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1. Introduction 
 
Sydney Afriat has been working on index number theory and consumer demand theory 
for over 55 years and so it is appropriate that the Royal Economic Society recognize his 
contributions by having a plenary session on the foundations of revealed preference 
theory at its annual meeting in 2011.2  
 
The seminal paper is Afriat (1967).3 In this paper, Afriat showed how a finite set of price 
and quantity data pertaining to a consumer who might or might not be maximizing utility 
subject to a budget constraint for say T periods could be tested for its consistency with 
maximizing behavior. Afriat’s test can be formulated as a problem where a certain set of 
inequalities needs to be satisfied in order for the data to be consistent. Moreover, if his 
test passed, the results of the testing procedure could be used in order to construct a 
utility function that would be consistent with the given data. Thus Afriat developed a 
nonparametric approach to the estimation of consumer preferences. Finally, Afriat 
showed that in the case where his test passed, the constructed utility function, which was 
consistent with the data, turned out to be a concave, increasing function even though 
these hypotheses were not required for consistent behavior.4  
 
In the first half of this paper, we will review the essentials of Afriat’s methodology and in 
later sections, we will develop some new applications of his basic approach to choice 
under uncertainty. Thus in section 2, we will present the basic Afriat methodology and in 
section 3, we will establish the necessity of the Afriat inequalities in the case where it is 
assumed that the consumer’s utility function is concave.5  
 
In the remainder of the paper, various additional restrictions on the decision maker’s 
preferences are imposed and various tests for consistency with maximizing behavior are 
developed. Thus in section 4, the extra assumption that the consumer have homothetic 
preferences is added. In section 5, a test for additive separability is developed while in 
section 6, a test for a form of quasilinearity is presented.  
 
It turns out that the assumption of quasilinearity is very useful in the context of 
estimating preferences when the decision maker faces uncertainty and so the remainder of 
the paper is devoted to decision making problems under uncertainty. Section 7 deals with 
estimating stochastic preferences when the expected utility model holds when there are 
only a finite number of states of nature and section 8 applies the general framework 
developed in section 7 to some simple applications to insurance and investing. Section 9 
develops a consistency test for a nonexpected utility model where the stochastic 
preferences are assumed to be homothetic. 
                                                 
2 For an extensive bibliography of Afriat’s contributions to economic theory, see Afriat (2011).  
3 For a preview of this paper, see Afriat (1961). 
4 Another very important contribution that Afriat made was to show that the existence of a solution to the 
Afriat inequalities is equivalent to the consistency of the revealed preference inequalities (which Afriat 
called cyclical consistency and Varian (1982) called the Generalized Axiom of Revealed Preference or 
GARP).   
5 This material is not new; it can be found in Afriat (1967; 75), Diewert and Parkan (1978) and Varian 
(1983a; 101). 
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Section 10 concludes with a few comments on violation measures if the basic consistency 
test is not satisfied and it also lists a few of the applications of the Afriat methodology to 
other areas of economics.      
 
2. Afriat’s Consistency Conditions for the Basic Utility Maximization Problem 
 
How can one determine whether a finite body of price and quantity data is consistent with 
utility maximizing behavior? Afriat (1967) provided an answer and his basic 
methodology will now be explained. 
 
Suppose we are given T strictly positive (N dimensional) price vectors, pt >> 0N and T 
nonnegative, nonzero quantity vectors xt > 0N

6 for t = 1,...,T. Suppose xt solves the 
following period t utility maximization problem for some utility function f: 
 
(1) xt solves max x {f(x) : pt⋅x ≤ pt⋅xt ; x ≥ 0N} for t = 1,...,T. 
 
Suppose further that: 
 
(2) f is continuous from above and is subject to local nonsatiation.7 
 
Then there exist T nonnegative numbers ut ≥ 0 and T positive numbers λt > 0, t = 1,...,T 
such that the following inequalities are satisfied:8 
 
(3) us ≤ ut + λtpt⋅(xs − xt) ;                                                                                   s, t = 1,...,T. 
 
Conversely, suppose ut ≥ 0 and λt > 0 exist such that the inequalities (3) are satisfied. 
Then the data pt, xt, t = 1,...,T, are consistent with the utility maximization hypothesis (1) 
using the following utility function f which can be constructed for x ≥ 0N using the ut and 
λt which satisfy (3): 
 
(4) f(x) ≡ min t {ft(x) : t = 1,...,T}  
 
where the linear functions ft are defined as follows: 
 
(5) ft(x) ≡ ut + λtpt⋅(x − xt) ;             t = 1,...,T.  
 

                                                 
6 Notation: x ≥ 0N means the components of the N dimensional vector x are nonnegative, x >> 0N means 
that the components are positive and x > 0N means x ≥ 0N and x ≠ 0N. If p and x are two N dimensional 
vectors, then p⋅x denotes the inner product ∑n=1

N pnxn. 
7 These assumptions follow those made by Diewert (1973) in order to insure that solutions to the utility 
maximization problems existed and that the maximum utility occurred on the boundary of the budget set 
(rather than in the interior).  Afriat (1967) made no assumptions whatsoever on the utility function.  
8 When s = t, the resulting inequality (3) is automatically satisfied so that these inequalities can be dropped 
from (3). Note also that if xt = xs for any two observations t and s, then the inequalities in (3) will imply that 
ut must equal us. 
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Proofs of this result may be found in Afriat (1967), Diewert (1973) and Varian (1982). 
The first part of Afriat’s Theorem is the hard part. The converse part can easily be shown 
as follows.9 Since f(x) defined by (4) is the minimum of the fs(x), we must have f(x) ≤ 
fs(x) for each s and thus for s = 1,...,T: 
 
(6)  max x {f(x) : ps⋅x ≤ ps⋅xs ; x ≥ 0N} 
             ≤ max x {fs(x) : ps⋅x ≤ ps⋅xs ; x ≥ 0N} 
             ≡ max x { us + λsps⋅(x − xs)  : ps⋅x ≤ ps⋅xs ; x ≥ 0N}  
                       using the definition of fs 

             = us    using λs > 0. 
 
Also for s = 1,...,T, we have 
 
(7) f(xs) ≡ min t {ft(xs) : t = 1,...,T}  using the definition of f 
              = min t { ut + λtpt⋅(xs − xt) : t = 1,...,T} 
              = us   
 
where the last equality follows using the Afriat inequalities (3). Thus for each s, xs solves 
the period s utility maximization problem. 
 
Note that the rationalizing f(x) defined by (4) is the minimum of a finite number of 
increasing linear functions of x and hence is a continuous, concave and increasing 
function of x. But we only assumed that f was continuous from above and was subject to 
local nonsatiation. Hence if the data set can be at all rationalized by a utility function 
satisfying minimal regularity conditions, it can be rationalized by a concave utility 
function.10   
 
How can we check whether a solution to the Afriat inequalities (3) exists? Linear 
programming techniques cannot be immediately applied because we need the constraints 
to be weak inequalities or equalities (and not the strict inequalities λt > 0). However, 
looking at the inequalities (3), we see that they are homogeneous of degree one in the ut 
and λt. Thus without loss of generality, we can impose the following constraint on the λt: 
 
(8) λi ≥ 1 ; i = 1,...,T. 
 
Now solve the following linear program11 with respect to the nonnegative variables s, sij 
for i,j = 1,...,T, λi and ui for i = 1,...,T: 
 
min s ≥ 0 subject to the T constraints (8) and the T2 constraints (9):  
 

                                                 
9 This proof is due to Afriat (1967; 73-75). 
10 This amazing result was noted by Afriat (1967; 75) and emphasized by Diewert (1973; 423) and Varian 
(1982; 946). 
11 This linear program is due to Fleissig and Whitney (2005; 356) and it is a simplified version of Diewert’s 
(1973; 421) linear program. 
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(9) ui = uj + λjpj⋅(xi − xj) + sij − s                        i, j = 1,...,T. 
 
It can be seen that if the slack variable s can be driven down to 0 while satisfying the 
constraints (8) and (9), then the Afriat inequalities (3) will be satisfied and the data can be 
rationalized by a concave utility function. Conversely, if the optimized objective function 
for the above LP problem is positive, then the Afriat inequalities cannot be satisfied and 
the data cannot be rationalized by any utility function that exhibits local nonsatiation.  
 
3. The Necessity of the Afriat Inequalities in the Concave Case 
 
Since Afriat’s Theorem tells us if the data can be rationalized, then they can be 
rationalized by an increasing concave utility function, why not assume the underlying 
utility function is increasing and concave right at the start?  And while we are adding 
unnecessary assumptions about f, why not assume that it is differentiable as well? If we 
are willing to make these extra assumptions on f, then it is very easy to derive the 
necessity of the Afriat inequalities (3). 
 
Thus assume f is concave, increasing12 and differentiable over the positive orthant and 
consider the utility maximization problems in (1) above. Assume xt >> 0N solves max x 
{f(x) : pt⋅x ≤ pt⋅xt ; x ≥ 0N} for t = 1,...,T. Then the Kuhn-Tucker conditions for these 
utility maximization problems (and our positivity assumptions) will imply that there will 
exist Lagrange multipliers λt such that the following conditions hold:13 
 
(10) λt > 0 ;                                                                                                            t = 1,...,T;  
(11) ∇f(xt) = λtpt ;                                                                                                  t = 1,...,T. 
 
Now concave differentiable functions have the property that their first order Taylor series 
approximations are tangent to or lie above the graph of the function. Thus for each t, the 
following inequality is valid for each x ≥ 0N: 
 
(12) f(x) ≤ f(xt) + ∇f(xt)⋅(x − xt) ;                                                                         t = 1,...,T. 
 
Now define ut ≡ f(xt) for t = 1,...,T, set x = xs in (12), substitute (11) into (12) and we 
obtain the Afriat inequalities: 
 
(13) us ≤ ut + λtpt⋅(xs − xt) ;                                                                                 s, t = 1,...,T. 
 
This type of argument can be found in Afriat (1967; 75) and Diewert and Parkan (1978) 
(1985; 128-129) and Varian (1983a; 101). Varian and Diewert and Parkan used this 
“easy” method for deriving the necessity of the Afriat inequalities in more complicated 
settings involving separability or special structures for the utility function. 
                                                 
12 The function f is increasing over the nonnegative orthant if 0N ≤ x1 < x2 implies f(x2) > f(x1). 
13 In order to obtain the positivity of the Kuhn-Tucker multipliers (1951) λt, it is necessary to use the fact 
that f(x) is an increasing and concave function of x. The assumption that xt >> 0N can be replaced by xt > 0N 
but the arguments become more complex and so in the interests of brevity, we assume strict positivity of 
the xt. 
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The assumption that f be differentiable is not required in order to obtain the Afriat 
inequalities (13) if we draw on the concept of a supergradient. Thus the vector b is a 
supergradient to the function of N variables f defined over S at the point x0∈S if and only 
if the following inequalities hold: 
 
(14) f(x) ≤ f(x0) + b⋅(x − x0)                                                                                 for all x∈S. 
 
Note that the function on the right hand side of (13) is a linear function of x which takes 
on the value f(x0) when x = x0.  This linear function acts as an upper bounding function to 
f. 
 
Rockafellar (1970; 217) showed that if f is a concave function defined over a convex 
subset S of RN, then for every x0 in the interior of S, f has at least one supergradient 
vector b0 to f at the point x0.  Denote the set of all such supergradient vectors as ∂f(x0).  
Then Rockafellar also showed that ∂f(x0)  is a nonempty, closed, bounded convex set. 
 
Now assume that f is concave and increasing over the nonnegative orthant and consider 
the utility maximization problems in (1) above. Assume that xt >> 0N solves max x {f(x) : 
pt⋅x ≤ pt⋅xt ; x ≥ 0N} for t = 1,...,T. Using the Uzawa (1958) Karlin (1959; 201-203) 
Saddle Point Theorem, we can deduce the existence of supergradient vectors ρt and 
positive14 Lagrange multipliers λt > 0 such that 
 
(15) ρt∈∂f(xt) ; ρt = λtpt ;                                                                                       t = 1,...,T. 
 
Since ρt∈∂f(xt), using the definition of a supergradient (14), the following inequalities 
hold for all x ≥ 0N:  
 
(16) f(x) ≤ f(xt) + ρt⋅(x − xt)                                                                                    t = 1,...,T 
               = ut + λtpt⋅(x − xt) 
 
where the last equality follows using the equations in conditions (15) and the definitions 
ut ≡ f(xt) for t = 1,...,T. For s = 1,...,T, set x = xs in (16), and we have derived the 
necessity of the Afriat inequalities (3). The sufficiency of the Afriat inequalities (3) and 
(10) follows in the usual way. 
 
In the following sections, we will generally assume that the preference function is 
concave and differentiable but it should be understood that the differentiability 
assumption is not required: first order necessary conditions like (11) can be replaced by 
the more general supergradient conditions (15).                                                          
  
4. The Afriat Inequalities when Preferences are Homothetic 

                                                 
14 It is necessary to use the fact that f(x) is an increasing function of x in order to establish the positivity of 
the λt. The assumption that pt⋅xt > 0 implies that the Slater (1950) constraint qualification condition is 
satisfied.  
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Homothetic preferences can be represented by a linearly homogenous utility function so 
we will assume that the f in (1) above is linearly homogeneous.15 In addition to the linear 
homogeneity assumption, we will assume that f is a continuous, increasing, concave 
function defined over the nonnegative orthant. 16  If we also assume that f is 
differentiable, 17  then Euler’s Theorem on homogenous functions implies that the 
following equalities hold: 
 
(17) f(xt) = ∇f(xt)⋅xt ;  t = 1,...,T. 
 
The above equalities mean that the first order Taylor approximations to f around xt pass 
through the origin. Now substitute the first order conditions (11) into (17) and we obtain 
the following equalities: 
 
(18) ut = f(xt) = ∇f(xt)⋅xt = λtpt⋅xt ;         t = 1,...,T. 
 
Thus the ut and the λt are linearly related (and if the price data are normalized so that pt⋅xt 
= 1 for t = 1,...,T, then ut = λt > 0 for t = 1,...,T) and so either the ut or the λt can be 
replaced in the Afriat inequalities (3) or (13) and we now have to satisfy these 
inequalities with only T free variables rather than the previous 2T variables. Hence the 
test for homothetic utility maximization is more stringent (and can be rejected more 
easily). This test for homothetic utility maximization was noted by Diewert (1973; 424) 
and Varian (1983; 102-103). Afriat (1972a; 35-42), (1977) (1981) and Varian (1983a; 
103-104) provide other equivalent tests of homothetic utility maximization. 
 
Using equations (18) to solve for the λt in terms of the ut and then eliminating the λt from 
equations (3) leads to the following equations:18 
 
(19) us ≤ utpt⋅xs/pt⋅xt ;                                                                                         s, t = 1,...,T; 
                                                 
15 The function f defined over the nonnegative orthant is (positively) linearly homogeneous if x ≥ 0N, λ ≥ 0 
implies f(λx) = λf(x). Note that this definition implies that f(0N) = 0. A homothetic function has the form 
g[f(x)] where g(z) is an increasing, continuous function of one variable and f is positively linearly 
homogeneous. The concept of homotheticity is due to Shephard (1953; 4). 
16 The concavity assumption on f can be replaced by the assumption of quasiconcavity since using a result 
due to Berge (1963; 208), if f is a positive, linearly homogeneous and quasiconcave function defined over 
the positive orthant, then f is also concave over this domain of definition. Fenchel (1953; 74) showed that a 
concave function is continuous over the interior of its domain of definition and the Fenchel (1953; 78) 
closure operation can be used to extend the definition of the concave function to the closure of its domain 
of definition. The results of Gale, Klee and Rockafellar (1968) and Rockafellar (1970; 85) can be used to 
show that this extension is continuous. Thus the assumption that f be continuous simply rules out 
discontinuities on the boundary of the nonnegative orthant.  
17 If f is not differentiable, then ∇f(xt) in (17) and (18) must be replaced by a supergradient vector ρt∈∂f(xt) 
for t = 1,...,T. Using the definition of a supergradient vector (14), it can be seen that f(x) ≤ f(xt) + ρt⋅(x − xt) 
for all x ≥ 0N. Since f is linearly homogeneous, f(λxt) = λf(xt) for all λ > 0. Now replace x by λxt in the 
above supergradient inequality and we obtain the inequality λf(xt) ≤ f(xt) + ρt⋅(λxt − xt) or (λ−1)f(xt) ≤  
(λ−1)ρt⋅xt for all λ ≥ 0. Choosing λ below 1 and above 1 leads to the equalities f(xt) = ρt⋅xt for t = 1,...,T. 
Thus even in the nondifferentiable case, we obtain equations (18) with ∇f(xt) replaced with ρt.      
18 Recall that our assumptions that pt >> 0N and xs >> 0N for all s and t imply that pt⋅xs > 0  
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(20) ut > 0 ;                                                                                                            t = 1,...,T.   
 
The inequalities (20) follow from equations (18), pt⋅xt > 0 and λt > 0. The conditions (19) 
and (20) are necessary and sufficient for homothetic utility maximization under our 
regularity conditions on the utility function f.  
 
Note that the inequalities (19) and (20) are homogeneous in the ut; i.e., if ut* for t = 1,...,T 
satisfies (19) and (20), then so do λut* for any λ > 0. Thus we can impose an arbitrary 
normalization on solutions to (19) and (20) such as: 
 
(21) u1 = u1* > 0 
 
where u1* is an arbitrary positive number. If this normalization is imposed, then the strict 
inequalities in (20) can be replaced by the following weak inequalities:19 
 
(22) ut ≥ 0 ;                                                                                                               t = 1,...T. 
 
Thus conditions (19), (21) and (22) are necessary and sufficient to imply homothetic 
utility maximizing behavior under our regularity conditions on the utility function f.    
 
A linear program can be set up to test whether the inequalities (19), (21) and (22) hold 
and if they do hold, the set of ut that satisfy the inequalities can be used in order to 
construct a linearly homogeneous utility function f that rationalizes the data using 
definitions (4) and (5) above.20 A linear program which will do the task of testing the data 
is the following one:  
 
(23) t

st uzz ,,
min {z: z ≥ 0; zst ≥ 0 for s, t = 1,...,T; ut ≥ 0 for t = 1,...,T; u1 = u1* > 0 and (24)} 

 
where the linear constraints (24) are defined as follows: 
 
(24) us = utpt⋅xs/pt⋅xt + zst − z ;                                                                   s, t = 1,...,T; s ≠ t.  
 
If the objective function in (23) attains its lower bound of 0, then the data are consistent 
with homothetic utility maximization and the solution values for the ut can be used to 
construct an explicit utility function f that rationalizes the data.21 If the optimal objective 
function for the linear program (23) is positive, then the data cannot be rationalized by a 
homothetic, quasiconcave utility function.  
 
5. Testing for Additive Separability 
 

                                                 
19 Suppose (19) and (21) are satisfied. Then let s = 1 in (19) and using (21), we have 0 < u1 ≤ utpt⋅x1/pt⋅xt for 
t = 2,3,...,T, which in turn implies that all ut are positive. 
20 The functions ft(x) defined by (5) now simplify to ft(x) ≡ utpt⋅x/pt⋅xt for t = 1,...,T. 
21  If we denote the ut solution values to (23) by ut*, then the rationalizing f is defined by f(x) ≡ 
mint{ut*pt⋅x/pt⋅xt : t = 1,...,T}. 



 9

We follow Varian’s (1983a; 107-108) exposition here (with an extension to the 
nondifferentiable case). Let x and y be two consumption vectors and suppose the decision 
maker is maximizing the additive utility function u(x) + v(y). The utility maximization 
hypothesis is now the following one: the observed period t quantity vectors xt and yt solve 
the following period t utility maximization problem, where the observed price vectors are 
pt and qt: 
 
(25) xt, yt solves max x,y {u(x) + v(y) : pt⋅x + qt⋅y ≤ pt⋅xt + qt⋅yt} for t = 1,...,T. 
 
Assume that u(x) and v(y) are continuous, concave, increasing and differentiable 
functions, defined for x ≥ 0N and y ≥ 0M respectively. Assume as well that the price 
vectors pt and qt  and the quantity vectors xt and yt are all strictly positive vectors.  
 
Using the differentiability of u and x, if xt, yt solves the period t utility maximization 
problem in (25), then the following first order conditions must be satisfied: 
 
(26) λt > 0 ;                                                                                                            t = 1,...,T; 
(27) ∇u(xt) = λtpt ; ∇v(yt) = λtqt ;                                                                          t = 1,...,T. 
 
The concavity property of u(x) implies that for any x ≥ 0N, the following inequality will 
hold for t = 1,...,T: 
 
(28) u(x) ≤ u(xt) + ∇u(xt)⋅(x − xt) 
                = u(xt) + λtpt⋅(x − xt) 
 
where the equality follows using (27). Define ut ≡ u(xt) for t = 1,...,T. Let x = xs and 
substitute this value of x into the tth inequality in (28) and we obtain the following system 
of inequalities: 
 
(29) us ≤ ut + λtpt⋅(xs − xt) ;                                                                                  s, t = 1,...,T. 
 
Define vt ≡ v(yt) for t = 1,...,T. Using the concavity of v(y) and using the same method of 
proof that established (29), we can deduce that the following inequalities must hold: 
 
(30) vs ≤ vt + λtqt⋅(ys − yt) ;                                                                                  s, t = 1,...,T. 
 
It can be seen that if (25) is satisfied, then it must be the case, under our regularity 
conditions on the functions u(x) and v(y), that there must exist numbers u1,...,uT, v1,...,vt 
and λ1,...,λT such that the inequalities (26), (29) and (30) hold. Thus these conditions are 
necessary for the additive utility maximization hypothesis under our regularity 
conditions.22  
 

                                                 
22 As usual, the differentiability assumptions on u(x) and v(y) are not required: conditions (27) can be 
replaced by the following supergradient conditions: ρt∈∂u(xt), ρt = λtpt, σt∈∂v(yt), σt = λtqt, t = 1,...,T. 
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It is straightforward to show that the existence of a solution to the inequalities (26), (29) 
and (30) is also sufficient to imply the existence of functions u(x) and v(y) such that the 
observed data are consistent with the additive utility maximization hypothesis (25) as we 
shall now show. 
 
Suppose a solution u1,...,uT, v1,...,vt and λ1,...,λT to the inequalities (26), (29) and (30) 
exists. Define the functions ut(x), u(x), vt(y) and v(y) for x ≥ 0N and y ≥ 0M as follows: 
 
(31) ut(x) ≡ ut + λtpt⋅(x − xt) ;                                                                                 t = 1,...,T; 
(32) u(x) ≡ min t {ut(x) : t = 1,...,T} ; 
(33) vt(y) ≡ vt + λtqt⋅(y − yt) ;                                                                                 t = 1,...,T; 
(34) v(y) ≡ min t {vt(y) : t = 1,...,T}. 
 
Since the scalars ut satisfy the inequalities (29) and the scalars vt satisfy the inequalities 
(30), using definitions (31)-(34), it can be seen that the following equalities hold: 
 
(35) u(xs) = min t {ut + λtpt⋅(xs − xt) : t = 1,...,T} = us ;                                         s = 1,...,T; 
(36) v(ys) = min t {vt + λtqt⋅(ys − yt) : t = 1,...,T} = vs ;                                         s = 1,...,T. 
 
We now show that xt, yt solves the period t utility maximization problem in (25) where 
the functions u(x) and v(y) are defined by (32) and (34) for t = 1,...,T: 
 
(37) max x,y {u(x) + v(y) : pt⋅x + qt⋅y ≤ pt⋅xt + qt⋅yt}  
            ≤ max x,y { ut + λtpt⋅(x − xt) + vt + λtqt⋅(y − yt) : pt⋅x + qt⋅y ≤ pt⋅xt + qt⋅yt} 
                            since u(x) ≤ ut + λtpt⋅(x − xt) and v(y) ≤ vt + λtqt⋅(y − yt) 
            = max x,y { ut + vt + λt[pt⋅(x − xt) + qt⋅(y − yt)] : pt⋅x + qt⋅y ≤ pt⋅xt + qt⋅yt} 
            ≤ ut + vt 
 
where the last inequality follows from λt > 0 and pt⋅(x − xt) + qt⋅(y − yt) ≤ 0. Thus ut + vt 
is an upper bound to utility for the period t utility maximization problem using the u and 
v defined by (32) and (34). But (35) and (36) show that this upper bound is attained for x 
= xt and y = yt and so xt, yt solves the period t utility maximization problem for t = 1,...,T 
using the u(x) and v(y) defined by (32) and (34). 
 
Note that the inequalities (26), (29) and (30) are homogeneous in the ut, vt and λt. Thus a 
normalization like (8) can be imposed on the λt without loss of generality. It can also be 
seen that the ut and vt can be restricted to be nonnegative without loss of generality; i.e., 
if u1,...,uT, v1,...,vt and λ1,...,λT satisfy (8), (29) and (30), then u1+λ,...,uT+λ, v1+μ,...,vt+μ 
and λ1,...,λT will also satisfy (8), (29) and (30) where λ and μ are arbitrary numbers.  
 
As in the previous two sections, a linear program can be set up to test whether the 
inequalities (8), (29) and (30) hold and if they do hold, the set of ut, vt and λt that satisfy 
the inequalities can be used in order to construct utility functions u(x) and v(y) that 
rationalize the data using definitions (31)-(34) above.  
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The extension to more than two additive groups is straightforward.  
 
The material in this section can be viewed as a method for testing a finite data set for 
consistency with maximizing an additively separable utility function.23 For additional 
tests for other types of separable structures, see Varian (1983a; 104-106), Diewert and 
Parkan (1978) (1985) and Fleissig and Whitney (2007) (2008). 
 
6. Testing for Generalized Quasilinearity 
 
In this section, we consider the maximization of utility functions of the following form:24 
 
(38) F(x1,x2,...,xK) = ∑k=1

K αkf(xk) 
 
where f(x) is a function of N variables, x ≡ [x1,...,xN], defined for x ≥ 0N and the scalars 
αk satisfy the following positivity restrictions: 
 
(39) αk > 0 ;                                                                                                           k = 1,...,K. 
 
We assume that f is a differentiable, increasing, continuous and concave function of N 
variables defined over the nonnegative orthant.25   
 
The utility maximization hypothesis is now the following one:26 the observed period t 
quantity vector xt solves the following period t utility maximization problem, where the 
observed price and quantity vectors are pt ≡ [p1

t,...,pK
t] and xt ≡ [x1

t,...,xK
t]:27   

 
(40) xt solves max x {∑k=1

K αkf(xk) : ∑k=1
K pk

t⋅xk ≤ ∑k=1
K pk

t⋅xk
t} for t = 1,...,T. 

   
The utility function f which appears in (40) is assumed to be defined over the 
nonnegative orthant, to be continuous, increasing and concave and for the moment, 
differentiable. Using the differentiability of f, if xt solves the period t utility maximization 
problem in (40), then the following first order conditions must be satisfied: 
 
(41) λt > 0 ;                                                                                                           t = 1,...,T; 
(42) αk∇f(xk

t) = λtpk
t ;                                                                         k = 1,...,K; t = 1,...,T. 

 

                                                 
23 See Blackorby, Primont and Russell (1978) for a comprehensive treatment of separability.  
24 Browning (1989) considered a special case of this model (where all of the αk were equal) and also used 
revealed preference techniques to test the consistency of a data set. 
25 If N = 1 and f(x) is a strictly monotonic function of one variable, Eichhorn (1978; 32) defined f−1(∑k=1

K 
αkf(xk)) to be a quasilinear function. If N = 1, the αk are positive and sum to one and f is continuous strictly 
monotonic function of one variable, Hardy, Littlewood and Polya (1934; 65) called f−1(∑k=1

K αkf(xk)) a 
general mean formed with the function f. If N = 1 and f is monotonically increasing and continuous, then 
maximizing f−1(∑k=1

K αkf(xk)) is equivalent to maximizing ∑k=1
K αkf(xk).        

26 Problems of this type occur in the context of intertemporal utility maximization. 
27 Each pk

t and xk
t is assumed to be an N dimensional strictly positive row vector for t = 1,...,T and k = 

1,...,K.  
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The concavity property of f(x) implies that for any x ≥ 0N, the following inequality will 
hold for k = 1,...,K and t = 1,...,T: 
 
(43) f(x) ≤ f(xk

t) + ∇f(xk
t)⋅(x − xk

t) 
               = f(xk

t) + αk
−1λtpk

t⋅(x − xk
t) 

 
where the equality follows using (42). Define uk

t ≡ f(xk
t) for k = 1,...,K and t = 1,...,T. Let 

x = xj
s and substitute this value of x into the inequality (43) for t and k and we obtain the 

following system of K2T2 inequalities: 
 
(44) uj

s ≤ uk
t + αk

−1 λtpk
t⋅(xj

s − xk
t) ;                                                j,k = 1,...,K; s, t = 1,...,T. 

 
Thus under our regularity conditions on f, there must exist KT numbers uk

t for k = 1,...,K 
and t = 1,...,T, λ1,...,λT and α1,...,αK such that the inequalities (39), (41) and (44) hold. 
Thus these conditions are necessary for the quasilinear utility maximization hypothesis 
under our regularity conditions.28  
 
It is straightforward to show that the existence of a solution to the inequalities (39), (41) 
and (44) is also sufficient to imply the existence of a function f(x) such that the observed 
data are consistent with the quasilinear utility maximization hypothesis (40) as we shall 
now show. 
 
Suppose a solution uk

t for k = 1,...k and t = 1,...,T, α1,...,αK and λ1,...,λT to the inequalities 
(39), (41) and (44) exists. Define f(x) and the KT functions fk

t(x) for x ≥ 0N as follows: 
 
(45) fk

t(x) ≡ uk
t + αk

−1λtpk
t⋅(x − xk

t) ;                                                  k = 1,...,K ; t = 1,...,T; 
(46) f(x) ≡ min t,k {fk

t(x) : k = 1,...,K; t = 1,...,T}. 
 
Note that f(x) is a continuous, concave and increasing function of N variables x. Since the 
scalars uk

t satisfy the inequalities (44), using definitions (45) and (46), it can be seen that 
the following equalities hold: 
 
(47) f(xj

s) = min t,k {uk
t + αk

−1λtpk
t⋅(xj

s − xk
t) : k = 1,...,K; t = 1,...,T}  

                 = uj
s ;                                                                                  j = 1,...,K ;  s = 1,...,T. 

 
We now show that for t = 1,...,T, xt ≡ [x1

t,x2
t,...,xK

t] solves the period t utility 
maximization problem in (40) where the function f(x) is defined by (45) and (46): 
 
(48) max x{∑k=1

K αkf(xk) : ∑k=1
K pk

t⋅xk ≤ ∑k=1
K pk

t⋅xk
t}  

            ≤ max x {∑k=1
K αk[uk

t + αk
−1λtpk

t⋅(x − xk
t)] : ∑k=1

K pk
t⋅xk ≤ ∑k=1

K pk
t⋅xk

t} 
                                                     since f(xk) ≤ uk

t + αk
−1λtpk

t⋅(x − xk
t)  using (45) and (46) 

            = max x {∑k=1
K αkuk

t + ∑k=1
K λtpk

t⋅(x − xk
t) : ∑k=1

K pk
t⋅xk ≤ ∑k=1

K pk
t⋅xk

t} 
            ≤ ∑k=1

K αkuk
t 

                                                 
28 As usual, the differentiability assumption on f(x) is not required: conditions (42) can be replaced by the 
following supergradient conditions: ρk

t∈∂f(xk
t), ρk

t = αk
−1λtpk

t, k = 1,...,K; t = 1,...,T. 
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where the last inequality follows from λt > 0 and ∑k=1

K pk
t⋅(xk − xk

t) ≤ 0. Thus ∑k=1
K αkuk

t 
is an upper bound to utility for the period t utility maximization problem using the f 
defined by (45) and (46). But the equalities (47) show that this upper bound is attained 
for xk = xk

t for k = 1,...,K and so xt ≡ [x1
t,x2

t,...,xK
t] solves the period t utility 

maximization problem for t = 1,...,T using the f(x) defined by (45) and (46). 
 
Suppose that the quasilinear utility maximization hypothesis (40) is satisfied for some 
function f. Then it can be seen that if we replace f(z) by a + bf(z) ≡ g(z) where b > 0, then 
the data will also satisfy (40) where f is replaced by g.  
 
If the αk are known, then the inequalities (44) are standard Afriat type linear inequalities 
and we can set up a linear program to check whether these conditions (39), (41) and (44) 
are satisfied or not for a given set of data. As usual, we can replace the positivity 
restrictions (41) with the inequalities λt ≥ 1 for t = 1,...,T and the uk

t can be restricted to 
be nonnegative; see the last paragraph above. 
 
In the case where the αk are not known, then the weak inequality restrictions (44) are 
nonlinear and so nonlinear programming methods will have to be used in order to 
determine whether a solution to (39), (41) and (44) exists. If a solution αk

*, λt*, uk
t* does 

exist, then it can be seen that by scaling the αk
* and λt* by an arbitrary positive number μ, 

we can obtain uk
t*, μαk

* and μλt* as another solution to (39), (41) and (44). In fact, it can 
be seen that not all of the αk can be identified and so we need to set at least one of them 
equal to a positive constant, say α1 = 1.  Thus at least one additional normalization on the 
αk and λt can be added to (39), (41) and (44) without loss of generality and we can 
replace the strict inequalities (41) by the following weak inequalities: 
 
(49) λt ≥ 1 ;                                                                                                             t = 1,...,T. 
 
It can be seen that if a solution αk

*, λt*, uk
t* to (39), (44) and (49) exists, then αk

*, λt*, uk
t* 

+ μ will also be a solution to (39), (44) and (49) where μ is an arbitrary scalar. Hence in 
addition to the inequalities (39), (44) and (49), we can also add the following 
nonnegativity conditions on the uk

t without loss of generality:   
 
(50) uk

t ≥ 0 ;                                                                                         k = 1,...,K ; t = 1,...,T.  
 
Let the slack variables z and zk

t  for k = 1,...,K and t = 1,...,T be nonnegative and rewrite 
the K2T2 inequality restrictions (44) in the following equality format: 
 
(51) uj

s = uk
t + αk

−1 λtpk
t⋅(xj

s − xk
t) + zk

t − z ;                                  j,k = 1,...,K; s, t = 1,...,T. 
   
Thus it appears that a nonlinear program that could be used to test the consistency of the 
data with quasilinear utility maximization is the problem of minimizing z ≥ 0 with respect 
to the nonnegative variables z, λ1,...,λT, α1,...,αK and uk

t and zk
t for k = 1,...,K and t = 

1,...,T subject to the restrictions (49) and (51). If the optimal z* = 0, then the data are 
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consistent but if z* > 0, then the hypothesis of quasilinear utility maximization (40) is 
rejected where f(x) is assumed to be a continuous, concave and increasing function of N 
variables. However, this nonlinear program will not do the job of testing for consistency. 
The problem is this: there is nothing in the constraints to rule out the αk from 
approaching plus infinity and thus z = 0, αk = +∞ for k = 1,...,K, λt = 1 for t = 1,...,T and 
uk

t = zk
t = 0 for k = 1,...,K and t = 1,...,T will be a solution to the programming problem 

for arbitrary price and quantity data, pk
t and xk

t. This is not a finite solution to (44) and 
(49). However, this infinite solution will be ruled out if we impose a normalization on the 
αk such as: 
 
(52) α1 = 1.     
 
It appears that it will be necessary to bound the positive αk from above and below in 
order to obtain a useful nonlinear program to test the quasilinear utility maximization 
hypothesis (40) when the αk are not (completely) known. Thus assume that there are 2K 
− 2 numbers ak and bk are such that 0 < ak ≤ bk for k = 2,3,...,K and the αk satisfy the 
following bounds: 
 
(53) ak ≤ αk ≤ bk ;                                                                                                k = 2,3,...,K.  
 
A nonlinear program that can be used to test the consistency of the data with quasilinear 
utility maximization, where the αk satisfy (52) and (53) is the problem of minimizing z ≥ 
0 with respect to the nonnegative variables z, λ1,...,λT, α1,...,αK and uk

t and zk
t for k = 

1,...,K and t = 1,...,T subject to the restrictions (49)-(53). If the optimal z* = 0, then the 
data are consistent but if z* > 0, then the hypothesis of (strongly increasing) quasilinear 
utility maximization (40) is rejected where f(x) is assumed to be a continuous, concave 
and increasing function of N variables and in addition, the αk satisfy (52) and (53).  
 
It can be seen that testing a data set for consistency with quasilinear utility maximization 
when the αk are not completely known is much more difficult than testing for consistency 
when the αk are known.    
 
In the following section, we will modify the model used in this section by assuming that 
the αk are known but they can vary as the period t changes. It turns out that this modified 
framework is very useful when studying choice under uncertainty. 
 
7. Application to Expected Utility Maximization 
 
Assume that a decision maker has a continuous and increasing utility function, f(x), that 
is applicable when there is no uncertainty. Now assume that there are K states of nature. 
Denote the consumption vector of the decision maker if state k occurs by xk. Then 
following Arrow (1951) (1964) and Debreu (1959; 101), it is natural to assume that the 
decision maker has preferences over the state contingent commodities that can be 
represented by a continuous and increasing utility function F(x1,...,xK). Following 
Samuelson (1952; 674), it is also natural to assume that the state contingent utility 
function F has the following structure: 
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(54) F(x1,...,xK) = M[f(x1),...,f(xK)] 
 
where f is the certainty utility function and M is the stochastic utility function that 
describes the decision maker’s attitude towards risk. If the state contingent consumption 
vectors are all equal, so that x1 = ... = xK = x, then it is natural to require that M have the 
following property: 
 
(55) M[f(x),...,f(x)] = f(x). 
 
But property (55) implies that the stochastic preference function M is a mean function.29 
 
Blackorby, Davidson and Donaldson (1977; 352-354) and Diewert (1993; 402-404) 
assumed that M satisfied various separability properties and under their assumptions, they 
were able to establish the existence of an increasing, continuous function of one variable, 
φ, such that M has the following quasilinear representation: 
 
(56) M[f(x1),...,f(xK)] = φ−1{∑k=1

K αkφ[f(xk)]} 
 
where αk > 0 is the probability that state k will occur for k = 1,...,K. It is assumed that 
∑k=1

K αk = 1. Since φ−1 is also a continuous, monotonically increasing function of one 
variable, it can be seen that maximizing M[f(x1),...,f(xK)] is equivalent to maximizing 
∑k=1

K αkφ[f(xk)] and the latter expression can be interpreted as expected utility.30 
 
For many applications of the expected utility maximization model (see the following 
section), the certainty utility function f can be taken to be a function of one variable and it 
can be normalized so that f(x) ≡ x. We will make this simplification in the remainder of 
this section. 
 
We assume that we can observe the prices and quantities that pertain to a decision maker 
over T periods as usual. Our expected utility maximization hypothesis is the following 
one: the observed period t quantity vector xt solves the following period t expected utility 
maximization problem, where the observed price and quantity vectors are the vectors pt ≡ 
[p1

t,...,pK
t] >> 0K and xt ≡ [x1

t,...,xK
t] >> 0K:   

 
(57) xt solves max x {∑k=1

K αk
tφ(xk) : ∑k=1

K pk
txk ≤ ∑k=1

K pk
txk

t} for t = 1,...,T 
 
where the period t probabilities for state k, αk

t, are also known and satisfy the following 
restrictions: 
 
(58) αk

t > 0 ;                                                                                         k = 1,...,K; t = 1,...,T; 
(59) ∑k=1

K αk
t = 1 ;                                                                                                 t = 1,...,T.                              

 
                                                 
29 See Diewert (1993) for properties of mean functions.  
30 There are many alternative ways of deriving the expected utility maximization model. 
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Varian (1983b) considered a variant of this model and used the Afriat methodology in 
much the same way as will be done below.31 Special cases of this framework have been 
considered in the experimental economics literature and Afriat type tests for consistency 
have been derived; see Choi, Fisman, Gale and Kariv (2007a) (2007b) and the references 
in these papers. 
 
We assume that the function φ(z) is a continuous, concave,32  and increasing function of 
one variable. We temporarily assume that φ is differentiable. Using the differentiability of 
φ, if xt >> 0K solves the period t utility maximization problem in (57), then the following 
first order conditions must be satisfied: 
 
(60) λt > 0 ;                                                                                                           t = 1,...,T; 
(61) αk

t φ′(xk
t) = λtpk

t ;                                                                         k = 1,...,K; t = 1,...,T 
 
where φ′(xk

t) ≡ dφ(xk
t)/dx is the derivative of φ(z) evaluated at z = xk

t > 0. The concavity 
property of φ(z) implies that for any z ≥ 0, the following inequality will hold for k = 
1,...,K and t = 1,...,T: 
 
(62) φ(z) ≤ φ(xk

t) + φ′(xk
t)(z − xk

t) 
               = φ(xk

t) + [αk
t]−1λtpk

t(z − xk
t) 

 
where the last equality follows using (61).33 Define uk

t ≡ φ(xk
t) for k = 1,...,K and t = 

1,...,T. Let z = xj
s and substitute this value of z into the inequality (62) for t and k and we 

obtain the following system of K2T2 inequalities: 
 
(63) uj

s ≤ uk
t +[αk

t]−1 λtpk
t(xj

s − xk
t) ;                                              j,k = 1,...,K; s, t = 1,...,T. 

 
Thus under our regularity conditions on φ, there must exist uk

t for k = 1,...,K, t = 1,...,T 
and λ1,...,λT such that the inequalities (60) and (63) hold. Thus these conditions are 
necessary for the expected utility maximization hypothesis under our regularity 
conditions.  
 
As usual, it is straightforward to show that the existence of a solution to the inequalities 
(60) and (63) is also sufficient to imply the existence of an increasing, continuous and 
concave function φ such that the observed data are consistent with the expected utility 
maximization hypothesis (57). Suppose a solution uk

t for k = 1,...k and t = 1,...,T and 
λ1,...,λT to the inequalities (60) and (63) exists. Define φ(z) and the KT functions φk

t(z) 
for z ≥ 0 as follows: 

                                                 
31 Varian considered a portfolio choice model and assumed that the probabilities remained constant over 
time. He also did not deal with the nondifferentiable case.  
32 In order to have a quasiconcave preference function, it is necessary for φ to be concave; see Yaari (1977; 
1184). Arrow (1964) and Debreu (1959; 60-61) noted that the quasiconcavity assumption implied risk 
aversion on the part of the decision maker.  
33 As usual, the differentiability assumption on φ is not required: conditions (61) can be replaced by the 
following supergradient conditions: ρk

t∈∂φ(xk
t), ρk

t = [αk
t]−1λtpk

t, k = 1,...,K; t = 1,...,T. 
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(64) φk

t(z) ≡ uk
t + [αk

t]−1λtpk
t(z − xk

t) ;                                               k = 1,...,K ; t = 1,...,T; 
(65) φ(z) ≡ min t,k {φk

t(z) : k = 1,...,K; t = 1,...,T}. 
 
Note that φ(z) is a continuous, concave and increasing function of the scalar variable z. 
Since the scalars uk

t satisfy the inequalities (63), using definitions (64) and (65), it can be 
seen that the following equalities hold: 
 
(66) φ(xj

s) = min t,k {uk
t + [αk

t]−1λtpk
t(xj

s − xk
t) : k = 1,...,K; t = 1,...,T}  

                 = uj
s ;                                                                                  j = 1,...,K ;  s = 1,...,T. 

 
We now show that for t = 1,...,T, xt ≡ [x1

t,x2
t,...,xK

t] solves the period t utility 
maximization problem in (57) where the function φ(x) is defined by (64) and (65): 
 
(67) max x{∑k=1

K αk
tφ(xk) : ∑k=1

K pk
txk ≤ ∑k=1

K pk
txk

t}  
            ≤ max x {∑k=1

K αk
t[uk

t + [αk
t]−1λtpk

t(xk − xk
t)] : ∑k=1

K pk
txk ≤ ∑k=1

K pk
txk

t } 
                                                     since φ(xk) ≤ uk

t + αk
−1λtpk

t(xk − xk
t)  using (64) and (65) 

            = max x {∑k=1
K αkuk

t + ∑k=1
K λtpk

t(xk − xk
t) : ∑k=1

K pk
txk ≤ ∑k=1

K pk
txk

t} 
            ≤ ∑k=1

K αkuk
t 

 
where the last inequality follows from λt > 0 and ∑k=1

K pk
t(xk − xk

t) ≤ 0. Thus ∑k=1
K αkuk

t 
is an upper bound to utility for the period t utility maximization problem using the φ 
defined by (64) and (65). But the equalities (66) show that this upper bound is attained 
for xk = xk

t for k = 1,...,K and so xt ≡ [x1
t,x2

t,...,xK
t] solves the period t utility 

maximization problem for t = 1,...,T using the φ(x) defined by (64) and (65). 
     
As usual, a linear program can be set up to determine whether the system of inequalities 
(60) and (63) has a solution. Since the inequalities (63) are homogeneous in the uk

t and 
the λt, drop the positivity restrictions (60) and replace them with the inequality 
restrictions, λt ≥ 1 for t = 1,...,T. It is also the case that we can impose nonnegativity 
restrictions on the uk

t without loss of generality.   
 
In the following section, we will illustrate how the decision to purchase insurance or to 
invest can be modeled using the expected utility model. 
 
8. Applications to Insurance and Investing 
 
We first consider a simple model that looks at the decision to insure some property 
against the possibility of loss during a period.  
 
Suppose that an individual has insurable property which has value Wt > 0 and there are 
two states of nature in period t for t = 1,...,T. In State 1, there is no damage to the 
property and in State 2, the property is totally destroyed. In period t, the probability that 
State 1 occurs is α1

t > 0 and the probability that State 2 occurs is α2
t = 1 − α1

t > 0 for t = 
1,...,T. The decision maker can purchase property insurance it ≥ 0 in period t at the 
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premium rate of δt for each dollar of insurance purchased where 0 < δt < 1. There is a 
limit on the amount of insurance that can be purchased in period t; i.e., it ≤ Wt so that the 
insurable wealth in period t is an upper bound to the amount of insurance coverage that 
can be purchased. Let x1

t be the end of period t wealth if State 1 occurs and let x2
t be the 

end of period t wealth if State 2 occurs for t = 1,..,T. It can be seen that x1
t and x2

t depend 
on the amount of insurance purchased in period t, it, in the following manner: 
 
(68) x1

t ≡ Wt − δtit ; x2
t ≡ (1 − δt)it ; 0 ≤ it ≤ Wt ;                                                     t = 1,...,T.  

 
Note that if the decision maker fully insures in period t so that it = Wt, then end of period 
wealth is equalized no matter which state of nature occurs; i.e., we have x1

t = x2
t = (1 − 

δt)Wt. 
 
Now suppose that the decision maker’s preferences over contingent commodities can be 
represented by the expected utility maximization model explained in the previous section 
where in the present context, K = 2 so we have only two states of nature. Assume that the 
decision maker has a continuous, concave and increasing function of one variable φ such 
that (x1

t,x2
t) solves (57) for t = 1,...,T, where K = 2 and the (x1

t,x2
t) are defined by (68) 

above. We cannot immediately apply the model in the previous section because we have 
not defined the prices p1

t and p2
t that correspond to the state contingent quantities x1

t and 
x2

t defined by (68). This problem is easily remedied: we use the two equations in (68) in 
order to eliminate the insurance decision variable it. This will leave us with a single 
budget constraint equation for each period t involving x1

t and x2
t. These equations turn 

out to be the following ones: 
 
(69) (1 − δt)x1

t + δtx2
t = (1 − δt)Wt ;                                                                       t = 1,...,T.     

  
Using (69), we can now define the positive period t prices, p1

t and p2
t, for the two 

contingent commodities: 
 
(70) p1

t ≡ 1 − δt ; p2
t ≡ δt ;                                                                                        t = 1,...,T. 

 
With the xk

t and pk
t defined by (68) and (70), the consistency hypothesis (57) for our 

insurance model can be tested using the analysis developed in the previous section. 
 
As a second example of how the methodology developed in the previous section can be 
used, we conclude this section by considering a simple model of investing under risk. 
 
Suppose a decision maker has wealth Wt > 0 that he or she wishes to invest in two assets. 
The first asset is a riskless asset which returns rt > 0 per dollar invested in period t. The 
second asset is a risky asset which pays the interest rate r1

t in period t if State 1 occurs 
and the rate r2

t if State 2 occurs in period t. We assume that the three interest rates satisfy 
the following inequalities: 
 
(71) 0 < r2

t < rt < r1
t ;                                                                                               t = 1,...,T. 
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Thus for each period t, State 1 is the favourable state for the investor when the risky asset 
delivers the rate of return r1

t which is above the safe asset rate of rt whereas in State 2, the 
risky asset delivers the rate of return r2

t which is below the safe asset rate of return. In 
period t, the probability that State 1 occurs is α1

t > 0 and the probability that State 2 
occurs is α2

t = 1 − α1
t > 0 for t = 1,...,T. The decision variable of the investor in period t 

is st, the share of beginning of period t wealth that is invested in the safe asset. We 
assume that 0 ≤ st ≤ 1 for each period t. 
 
Let x1

t be the end of period t wealth if State 1 occurs and let x2
t be the end of period t 

wealth if State 2 occurs for t = 1,..,T. It can be seen that x1
t and x2

t depend on the share of 
initial wealth st that the investor allocates to the safe asset in the following manner: 
 
(72) x1

t ≡ st(1+rt)Wt + (1−st)(1+r1
t)Wt ; x2

t ≡ st(1+rt)Wt + (1−st)(1+r2
t)Wt ;          t = 1,...,T. 

 
Now suppose that the decision maker’s preferences over contingent commodities can be 
represented by the expected utility maximization model explained in the previous section 
where K = 2 so we have only two states of nature. Assume that the decision maker has a 
continuous, concave and increasing function of one variable φ such that (x1

t,x2
t) solves 

(57) for t = 1,...,T, where K = 2 and the (x1
t,x2

t) are defined by (72) above. Now use the 
two equations in (72) in order to eliminate the portfolio allocation variable st. This will 
leave us with a single budget constraint equation for each period t involving x1

t and x2
t. 

These equations turn out to be the following ones: 
 
(73) (rt − r2

t)x1
t + (r1

t − rt)x2
t = (1 + rt)(r1

t − r2
t)Wt ;                                                t = 1,...,T.     

  
Using (73), we can now define the positive period t prices, p1

t and p2
t, for the two 

contingent commodities: 
 
(74) p1

t ≡ rt − r2
t ; p2

t ≡ r1
t − rt ;                                                                                t = 1,...,T. 

  
With the xk

t and pk
t defined by (72) and (74), the consistency hypothesis (57) for the 

above investment model can be tested using the algebra developed in the previous section. 
 
The expected utility model for making choices under uncertainty has some limitations 
and so many nonexpected utility models have been proposed to remedy these 
shortcomings. In the following section, we will show how the Afriat inequalities can be 
adapted to a useful nonexpected utility model.  
 
9. Implicitly Defined Stochastic Preference Functions: The Homothetic Case   
 
Recall that in section 7, the stochastic preference function M(x1,...,xK) was explicitly 
defined as φ−1[∑k=1

K αkφ(xk)] where αk > 0 was the probability that state k will occur for 
k = 1,...,K and φ was a continuous, concave, increasing function of one variable. In the 
present section, the stochastic preference function will be defined implicitly as the 
solution u = M(x1,...,xK) to the following equation: 
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(75) ∑k=1
K αkγ(xk/u) = γ(1) 

 
where γ(z) is a continuous, concave and increasing function of one variable, defined for z 
≥ 0. Axiomatic justifications for this implicitly defined stochastic preference function 
may be found in Chew (1989; 287) and Diewert (1993; 397-415) (1995).34 Note that if 
we let γ(z) ≡ zr for r > 0 or γ(z) ≡ −zr for r < 0, the stochastic preference function becomes 
the mean of order r defined as M(x) ≡ [∑k=1

K αkxk
r]1/r and if we let γ(z) ≡ lnz, then M 

becomes the weighted geometric mean, M(x) ≡ ∏k=1
K kxα  .35      

 
We first show that a unique solution u to (75) exists if x > 0K. Define the function of K + 
1 variables, F(x,u), for x ≡ [x1,...,xK] ≥ 0K and u > 0 as follows: 
 
(76) F(x,u) ≡ ∑k=1

K αkγ(xk/u). 
 
Using the continuity properties of γ, it can be seen that F(x,u) is jointly continuous in x, u 
for x ≥ 0K and u > 0. Moreover, since each αk > 0 and γ(z) is an increasing function, 
F(x,u) is strictly increasing in each xk and strictly decreasing in u. Let x ≡ [x1,...,xK] > 0K 
and define u* ≡ min k{xk : k = 1,...,K} > 0 and u** ≡ max k{xk : k = 1,...,K} ≥ u*. Then 
xk/u* ≥ 1 and xk/u** ≤ 1 for each k. Using the monotonicity of γ and the fact that ∑k=1

K αk 
= 1, we deduce that  
 
(77) γ(1) ≤ F(x,u*) ; F(x,u**) ≤ γ(1).    
 
Since F(x,u) is monotonically decreasing and continuous in u for u* ≤ u ≤ u**, the 
inequalities (77) imply the existence of a unique solution u = M(x) to (75). The above 
inequalities also show that M satisfies the following inequalities: for x > 0K, 
 
(78) 0 < min k{xk : k = 1,...,K} ≤ M(x) ≤ max k{xk : k = 1,...,K}. 
 
Thus if x > 0N, then (78) implies that M(x) is positive. The inequalities (78) also imply 
that if all components of x are equal to the same positive number λ > 0 say, then M 
reproduces this positive number (and thus M is a mean function):36 
 
(79) M(λ1K) = λ. 
 

                                                 
34 See also the closely related models of Dekel (1986), Chew and Epstein (1989).  
35 See Hardy, Littlewood and Polya (1934) for the properties of means of order r. Diewert (1993; 399) 
noted the advantage of the present specification of stochastic preferences over the expected utility 
specification if it is desirable to have homothetic preferences. Using the expected utility framework, the 
only linearly homogeneous stochastic preference functions are the means of order r whereas in the present 
implicit expected utility framework, a much larger class of linearly homogeneous stochastic preference 
functions can be accommodated. 
36 The inequalities (78) can also be used to show that M(x) tends to 0 as x > 0K tends to 0K. Thus we define 
M(0K) ≡ 0. It can be shown that M(x) is continuous for x ≥ 0K. 
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The monotonicity and continuity properties of γ along with the assumption that the αk are 
all positive imply that M(x) is a continuous, strictly increasing function 37  over the 
nonnegative orthant. 
 
The function M has another important property; namely, it is (positively) linearly 
homogeneous so that for x > 0K and λ > 0, we have: 
 
(80) M(λx) = λM(x). 
 
To establish (80), let x > 0K and let u ≡ M(x). Thus u and x satisfy equation (75). Now 
replace x by λx in equation (75). It can be seen that if we replace u by λu, then u* ≡ λu 
and x* ≡ λx will also satisfy (75) and thus λM(x) = λu = u* = M(x*) = M(λx), which 
establishes (80). Thus the stochastic preferences are homothetic under our assumptions on 
γ. 
 
The final property that we want to establish for the stochastic preference function M is 
quasiconcavity, which will imply risk averting behavior on the part of the decision maker. 
Let x1 > 0K, x2 > 0K, 0 < λ < 1, u1 ≡ M(x1), u2 ≡ M(x2) with u1 ≤ u2. For quasiconcavity of 
M, we need to show that 
 
(81) u1 ≤ M(λx1 + (1−λ)x2). 
 
Since xi > 0K, ui will be positive for i = 1,2. Thus ui, xi satisfy (75) which we rewrite as 
follows: 
 
(82) ∑k=1

K αkγ(xk
i/ui) = γ(1) ;                                                                                      i = 1,2. 

 
Since u2 ≥ u1 > 0, 1/u1 ≥ 1/u2. Using x2 > 0K and the increasing property of γ, we have: 
 
(83) γ(xk

2/u1) ≥ γ(xk
2/u2) ;                                                                                       k = 1,...,K. 

 
Using the concavity property of γ and the positivity of the αk, we have the following 
inequality: 
 
(84) ∑k=1

K αkγ[(λxk
1 + (1−λ)xk

2)/u1] ≥ ∑k=1
K αk{λγ(xk

1/u1) + (1−λ)γ(xk
2/u1)} 

                = λγ(1) + (1−λ)∑k=1
K αkγ(xk

2/u1)                                             using (82) for i = 1 
                = λγ(1) + (1−λ)∑k=1

K αkγ(xk
2/u2)                                             using (83) 

                = γ(1)                                                                                        using (82) for i = 2. 
 
Let u* ≡ M(λx1 + (1−λ)x2) be the solution to ∑k=1

K αkγ[(λxk
1 + (1−λ)xk

2)/u*] = γ(1). The 
inequality (84) and the increasing property of γ shows that u* ≥ u1, which is (81). 
 

                                                 
37 Thus if 0K < x < y, then M(x) < M(y). 
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Note that (78), (80) and (81) imply that M(x) is a positive, linearly homogeneous and 
quasiconcave function defined over the positive orthant and so we can apply Berge’s 
(1963; 208) result and conclude that M is also concave over this domain of definition. 
Extending the domain of definition to the nonnegative orthant by continuity means that 
M will be concave over the nonnegative orthant.  
 
We assume that we can observe the prices and quantities that pertain to a decision maker 
over T periods as usual. Our homothetic implicit expected utility maximization hypothesis 
is the following one: the observed period t quantity vector xt solves the following period t 
expected utility maximization problem, where the period t probability vector αt ≡ 
[α1

t,...,αK
t] >> 0K and the observed price and quantity vectors are the vectors pt ≡ 

[p1
t,...,pK

t] >> 0K and xt ≡ [x1
t,...,xK

t] >> 0K and the unobserved utility level is ut:  
 
(85) ut,xt solves max u,x {u : ∑k=1

K αk
tγ(xk/u) = γ(1) ; ∑k=1

K pk
txk ≤ ∑k=1

K pk
txk

t}; t = 1,...,T. 
 
It is possible to show that if ut, xt solves (85), then xt must be a solution to the following 
constrained maximization problem: 
 
(86) xt solves max x {∑k=1

K αk
tγ(xk/ut) : ∑k=1

K pk
txk ≤ ∑k=1

K pk
txk

t};                       t = 1,...,T. 
 
Using the inequalities (78), it can be seen that if (85) is satisfied, then the optimal period t 
utility level ut must be positive and it satisfies the following observable bounds: 
 
(87) 0 < min k {xk

t : k = 1,...,K} ≤ ut ≤ max k {xk
t : k = 1,...,K} ;                           t = 1,...,T. 

 
The above bounds are useful since they insure that a solution ut to the period t utility 
maximization problem defined by (85) is bounded away from 0 and bounded from above. 
 
Recall that we assumed that γ(z) is a continuous, concave and increasing function of one 
variable. Assume for the moment that γ is also differentiable. Then if xt and ut solve (85), 
xt also solves the period t problem in (86) and we can deduce that a λt ≥ 0 must exist such 
that the following first order necessary conditions are satisfied: 
 
(88) αk

tγ′(xk
t/ut) = λtutpk

t ;                                                                  k = 1,...,K ; t = 1,...,T; 
(89) ∑k=1

K αk
tγ(xk

t/ut) = g(1) ;                                                                                t = 1,...,T 
 
where γ′(z) denotes the derivative of γ(z) evaluated at z. The assumption that γ is an 
increasing concave function implies that the nonnegative λt must be positive; i.e., the 
following conditions must hold under our regularity assumptions: 
 
(90) λt > 0 ;                                                                                                             t = 1,...,T. 
 
The concavity property of γ(z) implies that for any z ≥ 0, the following inequality will 
hold for k = 1,...,K and t = 1,...,T: 
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(91) γ(z) ≤ γ(xk
t/ut) + γ′(xk

t/ut)[z − (xk
t/ut)] 

               = γ(xk
t/ut) + [αk

t]−1λtutpk
t[z − (xk

t/ut)] 
 
where the last equality follows using (88).38 Define vk

t ≡ γ(xk
t/ut) for k = 1,...,K and t = 

1,...,T. Let z = xj
s/us and substitute this value of z into the inequality (91) for t and k and 

we obtain the following system of K2T2 Afriat type inequalities: 
 
(92) vj

s ≤ vk
t +[αk

t]−1 λtutpk
t[(xj

s/us) − (xk
t/ut)] ;                               j,k = 1,...,K; s, t = 1,...,T. 

 
Since vk

t ≡ γ(xk
t/ut), the equalities (89) can be rewritten as follows: 

 
(93) ∑k=1

K αk
tvk

t = g(1) ;                                                                                        t = 1,...,T. 
    
Thus under our regularity conditions on γ, there must exist vk

t for k = 1,...,K, t = 1,...,T, 
u1,...,uT and λ1,...,λT such that equations (93) hold and the inequalities (87), (90) and (92) 
hold. Thus these conditions are necessary for the implicit homothetic expected utility 
maximization hypothesis under our regularity conditions.  
 
There are some additional conditions that must be satisfied under the hypothesis (85) 
where it is assume that γ(z) is an increasing, continuous and concave function of one 
variable defined for z ≥ 0. Recall that u = M(x1,...,xK) is the u solution to the equation 
(75) and the function γ generates the function M. But it can be seen if γ generates M, then 
the function γ*(z) ≡ α + βγ(z) will also generate M for any scalar α and any positive 
scalar β and γ*(z) will have the same properties as γ(z). Thus we are free to set γ(1) equal 
to an arbitrary number and to set γ′(1) equal to an arbitrary positive number. We will 
choose to set γ(1) = 1 and thus conditions (93) become the following conditions: 
 
(94) ∑k=1

K αk
tvk

t = 1 ;                                                                                             t = 1,...,T. 
     
The concavity of γ(z) means that γ(z) ≤ γ(1) + γ′(1)(z − 1) for all z ≥ 0. Thus using γ(1) 
=1 and γ′(1) ≡ λ0 > 0,39  the following inequalities will be satisfied: 
 
(95) λ0 > 0 ; 
(96) vj

s ≤ 1 + λ0[(xj
s/us) − 1] ;                                                              j = 1,...,K ; s = 1,...,T  

 

                                                 
38 As usual, the differentiability assumption on γ is not required: conditions (88) can be replaced by the 
following supergradient conditions: ρk

t∈∂γ(xk
t), ρk

t = [αk
t]−1λtutpk

t, k = 1,...,K; t = 1,...,T. A concave 
function of one variable has a right and left derivative at each point in the interior of its domain of 
definition. The set of supergradients in this case reduces to all numbers ρ that are equal to or greater than 
the right derivative and equal to or less than the left derivative. It is important to allow γ(z) to be 
nondifferentiable at z = 1 to allow for stochastic preferences that exhibit first degree risk aversion; see 
Chew (1989; 287), Epstein and Zin (1990), Segal and Spivak (1990) and Diewert (1993; 415-423) (1995; 
139).  
39 In the case where γ′(1) does not exist, let λ0∈∂γ(1). 
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where vk
t ≡ γ(xk

t/ut) as usual. The concavity of γ and γ(1) = 1 also imply that 1 ≤ γ(xt/ut) + 
γ′(xt/ut)[1 − (xk

t/ut)] and so the following inequalities will be satisfied: 
 
(97) 1 ≤ vk

t + [αk
t]−1λtutpk

t[1 − (xk
t/ut)] ;                                              k = 1,...,K ; t = 1,...,T 

 
where we have used equations (88). 
 
As usual, it is possible to show that the existence of a solution to the equalities (94) and 
the inequalities (87), (90) and (92) is also sufficient to imply the existence of an 
increasing, continuous and concave function γ such that the observed data are consistent 
with the homothetic implicit expected utility maximization hypothesis (85). Suppose a 
solution vk

t for k = 1,...,K, t = 1,...,T, u1,...,uT and λ1,...,λT to (87), (90), (92), (94), (95) 
(96) and (97) exists. Define γ0(z), the KT functions γk

t(z) and γ(z) for z ≥ 0 as follows: 
 
(98) γ0(z) ≡ 1 + λ0(z − 1) ;  
(99) γk

t(z) ≡ vk
t +[αk

t]−1 λtutpk
t[z − (xk

t/ut)] ;                                       k = 1,...,K ; t = 1,...,T; 
(100) γ(z) ≡ min t,k {γ0(z), γk

t(z) : k = 1,...,K; t = 1,...,T}. 
 
Note that γ(z) is a continuous, concave and increasing function of the scalar variable z. 
Since the scalars vk

t satisfy the inequalities (92), using definitions (99), it can be seen that 
the following equalities hold: 
 
(101) min t,k {γk

t(xj
s/us)  : k = 1,...,K; t = 1,...,T} 

                 = min t,k {vk
t + [αk

t]−1λtutpk
t[(xj

s/us) − (xk
t/ut)] : k = 1,...,K; t = 1,...,T}  

                 = vj
s ;                                                                                 j = 1,...,K ;  s = 1,...,T. 

 
Using definition (100), it can be seen that  
 
(102) γ(xj

s/us) = min {γ0(xj
s/us), vj

s};                                                 j = 1,...,K ;  s = 1,...,T                                 
                       = min {1 + λ0[(xj

s/us) − 1], vj
s} 

                       = vj
s 

 
where the last equality follows using (96). We also need to show that γ defined by (100) 
has the property that γ(1) = 1. Using definitions (99), we have 
 
(103) min t,k {γk

t(1)  : k = 1,...,K; t = 1,...,T} 
               = min t,k { vk

t +[αk
t]−1 λtutpk

t[1 − (xk
t/ut)]   : k = 1,...,K; t = 1,...,T} 

               ≥ 1 
 
using the inequalities (97). Using definition (98), it can be seen that γ0(1) = 1. Thus using 
(103) and definition (100), we have γ(1) = 1.  
 
We now show that for t = 1,...,T, xt ≡ [x1

t,x2
t,...,xK

t] solves the period t maximization 
problem in (86) (and hence ut, xt solves (85)) where the function γ(z) is defined by (100). 
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(104) max x {∑k=1
K αk

tγ(xk/ut) : ∑k=1
K pk

txk ≤ ∑k=1
K pk

txk
t}                        

          ≤ max x {∑k=1
K αk

t[vk
t +[αk

t]−1 λtutpk
t[(xk/ut) − (xk

t/ut)]  : ∑k=1
K pk

txk ≤ ∑k=1
K pk

txk
t } 

                since γ(xk/ut) ≤ vk
t +[αk

t]−1 λtutpk
t[(xk/ut) − (xk

t/ut)]  using αk
t > 0, (99) and (100) 

          = max x {∑k=1
K αkvk

t + ∑k=1
K λtpk

t(xk − xk
t) : ∑k=1

K pk
txk ≤ ∑k=1

K pk
txk

t} 
          ≤ ∑k=1

K αkvk
t 

 
where the last inequality follows from λt > 0 and ∑k=1

K pk
t(xk − xk

t) ≤ 0. Thus ∑k=1
K αkvk

t 
is an upper bound to utility for the period t utility maximization problem using the γ 
defined by (100). But the equalities (102) show that this upper bound is attained for xk = 
xk

t for k = 1,...,K and so xt ≡ [x1
t,x2

t,...,xK
t] solves the period t utility maximization 

problem for t = 1,...,T using the γ(x) defined by (100). 
     
The above analysis can be summarized as follows: necessary and sufficient conditions for 
the implicit expected utility hypothesis (85) where γ(z) is an increasing, continuous and 
concave function defined for z ≥ 0 with γ(1) = 1 are the existence of numbers λ0, λ1,...,λT, 
u1,...,uT and vk

t for k = 1,...,K and t = 1,....,T such that (87), (90), (92), (94), (95) (96) and 
(97) are satisfied. Note that the vk

t are unrestricted in sign.  
 
It is difficult to set up a nonlinear programming problem that will enable us to test for the 
existence of a solution to (87), (90), (92), (94), (95), (96) and (97); in particular, the strict 
inequality conditions (90) and (95) are difficult to deal with. However, recall our 
discussion on how γ(z) can be replaced by α + βγ(z) with β > 0 without affecting the 
maximization hypothesis (85). We used this fact to scale the function γ (by choosing an 
α) so that γ(1) = 1. We can also choose β > 0 so that all of the slope parameters λ0, 
λ1,...,λT are equal to or greater than an arbitrary positive number. Thus we can replace the 
strict inequalities (90) and (95) by the following weak inequalities: 
 
(105) λt ≥ 1 ;                                                                                                        t = 0,1,...,T. 
 
A programming problem with a linear objective function involving slack variables with 
some nonlinear constraints that would enable one to find a feasible solution to the 
constraints (87), (92), (94), (96), (97) and (105) (if one exists) can easily be constructed. 
 
We conclude this section by considering the case where the probability vectors αt = 
[α1

t,...,αK
t] are constant over time; i.e., assume that: 

 
(106) αt = α ≡ [α1,...,αK] >> 0K with ∑k=1

K αk = 1 ;                                              t = 1,...,T. 
 
Let j = k and premultiply vj

s in equations (92) by αj and sum these equations for j = 
1,...,K to obtain the following equations: 
  
(107) ∑j=1

K αjvj
s ≤ ∑j=1

K αjvj
t + λt[∑j=1

K pj
txj

s(ut/us) − ∑j=1
K pj

txj
t]                 s, t = 1,...,T or 

                        1 ≤ 1 + λt[∑j=1
K pj

txj
s(ut/us) − ∑j=1

K pj
txj

t]                      using (94) and (106). 
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It can be seen that the inequalities λt > 0 and the inequalities in (107) imply the 
homotheticity conditions (19) in section 4 above. Thus if the test for implicit expected 
utility maximization passes and the probability vectors αt are constant over time, then the 
homotheticity test developed in section 4 will also pass.40 
 
10. Conclusion 
 
We conclude this paper with a few comments on extensions of the basic Afriat 
methodology. 
 
Suppose that there is no solution to the Afriat inequalities (3) and (8). The question 
arises: how bad is the failure to find a solution? 
 
We could try and perturb the data (as little as possible in some metric) so that the 
perturbed data satisfies (3). Thus Varian (1985; 449) considered the following problem: 
 
(108) ttt u λξ ,,min {∑t=1

T (ξt − xt)⋅(ξt − xt): λt ≥ 1, t = 1,...,T;  

                                       us ≤ ut + λtpt⋅(ξs − ξt), s, t = 1,...,T}.   
 
The problem with this model is that the solution to this nonlinear programming problem 
is not invariant to changes in the units of measurement.  
 
A more parsimonious model that is invariant to changes in the units of measurement41 is 
the following one: 
 
(109) ttt ue λ,,min {∑t=1

T (et − 1)2: λt ≥ 1, t = 1,...,T; us ≤ ut + λtpt⋅(esxs − etxt), s, t = 1,...,T}. 
 
Thus we proportionally perturb the quantity data so as to achieve consistency where the 
proportionality factor for observation t is et for t = 1,...,T. In the case where the original 
Afriat conditions fail, the researcher can look at the distribution of the et and decide how 
bad the failure of the maximization hypothesis is.42   
 
Another extension of the basic Afriat nonparametric approach to demand theory is due to 
Varian (1983; 108) who derived the Afriat type inequalities in the context of a rationing 
model, or more generally, to a maximization model where the decision maker faces two 
linear inequality constraints. This framework could be extended to a household 

                                                 
40 Note that the model developed in this section implies homothetic preferences within each period but in 
order to obtain homothetic preferences over all T periods, we require that the probability vectors αt be 
constant over time.  
41 This model is due to Varian (1990; 131) but it builds on a related model due to Afriat (1972a) (1973). 
Jones and Edgerton (2009) approach the topic of violation measures in a systematic manner. 
42 We note that more research needs to be done to work out violation measures for the more complex 
stochastic optimization models explained in sections 7 and 9.  
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production context where households face a time constraint as well as a budget 
constraint43 and the household production functions are concave.    
 
Cherchye, de Rock and Vermeulen (2007) (2011) extended the Afriat nonparametric 
approach to demand analysis to households with multiple decision makers where only 
aggregate demand vectors can be observed. In a related vein, Blundell, Browning and 
Crawford (2003) (2008) combined the Afriat inequalities for microeconomic household 
data with additional information on Engel curves in order to derive nonparametric bounds 
to price indexes and aggregate demand responses to changing relative prices. 
 
Finally, Afriat’s influence on economic theory has not been limited to consumer theory 
and the related literature on consumer price indexes: following the example of Farrell 
(1957), he developed a similar nonparametric approach to producer theory; see Afriat 
(1972b).44    
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