*\) [9]. By Theorem 7, \(X\) is also a \(FU(p)\)-space for every \(p \in \omega^*\). Therefore, by Lemma 8, \(X\) is \(p\)-compact for every \(p \in \omega^*\), i.e. \(X\) is ultracom pact. According to a result of Bernstein [1, Thms 3.4 and 3.5] (see also [12]) it follows that \(X\) is \(\omega\)-bounded. \(\square\)

The following theorem is a special case of Theorem 23 in [2] but with very easy proof. The Novak number \(n(X)\) of a space \(X\) is the smallest cardinality of a family of nowhere dense subsets of \(X\) covering \(X\).

Theorem 10 \((n(\omega^*) > c)\). If a ultracom pact space \(X\) is cleavable over the class \(\mathcal{K}\) of sequential spaces, then \(X\) is also sequential.

Proof. Every \(Y \in \mathcal{K}\) is a \(p\)-sequential space for each \(p \in \omega^*\), so that every \(Y \in \mathcal{K}\) is \(p\)-closed for each \(p \in \omega^*\). By Proposition 2 \(X\) is also \(p\)-closed for every \(p \in \omega^*\). Therefore, \(X\) is a \(p\)-closed \(p\)-compact space for all \(p \in \omega^*\), hence \(X\) is \(p\)-sequential for all \(p \in \omega^*\). By a result of Malykhin (which states that under \(n(\omega^*) > c\) a space is sequential if and only if it is \(p\)-sequential for every \(p \in \omega^*\); see Theorem 1.10 in [5]), this means that \(X\) is sequential. \(\square\)

Every ultracom pact space is compact, so that we have

Corollary 11 \((n(\omega^*) > c)\). If a compact space is cleavable over the class of sequential spaces, then \(X\) is also sequential.

We end by a question regarding \(p\)-compact spaces. Every \(\omega\)-bounded space is \(p\)-compact for every \(p \in \omega^*\). A.V. Arhangel’skii has remarked that if an
ω-bounded space is cleavable over the class of spaces of countable tightness, then it itself has countable tightness [1]. So, the following question is natural.

Question 12. Let a p-compact space X be cleavable over the class of Hausdorff spaces of countable tightness. Is the tightness of X countable?

REFERENCES

Faculty of Philosophy
University of Niš
18000 Niš
Yugoslavia
e-mail: kocinac@archimed.filfak.ni.ac.yu

Received February 7, 1997