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Summary

These days, many studies in the economical, medical, biochemical, and many

other fields of research result in enormous amounts of data on a phenomenon.

Examples of such datasets are customer data assessing credit risk (for banks),

accident risk (for insurance companies), epidemiological studies, and genetic rel-

evance studies. It also becomes more common that these datasets encompass a

large number of variables, most of which are likely to be irrelevant in relation

to the phenomenon under investigation. Therefore, methods are needed which

select a group of variables, preferably as small as possible, or a proposed model,

as sparse as possible, which still provides a sufficiently good model for the inves-

tigated phenomenon.

To this end, many different model-selection criteria have already been pro-

posed, such as Akaike’s Information Criterion (AIC), Bayesian or Schwarz’ In-

formation Criterion (BIC/SIC), Mallows’ Cp , and more recently, the Focused

Information Criterion (FIC). The first three of these criteria will allow the user

to select one specific model to explain the phenomenon under investigation, ir-

respective of the later use of the model. While these criteria usually select a

model with good overall performance, it might not be optimised for the proposed

task, such as prediction for example. The latter criterion, FIC, overcomes this

criticism and selects a model specifically suited for the task at hand, such that

the selected model possibly has a better performance for that particular task.

In the first chapter of the thesis, we have considered the issue of prediction

focussed variable selection in logistic regression models. In this particular setting,

the FIC will select different models depending on the observation about which the
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prediction is made, leading to more accurate predictions. This is of particular

interest for business managers, who want to predict as accurately as possible

whether a particular business venture will succeed or not. Other applications

are for example in the medical field, where it is vital that patients are correctly

diagnosed as having a certain disease or not.

The standard version of the FIC estimates the Mean Squared Error (MSE)

of the estimator of the quantity of interest, here chosen to be the score of the

observation of interest. In this chapter we have proposed more general versions

of the FIC, allowing other risk measures such as one based on Lp-error. More

importantly however, we have constructed a FIC using the misclassification prob-

ability as natural risk measure, since the goal is to accurately predict the binary

outcome. The advantages of using an information criterion for selecting suit-

able models for prediction which depends on the new observation and on the

selected risk measure have been illustrated by means of a simulation study and

an application to a study on diabetic retinopathy.

In the second chapter of the thesis, we have applied FIC to select the au-

toregressive (AR) order of a stationary time series. Autoregressive time series

are often used in economics to model a phenomenon, such as exchange rates or

unemployment, over time. These models are then used to predict the value of

that phenomenon for the near future. Especially for macro-economic phenomena,

these predictions should be as accurate as possible, such that policy makers can

rely on these predictions to make good decisions.

Originally, the focussed information criterion has been proposed for a fixed

model set, where the largest model under consideration doesn’t vary when ob-

servations are added. In this chapter, we have provided a theoretical foundation

such that the FIC can be applied when the maximal AR-order under consider-

ation increases towards infinity as the length of the time series increases. This

result is needed for two reasons. First of all, the number of variables to select

from is in principle infinity in the setting of autoregressive models. More im-

portantly however, we wished to examine the asymptotic efficiency properties of

the FIC and compare it to AIC for model-order selection. This investigation

has been conducted by means of a detailed simulation study, studying both the



vii

special two-series setting where AIC will asymptotically select the most accurate

model for prediction (lowest MSE), as in the much more common single series

setting, where AIC has the same property. In this study, we have observed that

the performance of the models selected by FIC is very close to that of the models

selected by AIC, and that the difference in performance becomes smaller as the

length of the series increases.

The FIC can also be used to select the best models for estimating the im-

pulse response function of a series at a certain lag. In this case, the relative

performance of FIC with respect to AIC varies with the parameters of the true

data-generating model, and neither uniformly dominates the other. Finally, we

have illustrated that the FIC can be applied easily towards more complicated

variable selection tasks in the time series framework, such as simultaneous selec-

tion of both regression variables and the autoregressive order of the error terms.

The criteria outlined in the paragraphs above have one major drawback how-

ever. As these are likelihood-based information criteria, they are of little to no

use when the number of variables increases beyond the number of available ob-

servations. First, we will need an alternative to maximum likelihood estimation

to actually be able to estimate the model parameters. Support Vector Machines

provide a means to do classification when the number of variables (greatly) ex-

ceeds the number of available observations. Nevertheless, it is still recommended

to reduce the dimension of your input space to increase the predictive perfor-

mance of the estimated model. Several techniques have already been proposed to

perform variable selection in this setting, though few of them rely on information

criteria. Methods which rely on such criteria are for example cross-validated error

rate based criteria, or the Kernel Regularisation Information Criterion (KRIC).

In the third chapter of the thesis, we have developed two new information

criteria (SVMICa and SVMICb) which can be used for variable selection in the

SVM setting. These newly proposed criteria have the advantage that they in-

cur less computational overhead than the already existing criteria, and as such,

are faster to evaluate. Secondly, we have linked SVMICa to the aforementioned

KRIC, as an approximation under certain conditions. We have then performed

an extensive simulation study in which we examined the properties of SVMICa/b,
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and we found that the models selected by these criteria have decent predictive

power. Moreover, the simulation study indicated that SVMICb exhibits the prop-

erty of asymptotic consistency. Finally, a test on real data verified the adequate

performance of the newly developed criteria.

A different issue, but one which is still very important in predictive modelling,

is how efficient an estimation method for a certain model is. Generally speaking,

there is a trade-off between the efficiency of an estimation method, and how

generally applicable or robust that method is. Hence, examining the efficiencies

of those estimation methods provides the answer to the question of what price

the researcher pays (in terms of efficiency) for the additional generality and/or

robustness of the used estimation method.

In the final chapter of this thesis, we have examined the classification efficien-

cies of a group of decision rules which are known as Convex Risk Minimisation

(CRM) rules. These methods are a very flexible class of estimation methods for

the decision function for binary classification, in the sense that they can easily be

used for estimating non-linear decision functions. We have compared this class

of rules against the well-known Fisher’s linear discriminant rule, and this in the

setting of two normally distributed populations with equal variance, where it is

known that Fisher’s rule is efficient. To compute the classification efficiencies, we

have used influence functions. First of all, we have obtained a general expression

for the influence function of a Fisher-consistent CRM technique, in the sense that

the decision rule achieves the minimal obtainable generalisation error. We have

also obtained sufficient conditions for such Convex Risk Minimisation rules to be

Fisher-consistent. Then, we have performed a detailed case-by-case analysis for

a number of CRM methods, and we have found that reasonably balanced pop-

ulations which are badly separated, the CRM still have decent efficiency, above

50%, while being much more flexible than the efficient Fisher’s rule.



Samenvatting

Op de dag van vandaag worden er enorm veel gegevens verzameld in studies over

economische, medische, biochemische en vele andere fenomenen. Voorbeelden

van zulke datasets zijn bijvoorbeeld gegevens over klanten voor het bepalen van

hun kredietrisico (voor banken), hun risico op ongevallen (voor verzekerings-

maatschappijen). Andere voorbeelden zijn onder andere epidemiologische stud-

ies, en studies naar genetische relevantie. Ook gebeurt het steeds meer dat deze

datasets veel verschillende variabelen bevatten, waarvan de meeste waarschijnlijk

niets te maken hebben met het onderzochte fenomeen. Daarom zijn er technieken

nodig die een groep van variabelen kunnen selecteren, liefst zo klein mogelijk, of

een zo eenvoudig mogelijk model, dat toch een goed model is voor het onderzochte

fenomeen.

Daartoe zijn er al verschillende modelselectiecriteria ontwikkeld, zoals Akaike’s

Informatiecriterium (AIC), het Bayesiaans of Schwarz’ Informatiecriterium (BIC/

SIC), het Cp criterium van Mallows, and meer recent, het Focussed Informatiecri-

terium (FIC). De eerste drie criteria in deze lijst laten toe van één bepaald model

te kiezen om het onderzochte fenomeen te verklaren, waarvoor dit model ook

gebruikt zal worden. Hoewel deze criteria doorgaans een model kiezen dat be-

hoorlijk werkt, is het niet noodzakelijk optimaal voor het uiteindelijke doel, bi-

jvoorbeeld om voorspellingen te maken. Het laatste criterium echter, het FIC,

heeft dit probleem niet en zal een model kiezen dat op maat gemaakt is voor

wat de onderzoeker voor ogen heeft, waardoor het gekozen model mogelijk beter

presteert voor dat bepaald doel.

In het eerste hoofdstuk van deze thesis bekijken we het probleem van doel-
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gerichte variabelenselectie in het logistisch regressiemodel. Hier zal het FIC

verschillende modellen kiezen naargelang de observatie waarover de voorspelling

wordt gemaakt, wat tot nauwkeurigere voorspellingen zal leiden. Dit is vooral

interessant voor zakenmanagers als ze willen voorspellen dat een bepaalde in-

vestering zal renderen of niet. Een andere toepassing bevindt zich in de medische

wereld, waar het van levensbelang is dat patiënten een correcte diagnose krijgen

dat ze al dan niet een bepaalde ziekte hebben.

De gewone FIC schat de gemiddelde kwadratische fout van de schatter van

de parameter die ons interesseert, waarbij we hier de score van de te voorspellen

observatie kiezen. In dit hoofdstuk hebben we een algemenere versie van FIC

voorgesteld met een algemene risicomaat gebaseerd op de Lp-fout. De hoofd-

verwezenlijking hier is het opstellen van een FIC waarbij de kans op een foute

voorspelling als risicomaat wordt gebruikt, vermits we een ja/nee uitkomst willen

voorspellen. De voordelen van het gebruik van een informatiecriterium dat zijn

model kiest afhankelijk van de te voorspellen observatie worden aangetoond aan

de hand van een simulatiestudie en een toepassing op een medische studie.

In het tweede hoofdstuk van de thesis passen we het FIC toe op het kiezen

van de autoregressie (AR) orde van een stationaire tijdreeks. Autoregressieve tij-

dreeksen worden in economie vaak gebruikt om een fenomeen zoals wisselkoersen

of werkloosheidsgraad over de tijd te modelleren. Deze modellen worden dan

gebruikt om dit fenomeen te voorspellen voor de (nabije) toekomst. Deze voor-

spellingen moeten zo nauwkeurig mogelijk zijn, dit in het bijzonder voor macro-

economische fenomenen, zodanig dat de beleidsmensen hierop kunnen vertrouwen

voor het nemen van goede beslissingen.

Het focussed informatiecriterium was oorspronkelijk gedefinieerd voor een

vaste groep van modellen, waarbij het grootste beschouwd model niet verandert

als er observaties bijkomen. In dit hoofdstuk ontwikkelden we het FIC verder

zodanig dat dit criterium kan gebruikt worden in de situatie waar de maximale

AR orde van de beschouwde modellen naar oneindig gaat als de lengte van de

tijdreeks stijgt. We hebben dit resultaat voor twee redenen nodig. Eerst en

vooral is het aantal mogelijke variabelen theoretisch oneindig als we werken met

autoregressieve modellen. Een belangrijkere reden is dat we de asymptotische ef-
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ficiëntie van FIC wensen te onderzoeken, en dit willen vergelijken met AIC voor

modelorde selectie. We hebben dit onderzocht aan de hand van een uitgebreide

simulatiestudie, waarbij we zowel het geval van twee tijdreeksen hebben onder-

zocht, waar AIC asymptotisch de meest nauwkeurige modellen selecteert, als het

geval van één enkele tijdreeks, waar AIC deze eigenschap ook heeft. Gedurende

deze studie hebben we gemerkt dat de prestaties van de modellen geselecteerd

door FIC zeer dicht liggen bij de prestaties van de modellen geselecteerd door

AIC en dat dit verschil kleiner wordt als de lengte van de tijreeks stijgt.

Het FIC kan ook gebruikt worden om het beste model te kiezen voor het

schatten van de impulsresponsfunctie voor een bepaalde lag. In dit geval zien

we dat de prestaties van FIC en AIC sterk variëren naargelang de parameters

van het echte, datagenererend model veranderen, en dat geen van beide uniform

beter is dan het andere. Ook hebben we aangetoond dat FIC eenvoudig kan

worden toegepast voor moeilijkere variabelenselectie problemen voor tijdreeksen,

zoals het tegelijkertijd selecteren van de regressievariabelen en de AR orde van

de residuen.

De criteria in de voorgaande paragrafen hebben één groot nadeel. Omdat ze

gebaseerd zijn op de likelihood van de gegevens, kunnen ze niet gebruikt worden

als het aantal variabelen groter is dan het aantal observaties. Daarom hebben we

eerst een alternatief voor maximum likelihood schatters nodig, zodanig dat we de

parameters van het model kunnen schatten. De Support Vector Machine (SVM)

laat binaire classificatie toe als het aantal variabelen (veel) groter is dan het aan-

tal observaties. Het is echter nog altijd aan te raden om de dimensie van de ruimte

van de observaties te verkleinen, omdat dit de voorspellende prestaties van het

model kan vergroten. Er zijn reeds verschillende technieken om variabelenselectie

te doen voor de SVM, maar weinigen ervan werken met informatiecriteria. Tech-

nieken die toch op criteria zijn gebaseerd zijn bijvoorbeeld deze gebaseerd op de

crossvalidatie voorspellingsfout, of het Kernel Regularisatie Informatiecriterium

(KRIC).

In het derde hoofdstuk van deze thesis hebben we twee nieuwe informatiecri-

teria ontwikkeld (SVMICa en SVMICb) die voor variabelenselectie in SVM’s

kunnen worden gebruikt. Deze nieuwe criteria hebben als voordeel dat ze niet
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zo veel extra berekeningen vragen als de bestaande criteria, en dat ze dus sneller

te berekenen zijn. Ook hebben we het SVMICa gekoppeld aan het KRIC, als

een benadering onder bepaalde voorwaarden. Daarna hebben we een uitgebreide

simulatiestudie uitgevoerd waarin we de eigenschappen van SVMICa/b hebben

onderzocht, en we hebben gezien dat de modellen geselecteerd door deze crite-

ria degelijke voorspellende eigenschappen hebben. Daarenboven blijkt SVMICb

de asymptotische consistentie eigenschap te hebben. Deze goede eigenschappen

werden ook bevestigd gedurende een test op een aantal echte datasets.

Een andere kwestie die toch zeer belangrijk is in het voorspellend modelleren

is, is de vraag hoe efficiënt een schattingsmethode voor een bepaald model is.

Doorgaans moet je een keuze maken tussen efficiëntie van de methode, en hoe

algemeen toepasbaar of hoe robuust die methode is. Het onderzoeken van deze

efficiënties laat ons dus toe te zien welke prijs (in termen van efficiëntie) je betaalt

voor het gebruik van algemenere en/of robuustere schattingsmethoden.

In het laatste hoofdstuk van de thesis hebben we de classificatie-efficiëntie van

een groep beslissingsregels, gekend als de Convex Risico Minimalisatie (CRM)

regels, onderzocht. Deze methoden zijn een zeer flexibele groep van schattings-

technieken voor het schatten van de beslissingfunctie in binaire classificatie, in de

zin dat deze eenvoudig kunnen aangewend worden voor niet-lineaire problemen.

We hebben de CRM technieken vergeleken met de bekende lineaire discrimi-

natieregel van Fisher, dit in het geval van twee normaalverdeelde populaties met

gelijke variantie. In deze situatie weten we dat de regel van Fisher efficiënt is.

Om die classificatie-efficiënties te bereken, maken we gebruik van invloedsfuncties.

Eerst en vooral hebben we een theoretische uitdrukking gevonden voor deze in-

vloedsfuncties voor Fisher-consistente CRM regels, regels die de laagst mogelijke

voorspellingsfout hebben. Ook hebben we voldoende condities opgesteld waar-

voor zulke Convex Risico Minimalisatie methodes Fisher-consistent zijn. Daarna

hebben we een gedetailleerde analyse gedaan voor een aantal CRM methodes,

en we hebben gevonden dat voor redelijk gebalanceerde, slecht scheidbare pop-

ulaties, de CRM methodes redelijk efficiënt zijn, met efficiëntie boven de 50%,

terwijl ze toch veel flexibeler zijn dan de efficiënte regel van Fisher.
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Chapter 1

Introduction

The papers bundled in this dissertation cover two topics which are of considerable

interest in statistical modelling. The first part, consisting of three essays, deal

with the issue of selecting the “best” subset of variables from your data, where we

define “best” in the sense of variables with good predictive power. In the second

part, consisting of the last essay, we stepped away from the variable selection

question and we investigated how well a statistical model actually performs, how

efficient it is in terms of predictive performance.

Since antiquity, one of mankind’s drives has been to explain a certain phe-

nomenon, and link it to several others. This can range from something as simple

as knowing that the position of the sun in the sky depends on what time of day

it is (or vice versa), over the various laws in physics, to finding the relation be-

tween a person’s income when he or she was 30 years old, and various pieces of

information about that person, such as the birth date, gender, education level,

you name it. Although there are probably millions of other examples of relations

between variables, they all follow the same pattern. Suppose that Y is a certain

phenomenon which can be measured and which interests you, whether this is the

average fuel consumption of a car in miles-per-gallon, the price of MegaHuge,

Inc. stocks, or whether someone is employed or not. Also assume that X is a

list, or vector, of possibly relevant information, such as weight and engine power

1
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of the car for the car example, the reported profits and the general state of the

economy for the MegaHuge, Inc. example, or the person’s education level, and the

general conditions of the job market in the employment example. Then the vector

X contains the explanatory, or predictor variables, and Y the response variable.

The relation between the explicative variables X and the response variable Y can

be written as

Y = f(X) + ε, (1.1)

where f(·) can be any function of the predictors, and where ε is a term which

stands for all the possible errors which can appear, such as measurement errors,

or variables which we have not observed. The equation (1.1) is called a statistical

or stochastic model of Y with respect to X.

In statistical modelling the researcher wants to find a model which can accu-

rately describe the relation between the explicative variables X and the response

variable Y . For this, he starts from a (training) sample consisting of n observa-

tions of (X,Y ), which we denote (xi, yi) with i = 1, . . . , n. Then, he estimates a

function f̂ , such that the predicted responses ŷi = f̂(xi) are “close” to the true

responses yi. In other words, that the errors, or residuals ri = ŷi − yi are small.

One commonly used measure of the (in-)accuracy of a model (1.1) is the Mean

Squared Error (MSE):

MSE =
1
n

n∑

i=1

r 2
i , (1.2)

the average of the squares of the residuals. The lower this value is, the more

accurate the predicted model.

Naturally, trying to estimate a completely arbitrary function f is next to

impossible. Therefor the researcher makes several assumptions about this func-

tion. The most common assumptions are explicit assumptions about the shape,

or the form of the function. A popular and well-studied example is the linear

(regression) model, where we assume that

y = α + βtX + ε. (1.3)

In this model, α is called the intercept, and the elements of the vector β are called
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the slope parameters. The fuel usage example and the MegaHuge Inc. example

mentioned above can be modelled with a linear regression model.

A special case of a linear regression model arises when you observe a certain

phenomenon, such as the Euro/US Dollar exchange rate, over a period of time.

We denote this time series as zt, where t = 1, . . . , T . Continuing our example,

assume that we want to find the relation between today’s exchange rate, and the

exchange rates of the past three days. For this, we estimate the model

zt = φ1zt−1 + φ2zt−2 + φ3zt−3 + ε,

which we call an autoregressive model of order 3. This is a special case of the

linear model described in (1.3), with Zt as the response variables, and Zt−1,

Zt−2, and Zt−3 (the lagged series of lag 1, 2, and 3 respectively) the explicative

variables.

We use a different kind of model when the response variable Y can take only

two values: 0, a certain event is not observed, and 1, a certain event is observed.

We call Y a binary response variable, and the model relating Y to the explicative

variables X is called a binary choice model. Generally, the model is defined by a

decision function f of the predictor variables, such that

Y = 1 for f(X) > 0, and

Y = 0 otherwise.
(1.4)

Generally, given a sample of n observations (xi, yi), the above condition will not

be satisfied for all observations. Hence, the modelling step consists here of finding

a function f̂ such that the decision rule (1.4) is violated “as little as possible”.

One popular binary choice model is the logistic regression model. In this

model, the decision function is of the form

f(X) = α + βtX,

and we estimate the parameters α and β from the model

P (Y = 1|X) =
exp(α + βtX)

1 + exp(α + βtX)
def= F (α + βtX). (1.5)

We call the inverse link function F (·) the inverse logit function.
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Another class of binary choice models is the class of Convex Risk Minimisation

techniques. This is a highly flexible class of methods which estimates the decision

function f by minimising the average loss

1
n

n∑

i=1

L(yif(xi)),

where L(·) is the loss function, a function which is positive, continuous, convex,

and decreasing. Examples of such loss function are the hinge loss L(u) = [1 −
u]+ = max(0, 1 − u) which leads to the Support Vector Machine, and L(u) =

log(1 + exp(−u)) which is the loss function for (Kernel) Logistic Regression.

As mentioned above, one of the goals of statistical modelling is to find an

accurate model for a dataset (xi, yi). This is especially important if that model

will be used later on to make predictions for new observations x0. One of the most

obvious ways of making a model more accurate is to give more information to the

model, in other words, to use more variables. This is not a problem, especially in

current times where enormous amounts of information can be gathered and stored

quite easily. However, estimating a model with a high number of explicative

variables, especially if many of them add little or no information, has several

drawbacks. First, models with lots of variables take longer to estimate. This is

not a very serious problem since computational power and speed increases rapidly.

The second drawback is a more serious one. Models with lots of variables can

become very complex and as such, the researcher is hard-pressed to interpret

them. In essence, it means that the model which was supposed to clarify the

relation between the response variable Y and the predictor variables X, end

up making the relation even more obscure! The third drawback, and the most

serious one, is that estimates of models with a high number of variables are

more sensitive to the data than models with a low number of variables. This

means that a slight change in the data can cause a large change in the estimated

model. As such, predictions made with such a rich model are not necessarily as

reliable as predictions made with a more compact model. Finally, when a model

includes many variables, the variance of the estimated parameters increases when

compared to a model with less parameters. Similarly to the previous reason, this
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will also result in a greater variance for predictions made with the larger model.

To keep the number of variables low, the researcher can use her expertise, or

call upon someone else’s expertise, to manually pick out the variables which she

considers to be important, but this is rarely a practical solution. Indeed, manually

selecting the variables might be too time-consuming, and the selection is quite

subjective. Also, the needed expertise might be very expensive, or even worse,

simply not available! For this reason, various methods have been developed to

select the important variables in a dataset, based on the data itself.

A popular method for comparing models using different subsets of variables of

the same dataset is by attaching an information criterion to the model. This is in

essence a numeric value indicating how well (or how bad) that particular model

explains that particular dataset, with a penalisation added for the complexity of

the model. The most popular criteria of this type are of the form

−2 log L(xi, yi) + C(n)p.

Here, L(xi, yi) is the likelihood of the model given the data (see Pawitan, 2001, for

more details), p is the number of variables used in that particular model, and C(n)

is a positive penalty function, possibly depending on the number of observations

n. Well known criteria of this form are Akaike’s Information Criterion (Akaike,

1974), where C(n) = 2, and Bayes’ Information Criterion (Schwarz, 1978), where

C(n) = log(n), the natural logarithm of the number of observations n. When

these criteria are used to select a model, the model with the lowest value of the

information criterion is selected from the group of considered models.

The information criteria introduced in the previous paragraph don’t take the

model’s intended use into account. Given the same dataset, and the same group

of models to consider, they will always select the same model, irrespective of

what the model will be used for in further steps. Claeskens and Hjort (2003),

however, advocate a different approach. They assert that the model selection

step should be dependent on the intended goal, and that it should allow to select

that model which is the best for that particular goal, instead of a model which is

overall reasonable, but not optimal for the chosen task. To this end, they define

the focus of a model as a function µ(β) of the parameter β. This focus can be
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any function which is piecewise continuous, for example, the predicted value of

the response variable for a new observation x0. Then, they define a Focussed

Information Criterion as an unbiased estimate of the Mean Squared Error of the

estimated focus µ(β̂), with β̂ , and use that to select an appropriate model. Once

again, the model with the lowest value for the FIC is the model which is best for

the given task.

In Chapter 2 we consider the application of the FIC for variable selection to

the logistic regression model (1.5), where we have the specific goal of predicting

the outcome y for new observations x0. Recall that the Focused Information

Criterion is defined as an unbiased estimate of the Mean Squared Error of the

estimated focus. We extend this idea and define a more general FIC based on

the Lp of the residuals, in other words, on

1
n

n∑

i=1

|ri|p

where p a positive integer. In addition, we also define a version of the Focused In-

formation Criterion which is a direct estimate of the probability of misclassifying

the new observation x0, which is only possible because we work in a binary choice

model setting. We illustrate the advantages of the original FIC, and our newly

proposed variations of it, with a simulation experiment, and with a real data

example. We find that using the FIC for variable selection results on average in

models with a lower misclassification rate than models selected with established

information criteria. This indicates that using different models for making pre-

dictions in different regions of the input space results in smaller/less errors than

using just one model for the entire input space.

In Chapter 3 we continue to examine the properties of the FIC, though this

time in the setting of stationary time series. Once again we concentrate on

selecting models with a high predictive accuracy, in the sense of a low Mean

Squared Error. Here the goal was to examine whether FIC shares the asymptotic

efficiency property of the AIC, which has been proved in Shibata (1980), Bhansali

(1996), Lee and Karagrigoriou (2001), and Ing and Wei (2005). Before this

property could be examined, we first had to extend the theory of FIC so that
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it allows the size of the largest model to increase as the number of observations,

here the length of the considered time series, increases to infinity. We succeeded

in making this extension by an adaptation of a theorem found in Portnoy (1985).

Then, we illustrate, with both a simulation experiment and a real data example,

that the FIC is a valid alternative for the established AIC and BIC for selecting

the order of autoregression of a prediction time series model. Finally, we extend

the presented ideas to non-predictive purposes, such as estimating the impulse

response function of a time series, and we explore the use of the FIC in various

extended time series models.

In Chapter 4 we once again examine the issue of variable selection in a bi-

nary choice model, but this time in the more recently developed Support Vector

Machine setting. Despite the fact that SVMs work well in situations with a high

number of explanatory variables, it has been demonstrated that even here a re-

duction of this number can increase the model’s performance. We briefly examine

the information criterion-based techniques which have already been developed,

and find that they have the drawback of being computationally intensive. There-

for we propose two new information criteria which resemble the well-known AIC

and BIC in the linear regression setting, and which have the advantage of being

relatively fast to compute. We also demonstrate that one of these new criteria

is a rough approximation of the recently developed Kernel Regularisation Infor-

mation Criterion (Kobayashi and Komaki, 2006). Through a simulation study,

we find that our new information criteria select models which give predictions

at least as accurate (low misclassification rate) as the already developed criteria.

We repeat this comparison on a few real benchmark datasets, and we arrive at

the same conclusions.

For the last chapter, Chapter 5, we step away from the variable selection

problem. Instead, we study the classification efficiency of the Support Vector

Machine (SVM), and a few other Convex Risk Minimisation (CRM) methods.

We first prove a few general properties about this class of binary classification

techniques, and then we analyse each of them in more detail in the setting of two

normally distributed populations with equal variances. In this setting, we know

that the well known Fisher’s Linear Discriminant rule is optimal, and we examine
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how much of this efficiency is lost as a tradeoff for the additional flexibility given

by the various CRM methods we examine. We calculate the classification effi-

ciencies of these CRM techniques using influence functions (Hampel et al., 1986)

as in Croux, Filzmoser and Joossens (2008), and we find that for reasonably bal-

anced classes, the Convex Risk Minimisation techniques we studied are still quite

efficient (efficiency > 50%).

Finally, in the appendix we provide the proofs and the detailed analytical

derivations of the results presented in Chapters 2 through 5.



Chapter 2

Variable Selection for Logistic

Regression using a Prediction

Focussed Information Criterion

This chapter is based on the following publication:

Claeskens, G., Croux, C. and Van Kerckhoven, J. (2006). Variable selection for

logistic regression using a prediction focussed information criterion. Biometrics,

62, 972–979.

Abstract

In biostatistical practice, it is common to use information criteria as a guide for

model selection. We propose new versions of the Focussed Information Criterion

(FIC) for variable selection in logistic regression. The FIC gives, depending on

the quantity to be estimated, possibly different sets of selected variables. The

standard version of the FIC measures the Mean Squared Error (MSE) of the

estimator of the quantity of interest in the selected model. In this paper we

propose more general versions of the FIC, allowing other risk measures such as

one based on Lp-error. When prediction of an event is important, as is often the

9
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case in medical applications, we construct an FIC using the error rate as a natural

risk measure. The advantages of using an information criterion which depends

on both the quantity of interest and the selected risk measure are illustrated by

means of a simulation study and application to a study on diabetic retinopathy.

2.1 Introduction

Most clinical trials result in rich datasets with numerous variables of potential

influence. Model selection methods are therefore becoming an essential tool for

any data analyst. For an overview of model selection literature, see Burnham and

Anderson (2002), George (2000), Spiegelhalter, Best, Carlin and van der Linde

(2002) or Claeskens and Hjort (2003). In the Wisconsin Epidemiologic Study of

Diabetic Retinopathy (WESDR; Klein et al, 1984) for example, there are eleven

continuous covariates, amongst which are the duration of diabetes and the body

mass index, and four binary explicative variables, such as the patient’s gender,

and the type of his/her area of residence. It is unlikely that all of these variables

are important for all uses of the data. Outcome of interest in this study is the

presence of retinopathy of any degree and we are in particular interested in the

prediction of this event.

Traditional model selection methods such as AIC (Akaike, 1974) or BIC

(Schwarz, 1978) select one subset of the covariates, no matter which use of the

data will follow. The FIC, focussed information criterion (Claeskens and Hjort,

2003), on the other hand, is developed to select a set of variables which is best for

a given focus. Hand and Vinciotti (2003) state that “in general, it is necessary

to take the prospective use of the model into account when building it”, and

address explicitly the prediction problem. Given a patient’s specific covariate

information, the FIC selects a model that is best for, for example, predicting

the presence of the disease of this particular patient. It might happen that one

model is good for all patients, however, in the analysis of the WESDR we find

different models for different patient groups. In particular, it turns out that the

glycosylated hemoglobin level is more important, from a predictive point of view,

for patients (both men and women) on a high-level insulin treatment than for
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patients on a low-level insulin treatment.

The FIC in its original format interprets ‘best’ model in the sense of minimiz-

ing the mean squared error (MSE) of the estimator of the quantity of interest.

A novel aspect of this paper is that we introduce focussed model selection based

on different risk measures, and not only based on MSE. Especially in the context

of prediction of an event, we propose and develop a new focussed information

criterion based on the error rate as a risk measure.

In Section 2.3, we define this FIC based on the error rate, and give explicit

formulae to compute it (see Section 2.3.1). In addition, we define a general FIC

based on Lp-loss, and provide expressions for the most commonly used cases,

in particular for the mean absolute error (MAE) for p = 1. For p = 2 we are

back to the MSE results of Claeskens and Hjort (2003). Section 2.4 reports on a

simulation study to assess the performance of the FIC, as compared to AIC and

BIC. Section 2.5 applies the new model selection criteria to the WESDR data

and some concluding remarks are made in Section 2.6.

2.2 Framework and notation

Assume that a set of data (xi, yi) is available, where xi is a covariate vector of

length d + q, containing the explicative variables which may be continuous or

categorical, and yi is a 0/1 response variable. The data are distributed according

to the following model:

P (yi = 1 | xi) = F (x t
i β) for 1 ≤ i ≤ n (2.1)

where F (·) is the inverse logit function F (u) = 1/{1+exp(−u)}, and β = (θt, γt)t

is the (d + q)-vector of parameters, where θ consists of the first d parameters,

the ones that we certainly wish to be in the selected model, and γ holds the last

q parameters, the ones that may potentially be included in the chosen model.

While the expressions for the model selection criteria derived in this paper are

obtained for logistic regression models, the ideas transfer immediately to other

binary regression models.
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Naturally, one can choose a complicated model that incorporates all the vari-

ables, even though usually only a few of them are significant. However, such a

model is not guaranteed to give the best estimates of the quantity of interest.

Adding more variables increases the total variability. Another issue with choos-

ing a complex model is its lack of simplicity: medical researchers often prefer

simple models, which are easier to interpret. The goal of this paper is to select a

submodel of the logistic regression model (2.1), and to use that model to predict

the value of the response variable for a “new” observation x0.

The notation used in this paper is largely the same as in Claeskens and Hjort

(2003), and the necessary quantities for defining the new FICs will be repeated

here. In a local misspecification setting, we specify the true value of the parameter

vector as βtrue = (θ t
true, γ

t
0 + δt/

√
n)t, where n is the sample size and γ0 is the

value of γ for the “null model”, i.e. the smallest model we consider, containing

only the parameter θ. For the model described above, γ0 is equal to zero. The

focus parameter µ = µ(β) is a function of the model parameters β. The linear

predictor at a covariate value x0 in the logistic model is an example of such a

focus parameter, where µ(β) = x t
0β. The true value of the parameter of interest

is then denoted by µtrue = µ(βtrue).

For the model selection problem there are potentially 2q estimators of µ(β)

to consider, one for each subset S of {1, . . . , q}. Other estimation methods, such

as model averaging or shrinkage estimators, combine several of these submodel

estimators. The model indexed by S contains the parameters θ and those γi

for which i ∈ S. In practical applications, the user might rule out some of these

subsets a priori. We denote γ0,Sc the known vector of “null” values γ0,i for i ∈ Sc,

the complement of S with respect to {1, . . . , q}, and define µ̂S = µ(θ̂S , γ̂S , γ0,Sc)

the maximum likelihood estimator of µ in the model indexed by S.

Let Jn,full be the estimated (d + q) × (d + q) information matrix of the full

model, and Jfull the limiting information matrix. We assume that Jn,full is of full

rank, and denote its submatrices Jn,00, Jn,01, Jn,10 and Jn,11, corresponding to

the dimensions of θ and γ respectively, and analogously for Jfull. Since the model
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used is a logistic regression model, straightforward calculations show that

Jn,full = − 1
n

n∑

i=1

∂2

∂β∂βt
log f(Yi | xi, β) =

1
n

n∑

i=1

pi(1− pi)xix
t
i , (2.2)

with f(·) the binomial probability mass function, and pi = F (x t
i β) the probability

associated with observation i. For other choices of the inverse link function F , a

different expression for Jn,full results. In practice we insert for β in Jn,full the full

model estimator.

First define K = J11 = (J11−J10J
−1

00 J01)−1, the limiting variance of γ̂ in the

full model, and Kn its finite sample counterpart. Then we have

Dn = δ̂full =
√

n(γ̂full − γ0)
d−→ D ∼ Nq(δ,K), (2.3)

where δ measures the distance between the null and true model (see Hjort and

Claeskens (2003) for details and more discussion). The maximum likelihood es-

timator of µ in the model S has now the following limiting distribution (Hjort

and Claeskens, 2003, Lemma 3.3)

√
n(µ̂S − µtrue)

d−→ ΛS =
(

∂µ

∂θ

)t

J −1
00 M + ωt(δ −MSK−1D), (2.4)

where M ∼ Nd(0, J00) is statistically independent of D. Here we use the quanti-

ties MS = π t
S(πSK−1π t

S)−1πS , the limiting variance of (γ̂S , γ0,Sc), and Mn,S its

finite sample counterpart, and where πS stands for the projection matrix of size

|S| × q, mapping any vector ν = (ν1, . . . , νq)t to νS , the latter consisting of those

νi for which i ∈ S. We also need the auxiliary vector ω = J10J
−1

00
∂µ
∂θ − ∂µ

∂γ , where

we evaluate the partial derivatives at the full model. For example, for the partic-

ular choice of parameter of interest µ(β) = xt
0β, these derivatives are ∂µ

∂θ = x0,0

and ∂µ
∂γ = x0,1, where x0 is partitioned according to the dimensions of θ and γ.

Some calculations yield that the limiting distribution ΛS has mean and vari-

ance

λS = E[ΛS ] = ωt(Iq −MSK−1)δ, (2.5)

σ 2
S = Var(ΛS) = τ 2

0 + ωtMSω, (2.6)
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with τ 2
0 = (∂µ

∂θ )tJ −1
00 (∂µ

∂θ ) the variance of µ̂∅ in the null model, which is indepen-

dent of S. Note that this distribution ΛS is normal, with a non-zero mean due

to the local misspecification setting.

The new FICs involve the mean and variance of the limiting distribution of

ΛS , given in (2.5) and (2.6). The expressions presented above are the theoretical

values, assuming the limiting experiment is valid. In practice we need to estimate

the information matrix of the full model Jn,full and derive the needed components

from this estimate. We estimate the vector δ by δ̂full =
√

nγ̂full as in (2.3).

This leads, first, to maximum likelihood estimators of λS and σ2
S , the mean and

variance of the distribution ΛS , in the model S and, second, to an estimator of

the information criterion for the submodel S.

2.3 Prediction focussed information criteria

The traditional AIC and BIC information criteria are, as FIC, based on a likeli-

hood approach. Where the FIC takes on different values, depending on a specified

focus parameter, the AIC or BIC values do not depend on the purpose of the sta-

tistical analysis. In this section we show how the results of Claeskens and Hjort

(2003) can be applied for obtaining focussed information criteria when prediction

of a binary variable is of interest.

In Section 2.3.1 we derive the FIC taking as risk measure the error rate asso-

ciated with the prediction of an event, tailored for logistic regression problems.

In Section 2.3.2 we derive an expression for the FIC based on the Lp-error. We

then verify this result with the FIC based on Mean Squared Error (MSE, p = 2)

as obtained in Claeskens and Hjort (2003), and present the explicit expression for

the FIC based on the Mean Absolute Error (MAE, p = 1). The expressions for

the FIC based on Lp-risk hold in a general setting, but in the subsequent sections

they are applied with the linear predictor of an observation, here the log-odds

ratio, as the focus parameter: µtrue = x t
0βtrue and µ̂S = x t

0 β̂S .

The selected model is then aimed at minimizing the Lp-loss when predicting

the true value of the focus parameter.

For every considered submodel, indexed by S, the focussed information crite-
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rion is computed and denoted by FICS . We select that subset S of {1, . . . , q} for

which FICS is the smallest, this leads to the FIC-selected model which is indexed

by the optimal S.

2.3.1 The FIC based on Error Rate

Our aim is to construct a selection criterion with the purpose of selecting the

model that has the lowest probability of misclassifying a “new” observation x0,

assuming that it has been generated from the same model as the “training” data

{(xi, yi) | 1 ≤ i ≤ n}. A natural choice for the risk function here, denoted

rER(S), is the probability of misclassifying the observation x0. The abbreviation

ER stands for Error Rate. Define y0 the true response for an observation with

covariates x0 as a realization of the 0/1 random variable Y0 with conditional

probability P (Y0 = 1 | x0) = F (x t
0βtrue), and let ŷ0,S be the predicted response

according to the model defined by S. Then,

rER(S) = P (Y0 = 1 and ŷ0,S = 0 | x0) + P (Y0 = 0 and ŷ0,S = 1 | x0).

Due to independence of Y0 and ŷ0,S , this expression reduces to

rER(S) = P (Y0 = 1 | x0)P (ŷ0,S = 0 | x0) + P (Y0 = 0 | x0)P (ŷ0,S = 1 | x0),

and hence, using the logistic regression model,

rER(S) = F (x t
0βtrue)P (x t

0 β̂S < 0) + {1− F (x t
0βtrue)}P (x t

0 β̂S > 0).

This misclassification rate is only concerned with the sign of the estimated log-

odds ratio, not with the actual value itself. We now apply the methodology

of Claeskens and Hjort (2003), with µtrue = x t
0βtrue as focus parameter, and

µ̂S = x t
0 β̂S . We emphasize that our ultimate goal is prediction, rather than

parameter estimation, and we only define a focus parameter for mathematical

reasons, such that the results of Claeskens and Hjort (2003) can be applied.

We use ΛS , the limiting distribution of
√

n(µ̂S −µtrue) as in (2.4), to approx-

imate

P (x t
0 β̂S < 0) = P (µ̂S < 0) = P{√n(µ̂S − µtrue) < −√nµtrue}

by Φ {−(
√

nµtrue + λS)/σS} , with λS and σ 2
S as in (2.5) and (2.6), and Φ(·) the

cumulative density function of the standard normal distribution. From this, the
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following approximation is proposed for the risk function

rER(S) ≈ F (µtrue)Φ
(−√nµtrue − λS

σS

)
+ {1− F (µtrue)}Φ

(√
nµtrue + λS

σS

)
.

This risk measure serves as the basis for the Focussed Information Criterion

based on Error Rate. Inserting the estimators, see Section 2, this leads to the

FIC based on error rate

FICER(S) = F (µ̂full)Φ

(
−√nµ̂full − λ̂S

σ̂S

)
+ {1− F (µ̂full)}Φ

(√
nµ̂full + λ̂S

σ̂S

)
,

where we estimated µtrue by µ̂full = µ(β̂full). Note that this criterion depends

on the value of the covariate vector x0 of the observation to predict through the

focus parameter µ, which is also present in the estimated values of λS and σS ,

see (2.5) and (2.6).

2.3.2 The FIC based on Lp-error

Based on the limiting distribution of
√

n(µ̂S − µtrue) in equation (2.4), we derive

the expressions for the Lp-error of µ̂S , and this for any subset S of {1, . . . , q} and

for any positive p ≥ 1. The Lp-risk measure is defined as the pth order absolute

moment of the limiting distribution ΛS , rp(S) = E(|ΛS |p). Note that we work

with the absolute moments and not the centered ones because we want a measure

of the deviations of µ̂S to µ, and the bias involved should not be eliminated by

centering. For integer values of p it is possible to derive an explicit expression

for rp(S). The general expressions, and details on their derivation, can be found

in Appendix A.1. Note again the dependence of rp(S) on the focus parameter:

different choices of µ will lead to different formulae for the focussed criterion, and

as a consequence, may lead to different selected models.

We now give details on two special cases of the FIC based on Lp-error. The

first case is FIC2 based on the L2-error, better known as the mean squared error

and henceforth denoted as FICMSE. This model selection criterion has been

extensively discussed in Claeskens and Hjort (2003). For p = 2, r2(S) = λ 2
S +σ 2

S .

Applying equations (2.5) and (2.6), this can be written as

r2(S) = ωt(Iq −Mn,SK −1
n )δδt(Iq −K −1

n Mn,S)ω + τ 2
0 + ωtMn,Sω, (2.7)
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which is, up to a constant term, equal to the limit FIC as defined in Claeskens

and Hjort (2003). Note that an asymptotically unbiased estimate of δδt in (2.7)

is given by δ̂δ̂t −Kn. Inserting unbiased estimators leads to

FICMSE(S) = ω̂t(Iq −Mn,SK −1
n )δ̂δ̂t(Iq −K −1

n Mn,S)ω̂ + 2ω̂tMn,Sω̂.

The other special case that we study is p = 1, which leads to a “new” criterion

minimizing the mean absolute error, MAE. Here it can be verified that

r1(S) = 2λS

{
Φ(

λS

σS
)− 1

2

}
+ 2σSφ(

λS

σS
).

Then we define the Focussed Information Criterion based on MAE as the following

estimator of r1(S)

FICMAE(S) = 2λ̂S

{
Φ(

λ̂S

σ̂S
)− 1

2

}
+ 2σ̂Sφ(

λ̂S

σ̂S
),

where φ(·) is the density function of the standard normal.

2.4 Simulation study

In this section, a simulation study is presented to examine how well the proposed

Focussed selection criteria perform with respect to two better known criteria, the

Akaike Information Criterion (AIC), and Bayesian Information Criterion (BIC).

In Section 2.4.1, the particulars of the simulation sampling scheme are detailed.

In Section 2.4.2 we additionally address the issue of model averaging. The results

of the simulation are presented in Section 2.4.3.

2.4.1 Simulation settings

For the simulation study, ntest = 500 observations x0,i are independently gen-

erated from a normal Nq(0, 1
4Iq) distribution, with Iq the q × q identity matrix.

These observations constitute the test sample and remain the same throughout

the entire simulation. Then, for each of the M = 1000 simulations in the experi-

ment, a training sample of size ntrain observations (xi, yi) is generated, according
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to the model

P (yi = 1 | xi) = F (θ + x t
i γ),

where θ = 0, γ = (1,−1, 1,−1, 0, . . . , 0)t such that only 4 out of the q covariates

are pertinent. Again, xi ∼ Nq(0, 1
4Iq), where the factor 1

4 is present so that the

generated linear predictors x t
i β are distributed according to a standard normal

distribution. For each simulation run, we minimize the information criterion

under investigation, and force the intercept term to be in every model. Within

each simulation run, AIC and BIC select one single best model, while for each one

of the ntest observations in the test sample, possibly different models according

to FICMSE, FICMAE and FICER are selected. The forward search method as

described in Section 2.4.2 has been used, and in each of those selected models we

use the estimator µ̂0,i = θ̂ + x t
0,iγ̂. Its sign determines the predicted value of the

corresponding binary y0,i values. We did experiments with ntrain = 50 and 200,

and q = 5 and 9.

For each separate observation x0,i in the test sample, with 1 ≤ i ≤ ntest, we

measure the performance of the model selection criteria via (a) the mean squared

error of µ̂0,i, (b) its mean average deviation, and (c) the error rate. The MSE is

given by

MSE(µ̂0,i) =
1
M

M∑

j=1

(µ̂ (j)
0,i − µ0,i,true)2,

with µ̂
(j)
0,i the estimated value for validation observation x0,i in simulation run j,

and µ0,i,true the corresponding true value. Similarly, the MAE is computed as

MAE(µ̂0,i) =
1
M

M∑

j=1

|µ̂ (j)
0,i − µ0,i,true|.

The MAE performance measure is sometimes preferred since it is, compared to

MSE, less influenced by those simulation runs yielding large deviations from the

true values. Finally, the error rate is simulated as

ERi =
1
M

M∑

j=1

I(µ̂ (j)
0,i µ0,i,true < 0)
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where I(·) is the indicator function. If the estimated and the true linear predictor

have the same sign, they give a zero contribution to the sum in the above ERi.

Otherwise, they contribute to the error rate.

2.4.2 Further particulars

A search across all possible models is only feasible for q relatively small, because

the number of possible models to search through increases exponentially with q.

A forward selection approach is an alternative to an exhaustive search, possibly

leading to a different selected model. Starting from the null model, this iterative

procedure adds one variable at a time. Specifically, it adds that variable which

yields the lowest value for the information criterion when added to the currently

“best” model. This process is repeated until q + 1 nested models are obtained,

ranging from the null model to the full model and indexed by S0, S1, . . . , Sq. From

these models, we select the model that yields the lowest value for the information

criterion. Alternatively, we can apply a backward elimination procedure, starting

with the full model, and eliminating in each step the variable which gives the

largest reduction (or smallest increase) to the value of the information criterion.

This will also lead to q + 1 nested models as described above, from which we

choose the model with the lowest value of the information criterion.

Model averaging can be applied as an alternative to selecting a single model

(see also Hjort & Claeskens (2003)). In this case we construct a weighted average

of the estimators in the different models. For each of the nested models obtained

during the forward variable selection procedure, we compute the weight as

wj =
exp{−1

2xIC(Sj)}∑q
k=0 exp{−1

2xIC(Sk)}
where xIC(Sk) is the value of the Information Criterion (AIC, BIC, FIC, . . .)

at the model Sk with k included variables, for k = 0, . . . , q. For each of the

submodels Sj a prediction of µ0 = x t
0β for an observation to be classified, is

obtained, and these predicted values µ̂0,Sj then generate the “model-averaged”

prediction µ̂0 =
∑q

j=0 wjµ̂0,Sj . The advantage of a model averaged estimator is

that it might have reduced variability. This will be illustrated in the simulation
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experiments, where results for the “model-averaged” procedure are reported as

well. In the classification literature it is a common strategy to combine several

classifiers, see, e.g., Kuncheva (2004) for an overview. Of course, averaging over

all possible subsets of the full model, or over any other sequence of models is

possible.

All computations are performed using the publicly available software package

R. In our software we define AICS = −2 log L(β̂S) + 2(p + |S|), and similarly

BICS = −2 log L(β̂S) + log(ntrain)(p + |S|), with L(β̂S) the likelihood of the

estimated model indexed by S, and |S| the number of elements in the subset S,

such that lower values indicate better models.

2.4.3 Simulation results

This simulation results in ntest = 500 distinct values of the MSE, MAE and

Error Rate, one for each observation in the test sample, for prediction based on a

submodel selected by AIC, BIC, FICMSE, FICMAE, and FICER. These values are

also computed for the model-averaged predictions, discussed in Section 2.4.2. For

the case ntrain = 50 and q = 5, Table 2.1 presents the averages, after applying the

log-transform to MSE and MAE, of the performance measures over the ntest = 500

values, together with their standard error (SE). The log-transformation is applied

to the MSE and the MAE, to make their distributions more symmetric. The

boxplots in Figures 2.1 and 2.2 provide a graphical representation of these 500

values.

First of all, we see from Table 2.1 that model averaging significantly improves

the performance for the MSE and MAE. In terms of Error Rate, model averaging

does not seem to give much improvement, but neither a worsening of the results

obtained with single model selection. We see that FICER gives the best results

for the Error Rate, FICER selects, compared to the other selection criteria, the

models which yield the lowest error rates. This should not be too surprising, since

the risk measure associated with FICER is the error rate (to be more precise, the

error rate of the limiting experiment), and FICER selects the model having the

smallest value of an approximation of this risk measure. It can be verified that
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log(MSE) log(MAE) Error Rate (×10−2)

Criterion Average SE Average SE Average SE

AIC 0.141 0.025 -0.182 0.013 26.62 0.60

BIC 0.153 0.027 -0.152 0.014 33.89 0.48

FICMSE -0.026 0.024 -0.298 0.013 24.65 0.64

FICMAE 0.085 0.024 -0.238 0.012 22.87 0.65

FICER 0.507 0.024 0.034 0.013 20.75 0.65

aAIC 0.045 0.025 -0.238 0.013 25.45 0.62

aBIC 0.025 0.026 -0.226 0.014 31.14 0.55

aFICMSE -0.402 0.021 -0.438 0.011 24.23 0.64

aFICMAE -0.454 0.021 -0.467 0.011 22.34 0.64

aFICER -0.220 0.023 -0.341 0.013 20.91 0.64

full model 0.065 0.024 -0.253 0.012 20.75 0.65

Table 2.1: Average values, together with their standard errors (SE), of the log(MSE),

log(MAE) and Error Rates over the 500 observations to predict in the test sample for

the sampling scheme with ntrain = 50 and q = 5. The MSE, MAE, and Error rates have

been simulated for estimators of a model selected by the criteria AIC, FICMSE, FICMAE,

and FICER, as well as for the model averaged versions of the estimators (indicated by

the prefix “a”).
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Figure 2.1: Boxplots of the log(MSE) and log(MAE) of the 500 observations to predict

in the test sample for the sampling scheme with ntrain = 50 and q = 5. The MSE and

MAE have been simulated for estimators of a model selected by the criteria AIC, BIC,

FICMSE, FICMAE, or FICER, as well as for the model averaged versions of the estimators

(indicated by the prefix “a”).
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Figure 2.2: Boxplots of the Error Rates of the 500 observations to predict in the test

sample. These Error Rates have been simulated for estimators of a model selected by

the criteria AIC, BIC, FICMSE, FICMAE, or FICER, as well as for the model averaged

versions of the estimators (indicated by the prefix “a”). In the top panel (a) ntrain = 50,

and q = 5 variables, in (b) ntrain = 50, and q = 9 variables, and in panel (c) ntrain = 200,

and q = 5 variables.
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the average Error Rate of the FICER is indeed significantly smaller than the other

average error rates reported in Table 2.1, both for single model predictions and

for averaged-model predictions. The average error rates are computed over ntest

outcomes, and differences among them have been tested for by performing multi-

ple paired comparisons tests with Tukey’s Honest Significant Difference method

(e.g., Neter et al., 1996, page 725-732) and resulted in P-values < 0.01. Also,

comparing with the results from the full model, given in the bottom line in Table

2.1, we see that FICMSE outperforms the full model in terms of MSE and MAE,

and that FICER does as good as the full model in terms of Error Rate. The

models selected by FICER however, generally have a small number of selected

variables, and hence are much easier to interpret than the model which includes

all variables.

The plots in Figure 2.1 show that FICMSE and FICMAE outperform the selec-

tion procedure based on AIC and BIC when using MSE and MAE as performance

criterion. Again, one can show that these differences in average performance are

also highly significant, and become after model-averaging even more pronounced.

This is as one should expect, since variable selection using FICMSE and FICMAE

is aimed at choosing the “best” model as measured by the risks MSE and MAE.

While FICER gives the best results for the Error Rate performance criterion, it

performs comparatively much worse for MSE and MAE. But this should not be

of much concern, since if the researcher thinks that another risk measure than

Error Rate is more appropriate for his/her prediction problem, he/she should use

a variable selection method focussed on that particular risk function.

Comparing FICMSE and FICMAE is more difficult. When selecting a single

model, the MAE for estimates based on FICMAE is on average slightly worse

than for FICMSE, although the difference is only minor. Note that at the finite-

sample level there is no guarantee that the model selected using the FICMAE

indeed yields the smallest Mean Absolute Errors. Moreover, the FIC is only

estimating the limiting risk measures, and uncertainty from estimating population

quantities needs to be taken into account. Most important, however, is that in

this simulation setting, both FICMSE and FICMAE do better than AIC and BIC,

both for model selection and model averaging.
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Our simulations also indicated that increasing the number of variables q to 9,

or increasing the training sample size to 200 does not change the above conclu-

sions. Of course, for ntrain = 200 all MSE/MAE will be lower than for a training

sample size of 50. In Figure 2.2, boxplot representations of the ntest simulated

error rates are given for the cases (i) ntrain = 50 and q = 5 (ii) ntrain = 50 and

q = 9 and (iii) ntrain = 200 and q = 5. Again we observe that FICER performs

the best on this criterion, especially for small training sample sizes (ntrain = 50),

and this remains true if we apply model averaging. We also observe that for

the larger training sample sizes (ntrain = 200), the performances of the different

model selection methods are closer together. This is again as expected, since if

ntrain gets larger, the variance of the parameter estimators decreases.

2.5 Analysis of WESDR data

In this section we perform model selection for the 1998 data of the Wisconsin Epi-

demiologic Study of Diabetic Retinopathy (WESDR), with the methods described

in Section 2.3. The data consists of 691 records of subjects with younger-onset

diabetes (the incomplete observations were removed before the analysis). The re-

sponse variable ‘y’ is a 0/1 variable where 1 indicates the presence of retinopathy

of any degree. The 11 continuous covariates are ‘rere’ and ‘lere’, the refractive

error in diopters for respectively the right and the left eye; ‘reip’ and ‘leip’, the

internal eye pressure in mmHg for respectively the right and the left eye; ‘adia’,

the age in years at which diabetes was diagnosed; ‘ddia’, the duration of diabetes

in years; ‘gly’, the percentage of glycosylated hemoglobin, ‘sysp’ and ‘diap’, the

systolic and diastolic blood pressure in mmHg; ‘bmi’, the Body Mass Index, and

‘pulse’, the pulse rate in beats per 30 seconds. The 4 binary 0/1 covariates are

‘sex’, with 1 indicating male; ‘uri’, with 1 indicating the presence of urine protein;

‘ins’, with 1 indicating more than 1 dose of insulin taken per day, and ‘urb’, with

1 indicating that the subject lives in an urban county.

When we fit a model including all the variables, we find that the following are

significant at the 5% level: ‘ddia‘, ‘gly’, ‘urb’ (in decreasing order of significance).

Some pairs of variables are strongly correlated, for example ‘lere’ and ‘rere’ (with
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r = 0.869), and ‘reip’ and ‘leip’ (r = 0.872). These four variables are also the

ones with the largest Variance Inflation Factor (above the critical value 3), as

computed by the R software package, following Davis, Hyde, Bangdiwala, and

Nelson (1986), pp. 140–147. We refer to Klein et al. (1984) for further discussion

of this data set. Given the high number of variables and the correlations among

them, we want to select a subset of variables, most pertinent for predicting the

response variable for a new patient.

We examine the predictive power of the models selected by the different selec-

tion criteria AIC, BIC, FICMSE, FICMAE, FICER, as well as the model-averaged

version by assessing their error rates. Since the total number of all possible sub-

models amounts to 215, we carried out the model selection using a forward search

procedure, as discussed in Section 2.4.2, to speed up the computation time. Also

note that, since we work with real data for which the true value of the linear

predictors is not available, the MSE and MAE performance criteria cannot be

computed. The error rate is estimated by means of a cross-validation experi-

ment: for each patient in the dataset, we select and estimate a model based on

all the other patients in the dataset and then make a prediction for the presence

of retinopathy of the left-out observation. Then, we compare the predictions with

the real values of ‘y’, the presence of retinopathy of any degree. We count the

percentage of wrong predictions, which yields an estimate of the error rate. The

results are summarized in Table 2.2.

Method AIC BIC FICMSE FICMAE FICER

Error rate 0.198 0.184 0.174 0.174 0.177

(no model averaging)

Error rate 0.194 0.188 0.171 0.174 0.174

(after model averaging)

Table 2.2: Error rates for the WESDR data, obtained via cross-validation. The models

are selected using AIC, BIC FICMSE, FICMAE FICER and also results for the model-

averaged estimates are reported.
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We observe from Table 2.2 that the models selected by the focussed informa-

tion criteria and the model-averaged estimates based on FIC, all yield a lower er-

ror rate than their AIC and BIC counterparts. The McNemar test (e.g. Kuncheva

2004, page 13-15) reveals that in particular the difference with the AIC-selected

model is strongly significant (P-values < 0.025). On the other hand, the differ-

ence between the error rates for the models selected by the different FICs is not

statistically significant. These results illustrate the advantage of selecting a pos-

sibly different set of predictor variables for every observation to predict. Indeed,

there is a priori no reason why a unique selected model would be best for all

future predictions to be made. If the “right” model would be within the class

of allowed models, then this is presumably the best model to use for prediction.

However, we do not believe that the “right” model does exist, only that some

models are better than others, depending on the purpose of the analysis.

To illustrate that the model selected by the FIC might depend on the obser-

vation, we performed a second analysis. We divided the patients into four groups,

according to their gender and the number of doses of insulin taken each day, as

shown below.

Group characteristics

A females taking none or a single insulin dose each day

B females taking multiple insulin doses each day

C males taking none or a single insulin dose each day

D males taking multiple insulin doses each day

The groups have roughly an equal number of observations. We record for each

group the percentage of times that each variable enters the model when predicting

an observation belonging to that group. Table 2.3 shows the selection frequencies

for the four most often selected variables in every group, for FICMSE and FICER.

The FIC methods select the variable ‘ddia’ most often, and in particular the

error rate based FIC has a strong preference for this variable. A logistic regression

model containing only an intercept and this variable ‘ddia’ performs very well,

with a cross-validated error rate of 0.189. In fact, the model selected using FICER

ends up with this simple model in 46.3% of the cases. But, as follows from Table
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Group Variable 1 Variable 2 Variable 3 Variable 4

FICMSE A ddia 86.2% gly 53.8% pulse 42.6% reip 39.0%

B ddia 81.8% gly 50.0% pulse 33.8% urb 32.4%

C ddia 78.5% gly 51.3% pulse 34.4% reip 33.8%

D ddia 77.8% gly 54.9% reip 39.2% pulse 37.9%

FICER A ddia 92.3% gly 28.2% reip 17.4% uri 16.9%

B ddia 90.5% gly 45.3% uri 33.8% diap 25.0%

C ddia 89.2% gly 36.4% uri 31.8% bmi 24.6%

D ddia 90.8% gly 41.8% uri 32.0% pulse 28.8%

AIC ddia yes gly yes bmi yes pulse yes

BIC ddia yes gly yes bmi no pulse no

Table 2.3: Model selection methods FICMSE and FICER are applied to each subject

within a group of the WESDR data. The table shows the selection percentages of the

four most frequently selected variables per group. For completeness, the last 2 rows show

the first four variables considered for inclusion by AIC and BIC, and whether they have

been selected (“yes”) or not (“no”).
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2.2, the FICER approach reaches even a lower error rate by deviating from this

simple model for an important part of the observations to classify. A possible

strategy for a more refined analysis is to add the variable ‘ddia’ in the list of fixed

variables which are included in every selected model, together with the intercept.

The second most selected variable is ‘gly’, the percentage of glycosylated

hemoglobin, which is selected about half of the time by the FIC based on MSE,

and with a lower frequency by the FIC based on error rate. Fitting a logistic

regression model containing only the intercept, ‘ddia’ and ‘gly’, we find a cross-

validated error rate of 0.184, still above the error rates found with the focussed

information criteria. (Note that adding the third most significant variable, ‘urb’,

does not further improve the error rate). In Table 2.3, the variables being selected

first in the forward procedure by AIC and BIC are also reported. We see that

BIC only selects ‘ddia’ and ‘gly’, while the model finally selected by the AIC

criterion contains 7 variables.

Variable selection based on FICER includes the variable ‘gly’ much more often

for groups B and D than for groups A and C (see Table 2.3). Hence, there is some

indication that the glycosylated hemoglobin level is, from a predictive point of

view, less important for patients taking none or only a single dose of insulin each

day (groups A and C) than for patients taking multiple doses of insulin each day

(groups B and D). If a full model approach is opted for, it might be advisable to

include an interaction term between the two variables ‘gly’ and ’ins’.

2.6 Conclusions

In this paper, we extended the focused information criterion, as developed by

Claeskens and Hjort (2003). It is originally constructed to select a submodel

minimizing the mean squared error of the estimator of the focus point. The idea

put forward in this paper is that MSE is not the only risk measure that one

can consider. We expand the construction and application to minimize the more

general Lp-norm, of which MSE (p = 2) and mean absolute deviation (p = 1) are

special cases. Another contribution of this paper is the proposal of a Focussed

Information Criterion using the error rate as risk measure. This is of specific use
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in binary regression problems, where the goal is to select models which yield the

lowest error rate.

To show the usefulness of these information criteria, we presented both a

simulation study and an analysis of the WESDR dataset. In these analyses,

we observed that the focussed information criteria select models which perform

better with respect to their specific risk measure (that is, lower MSE for the FIC

based on MSE, and lower error rate for the FIC based on error rate), than the

Akaike information criterion. In the WESDR data analysis, it was illustrated

how different models are selected for different patients. By allowing the selected

model to vary with the observation to predict, a gain in predictive performance

is expected.

The variable selection problem becomes even more pertinent when a large

number of variables relative to sample size is available. In this setting, the non-

existence of the classical logistic regression estimator may cause problems. It is a

topic of our current research to apply model selection methods to such data sets.



Chapter 3

Prediction Focussed Model

Selection for Autoregressive

Models

This chapter is based on the following publication:

Claeskens, G., Croux, C. and Van Kerckhoven, J. (2007). Prediction focussed

model selection for autoregressive models. Australian and New Zealand Journal

of Statistics, 49, 359–379.

Abstract

In order to make predictions of future values of a time series, one needs to specify

a forecasting model. A popular choice is an autoregressive time series model,

where the order of the model is chosen by an information criterion. We propose an

extension of the Focussed Information Criterion (FIC) for model-order selection

with focus on a high predictive accuracy (i.e. the mean squared forecast error is

low). We obtain theoretical results and illustrate via a simulation study and some

real data examples that the FIC is a valid alternative to the Akaike Information

Criterion (AIC) and the Bayesian Information Criterion (BIC) for selection of

31
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a prediction model. We also illustrate the possibility of using FIC for purposes

other than forecasting, and explore its use in an extended model.

3.1 Introduction

In many fields of applied research (e.g. economics, demographics), a variable is

observed over time, and the researcher wishes to model the time-structure of

the data and predict future values of the variable. This modelling consists of

two important parts: first, the general trend over time is modelled and seasonal

effects are identified, and then the dynamic structure of the resulting stationary

series is investigated. In this paper we are mainly concerned with the latter. A

popular choice is the autoregressive model

Zt = φ1(p)Zt−1 + · · ·+ φp(p)Zt−p + εt(p), (3.1)

which predicts the stationary variables Zt by its lagged variables. Model (3.1) is

an autoregressive model of order p, abbreviated as an AR(p)-model. The variables

Zt have been centred by their average, and the εt(p) are zero mean, white noise

innovation terms. Modelling the time series can serve many purposes, but usually

the goal is to make accurate predictions of the series in the unobserved future.

We focus on making forecasts of the series h steps beyond the last observation.

Generally, the accuracy of these forecasts depends on the autoregressive order p

of the model used, in other words on how far in the past we look in order to model

the series. If we restrict ourselves to only the recent past, p small, then we might

fail to capture more long-term influences. Conversely, if we include the far past,

p large, then the accuracy of the predictions will suffer because of the chosen

model’s complexity. Hence, a balance between completeness and simplicity must

be chosen, and a commonly used method of selecting an appropriate AR-order

is by computing the value of an information criterion for each candidate model,

and selecting the model with the best value of the criterion.

In this paper, we propose an adapted version of the Focussed Information

Criterion (FIC) as defined in Claeskens and Hjort (2003). The main novel as-

pects are the application to time series and that we allow the maximal order of
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the autoregressive model to increase slowly to infinity as the length of the series

increases. We also provide a bound on the rate of this increase by adapting a the-

orem in Portnoy (1985) to the time series setting. This result is needed because,

originally, the theory behind FIC was developed for the case where the maximal

number of variables in the model, or in this case the maximal considered autore-

gressive order, remains constant. We develop these ideas in the setting of two

independent realizations of the data generating process, hereby following Shibata

(1980), Bhansali (1996), and Lee and Karagrigoriou (2001). This framework is

described in Section 3.2, where we also discuss the more realistic case of only one

realization of the data generating process. Section 3.3 contains the derivation of

the FIC.

In Section 3.4 we report the results of a simulation study. We compare the

efficiency in mean squared error sense of the models selected by FIC with the

efficiency of two well-known criteria: Akaike Information Criterion (AIC; Akaike,

1974) and Bayesian Information Criterion (BIC; Schwarz, 1978), also sometimes

called Schwarz Information Criterion (SIC). First, the single-series setting is dis-

cussed, where AIC has recently been proven to be an asymptotically efficient

criterion (Ing and Wei, 2005). We also performed a simulation study in the

two-series setting (Shibata, 1980; Bhansali, 1996; Lee and Karagrigoriou, 2001),

and compared it to the single-series setting. We expect FIC to perform well in

this setting since FIC is constructed to minimise the estimated Mean Squared

prediction error.

To illustrate the practical use of FIC, we compare in Section 3.5 the perfor-

mance of the aforementioned criteria on two real data examples. In Section 3.6,

we provide some extensions to the ideas presented in this paper, such as the ap-

plication of the FIC to simultaneously select a subset of regression variables and

the autoregressive order of the error terms, as in Shi and Tsai (2004). Finally,

we summarise and make some concluding remarks in Section 3.7.
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3.2 Model setting

In this section we state the model setting, and define h-step ahead predictions

of a time series. The true time series is a realisation of an AR(∞)-process, and

we approximate this by a finite order autoregressive model. We first assume that

we have a univariate time series {yt} available, where t = 1, . . . , T , and that

we want to make a prediction of this series at time-horizon h. We denote this

prediction ŷT+h. We also assume that we have a second series {xt} available of

the same length T . This is the setting as used in Shibata (1980), Bhansali (1996),

and Brockwell and Davis (1995, page 301), where statistical properties of model

selection methods in time series are discussed. The two series are assumed to be

independent realisations of the same length T of a stochastic process {Zt}, with

the following dependency structure:

Zt = εt + φ1Zt−1 + φ2Zt−2 + · · · . (3.2)

We assume that the innovation terms εt are independent and identically normally

distributed, with mean 0 and variance σ2. We also assume that the autoregression

coefficients φi are absolutely summable (that is
∑

i |φi| < ∞), and that the

associated power series

Φ(z) = 1− φ1z − φ2z
2 − · · ·

converges and is different from zero for |z| ≤ 1. Our goal is to select the best

approximating autoregressive model of order p, with 0 ≤ p ≤ pT , using the series

{xt}. Here we allow the maximal considered AR-order, denoted by pT , to depend

on T . This is done because one typically fits a time series model of a higher order

if the length of the series is increased. Next, we use this selected model to make

a h-step ahead forecast for the series {yt}.
Although the two-series setting may seem artificial, and only of use for math-

ematical convenience, there are some cases where it can be considered to hold.

Suppose that one is in a process control situation, where the performance of a

machine is measured at regular time intervals. When the process is under control,

a benchmark sample {xt} for the machine’s performance can be taken, and the
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researcher can fit a model to these data. At a later stage, another set of read-

ings {yt} is taken. Based on these readings, and using the model found with the

benchmark data, the next value is predicted. This prediction is then compared to

the realised value and a large deviation could signify a problem with the machine.

In most practical situations, however, the user has only one time series {xt}
available. In such a case, we make a h-step ahead prediction of the series {xt}
itself. Our results are valid for both situations: one series and two series. For

notational simplicity, we continue to work in the two-series setting. The results

for the single-series setting are obtained by setting {yt} equal to {xt}.
There are two methods to make the h-step ahead forecast ŷT+h. The first

method is the direct method, which assumes that we estimate different models

Zt = φ1(p, h)Zt−h + · · ·+ φp(p, h)Zt+1−h−p + εt(p, h) (3.3)

for each horizon h. The εt(p, h) are assumed to have zero mean and variance

σ2(p, h). We forecast the series {yt} at horizon h by ŷT+h = φ̂1(p, h)yT + · · · +
φ̂p(p, h)yT+1−p. Here, the parameters φi(p, h) are estimated using ordinary least

squares (OLS). This would make little difference as opposed to using the maxi-

mum likelihood (ML) estimator, especially for large T , while the ML-estimator

would complicate the computations. The second method is the plug-in method.

This is the more common approach and follows immediately from the estimates

of model (3.2). Here, we compute recursively

ŷT+h(p) = φ̂1(p)ŷT+h−1(p) + · · ·+ φ̂p(p)ŷT+h−p(p) (3.4)

with ŷt(p) = yt for t ≤ T . Once again, the parameter estimates φ̂i(p) are obtained

using OLS. Observe that both methods are identical for h = 1. In the main

part of this paper, we make predictions using the direct method; however, see

Section 3.6.1 for the plug-in method. The main advantage of using the direct

method and not the plug-in method was shown in Bhansali (1996). He showed

that the lower bound on the Mean Squared Error (MSE) of predictions obtained

via the direct method method is lower than that of the plug-in method. Also, he

showed that, for the direct method, this lower bound can be achieved, which is

not the case for the plug-in method.



36 3.3. The focussed information criterion

3.3 The focussed information criterion

In this section we propose an extended version of the FIC as defined in Claeskens

and Hjort (2003). The idea of the FIC is that an information criterion should

take into account the purpose of the statistical analysis, by trying to estimate the

MSE of the estimator of a focus parameter. For example, Claeskens et al. (2006)

used the predicted value in a logistic regression model as a focus parameter. In

the setting of this paper, the focus parameter is the h-step ahead prediction of

a time series. In this extension, we allow the number of variables to increase

towards infinity with the sample size. In time series analysis we select an AR(p)-

model that fits the available data best, with 0 ≤ p ≤ pT . Recall that pT is the

maximal autoregressive order, depending on the length of the series. We allow

the number of variables to increase to infinity by letting the maximal autogressive

order increase as the length of the time series increases. Using an adaptation of

a theorem in Portnoy (1985), we obtain an upper bound for this rate of increase

such that the FIC theory still holds. The aim is to predict the series {yt}, based

on an AR-model estimated from {xt}.
At this point, we introduce some notation for the “direct” model (3.3). First,

denote the vectors xt(p, h) = (xt−h, . . . , xt+1−h−p)t, y(p) = (yT , . . . , yT+1−p)t,

and φ(p, h) =
(
φ1(p, h), . . . , φp(p, h)

)t. The OLS-estimates based on the series

{xt} of the parameters φ(p, h) are φ̂(p, h). Consequently, the h-step ahead pre-

diction of the series {yt} is ŷT+h = φ̂(p, h)ty(p) if 1 ≤ p ≤ pT , and ŷT+h = 0 for

p = 0. Because our goal is to make this prediction as accurate as possible, we

take as focus parameter µ(p, h) = φ(p, h)ty(p).

Our goal is now to construct an information criterion aimed at selecting the

model yielding the “best” estimate for the focus parameter from the pT + 1

possible AR(p)-models. “Best” is defined in the sense of having the lowest mean

squared forecast error. If we select the order p too low, the h-step ahead prediction

of the series {yt} will be biased. On the other hand, choosing p too high will inflate

the variance of the prediction. Therefore, we need to select p such that the h-step

ahead prediction has at the same time a small bias and a small variance.

To define the Focussed Information Criterion, we assume the same setting as
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in Claeskens and Hjort (2003). In particular, the results for the FIC apply in a

local misspecification setting where the true, or optimal, values of the focus pa-

rameters are µtrue = δ(pT )ty(pT )T−1/2. The vector δ is a fixed (though unknown)

vector of infinite length, of which for practical purposes the first pT components

are used, which are denoted by δ(pT ). A similar local misspecification setup is

assumed (see Le Cam and Yang, 1990) for Le Cam’s contiguity results, and local

asymptotic normality, and in calculations under local alternatives for hypothe-

sis testing problems. Let JT,full be the estimated pT × pT information matrix

of the AR
(
pT

)
-model, the largest model under consideration, and assume that

this matrix is of full rank. Since we use straightforward OLS-estimation for the

parameters, this matrix can be estimated by

ĴT,full =
R̂(pT , h)
σ̂2(pT , h)

.

Here

R̂
(
pT , h

)
=

1
T + 1− h− pT

T∑

t=pT +h

xt(pT , h)xt(pT , h)t (3.5)

is the estimated autocovariance matrix of order pT of the series {xt}, and σ̂2(pT , h)

is the estimated variance of the residuals after OLS-estimation. The matrix R(pT )

is the true autocovariance matrix of order pT , and σ2(pT , h) the true variance of

the error terms. Using the ML-estimator would increase the complexity of the in-

formation matrix in the finite sample setting, while OLS and ML lead to the same

limit expression for JT,full. We define the matrices K̂T,p = σ̂2(pT , h)R̂(p, h)−1,

and

M̂T,p = σ̂2(pT , h)

(
R̂(p, h)−1 0

0 0

)
of dimension pT × pT .

Finally, define

DT = δ̂(pT , h) =
√

T φ̂(pT , h).

The following proposition states the limit distribution of the estimated focus

parameter. This result is the cornerstone of the Focussed Information Criterion

when applied in this setting. The proof is found in Appendix A.2. Using similar
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notation as in Claeskens and Hjort (2003), we set

δ(pT , h) =
√

Tφ(pT , h)

and

δ(p, h) =

(
R(p, h)−1 0

0 0

)
R(pT , h)δ(pT , h).

Proposition 3.1 Take h fixed and let µ̂(p, h) = φ̂(p, h)′y(p) be the h-step ahead

forecast of the true value µtrue. Under conditions (A1), (A2), (A3) listed in

Appendix A.2, and if
pT
√

log T

T
→ 0 as T →∞,

then we have, for every 0 ≤ p ≤ pT ,

√
T (µ̂(p, h)− µtrue)

d−→ Λp, for T →∞, (3.6)

where Λp is normally distributed with mean and variance given by

λp = E[Λp] = lim
T→∞

y(pT )t
(
δ(p, h)− δ(pT , h)

)
(3.7)

σ2
p = Var(Λp) = y(p)tR(p, h)−1y(p) lim

T→∞
σ2(pT , h). (3.8)

This proposition does not assume that the time series {xt} and {yt} are indepen-

dent. In fact, the results remain valid for yt = xt, stating the proposition for the

single-series setting, but conditional on the observed data.

Hjort and Claeskens (2003) prove (although not specifically for time series)

that the proposition holds for a finite maximal AR-order pT . The additional

condition on the rate of increase of pT is a result of an adaptation of Theorem 3.2

in Portnoy (1985), which is formulated as Lemma A.1 in Appendix A.2, where

the proof of Proposition 3.1 may also be found. The distribution of Λp in (3.6)

is normal, with non-zero mean due to the local misspecification setting in which

we work.
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The distribution of Λp is the key result upon which the FIC is constructed.

Specifically, the limiting distribution has mean squared error

r(p) = lim
T→∞

y(pT )t
(
δ(p, h)− δ(pT , h)

)(
δ(p, h)− δ(pT , h)

)t
y(pT )

+ y(p)tR(p, h)−1y(p) lim
T→∞

σ2(pT , h).

The FIC estimates this risk quantity for each AR-order p under consideration. To

estimate r(p), we estimate the unknown R(pT , h) and σ2(pT , h) by R̂(pT , h), see

(3.5), and σ̂2(pT , h). We also unbiasedly estimate the quantity δ(pT , h)δ(pT , h)t

by δ̂(pT , h)δ̂(pT , h)t− σ̂2(pT , h)R̂(pT , h)−1, where we calculated the covariance of

the estimated parameters as Cov
(
δ̂(pT , h)

)
= σ2(pT , h)R(pT , h)−1. Finally, we

drop the limit of T tending to infinity. After some algebraic manipulation, we

get

r̂(p) =
(
y(pT )t

(
δ̂(p, h)− δ̂(pT , h)

))2
+ 2σ̂2(pT , h)y(p)tR̂(p, h)−1y(p)

− σ̂2(pT , h)y(pT )tR̂(pT , h)−1y(pT ).

If we add σ̂2(pT , h)y(pT )tR̂(pT , h)−1y(pT ), which is independent of p, we arrive

at the more compact expression for the FIC:

FICp =
(
y(pT )t

(
δ̂(p, h)− δ̂(pT , h)

))2
+ 2σ̂2(pT , h)y(p)tR̂(p, h)−1y(p). (3.9)

We select the AR-order p with the smallest value for the FICp.

3.4 Simulations

We present the results of a simulation study to examine the performance of FIC

compared to AIC and BIC, both in the one-series setting and in the two-series

setting. Recall that, in Section 3.3, we estimated the parameters and selected the

AR-order using one series {xt}, and assumed that the actual prediction is done

on a different series {yt}, independent of {xt}, though with the same stochastic

structure. This is a similar setup as in Shibata (1980), Bhansali (1996) and Lee

and Karagrigoriou (2001). In practical applications, however, such a situation

does not often occur. Instead there is only a single time series available, and
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model selection, as well as parameter estimation and prediction, have to be done

using this single time series.

We performed simulation experiments to compare the performance of FIC

with the classical AIC (Akaike, 1974) and BIC (Schwarz, 1978). These two

establised criteria are defined as

−2`(xt,φ) + C(T )p,

where `(xt, φ) is the log-likelihood of the time series {xt}, C(T ) a constant de-

pending only on the length of the series, and p the AR-order of the considered

model. For AIC, we have that C(T ) equals 2, and for BIC, we have C(T ) =

log(T ). In all our studies, the true data-generating process is an ARMA(1,1)-

model

Zt = φZt−1 + εt + ηεt−1,

where εt ∼ N (0, 1) i.i.d., and both φ and η take values in {−0.9,−0.7, . . . , 0.9}.
The stationarity and invertibility conditions on the parameters in this model

reduce to |φ| < 1 and |η| < 1. Hence, the ARMA(1,1)-model has an AR(∞)-

representation. We let both parameters φ and η vary to examine whether or

not the relative performance of the different information criteria depends on the

values of these parameters. Note that, although the true data-generating process

is an ARMA(1,1)-model, this model is not included in the group of considered

models, which are all autoregressive models of finite order. Hence, the selected

model will always be the “best approximating” model among the candidate au-

toregressive models.

In the first simulation experiment, we generate for each setting M = 10 000

series {xt} of length T = 200, which we use for both model order selection and

parameter estimation, and on which we will construct our predictions. This series

{xt} is generated up to length T + h to allow an out-of-sample estimate of the

prediction accuracy of the h-step ahead forecast of {xt}. We select a model

as in (3.3) for 0 ≤ p ≤ pT , and h = 2, yielding the “best” finite-order AR

approximation of the series {xt}. We have chosen the maximal order pT = 20 =√
2T such that a sufficient, but not excessive, number of models is considered. In

practice, the choice of the maximal AR-order is somewhat arbitrary, and will be
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increased by one if the largest model was chosen, to account for the possibility of

long-term dependencies in the time series. For each simulation run, the selection

is done by AIC, BIC and FIC. Once the model is selected, a h-step ahead forecast

is made of this series {xt} using the estimated parameters of the selected model.

This forecast is denoted by x̂
(j)
T+h = x(ph,j)tφ̂(ph,j , h), where j is the number of

the simulation run, and ph,j is the AR-order of the model selected for the h-step

ahead forecast in simulation run j.

For each simulation setting in the experiment above, we present the MSE of

the h-step ahead prediction of the series {yt}, where the prediction is performed

using the models selected by (i) AIC, (ii) BIC, and (iii) FIC. We define the MSE

by

MSE(x̂T+h) =
1
M

M∑

j=1

(x̂(j)
T+h − x

(j)
T+h)2,

with x̂
(j)
T+h as defined above, and with x

(j)
T+h the true generated value of the series

{xt} in the j-th simulation. We also define the Relative Mean Squared Error as

rMSE(x̂T+h, xIC1, xIC2) =
MSE(x̂T+h,xIC1)
MSE(x̂T+h,xIC2)

, (3.10)

where x̂T+h,xIC1 and x̂T+h,xIC2 are the h-step ahead predictions of the series {xt}
made with models chosen by respectively xIC1 and xIC2 as information criteria.

When the relative MSE is smaller than 1, xIC1 selects models with a lower MSE

for the h-step ahead prediction than xIC2.

Table 3.1 presents the simulated relative MSEs of the models selected by FIC

with respect to those selected by the AIC (relative MSE(x̂T+h,FIC, AIC), top ta-

bles), and those with respect to those selected by the BIC (rMSE(x̂T+h,FIC, BIC),

bottom tables). These tables show that the performances of AIC and BIC was

slightly better (a few percent) than that of FIC. Note that this occured for all 100

different settings of parameters (φ, η). Standard errors for the MSE ratios have

been computed via the delta method and are approximately 5×10−3, this due to

the large number of simulation runs. Hence we conclude that there is statistical

evidence that AIC and BIC yield lower MSEs in this simulation experiment than

FIC, but the practical difference in performance among the procedures remains

small.
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φ/η -0.9 -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9

-0.9 1.023 1.045 1.044 1.042 1.048 1.047 1.045 1.041 1.033 1.044

-0.7 1.023 1.036 1.044 1.057 1.057 1.050 1.047 1.025 1.056 1.027

-0.5 1.025 1.028 1.038 1.052 1.049 1.045 1.033 1.049 1.033 1.014

-0.3 1.022 1.036 1.036 1.032 1.042 1.039 1.049 1.039 1.032 1.025

-0.1 1.036 1.033 1.043 1.040 1.031 1.037 1.040 1.038 1.038 1.039

0.1 1.038 1.044 1.041 1.046 1.044 1.053 1.028 1.031 1.038 1.030

0.3 1.020 1.041 1.047 1.047 1.045 1.031 1.040 1.037 1.036 1.026

0.5 1.026 1.035 1.049 1.050 1.041 1.052 1.045 1.044 1.034 1.026

0.7 1.014 1.040 1.034 1.043 1.052 1.047 1.054 1.045 1.039 1.025

0.9 1.040 1.044 1.052 1.038 1.054 1.047 1.042 1.040 1.042 1.020

φ/η -0.9 -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9

-0.9 1.017 1.043 1.046 1.049 1.065 1.062 1.052 1.041 1.026 1.060

-0.7 1.025 1.040 1.043 1.071 1.077 1.065 1.055 1.030 1.073 1.039

-0.5 1.035 1.039 1.052 1.067 1.056 1.053 1.046 1.061 1.043 1.012

-0.3 1.025 1.045 1.040 1.041 1.057 1.053 1.063 1.054 1.044 1.037

-0.1 1.059 1.054 1.060 1.058 1.046 1.047 1.057 1.055 1.058 1.059

0.1 1.063 1.061 1.054 1.063 1.057 1.070 1.042 1.048 1.058 1.054

0.3 1.035 1.050 1.061 1.064 1.059 1.048 1.047 1.044 1.048 1.037

0.5 1.035 1.053 1.056 1.061 1.047 1.066 1.061 1.054 1.045 1.040

0.7 1.026 1.054 1.040 1.054 1.072 1.067 1.066 1.054 1.040 1.030

0.9 1.057 1.039 1.051 1.045 1.066 1.066 1.054 1.048 1.043 1.020

Table 3.1: Ratios of mean squared errors for the 2-step ahead prediction of the

series {xt}, with model order selection using the same series, and prediction

according to the direct method. An ARMA(1,1)-process generated the series

{xt}. The autoregression parameter φ can be found in the leftmost column, and

the moving average parameter η is indicated in the top row. The upper table

shows the rMSE(·,FIC, AIC), the lower table shows the rMSE(·, FIC,BIC), as

defined in (3.10).
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By contrast, if we repeat the experiment with the maximum length of the

series larger (T = 500 or T = 2 000, results available upon request), we find that

these ratios become even closer to 1, lending empirical support for the statement

that FIC performs as well as AIC and BIC asymptotically. This is due to the

fact that FIC is an unbiased estimator of the asymptotic MSE for the h-step

ahead prediction, thereby leaving out of the MSE a constant term that does not

depend on the model. In other words, we select the model with the smallest

estimated mean squared forecast error (MSFE). Hence, it is expected that FIC

asymptotically selects the model with the lowest MSFE. As a result, FIC and

AIC will have the same asymptotic performance, as the asymptotic efficiency of

AIC was proved by Ing and Wei (2005) in the single-series case.

Let us now discuss which models are selected by the three criteria. First, we

examine the case where φ = η = −0.9, which is far from a white noise process.

In that case, AIC selected model orders ranging from 1 to pT = 20, with the

maximal order being selected only 38 times out of 10 000. In 59.5% of the cases

AIC selected a model order between 4 and 7. As expected, BIC selected lower

orders, with AR-order 9 being the maximum, and in 80.4% of the cases choosing

2 or 3 as the order. FIC selected on average an order somewhere between that

of AIC and BIC, with 70% of the selected AR-orders between 1 and 5, and with

the maximal order chosen 42 times out of 10 000. AIC and FIC seleced the same

model order in about 11.5% of the cases, and FIC and BIC agreed on the selected

model order in 19% of the cases.

Closer to the white noise case, φ = η = 0.1 for example, AIC selected 0 or 1

as model order at least 3 times out of 4, with the white noise case chosen 70% of

the time. The maximal order was selected only 4 times. BIC selected the white

noise model in more than 96 cases out of 100. Finally, FIC selected the white

noise case in 41% of the cases, while at least 75% of the selected orders were 5 or

below. Nevertheless, the maximal model order pT = 20 was chosen 61 times out

of 10 000. Here, we see that AIC and FIC agreed in 36% of the cases, and that

BIC and FIC agreed in 40% of the cases.

In Section 3.3 the FIC was derived from the setting where we have one time



44 3.5. Real data applications

series {xt} available for model selection and parameter estimation, and another

stochastically independent time series {yt} for prediction. We have conducted a

second simulation experiment to compare the two-series framework with the more

realistic one-series framework. This simulation experiment was set up along the

same lines as the one-series experiment, with the following difference. For each

parameter setting (φ, η) we generated Mx = 100 different series {xt} for model

selection and parameter estimation. Then, for each of these series, we generated

My = 100 independent series {yt} which we will forecast. Since we wish to

compare the performance of the different model selection criteria in MSE sense,

we generated the series {yt} up to length T + h. After running the experiment

for the two-series setting, we found similar results as for the one-series setting.

Figure 3.1 shows the results of a comparison of the performance between the two-

series and the one series setting, where the selection criterion used is the FIC.

The surface shown in the figure depicts the relative MSE of the one-series FIC

with respect to the two-series FIC. Where the surface is above 1, the grey-shaded

facets, using two independent series resulted in better performance. It is obvious

that both settings resulted in very similar performances, and that there was no

clear preference for either setting. Indeed, the two-series setting was superior to

the one-series setting for 58 of the 100 parameter choices.

3.5 Real data applications

In this section we compare the performances of AIC, BIC, and FIC on two real

datasets: monthly US liquor sales data (Diebold, 2001, p. 54), and monthly life

insurance data (data available at

http:// www.econ.kuleuven.be/public/ndbae06/courses/dynmodels/assvie.xls).

The life insurance dataset goes from January 1964 to December 1980, and denotes

the net number of new personal life insurances for a large insurance company.

Since the theory above is developed for stationary series, we first removed the

trend and seasonality effects. First, we took the logarithm of the series to make

the variance of the innovation terms constant over time. Next, we took the

first differences to remove the trend, and take seasonal differences to remove the
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Figure 3.1: 3D-surface plot for the ratios of mean squared errors for the 2-step

ahead prediction of the series {xt}, comparing model order selection using the

series {xt} with model order selection using the series {yt}, and where prediction

is according to the direct method. An ARMA(1,1)-process generated both series

{xt} and {yt}. The autoregression parameter φ can be found on the phi axis, and

the moving average parameter η is indicated on the eta axis. The surface shows

the ratios of MSEs where the selection criterion used in both cases is the FIC.

Where this surface lies above 1, signified by the grey-shaded facets, the two-series

case had a smaller MSE than the one-series case.
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seasonality effects, so that we had a stationary series. Out-of-sample h-step ahead

forecasting was used to estimate the mean squared errors for each of the three

information criteria, this for horizons h = 1, . . . , 5. More precisely, we started

with the first half of the series {xt}, that is 1 ≤ t ≤ T/2, and predicted xT/2+h.

We then added the next observation, xT/2+1, and based on {xt}, 1 ≤ t ≤ T/2+1,

predicted xT/2+1+h. This process was repeated until we had used all observations

up to and including xT−h to predict xT . Note that the order of the selected model

depends on the time index t at which the prediction for xt+h is made. We chose

the maximal AR-orders of the models equal to pT = 15. The maximal order was

chosen to be approximately equal to
√

T , such that a sufficient but not excessive

number of models is considered. Next, we performed a pairwise comparison of the

estimated MSEs for each h, and tested whether there are significant differences.

The MSEs are estimated as

MSE =
1

T/2 + 1

T−h∑

t=T/2

(xt+h − x̂t+h)2.

The pairwise comparison was done by the Diebold-Mariano test (Diebold, 2001,

p. 293-294), which is basically a type of paired t-test for equality of means. In this

case however, the data consisted of squared residuals, one group for each infor-

mation criterion. As it is likely that there is serial correlation in these residuals,

special care had to be taken to determine the standard error used in computing

the t-values.

Table 3.2 shows the estimated mean squared errors for the different prediction

horizons h and the different order selection criteria, together with the average

value of the selected orders of the autoregressive model. It also shows the t-values

and corresponding p-values for the Diebold-Mariano tests. The results reported

here are valid when the plug-in method for prediction is used. We repeated the

experiment with the direct method for prediction and we did not find a significant

difference with the plug-in method. The upper table shows the resulting values

for the US liquor sales time series, and the bottom table shows the corresponding

results for the Life Insurance time series. A positive t-value means that the first

criterion leads to predictions with a higher MSE than the second criterion.
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(a) h = 1 h = 2 h = 3 h = 4 h = 5

MSE(AIC) 1.153 (12.70) 1.516 (12.70) 1.509 (12.70) 1.566 (12.70) 1.630 (12.70)

MSE(BIC) 1.392 ( 2.00) 1.715 ( 2.00) 1.713 ( 2.00) 1.781 ( 2.00) 1.855 ( 2.00)

MSE(FIC) 1.176 ( 4.59) 1.504 ( 4.72) 1.528 ( 4.82) 1.591 ( 5.16) 1.666 ( 4.70)

MSE(MSE) 1.140 (14.00) 1.486 (15.00) 1.490 (15.00) 1.544 (15.00) 1.610 (14.00)

Diebold-Mariano test results

AIC–FIC –0.818 (0.413) 0.312 (0.755) –0.314 (0.753) –0.740 (0.459) –0.549 (0.583)

BIC–FIC 2.971 (0.003) 4.003 (0.000) 2.696 (0.007) 2.545 (0.011) 1.931 (0.053)

MSE–FIC –1.322 (0.186) –0.438 (0.661) –0.639 (0.523) –1.455 (0.146) –0.897 (0.369)

(b) h = 1 h = 2 h = 3 h = 4 h = 5

MSE(AIC) 94.51 ( 7.04) 149.46 ( 7.04) 134.68 ( 7.04) 120.46 ( 7.04) 113.94 ( 7.04)

MSE(BIC) 76.77 ( 3.00) 119.71 ( 3.00) 117.13 ( 3.00) 120.32 ( 3.00) 118.06 ( 3.00)

MSE(FIC) 84.74 ( 3.31) 137.28 ( 4.11) 124.18 ( 4.39) 118.36 ( 4.30) 120.91 ( 4.41)

MSE(MSE) 76.56 ( 5.00) 115.30 ( 0.00) 115.83 ( 6.00) 117.07 (12.00) 114.95 (12.00)

Diebold-Mariano test results

AIC–FIC 1.892 (0.059) 1.300 (0.194) 1.006 (0.314) 0.180 (0.857) –0.560 (0.575)

BIC–FIC –0.807 (0.420) –1.191 (0.234) –0.549 (0.583) 0.142 (0.887) –0.227 (0.820)

MSE–FIC –0.756 (0.450) –1.643 (0.100) –0.694 (0.488) –0.137 (0.891) –0.877 (0.380)

Table 3.2: Comparison of models selected by the information criteria FIC, AIC,

and BIC. A further comparison is made with a model selected based on the MSE

of a hold-out sample. The table contains the estimated mean squared errors

(×10−3) for each prediction horizon h, with the average value of the selected order

within parenthesis. Furthermore, t-values (p-values) of the Diebold-Mariano test

for pairwise differences in MSE are presented. Results are given in (a) for the US

Liquor sales data, and in (b) for the life insurance data.
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For the US liquor sales time series, we observed that there were no significant

differences in performance between AIC and FIC. On the other hand, the BIC

performed significantly worse than both AIC and FIC. For the Life Insurance

time series, FIC performed slightly, but not significantly, better than AIC. The

BIC performed slightly better than the FIC on these data, but again, the dif-

ference was not significant. To conclude, the Diebold-Mariano test showed that

the three different information criteria performed about equally well on the two

examples considered, hereby confirming the results of Section 3.4. The power of

the Diebold-Mariano test might be too low to detect differences between forecast

methods, especially in small-sample settings (Harvey, Leybourne and Newbold,

1997 and 1998). However, we have also compared the forecast methods using

the modified Morgan-Granger-Newbold test (Harvey, Leybourne and Newbold,

1997) and arrived at the same conclusions as with the Diebold-Mariano test. A

further comparison can be made with selection based on the MSE of a hold-out

sample. Since we directly minimised the value of the MSE, we expected this cri-

terion to perform very well. Indeed, for both datasets we observed that directly

selecting the model order which minimises MSE yielded more accurate estimates

than when FIC was used, although the differences were not significant according

to the Diebold-Mariano test (p-values > 0.1).

Increasing the maximal order to pT = 50, rather than taking pT = 15 ≈ √
T ,

had negligible influence on the performance of the criteria AIC, BIC and FIC.

Choosing the order too small, say pT = 5, mostly affected AIC and FIC, because

BIC has a natural tendency to select simple models.

Performances of the criteria were also compared using the Mean Absolute

Error (MAE) and the Mean Absolute Percentage Error (MAPE)

MAE =
1

T/2 + 1

T−h∑

t=T/2

|xt+h − x̂t+h| and MAPE =
1

T/2 + 1

T−h∑

t=T/2

∣∣∣xt+h − x̂t+h

xt+h

∣∣∣.

Using MAE as the loss function in the Diebold-Mariano test gave similar results

as in Table 3.2. However, using MAPE as loss function, there was a preference

for FIC for all prediction horizons, though not significant. The Diebold-Mariano

test had p-values approximately 0.25 (0.30) for the comparison with AIC (BIC).
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3.6 Extensions

In this section we list three extensions of the main ideas in this paper. First

we explain how the results need to be adapted for prediction with the plug-in

method. Second, we provide the expression for FIC when the impulse response

is the focus parameter. Third, we obtain a definition of FIC for simultaneous

selection of regression variables and the autoregressive order of the error terms.

3.6.1 Using plug-in methods

Direct prediction results in a h-step ahead predictor which is a linear combination

of the parameter estimates. Therefore Proposition 3.1 is applicable. By contrast,

the plug-in method leads to a predictor which is a polynomial of order h of the pa-

rameter estimates (see equation (3.4)). In order to derive the distribution of the

predictor in each candidate model, the first main step is to show that a suitably

scaled version of
√

T
(
g
(
φ̂(pT )

) − g
(
φtrue(pT )

))t
y(pT ) has an asymptotic nor-

mal distribution denoted ΛpT , where g
(
φ̂(pT )

)
=

(
g1

(
φ̂(pT )

)
, . . . , gpT

(
φ̂(pT )

))t

with gi

(
φ̂(pT )

)
a polynomial of degree h in φ̂1(pT ), . . . , φ̂pT (pT ). The argument

in Appendix A.2 shows why this is the case in our setting. We then proceed

by computing the limiting mean squared error of ΛpT , and by estimating this

quantity in an unbiased way. This estimator is the FIC, which is then computed

for each candidate autoregressive order p. In our setting, it has the same form as

the FIC for the direct method (3.9), but with y(pT ) replaced by the recursively

defined

ω̂h(pT ) = m̂h(pT ) + Ω̂h(pT )φ̂(pT ).

Here m̂h(pT ) = (ŷT+h−1(pT ), . . . , ŷT+h−pT
(pT ))t with ŷT+i defined as in (3.4).

Also, Ω̂h(pT ) = (ω̂h−1(pT ), . . . , ω̂h−pT
(pT )) where ω̂i(pT ) = 0 for i ≤ 0. The

y(p) in expression (3.9) are replaced by a vector containing the first p elements

of ω̂h(pT ). This yields the FIC we have used in the simulations of Section 3.4 for

the plug-in method for prediction. The model selected is, as before, the model

with the lowest value of FIC.

In a simulation experiment, we compared the direct and the plug-in method



50 3.6. Extensions

for prediction, simarly as in Section 4. The conclusions for the plug-in method

were the same as those for the direct method: AIC and BIC were slightly better

than FIC (just a few percent in MSE sense, though this difference is significant).

Of interest also is whether the direct method and plug-in method for prediction

are equivalent. This can be seen in Figure 3.2. This figure shows the relative

MSEs, where we compare the plug-in method with the direct method, for model

selection with the FIC. A value larger than 1, the grey shaded facets, indicates

that the direct method results in a forecast with lower MSE. As we can see, there

was no clear preference for either method, as both prediction methods came out

as best for roughly half of the settings.

3.6.2 Focus on the impulse response

Up to now, the goal was to select the autoregressive order p with which to obtain

the h-step ahead predictor with the smallest value of the FIC. Here we change

focus to the impulse response at lag τ , denoted ı(τ). The impulse response

function ı(τ) is equal to a time series that is the realization of the data-generating

process for which all innovation terms εt are set equal to zero, except for ε0 = 1

(see Hamilton 1994, page 5). The impulse response function is often used by

economists to study the effect of innovation shocks to the variable of interest.

Here we want to use the FIC to select the best AR-order for making estimates

of the impulse response function at a certain lag. This problem has already been

investigated via a simulation study in Hansen (2005). Here we give a theoretical

justification for the use of the FIC in this setting.

We use the same notation as in Section 3.2. The focus parameter µ introduced

in Section 3.3 is replaced by µ = ı(τ). The plug-in method based on model (3.1)

leads to the following estimated focus parameter:

µ̂ = ı̂(τ) = φ̂1(p)̂ı(τ − 1) + · · ·+ φ̂p(p)̂ı(τ − p),

where ı̂(τ) = 0 for τ < 0 and ı̂(0) = 1. From this expression it is clear that

estimating the impulse response of a time series at lag τ is a special case of a

τ -step ahead prediction, applied to a time series with 0 on every time t, except
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Figure 3.2: 3D-surface plot for the ratios of mean squared errors for the 2-step

ahead prediction of the series {xt}, with model order selection using the series

{xt}, comparing prediction with the plug-in method and with the direct method.

An ARMA(1,1)-process generated the series {xt}. The autoregression parameter

φ can be found on the phi axis, and the moving average parameter η is indicated

on the eta axis. The surface shows the ratios of MSEs where the selection criterion

used in both cases is the FIC. Where this surface lies above 1, signified by the

grey-shaded facets, the direct method for prediction resulted in a lower MSE than

the plug-in method.
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for a 1 on time T , where the parameter estimators are constructed from the given

time series {xt}. With this observation, the results of Proposition 3.1 are readily

applicable for the impulse response as a focus parameter. From Section 3.6.1, it

then follows that the FIC is an unbiased estimator of the limiting mean squared

error of the impulse response in the case of a growing number of parameters.

The expression for FICp for impulse response is then given as in the previous

subsection for h = τ , although now with yT = 1 and yt = 0 for 1 ≤ t < T .

To illustrate the use of the FIC for model selection where the focus is the im-

pulse response function ı(τ) at lag τ = 2, we present the results of a simulation

study similar to the one in Section 3.4. Here, we took the number of simulation

runs for each setting as M = 1 000, and we allowed the parameters of the simu-

lated ARMA(1,1)-model to be in the range (−0.9,−0.8, . . . , 0.9). The results of

this simulation are presented in Figure 3.3. This figure shows the relative MSE,

rMSE(·, AIC, FIC) as in (3.10), of the estimated impulse response function at lag

τ = 2. Where this surface lies above 1, corresponding to the grey-shaded facets,

the FIC selected models with a lower MSE than the AIC. We observe that there

are regions in the parameter space (φ, η) where the FIC performed significantly

better than the AIC. In particular, when the series was close to a white noise

(|η + φ| = 0), there were pronounced differences. At present, we do not have a

clear explanation for this.

3.6.3 Simultaneous selection of regression variables and the AR

order

Up to now we considered stationary time series with zero mean. We implicitly

assumed that the trend and the seasonality effects of this series were removed

beforehand. We also ignored the possibility that there might be exogenous vari-

ables upon which the time series has been regressed prior to analysis. This is a

commonly used approach when estimating and predicting time series: first iden-

tify and fit the deterministic component, and then determine the error-structure.

However, if the identification of the deterministic component includes a variable

selection step, Golan et al. (1996, Chapter 10) illustrated that the classical vari-
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Figure 3.3: 3D-surface plot for the ratios of mean squared errors for the estimation

of the impulse response function of the series {xt} at lag 2, with model order

selection using the same series. An ARMA(1,1)-process generated the series {xt}.
The autoregression parameter φ can be found on the phi axis, and the moving

average parameter η is indicated on the eta axis. The surface shows the ratios of

MSEs where the AIC is compared with the FIC. Where this surface lies above

1, signified by the grey-shaded facets, the FIC selected models which results in a

lower MSE than the AIC.
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able selection criteria perform poorly if the residual errors do not satisfy the

uncorrelatedness assumption. Recently, Shi and Tsai (2004) proposed an alter-

native selection criterion which simultaneously selects the regression variables for

inclusion in the model and the autoregressive order of the error terms.

In a similar spirit, we can employ the FIC to perform simultaneous selection

of the regression variables and of the AR-order of the model errors. Assume that

we have a time series {yt} and explanatory series xt =
({xt,1}, . . . , {xt,k}

)t, and

that the data are generated from the following model

yt = xt
tβ + ut with ut = φ1ut−1 + · · ·+ φP ut−P + εt, (3.11)

where the errors εt are independent and identically normally distributed with

mean 0 and variance σ2 for t = P + 1, . . . , T , and where UP = (u1, . . . , uP )t is

distributed as N (0, σ2R(P )). The log-likelihood function under model (3.11) is

then (omitting constants not depending on the model)

`(β,Φ, σ2) = −n

2
log σ2 − 1

2
log |R(P )| − 1

2σ2
(Y −Xβ)tΣ−1(Y −Xβ),

where Φ = (φ1, . . . , φP )t, Y = (y1, . . . , yT )t, X = (x1, . . . , xT )t, U = (u1, . . . , uT )t,

and Σ = Cov(U)/σ2. Note that Σ and R(P ) depend on Φ. The expressions

for |R(P )| and Σ−1 can be found in Ljung and Box (1979). To facilitate the

derivations, we condition on the first P observations, and write the conditional

log-likelihood function as

`(β,Φ, σ2 | x1, . . . , xP , y1, . . . , yP )

= −n

2
log σ2 − 1

2
log |R(P )| − 1

2σ2

T∑

t=P+1

(
yt − xt

tβ −
P∑

i=1

φi(yt−i − xt
t−iβ)

)2
.(3.12)

From this expression, we derive the estimated (k + P ) × (k + P ) information

matrix JT,full. This matrix has components

(
JT,full

)
βi,βj

= − 1
T − P

· ∂2`(·)
∂βi∂βj

∣∣∣∣
β̂,Φ̂,σ̂2

=
1

(T − P )σ̂2

T∑

t=P+1

(
xt,i −

P∑

l=1

φ̂lxt−l,i

)(
xt,j −

P∑

l=1

φ̂lxt−l,j

)
,
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(
JT,full

)
φi,φj

= − 1
T − P

· ∂2`(·)
∂φi∂φj

∣∣∣∣
β̂,Φ̂,σ̂2

=
1

T − P
· ∂2 log |R(P )|

∂φi∂φj

∣∣∣∣
Φ̂

+
1

(T − P )σ̂2

T∑

t=P+1

(yt−i − xt
t−iβ̂)(yt−j − xt

t−jβ̂), and

(
JT,full

)
βi,φj

= − 1
T − P

· ∂2`(·)
∂βi∂φj

∣∣∣∣
β̂,Φ̂,σ̂2

=
1

(T − P )σ̂2

n∑

t=P+1

(
xt−j,i

(
yt − xt

tβ̂ −
P∑

l=1

φl(yt−l − xt
t−lβ̂)

)

+ (yt−j − xt
t−jβ̂)

(
xt,i −

P∑

l=1

φ̂lxt−l,i

))
.

For S a subset of {1, . . . , k} and 0 ≤ p ≤ P , let πS,p be a projection matrix of

dimension (|S|+p)×(k+P ) mapping any vector ν = (ν1,1, . . . , ν1,k, ν2,1, . . . , ν2,P )t

onto (νt
S , ν2,1, . . . , ν2,p)t, where νS has components ν1,i with i ∈ S. Denote

KT,S,p = (πS,pJT,fullπ
t
S,p)

−1 and MT,S,p = πt
S,pKT,S,pπS,p. The focus parameter

in the FIC is the h-step ahead forecast, using the plug-in method for prediction:

µ(β̂, Φ̂) = xt
T+hβ̂ + φ̂1(ŷT+h−1 − xt

T+h−1β̂) + · · ·+ φ̂P (ŷT+h−P − xt
T+h−P β̂),

and denote by ω the vector with components

ω1,i = − ∂µ(β,Φ)
∂βi

∣∣∣∣
β̂,Φ̂

= − xT+h,i −
P∑

j=1

φ̂j

(
∂ŷT+h−j

∂βi

∣∣∣∣
β̂,Φ̂

− xT+h−j,i

)
1 ≤ i ≤ k

ω2,j = − ∂µ(β,Φ)
∂φj

∣∣∣∣
β̂,Φ̂

= − (ŷT+h−j − xt
T+h−jβ̂)−

P∑

i=1

φ̂i
∂ŷT+h−i

∂φj

∣∣∣∣
β̂,Φ̂

1 ≤ j ≤ P,

where ŷt = yt and hence ∂ŷt/∂βi = ∂ŷt/∂φj = 0 for t ≤ T .

Combining these ingredients leads to

FICS,p = ωt(I −MT,S,pJT,full)δ̂δ̂
t
(I − JT,fullMT,S,p)ω + 2ωtMT,S,pω, (3.13)
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where δ̂ =
√

T (β̂, Φ̂)t. The model with the smallest value of FICS,p is selected.

This version of FIC can simultaneously select a subset of the explicative variables

xt,1, . . . , xt,k and the autoregressive order p of the error term, where 0 ≤ p ≤ P .

We illustrate this approach by revisiting the US liquor sales example used in

Section 3.5. Now we do not start working with the stationary series, but use the

following ‘maximal’ model for the logarithmic transform of the US liquor sales

series:

Zt = α + βt + γ2S2 + · · ·+ γ12S12 + ut,

where Si are monthly dummy variables (January is the reference category), and

ut = φ1ut−1 + · · ·+ φpT ut−pT + εt.

The regression variables which we consider are the constant term, a time trend

t, and the set of monthly dummy variables jointly. All information criteria (FIC,

AIC, and BIC) agree that the regression variables must all be included. Note that

the FIC has now been computed according to (3.13). We again observe that the

prediction performance of the criteria is about the same as the simpler situation

treated earlier in Section 3.5.

We can extend the idea of simultaneously selecting regression variables and

auto-regressive order of the residual series even further. For example, we can

allow the variance structure of the residuals to change over time as in the GARCH

model by Engle (1982) and Bollerslev (1986). Going one step beyond that, we

can include lagged versions of the exogenous variables in the model, such as in

the ARX-GARCH model proposed by So et al. (2006). The main ingredient

of the FIC in this model is the information matrix JT,full of the largest model

under consideration. (See Claeskens and Hjort, 2003, Sections 2 and 3 for more

details). An unbiased empirical estimate thereof can be obtained by using the

negative Hessian of the log-likelihood, evaluated at its minimum.

3.7 Conclusions

In this paper we extended the FIC mechanism to allow for an increasing number

of parameters as the sample size increases. We specifically worked inside the
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framework of h-step ahead prediction of time series using an AR-model, with the

direct or plug-in methods for prediction. We illustrated, via simulations, that

FIC selects models which give predictions with a comparable MSE to that of

AIC over the entire parameter space. This observation holds for both the single-

series and the two-series case. This simulation study also demonstrated that

the relative mean squared errors for the plug-in method for prediction are quite

comparable to those of the direct method. We gave a theoretical justification for

Hansen’s (2005) use of the FIC for the impulse response, and illustrated that FIC

gives better estimates for the impulse response function in certain areas of the

parameter space. An extension to simultaneous selection of regression variables

and autoregressive order is promising for exploring in greater depth.
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Abstract

Support vector machines for classification have the advantage that the curse

of dimensionality is circumvented. It has been shown that a reduction of the

dimension of the input space leads to even better results. For this purpose,

we propose two information criteria which can be computed directly from the

definition of the support vector machine. We assess the predictive performance

of the models selected by our new criteria and compare them to existing variable

selection techniques in a simulation study. The simulation results show that the

new criteria are competitive in terms of generalization error rate while being

much easier to compute. We arrive at the same findings for comparison on some

real-world benchmark datasets.
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4.1 Introduction

We study classification using the support vector machine (SVM). We start from a

training set {(xi, yi)} containing n observations. Each p-dimensional observation

xi = (xi1, . . . , xip) has a class label yi assigned to it, which is either +1 or −1.

We wish to find a function f(·) such that for an observation x the predicted class

ŷ = +1 if f(x) is positive, and ŷ = −1 if f(x) is negative. We want this function

to assign the correct class labels to the training observations (low training error

rate) and to accurately classify new observations (low generalization error rate).

Working with a subset of the p variables xi1, . . . , xip reduces variability of the

class-label estimator and might lead to better out-of-sample predictions.

It is only true to some extent that variable selection would not be necessary in

the support vector machine setting since it manages to circumvent the so-called

“curse of dimensionality” (see for example Cristianini and Shawe-Taylor, 2000,

Hastie, Tibshirani, and Friedman, 2001, or Schölkopf and Smola, 2002). While

the SVM approach avoids fitting a number of parameters equal to the dimension

of the input space, there remains the high probability of a perfect separation

in high-dimensional problems. For example, if p is larger than the number of

observations, it is always possible to perfectly separate the two classes of training

data by a hyperplane. In general, the risk of overfitting will increases with the

dimension for most data configurations. Hence, the risk of obtaining a decision

rule with poor generalization properties (high generalization error rate) cannot

be avoided. Guyon et al. (2002) illustrate this and show that variable selection

can further improve the SVM’s performance.

Variable selection techniques can be divided into three categories. Filters

select subsets of variables as a pre-processing step, independently of the prediction

method. Wrappers utilize the classification method to score subsets of variables.

Finally, embedded methods include variable selection into the construction of the

classifier. In this paper we propose new information criteria for SVMs, yielding a

wrapper method where we consider the SVM merely as a black box. We refer to

Guyon and Elisseeff (2003) for an introduction to variable and feature selection in

Machine Learning. Information criteria are a standard tool for model selection in
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traditional statistics. Information criteria for variable selection assign a numerical

value to each subset of the variables under consideration. The subset with the

lowest value of the information criterion is then selected. Examples are the Akaike

information criterion (AIC, Akaike, 1973) and the Bayesian information criterion

(BIC, Schwarz, 1978). Claeskens and Hjort (2008) survey and explain the use of

common information criteria for statistical variable selection in likelihood-based

models, we refer to there for more references.

For support vector machines only very few information criteria have been

developed. The kernel regularisation information criterion (KRIC) of Kobayashi

and Komaki (2006) was originally proposed for parameter tuning of the SVM. We

apply it for variable selection. However, the KRIC has a complicated definition

and is computationally expensive for large sample sizes. In this paper two new

information criteria are proposed, one shares properties with AIC, the other with

BIC. We want the new criteria to select a preferably compact subset of variables

with good predictive properties. We will show that submodels selected by the

new criteria are as performing as the ones chosen by the KRIC, while they incur

substantially less computational overhead. We also make a comparison with

using cross-validated error rate based criteria, as in Kearns et al. (1997). An

important contribution of this paper is that our numerical comparisons show that

the popular, but time consuming, cross-validation criteria are outperformed in

generalization error by the new information criteria, where the latter are coming

at almost no additional computational cost.

Alternative approaches perform variable selection in feature space instead of

in input space (Shih and Cheng, 2005), or select a set of “maximally separat-

ing directions” in the input space Fortuna and Capson (2004). These methods,

however, do not select a set of original input variables. Various other authors

have suggested different formulations for the SVM such that variable selection

is performed automatically. Examples of such embedded methods can be found

in Bi et al. (2003), Zhu et al. (2004), Neumann, Schnörr and Steidl (2005), Lee

et al. (2006), Wang, Zhu, and Zou (2006), Zhang (2006), and Lin and Zhang

(2006).

In Section 4.2 we define the support vector machine setting, we review ex-
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isting information criteria and we describe ranking techniques to speed up the

variable selection process. In Section 4.3, we define the new information criteria

and highlight their advantages. Section 4.4 contains the results of a simulation

study and in Section 4.5 we compare the different techniques on a few real-world

benchmark datasets. Section 4.6 concludes and gives some directions for further

research.

4.2 Problem setting

4.2.1 The support vector machine

We denote the training sample (xi, yi), 1 ≤ i ≤ n, with xi a p-dimensional vector

of explicative variables, and yi ∈ {−1,+1} the class label. The goal is to estimate

a target function f(x) in the space of explicative variables such that f(xi) > 0

for yi = +1, and f(xi) < 0 for yi = −1.

We start with linear support vector machines, where f(x) is of the form

f(x) = w′x + b. For binary classification this function is obtained by solving the

minimisation problem

min
w,b,ξi

{
1
2
‖w‖2 + C

n∑

i=1

ξi

}
subject to





yi(w′xi + b) ≥ 1− ξi,

ξi ≥ 0, i = 1, . . . , n.
(4.1)

The ξi are slack margin variables, indicating how close a point xi lies to the

separating boundary (if ξi < 1), or how badly it is misclassified (if ξi > 1). The

tuning parameter C controls how much weight is put on trying to achieve perfect

separation.

The dual problem can be solved more easily, and has the following form:

min
α
{1
2
α′Qα−

n∑

i=1

αi} subject to

{
0 ≤ αi ≤ C, i = 1, . . . , n,∑n

i=1 yiαi = 0.
(4.2)

Here αi is the weight given to the observation (xi, yi), and Q is a positive semi-

definite matrix with entries Qi,j = yiyjx
′
ixj . The vector w can be found from



Chapter 4. A new information criterion for SVM 63

w =
∑n

i=1 yiαixi. The negative intercept b is found by computing b = 0.5(r2−r1),

where

r1 =

∑
0<yiαi<C(Qα)i − 1∑

0<yiαi<C 1
and r2 =

∑
0>yiαi>−C(Qα)i − 1∑

0>yiαi>−C 1
.

If no i exist for which 0 < yiαi < C, then define

r1 =
1
2

(
min

αi=0,yi=1
(Qα)i − max

αi=C,yi=1
(Qα)i

)
,

and analogously for r2, with yi = −1. Note that we can write ξi = [1 − yiai]+,

where [x]+ = max{0, x} and where ai = f(xi).

The linear SVM can be extended towards more complex decision functions in

a rather straightforward way. Therefore we replace the inner products x′ixj in the

definition of Q by a more general kernel function K(xi, xj). See Cristianini and

Shawe-Taylor (2000) for the properties that these kernel functions must have.

This leads to a more general decision function

f(x) =
n∑

i=1

yiαiK(xi, x) + b. (4.3)

Popular choices for the kernel function in (4.3) are the linear kernel, where the

kernel function is K(x, z) = x′z, the polynomial kernel of the form K(x, z) =

(c0 + γx′z)d, and the radial basis kernel K(x, z) = exp(−γ‖x− z‖2), where c0, γ

and d are regularization parameters that can be tuned for optimal performance

of the classifier. In this more general setting, we have

‖w‖2 =
n∑

i,j=1

yiyjαiαjK(xi, xj) = α′Qα

for the squared norm of the weight vector, where Qi,j = yiyjK(xi, xj).

4.2.2 Existing variable selection techniques

We compare our new methods (Section 4.3) to variable selection based on (ten-

fold) cross-validation (CV), guaranteed risk minimisation (GRM, Vapnik 1982)
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and the kernel regularisation information criterion (KRIC) by Kobayashi and

Komaki (2006). Each of these will be explained in more detail below.

Ten-fold cross-validation divides the training data in ten parts of roughly

equal size. One part is left out, the other nine parts are the training data and are

used to fit the SVM. This SVM is applied to the part that is left out to obtain

an estimate of the error rate. This process is repeated ten times (each time a

different part is left out) to obtain the CV generalization error rate ε̂(S) as the

average of the ten separate error rates. We select the model with the lowest

value of ε̂(S), where S ranges over all subsets of variables under consideration.

Another common method is five-fold CV. The lower the number of folds, the less

computing time is required, but the higher the variability of the estimates of the

generalization error. Note that n−fold CV is the same as the computationally

infeasible leave-one-out CV.

General risk minimisation (Vapnik, 1982) is derived from the estimated gen-

eralization error rate, using

GRM(S) = ε̂(S) +
|S|
n

(
1 +

√
1 + ε̂(S)(n/|S|)). (4.4)

Here, |S| stands for the number of input variables in the set S and n is the

number of observations in the training sample. We select the model with the

lowest value of GRM(S), where S ranges over all subsets of variables under

consideration. Kearns et al. (1997) compare CV, GRM and minimum description

length (Rissanen, 1989). Their experiments have demonstrated that none of

the criteria is consistently better than the others. Note that the computational

overhead for computing these measures can be immense, since we need to train

ten support vector machines to estimate the generalization error rate for only one

submodel.

We now define the KRIC of Kobayashi and Komaki (2006). This criterion

was originally developed to tune the constant C in the SVM definition (4.1), and

by extension to tune the kernel parameters. We use it without much adjustment

for variable selection. Denote by xi,S the subvector of xi, consisting of elements

xij with j ∈ S, and similarly for other vectors. We estimate the SVM (4.1) using

the observations (xi,S , yi), yielding the vectors ωS , bS and ξS , where the subscript
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S refers to the subset of variables under consideration. In the dual problem (4.2),

we have αS = (αS,1, . . . , αS,n) and [QS ]i,k = yiykK(xi,S , xk,S). The decision rule

fS(x) is as in (4.3), and we set ai,S = fS(xi,S). Next, we define vectors tS and

mS of length n, with components

tS,i = η2 exp(−ηai,Syi)
(1 + exp(−ηai,Syi))2

and mS,i = −η
yi exp(−ηai,Syi)

1 + exp(−ηai,Syi)
, i = 1, . . . , n.

Here we choose η = log(2) such that log(1 + exp(−ηx)) and η[1 − x]+ coincide

for x = 0, see Kobayashi and Komaki (2006) for further motivation. With λ =

C−1 log 2 the KRIC for the logistic Bayesian model for SVMs is defined as

KRIC(S) = 2
[ n∑

i=1

log
(
1 + exp(−ηai,Syi)

)
(4.5)

+ trace((QSdiag(tS) + λIn)−1QS(diag(mS)2 − n−1mSmt
S))

]
.

Alternatively, Sollich’s Bayesian model for SVMs (Sollich, 2002) leads to a KRIC

with a similar form as the one in (4.5). Using

ν(ai,S) = (1 + exp(−2C))−1(exp(−C[1− ai,S ]+) + exp(−C[1 + ai,S ]+)),

the KRIC for the Sollich Bayesian model for SVMs is defined as

KRICS(S) = KRIC(S)− 2n log
n∑

i=1

ν(ai,S). (4.6)

The computation of the KRIC includes inverting an n × n-matrix with only a

few zeroes. Therefore, the computation is time-consuming if the sample size n is

large. Both the CV error rate and the KRIC may require a prohibitive computing

time when a large number of different models needs to be evaluated.

4.2.3 Ranking techniques

A full subset search is computationally not feasible even not for problems with

only a small number of dimensions (p = 15 for example). To dramatically reduce

the number of models while still selecting a model that is “almost” the best model,
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Chen, Li and Li (2005) use a genetic algorithm, while Peng, Long and Ding (2005)

suggest a combined backward elimination/forward selection strategy. However,

both of these techniques still suffer from the possibility that a large number of

models needs to be checked before arriving at a solution.

Alternatively, variable ranking consists of assigning a “value of importance”

to each variable and sorting the variables according to their importance. This

results in a series of p stacked models, thus only p evaluations of the variable

selection criterion are needed. The most commonly used algorithm is the SVM

recursive feature elimination (SVM-RFE) technique from Guyon et al. (2002).

For a linear SVM, the variables are ranked by w2
j , with wj the j-th component of

the weight vector w. This technique assumes that the variables are standardized

to have mean 0 and variance 1. The extension proposed by Rakotomamonjy

(2003) allows application to SVMs with a non-linear kernel. We use the following

SVM-RFE algorithm with variable influence

∆‖wS‖2
(j)=

∣∣‖wS‖2 − ‖wS\{j}‖2
∣∣

as suggested by Rakotomamonjy (2003).

Step 1: Initialise S ← {1, . . . , p}, the subset of unranked features, and r ← (),

the vector of ranked features.

Step 2: Repeat the following steps until S = ∅.

(a) Train a SVM on (xi,S , yi), and compute ‖wS‖2 = α′SQSαS .

(b) For each j ∈ S, train a new SVM on (xi,S\{j}, yi). This gives a value

‖wS\{j}‖2 = α′S\{j}QS\{j}αS\{j} for each j ∈ S.

(c) Obtain j0 = argminj |‖wS‖2 − ‖wS\(j)‖2| and set S ← S \ {j0} and

r ← (j0, r).

The vector r contains the ranked variables, with the first element the most im-

portant one. A disadvantage of this method is that the number of SVMs to be

trained is O(p2). This can be overcome by using αS instead of αS\{j} in Step

2b, such that ‖wS\{j}‖2 ≈ α′SQS\{j}αS . Rakotomamonjy (2003) argues that this
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will not affect the ranking significantly, while still allowing a major reduction in

computational time, bringing the number of SVMs to be estimated to O(p). We

employ this approximation in the simulation study in Section 4.4 and in the real

data examples in Section 4.5.

The most easiest way to rank the variables is by filtering methods. Zhang et

al. (2006) propose using sj = |wj(mj,+1 −mj,−1)| for ranking, where mj,+1 and

mj,−1 are the within-class means of variable j. Shih and Cheng (2005) use the

Fisher score

Sj =
|mj,+1 −mj,−1|√

σ2
j,+1 + σ2

j,−1

for a linear SVM, where σ2
j,+1 and σ2

j,−1 are the within-class variances of variable

j. The main advantage of using Sj is that it is not necessary to train any SVM

to rank the variables. The Fisher score ranking is considered in Sections 4.4 and

4.5.

4.3 The new information criteria

As stated in the previous section, evaluating the CV error rate or the KRIC of

a particular support vector machine model requires a high number of additional

computations. For this reason, we propose two new criteria which use informa-

tion already available in the SVM, without additional complicated computations.

The criteria are based on how badly the SVM violates the margin constraints,

which are written as
∑n

i=1 ξi,S , where ξi,S is the margin slack of observation i in

the support vector machine trained on the variables with indices in S, where S is

a subset of {1, . . . , p}. Alternatively, we can use the logarithm of this sum, anal-

ogous to Bai and Ng (2002) for selecting the number of factors in factor analysis.

However, in the SVM setting this has the drawback that the value is undefined if

the sum equals zero, which can happen if the data are perfectly separable. Also,

Bai and Ng (2002) advise using a log-transform for scalar invariance reasons.

Since we follow the advice to standardise the variables before training the SVM,

for better ranking as explained in Section 4.2.3, we automatically have scalar
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invariance of the sum of the margin slacks. For these reasons, we choose not to

take the log-transform.

Generally (but not always),
∑

i ξi,S will decrease as more variables are added.

Therefore we add a penalty term related to the number of included variables

to ensure a tradeoff between accuracy and simplicity of the chosen model. We

suggest adding a linear penalty term, such that we get an information criterion

of the form

IC(S) =
n∑

i=1

ξi + C(n)|S| , (4.7)

where S is the set of variables included in the model.

A first choice is to take C(n) constant in (4.7). It is interesting to note that

IC(S) is then, up to constant factors, an easily computable approximation of the

KRIC of Kobayashi and Komaki (2006), hereby providing a theoretical justifica-

tion for its use. To better understand this, note first that log
(
1+exp(−ηai,Syi)

)

is a continuous approximation of the hinge loss function η[1− yiai,S ]+ = ηξi,S for

all 1 ≤ i ≤ n. Hence, the first term of the KRIC can be approximated, up to a

constant factor, by
∑

i ξi,S . For the approximation of the second term in (4.5),

rewrite

W = (QSdiag(tS) + λIn)−1QS(diag(mS)2 − n−1mSmt
S)

= V diag(tS)−1(diag(mS)2 − n−1mSmt
S),

with V = (A + λIn)−1A a symmetric, positive semi-definite matrix and A =

QSdiag(tS). Denoting A− the generalised inverse of A, and using a series expan-

sion around λ = 0, gives that the leading term of V = A−(I + λA−)−1A is equal

to A−A. This expansion converges as long as the eigenvalues of λA− are strictly

less than one, which can be obtained by taking λ small enough. We now use a

singular value decomposition of both A and A− and use the fact that the singular

values of A− are the reciprocals of the non-zero singular values of A, to obtain

that the product A−A is a n× n diagonal matrix with on the diagonal |S| ones

and the remaining entries zero. Thus, the leading term of trace(W ) equals the

sum of |S| diagonal entries of the matrix diag(tS)−1(diag(mS)2 − n−1mSmt
S)).
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The i-th diagonal element of this matrix is equal to

n− 1
n

t−1
S,im

2
S,i =

n− 1
n

exp(−ηai,Syi).

To further facilitate computations we replace this by 1, motivated by the fact

that ηai,Syi is often small. Although this approximation might be crude for a

single term, we found empirically that it works well for the summation over the

entire training set. Hence, we arrive at the approximation trace(W ) ≈ |S| which

is the linear penalty term in (4.7).

Taking the constant value C(n) = 2, leads to our first new support vector

machine information criterion (SVMIC):

SVMICa(S) =
n∑

i=1

ξi + 2|S|. (4.8)

The newly proposed criterion SVMICa for support vector machines shares the

form of the penalty with the well-known Akaike (1973) information criterion.

This AIC is defined as minus twice the value of the maximised log likelihood of

the model, plus two times the number of parameters to be estimated (that is,

2|S|). Because the penalty 2|S| is not dependent on the sample size n, we expect

that both criteria share some properties, such as having the tendency to not select

the most parsimonious model. For the AIC, Woodroofe (1982) has shown that in

the limit for n →∞, the expected number of superfluous parameters is less than

one.

To support the definition of SVMICa , we ran a simulation experiment and

compared the values of KRIC and SVMICa for 100 models. The sample size is

n = 50, with 10 variables of which only the first 4 variables are different from

zero. A detailed description of the simulation setting can be found in Section 4.4.

We used a linear kernel. Figure 4.1 reports these numerical results and shows a

high correlation (0.975) between the values of the two criteria. Other simulation

settings gave comparable correlation values.

Our second proposed criterion follows the spirit of Schwarz’s (1978) Bayesian

information criterion (BIC). This criterion is defined similarly as the AIC, but

instead of the penalty 2|S|, it uses log(n)|S|. The BIC has been shown to be



70 4.3. The new information criteria

20 25 30 35 40 45

30
40

50
60

SVMICa

K
R

IC

Figure 4.1: Values of KRIC and SVMICa in a simulation experiment, showing

high correlation (0.975).

consistent (Haughton 1988, 1989). This means that if the true model is contained

in the search list, the criterion will (in the limit for n → ∞) select this correct

model. For a related construction for factor models, see Bai and Ng (2002). This

motivates us to take C(n) = log(n), and we define our second criterion

SVMICb(S) =
n∑

i=1

ξi + log(n)|S|. (4.9)

It is immediate that the computational cost of both SVMICs is much lower

than of the cross-validated error rate (10 more SVMs to train for 10-fold cross-

validation) and of the kernel regularisation information criterion KRIC (which

needs computations of the order O(n3) due to the matrix inversion). The best

case is when the ξi,S are directly available. Computing the SVMICs is only

an O(n) computation in that case, and usually even less when employing the

property that

ξi,S 6= 0 ⇔ αi,S = 1.
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When only αS and QS are available, ξi,S is computed using the relation

ξi,S =
[
1− yi

n∑

j=1
αj,S>0

αj,S [QS ]ij
]
+
.

This means that in the worst case, the computation time of the SV MICs is

O(n2), which is still faster than using either CV error rate or KRIC.

4.4 Simulation results

We perform M = 100 simulation runs with the following settings. We gener-

ate n ∈ {25, 50, 100, 200} independent observations xi, 1 ≤ i ≤ n of dimension

p ∈ {25, 50, 100, 200}, with distribution N (0, σ2Ip) where σ2 = 1. For each obser-

vation we generate a class label yi ∈ {−1, +1}, with P (yi = 1) = 1/2. Finally, we

let µ = (1/2,−1/2,−1/2, 1/2, 0, . . . , 0) of dimension p, and set xi ← xi + yiµ to

separate the two classes to some extent. This implies that the optimal separating

hyperplane is x′µ = 0, such that ŷ = +1 if x′µ > 0, resulting in a generaliza-

tion error rate of Φ(−‖µ‖2/σ), with Φ the cumulative distribution function of a

standard normal. In our example, with σ = 1 and ‖µ‖2 = 1, we find an optimal

generalization error rate of 0.159.

During each simulation run, we standardize the variables to improve the nu-

merical performance of the SVM algorithm. The variables are ranked using either

the Fisher score or based on the variable influence on w, as described in Section

4.2.3. For each of the nested models obtained in the variable ranking step, we

compute (i) SVMICa and (ii) SVMICb as in (4.8) and (4.9). We compare their

performance to (iii) ten-fold CV, (iv) Vapnik’s GRM as in (4.4), (v) KRIC for

the logistic Bayesian model for SVMs as in (4.5), and (vi) KRIC for the Sol-

lich model for SVMs as in (4.6). An important remark is that for ten-fold CV,

we employ the CV2 method, which includes the feature selection procedure in

each cross-validation step, as suggested by Zhang et al. (2006). Computing the

CV error rate in the usual way can lead to a (severely) biased estimate of the

generalization error, and using CV2 reduces this bias.



72 4.4. Simulation results

The experiment is repeated with two different kernels (i) a linear kernel

K(x1, x2) = x′1x2 leading to a linear decision rule (ii) a quadratic kernel K(x1, x2) =

(γx′1x2 + 1)2, with γ = 1/p, the inverse of the number of variables, leading to a

quadratic decision rule. The tuning parameter C in each SVM that we train is

chosen to be C = 1, as we standardize the explicative variables a priori. This is

also the standard setting for C for the svm procedure in the R software package.

We experimented with other values of C in the range from 0.1 up to 10, and found

only minor differences in the simulation outcomes. We test the accuracy of the

classifiers computed from the selected input variables by estimating their gener-

alization (out-of-sample) error rate from a test sample of 10000 new observations.

These observations are generated in the same way as the training sample.

Table 4.1 reports the generalization error rates, obtained by averaging over

the 100 simulation runs. An overall observation is that the error-rate based

selection criteria (CV and GRM) have the worst performance. The performances

of the KRICs and the new SVMICs are comparable. More precisely, we observe

that the KRICs are better as a variable selection method for small sample sizes

(n = 25), while the SVMICs give better results for larger sample sizes. This is

especially apparent when the quadratic kernel is used. For a small number of

observations compared to the number of variables, we also note that SVMICa

slightly outperforms SVMICb in terms of generalization error rate, and that the

opposite is true with many observations and fewer variables. The differences in

generalization error rates become smaller as the number of variables grows. This

is particulary true for CV, whose relative performance becomes better at large

sample sizes. But SVMICa and SVMICb are still somewhat ahead, and have the

advantage that they are much easier (and less time-intensive) to compute than

the other criteria, included the KRICs having a computation time of order O(n3).

Note that, as n grows, the generalization error rates of the models obtained by our

two suggested criteria are converging towards the theoretically obtained minimal

generalization error rate of 15.9%. Investigating which variable ranking criterion

is better, results in case of linear kernels to a strong preference for ranking with

the Fisher score. For the quadratic kernel, it is slightly better to rank the variables

based on variable influence on ‖w‖2.
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Linear kernel

n p SVMICa SVMICb CV GRM KRIC KRICS

25 25 32.2 29.4 32.6 31.6 33.5 31.8 36.2 34.5 31.3 29.0 31.5 29.9

50 34.6 31.6 35.3 32.6 35.3 33.5 37.4 35.4 34.4 33.2 34.4 33.2

100 37.4 33.9 37.3 35.0 37.8 34.4 38.6 35.7 37.0 34.9 37.1 34.9

50 25 24.4 21.6 24.6 23.2 27.1 25.5 31.1 29.6 25.7 24.9 26.0 25.9

50 28.5 23.3 27.7 24.8 29.5 26.3 31.4 30.5 29.8 28.7 30.2 29.7

100 30.9 24.6 29.1 25.0 31.0 28.0 32.1 30.9 31.0 30.1 31.3 30.8

100 25 19.9 18.5 19.6 18.9 24.6 23.8 30.1 30.1 21.8 20.6 22.3 21.7

50 22.9 19.2 20.2 19.0 25.8 25.4 29.9 29.6 26.9 26.8 27.3 27.8

200 25 17.8 17.0 16.9 16.8 22.7 21.5 28.9 29.3 18.7 18.0 19.2 18.9

Quadratic kernel

n p SVMICa SVMICb CV GRM KRIC KRICS

25 25 31.3 30.7 34.2 33.8 33.8 32.9 37.7 36.6 29.5 28.4 30.2 30.1

50 35.8 35.3 39.3 38.5 39.6 38.5 43.6 42.6 33.3 33.0 33.9 34.1

100 43.3 43.3 48.3 48.4 42.8 42.7 49.2 48.7 37.1 37.1 37.7 38.2

50 25 22.7 21.3 25.0 24.3 26.7 25.9 31.8 31.7 23.6 22.5 24.8 25.1

50 24.4 23.0 26.8 26.8 29.8 28.1 33.9 33.5 27.6 27.1 29.1 29.3

100 26.4 25.6 30.8 30.2 34.1 33.8 40.3 40.1 31.1 30.9 32.5 32.8

100 25 19.4 18.5 19.9 19.1 23.8 19.2 30.6 30.2 20.0 20.0 21.7 22.0

50 19.7 18.5 19.8 19.5 24.2 22.0 30.5 30.7 22.6 22.6 24.7 25.1

200 25 20.1 20.3 17.1 16.8 22.4 21.4 29.4 29.6 18.3 18.1 20.3 20.6

Table 4.1: Simulated average generalization error rate (%) for the six methods

using two different kernels. For each method, the number on the left resulted

from ranking by variable influence on ‖w‖2, and the number on the right in each

column is from ranking by the Fisher scores Sj .

Figure 4.2 presents the values of the 100 simulated generalization errors as

boxplots, giving insight in the variability of the variable selection methods. For

most of the cases it turns out that cross-validation is highly variable, while GRM

has a small variability. This good property of GRM is, however, accompanied

by a much higher average generalization error rate. Comparing the different

information criteria shows that SVMICa is quite comparable to the KRICs. The
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Figure 4.2: Generalization error rates for 100 simulation experiments, for n = 100,

p = 25 (a) linear kernel, ranking with ‖w‖2, (b) linear kernel, ranking with Fisher

score, (c) quadratic kernel, ranking with ‖w‖2, and for (d) n = 25, 100 variables,

linear kernel and ranking with ‖w‖2.

SVMICb has a larger variability. In the setting with small sample size (n = 25)

and relatively large number of variables (100), all methods, except for GRM, are
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comparable with respect to variability, but GRM has again the largest median

error rate. Our main conclusion from this analysis is that SVMICa has a similar

variability than the KRIC criteria, but SVMICb has a larger variability. Recall

that the average error rates, as reported in Table 1, were of similar magnitude

for all the four information criteria. Hence, when needing to choosing between

the two newly proposed information criteria, we have a preference for SVMICa.

Given the variability of the generalization errors over the 100 simulation runs,

see the boxplots in Figure 4.2, it is important to test whether the averages re-

ported in Table 1 are also significantly different from each other. We performed

standard t-tests, and most difference are indeed significant. For example, for the

settings presented in Figure 1, we obtained that, at the 1% level, (a) all differ-

ences are significant, except between SVMICb and the 2 KRiCs (b) all differences

are significant, except between SVMICa and the 2 KRICs (c) all differences are

significant, except between SVMICb and the 2 KRICs (d) the differences with

the GRM method are significant, the others not.

Furthermore, we investigate which models are actually chosen by the different

criteria. This information is reported in Table 4.2. For each setting, it shows how

many times the correct subset of input variables, containing only the first four

input variables, was chosen (C, correct). This table also shows how many times a

too-sparse group of variables was selected (U, underfitting), and how many times

a too-rich group of variables was chosen (O, overfitting). So an overfit means

that all correct variables are selected, but in addition some superfluous ones,

while an underfit selects a subset of the important variables, but no irrelevant

variables are included. The good performance of SVMICa and SVMICb might

be due to the fact that these criteria seem to have the tendency to select a set of

variables which includes all significant ones as the number of observations grows.

The simulation results indicate that SVMICa behaves like AIC with its tendency

to overfit. The SVMICb seems to share the property of BIC that it selects the

correct model more often, if at least this true model is one of the possibilities

to select from. The cross-validated error rate, and the general risk minimisation

in particular, seem to have the tendency to ignore variables which nevertheless

are important. As a consequence, the models that these criteria select are of
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Kernel: Linear Quadratic

Models selected: C U O R C U O R

n = 25; p = 25 SVMICa 1 22 1 76 3 36 0 61

SVMICb 0 42 0 58 0 64 0 36

CV 0 38 4 58 1 40 5 54

GRM 0 77 0 23 0 75 0 25

KRIC 1 1 7 91 0 1 25 74

KRICS 0 0 9 91 0 0 49 51

n = 200; p = 25 SVMICa 22 0 76 2 2 0 98 0

SVMICb 77 9 10 4 67 14 6 13

CV 7 48 43 2 4 43 49 4

GRM 1 98 1 0 1 99 0 0

KRIC 6 0 93 1 8 0 84 8

KRICS 1 0 99 0 0 0 100 0

n = 25; p = 100 SVMICa 0 8 0 92 0 35 0 65

SVMICb 0 20 0 80 0 63 0 37

CV 0 23 6 71 0 33 10 57

GRM 0 56 0 44 0 64 0 36

KRIC 0 1 0 99 0 0 41 59

KRICS 0 0 1 99 0 0 56 44

Table 4.2: Simulated frequencies of selected models, with variable ranking done

by influence on ‖w‖2. Here ‘C’ denotes correct selection, ‘U’ is underfitting, ‘O’

is overfitting, and ‘R’ for all other situations.

poor predictive quality. The two KRICs of Kobayashi and Komaki (2006) share

the overselection property exhibited by SVMICa, but the KRICs select excessive

variables even more frequently than SVMICa. This can explain why these criteria

perform somewhat worse when the number of observations is large, and why they

outperform the proposed SVMICs when the number of observations is small, since

the latter tend to underfit the model in the case of few observations.

This concludes the results for the case of two populations coming from an

identical distribution, differing only in mean. Another case that we examined is

where the variances of the two populations differ from each other. We performed
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Linear kernel

n p SVMICa SVMICb CV GRM KRIC KRICS

25 25 28.9 28.0 30.1 29.2 30.4 28.4 32.7 31.6 29.0 27.5 28.8 27.7

50 33.3 30.2 34.2 31.3 35.1 31.4 35.3 33.1 32.7 30.7 32.5 30.5

100 35.6 31.5 35.7 32.3 36.0 32.6 36.9 33.7 34.8 32.6 34.8 33.0

200 36.5 33.2 36.4 34.4 36.4 34.2 36.6 35.6 36.4 33.5 36.1 33.7

50 25 23.3 20.5 23.9 21.9 26.1 24.9 28.9 28.6 24.2 23.6 24.6 24.3

50 27.1 21.7 25.7 22.7 27.7 25.2 29.1 28.4 27.7 26.8 27.6 27.1

100 28.3 23.1 27.4 23.7 28.7 25.2 29.9 28.7 28.4 26.7 28.4 27.5

100 25 19.0 17.4 18.1 17.4 22.7 21.5 27.6 27.6 20.5 20.0 21.0 20.9

50 21.8 17.8 19.3 18.0 23.5 22.7 26.9 27.0 24.8 25.0 25.0 25.5

200 25 17.0 16.1 15.9 15.6 21.4 20.7 27.0 27.0 17.9 17.0 18.3 17.8

Quadratic kernel

n p SVMICa SVMICb CV GRM KRIC KRICS

25 25 29.2 28.9 31.8 31.8 31.8 28.7 35.4 34.7 25.7 24.9 25.8 26.2

50 35.1 35.8 39.6 40.0 38.1 37.6 42.8 42.4 30.5 30.8 31.3 32.3

100 42.1 41.7 48.2 48.1 42.2 42.3 49.4 48.7 35.0 36.0 36.2 38.1

200 50.1 50.1 50.1 50.1 44.7 44.4 50.1 50.1 38.9 40.0 40.4 41.8

50 25 20.5 19.3 23.5 22.2 25.9 24.5 30.6 30.2 19.0 19.1 19.5 19.9

50 23.1 22.2 26.1 26.2 28.3 27.6 33.2 32.7 23.8 23.9 25.1 26.1

100 26.5 25.8 30.4 30.4 34.5 33.7 40.5 40.4 28.2 28.8 30.1 32.3

100 25 14.6 15.2 18.5 16.4 20.8 19.9 27.8 27.1 14.2 14.5 14.5 14.9

50 17.9 17.0 18.4 17.8 22.0 21.5 27.7 28.3 18.1 18.5 19.5 20.3

200 25 9.9 9.8 12.9 13.2 19.6 17.6 29.3 26.8 10.1 10.3 9.7 9.8

Table 4.3: As Table 1, but now for two populations with different variances

a simulation study, in a similar way as the previous one, where the samples have

been drawn from N (µ, Ip) for class +1, and from N (−2µ, 4Ip) for class −1.

The results of this simulation are summarized in Tables 4.3 and Table 4.4. We

observe similar results as in the case where both populations had equal variance.

Selection based on CV error rate and on GRM still perform rather poor. As

before, the performances of the KRICs and SVMICs are similar. More precisely,

the SVMICs have an improved performance with respect to the KRICs when

the sample size is large (n ≥ 50) and the linear kernel is used, and the KRICs
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Kernel: Linear Quadratic

Models selected: C U O R C U O R

n = 25; p = 25 SVMICa 0 22 1 77 1 36 0 63

SVMICb 0 47 0 53 1 57 0 42

CV 1 40 1 58 1 39 8 52

GRM 0 76 0 24 0 70 0 30

KRIC 0 0 6 94 0 0 25 75

KRICS 0 0 8 92 0 0 50 50

n = 200; p = 25 SVMICa 11 0 85 4 0 20 0 80

SVMICb 69 10 16 5 0 45 0 55

CV 6 56 37 1 0 33 4 63

GRM 0 100 0 0 0 56 0 44

KRIC 5 0 93 2 0 0 40 60

KRICS 0 0 99 1 0 0 53 47

n = 25; p = 200 SVMICa 0 1 0 99 0 52 0 48

SVMICb 0 8 0 92 0 54 0 46

CV 0 22 2 76 0 22 5 73

GRM 0 46 0 54 0 54 0 46

KRIC 0 1 0 99 0 0 46 54

KRICS 0 0 0 100 0 0 56 44

Table 4.4: As Table 2, but now for two populations with different variances

work slightly better for small sample sizes (n = 25). For the quadratic kernel,

we notice a good performance of the KRICs, which is only matched by SVMICa

for larger sample sizes. From Table 4.4 we can again make the same observations

as before when the linear kernel is used. For the quadratic kernel the SVMICs

have more difficulty selecting all the relevant variables than the KRICs, which

explains why the latter criteria have an improved performance here.

We also conducted a simulation experiment where the input variables were

strongly correlated. First, the observations were generated as in the first simula-

tion experiment. Then, we applied the transformation

xij = ρxikj + εij with εij ∼ N (0, ρ2) i.i.d.

where i = 1, . . . , n, kj is chosen arbitrarily between 1 and 4, and 4 < j ≤ p/2,
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such that about half of the unimportant input variables are correlated with the

four important ones. The parameter |ρ| < 1 controls the degree of correlation.

We have chosen ρ = 0.8 and found similar results (not reported) as for the case

where the variances of both class-population differ.

4.5 Tests on real data

We compare the performance of the new methods with that of the other discussed

criteria on several real-world datasets. We use some of the benchmark datasets

used in Rakotomamonjy (2003), and in Rätsch et al. (2001). The datasets used

are the Pima Indians Diabetes database (768 observations, 8 variables), the Stat-

log Cleveland Heart Disease database (303 observations, 14 variables), and Leo

Breiman’s ringnorm and twonorm datasets (both 7400 observations, 20 variables).

These datasets are available from the UCI Machine Learning Repository (the first

two), and the Delve Repository (last two). We perform 100 random splits of the

data in a training sample and a test sample, where the size of the training sample

is chosen as
√

2n, with n the total number of observations in the dataset. We

chose the size of the training set such that there is a sufficient amount of observa-

tions in the test sample to estimate the generalization (out-of-sample) error rate.

The training sample size is relatively small, such that the computation time for

the KRIC remains within bounds. For each of these partitions we perform vari-

able selection on the training sample exactly as in the simulation study. We first

rank the variables to retain p stacked subsets of input variables, and then use the

information criteria to select the variables that best explain the training data.

Then, we predict the class labels for the test sample, and use these predictions to

estimate the generalization error rate. We use variable ranking based on variable

influence on ‖w‖2 as well as on Fisher score, and we use a linear, quadratic and

radial kernel.

The estimated generalization error rates are presented in Table 4.5 for each

dataset and estimation setting. We observe that the KRICs are the preferred

choice of variable selection criterion in terms of generalization error rate for the

‘twonorm’ and ‘heart’ datasets. For the ‘ringnorm’ and ‘diabetes’ datasets the



80 4.5. Tests on real data

Ranking: Variable influence on ‖w‖ Fisher scores

Data Kernel: Linear Quadratic Radial Linear Quadratic Radial

Diabetes SVMICa 28.6 28.5 29.2 28.0 28.2 28.4

SVMICb 29.0 28.9 29.2 28.6 28.5 28.9

CV 28.6 29.1 29.1 28.8 28.5 29.3

GRM 29.6 29.7 29.6 29.1 29.2 29.3

KRIC 28.5 28.2 29.4 27.5 28.1 29.6

KRICS 28.6 28.5 29.7 28.3 28.6 29.7

Heart SVMICa 27.0 27.4 27.7 27.6 28.0 28.3

SVMICb 27.6 28.9 28.9 28.2 29.3 29.5

CV 27.6 28.6 27.2 26.8 28.0 28.8

GRM 29.3 30.3 29.4 28.8 30.4 30.6

KRIC 25.4 23.4 23.8 24.5 23.2 23.8

KRICS 25.3 23.5 25.2 25.2 23.7 25.0

Ringnorm SVMICa 31.1 16.4 8.4 30.8 15.6 6.5

SVMICb 34.9 20.2 13.5 35.2 22.4 13.4

CV 33.9 32.1 26.6 32.8 25.6 21.2

GRM 39.2 41.3 38.6 39.3 38.4 37.3

KRIC 30.1 16.3 6.0 29.6 15.9 4.4

KRICS 29.9 16.0 3.1 29.2 15.4 2.5

Twonorm SVMICa 9.9 9.3 11.4 10.1 8.9 9.4

SVMICb 13.5 14.1 15.9 15.0 15.2 16.0

CV 20.5 21.0 19.8 21.0 21.1 20.8

GRM 31.4 31.7 31.6 30.8 31.2 31.3

KRIC 8.0 7.5 11.0 6.8 6.8 9.2

KRICS 7.5 6.0 4.0 6.6 5.5 4.8

Table 4.5: Generalization error rates (%) for variable selection applied to four

data sets. Two variable ranking schemes and three types of kernel are used for

each of the criteria.

difference in performance between the KRICs and our newly proposed SVMICs is

less pronounced. The predictive performance of the models selected by SVMICa

are for most settings comparable to that of the KRIC, while being much faster

to compute. These results are consistent across all settings. The CV error rate
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and especially the GRM have a poor performance, which is in line of the results

obtained in the simulation.

From these results, and the results obtained in Section 4.4, we suggest to use

either the SVMICa or the SVMICb if a preliminary analysis of the data or a

priori knowledge indicates that the true decision function is almost linear. When

it differs strongly from a linear function, the researcher has a choice between the

ease of computation of the support vector machine information criteria, or the

somewhat improved predictive performance, though with higher computational

cost, of the kernel regularization information criterion.

Finally, we applied the newly proposed information criteria for variable se-

lection to two large data sets, the “Madelon” (n = 2000, p = 500) and “Arcene”

data (n = 100, p = 10000). These data sets were part of the NIPS 2003 fea-

ture selection, and are described in detail in Guyon et al (2006). Given the high

dimensionality of these data, the variables were ranked according to the Fisher

score. We used a linear kernel and computed balanced error rates (BER), that is

the average of the error rate of the positive class and the error rate of the negative

class. When using SVMICa we obtain a BER of 43.0% for the Madelon data,

and 31.1% for the Arcene data. For SVMICb we get 37.3% and 31.1%, respec-

tively. In Guyon et al (2006, 2007) the BER of other feature selection methods

is presented, and it turns out that several other methods yield much better per-

formance on these data. A possible explication is that we used a standard SVM,

without any optimal tuning of the regularization parameters.

4.6 Conclusions

In this paper we considered the problem of variable selection in support vector

machines. We proposed two new information criteria, SVMICa and SVMICb,

which allow us to evaluate the suitability of the selected subset of variables for

predictive purposes, without much additional computational costs. We provided

an argumentation for these criteria, linking SVMICa to the KRIC of Kobayashi

and Komaki (2006), and justifying SVMICb with the need for a consistent se-

lection criterion. We demonstrated the effectiveness of these criteria in a sim-
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ulation study, where we compared their predictive performance to the KRIC,

cross-validation and general risk minimization. Especially for decision functions

which are close to an affine function, we found that SVMICa and SVMICb per-

formed the best of all tested criteria, and were also the easiest to compute. For

more complicated decision functions, we found that SVMICa still performs well

for selecting models with good generalization properties. We repeated the experi-

ment on several real data examples, and the result confirmed the good properties

of these newly proposed criteria. In particular we showed that cross-validation

criteria are outperformed in generalization error by the new information criteria,

where the latter are coming at almost no additional computational cost.

The aim of our paper was to propose an information criterion for a standard

SVM. We do not claim that the procedure is outperforming other very advanced

feature selection methods, which are not relying on a standard SVM. Obtaining

information criteria for other machine learners is an interesting topic for future

research. Another research question is how suitable the information criteria are

for optimal tuning of the regularization and other parameters of the SVM, without

necessarily selecting a subset of input variables. Finally, it would be interesting

to continue on the theoretical verification of the good performance of our two

proposed criteria, and for example try to obtain consistency results for the SVM

information criteria.
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Classification efficiencies of

Convex Risk Minimisation

methods at the normal model

This article has been submitted as

Claeskens, G., Croux, C., and Van Kerckhoven, J. (2007). Classification efficien-

cies of Convex Risk Minimisation methods at the normal model.

Abstract

In this paper the asymptotic classification efficiency of a class of binary classi-

fication methods known as convex risk minimisation techniques is derived. We

computed the classification efficiency of these techniques relative to the well-

known classical Fisher Discriminant rule, which is known to be optimal for two

normal populations with equal variances. We find that for reasonably balanced

classes which are not easily separable, the convex risk minimisation methods have

fairly high classification efficiency in this setting.
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5.1 Introduction

In this paper we study the classification efficiency of several binary classification

techniques belonging to the group of convex risk minimisation methods (CRM;

Vapnik, 1998). These methods have the advantage that they are easily applicable

to a variety of classification problems, ranging from linear classification to more

general classification rules, such as quadratic rules, or Gaussian kernel based clas-

sification rules. Other advantages of CRM methods are their ability to deal with

high-dimensional problems, and their good generalisation properties. Because

of these desirable properties, convex risk minimisation techniques have become

popular classification methods. Examples of such methods include (kernel) logis-

tic regression (Wahba, 1999), AdaBoost (Freund and Schapire, 1996; Friedman

et al., 2000; Hastie et al., 2001), and support vector machines (Christianini and

Shawe-Taylor, 2000). An interesting question that we answer in this paper is

which price you pay, in terms of classification efficiency, for this flexibility. We

do this by comparing the CRM techniques with Fisher’s linear discriminant rule

in the setting where Fisher’s rule is optimal.

Determining the classification efficiency of a statistical decision rule was pro-

posed by Efron (1975), who compared logistic regression with the Fisher linear

discriminant rule. The efficiency was computed for a mixture of two normally

distributed populations with equal variances, where Fisher’s rule is known to be

optimal. Finding a decision rule’s classification efficiency is especially important

with classifiers robust to outliers, where researchers want to know what price, in

terms of efficiency loss, they pay for the robustness of the classifier. Such effi-

ciencies have been computed in Croux, Haesbroeck and Joossens (2008) for the

robust logistic discrimination rule, and in Croux, Filzmoser and Joossens (2008)

for robust linear discriminant rules.

In this paper we assume the setting of two normal distributions with the same

covariance matrix, which allows us to obtain feasible theoretical and analytical

results. We use a similar approach to Croux, Filzmoser and Joossens (2008),

who computed the asymptotic loss of the classifier using the second order in-

fluence function of the error rate of the classifier. Classification efficiencies are



Chapter 5. CRM classification efficiencies 85

computed for CRM classifiers, with AdaBoost and Support Vector Machines as

leading examples. These results constitute the main contribution of the paper,

and it turns out that the studied CRM techniques are reasonably efficient with an

efficiency above 50% when the population means of the two populations are at a

Mahalanobis distance less than 2 of each other, and this for reasonably balanced

populations (log-odds ratio < 1 in absolute value).

In Section 5.2 we introduce the notation, Section 5.3 contains the theoreti-

cal framework for general risk minimisation problems. We show that the CRM

techniques are Fisher-consistent when the class probabilities are equal to 1/2. In

Section 5.4 we calculate the asymptotic classification efficiencies for the specific

CRM techniques mentioned above. Section 5.5 provides a numerical compari-

son of the efficiency of the various techniques. Finally, a summary and some

conclusions are in Section 5.6. All the proofs in this paper are relegated to the

appendix.

5.2 Model Setting

In this section we introduce the model setting and present basic results for the

Fisher linear discriminant rule. Let X be a p-variate stochastic variable rep-

resenting the predictor variables, and let Y be the variable indicating the class

label, so Y ∈ {+1,−1}. These random variables (X,Y ) follow a joint distribution

that we denote by H. The observations in the training sample are generated by

H.

In this paper, we focus on linear classification rules of the form

Ŷ = sign(a + btx), (5.1)

where a is the intercept, b is the p-dimensional vector of slope parameters, and

x is a p-variate observation to classify. We restrict to linear classification rules

because we want to benchmark their performance with respect to the classical

Fisher’s rule, and this in a model setting where the latter is optimal. Since

Fisher’s rule is linear, we restrict the other classification rules to be linear too.
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Moreover, theoretical classification efficiencies are only analytically computable

under this linearity assumption.

The performance of the classifier in (5.1) will be measured by means of a loss-

function L(·). This function is assumed to be positive, continuous, and convex.

The expected risk of the classification rule is

RL,H(a, b) = EH

[
L

(
Y (a + btX)

)]
. (5.2)

The values of intercept a and slope b that minimise the expected risk are denoted

as (
AL(H), BL(H)

)
= argmin

(a,b)
RL,H(a, b), (5.3)

and the associated discriminant rule is a convex risk minimisation rule. This

rule is asymptotically equivalent (at the population level) to the finite sample

minimisation problem

min
a,b

n−1
∑

i=1

L
(
yi(a + btxi)

)
+ n−1λ‖b‖2

2, (5.4)

where n is the size of the sample (x1, y1), . . . , (xn, yn) which is drawn i.i.d. from the

distribution H, and λ is a regularisation parameter. The minimisation problem

(5.4) differs from that used by Christmann and Steinwart (2004) for a study of

robustness properties and Zhang (2004) for studying consistency. They assumed

that the regularisation penalty term does not vanish for growing sample size, by

letting λ grow with n.

Each CRM rule depends on both the distribution of the training data, and

on the specific loss function. Table 5.1 gives a list of the classification methods

used in this paper, with their associated loss functions. Note that only the loss

function for least squares is not decreasing, and therefore we will treat it as a

separate case in Section 5.4.4.

To investigate the generalisation error, or out-of-sample error rate, we make

the model assumption that the data to classify are drawn from Hm, a mixture

of 2 normal distributions H+ ≡ N (µ+, Σ) and H− ≡ N (µ−,Σ). The class prob-

abilities π+ = PHm(Y = +1) and π− = PHm(Y = −1) are strictly positive. The
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Classification method L(u)

AdaBoost exp(−u)

(Kernel) logistic regression log(1 + exp(−u))

Support vector machine [1− u]+

Least squares (1− u)2

Table 5.1: Commonly used loss functions for general risk minimisation

error rate (ER) of the CRM-rule based on the loss function L computed from

training data following the distribution H is then given by

ERL(H) = π+P (AL(H) + BL(H)tX < 0 | X ∼ H+)

+ π−P (AL(H) + BL(H)tX > 0 | X ∼ H−).
(5.5)

Ideally we have that H = Hm, which means that the distribution of the training

data is the same as the distribution of the data-to-classify.

At the model distribution (that is H = Hm), we know that the Fisher rule

is optimal, in the sense of being the classifier with the smallest out-of-sample

error rate (Johnson and Wichern, 1998, page 685). The Fisher rule is given by

Ŷ = sign(α + βtx), with

β = Σ−1(µ+ − µ−)

and α = log
π+

π−
− βt (µ+ + µ−)

2
.

The expression for the optimal error rate is then given by

ERopt = π−Φ
( θ

∆
− ∆

2

)
+ π+Φ

(
− θ

∆
− ∆

2

)
, (5.6)

with θ = log(π+/π−) the log-odds ratio, and ∆2 = (µ+ − µ−)tΣ−1(µ+ − µ−) the

squared Mahalanobis distance between the two group means.

5.3 General results

In this section we give the general results which are valid for all convex risk

minimisation methods with a decreasing loss function L(·). Since all considered
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classification models are affine equivariant, we suppose, without loss of generality,

that µ+ = −µ− = e1∆/2, with e1 = (1, 0, . . . , 0)t, and Σ = Ip the p× p identity

matrix. This model is the canonical model.

Definition 5.1 A convex risk minimisation rule, defined by the loss function L,

is said to be Fisher consistent at the model distribution if

ERL(Hm) = ERopt.

In section 5.3.1 we obtain sufficient conditions under which CRM classifica-

tion rules are Fisher consistent. In Section 5.3.2, we provide general expressions

of influence functions. Finally, Section 5.3.3 gives the asymptotic loss and the

asymptotic relative classification efficiency of the decision rules, computed from

the influence functions.

5.3.1 Fisher-consistency of convex risk minimisation methods

Let Hm denote the canonical model distribution, and AL(Hm) and BL(Hm) the

minimisers of RL,Hm(a, b), defined in (5.2). To prove Fisher consistency, it needs

to be shown that

AL(Hm) = CL(Hm)θ and BL(Hm) = CL(Hm)∆e1, (5.7)

for a certain scalar constant CL(Hm). If (5.7) holds, then it readily follows that

ERL(Hm) = ERopt, with ERopt given in (5.6). The next proposition states the

conditions to ensure Fisher consistency for CRM models.

Proposition 5.2 If L(·) is a positive, continuous, convex, decreasing function,

and if the distribution Hm verifies π+ = π− = 1/2, then the convex risk minimi-

sation rule defined by the function L(·) is Fisher consistent.

If the condition π+ = π− = 1/2 does not hold, it is not possible to prove

Fisher consistency. In that case, we can only prove that the sign of the intercept

AL(Hm) is the same as the sign of θ. Note that this consistency result differs
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from the result obtained in Zhang (2004). The difference lies in our assumption

that the regularisation penalty term in (5.3) becomes zero at the population level

(when n converges to infinity), whereas Zhang (2004) assumes that this term is

still significant.

5.3.2 Influence Functions

To study the effect of an (outlying) observation on a statistical functional, such

as the error rate, influence functions (Hampel et al, 1986; van der Vaart, 2000,

pp. 291–296) are commonly used. The influence function is defined as

IF
(
(x, y); ER,Hm

)
= lim

ε→0+

ER
(
(1− ε)Hm + ε∆(x,y)

)− ER(Hm)
ε

,

where ∆(x,y) is the Dirac measure putting all its mass in the observation (x, y).

The k-th order influence function of a statistical functional T is defined as

IFk
(
(x, y);T,Hm

)
=

∂k

∂εk
T

(
(1− ε)Hm + ε∆(x,y)

)∣∣∣
ε=0

.

For small amounts of contamination in the training data, due to the presence of

a possible outlier (x, y), the error rate of the discriminant rule based on Hε =

(1− ε)Hm + ε∆(x,y) can be approximated using the Taylor-expansion

ER(Hε) = ER(Hm) + εIF
(
(x, y); ER,Hm

)
+

ε2

2
IF2

(
(x, y); ER,Hm

)
+O(ε3).

The Fisher discriminant rule is optimal at the model distribution, and we have

ERopt = ER(Hm). This also implies that any other discriminant rule, based

on a contaminated training sample, can never have an error rate smaller than

ERopt. Hence, negative values for IF
(
(x, y); ER,Hm

)
are excluded. Using the

property that E
[
IF

(
(x, y); ER,Hm

)]
= 0 (Hampel et al, 1986, p. 84), it follows

that IF
(
(x, y); ER, Hm

)
= 0 almost surely. Hence, the behaviour of the error

rate, under small amounts of contamination, is characterised by the second order

influence function IF2
(
(x, y); ER,Hm

)
, which should be non-negative everywhere.

For decision rules that are optimal under the model distribution Hm, we can

use Proposition 2 of Croux, Filzmoser and Joossens (2008) to determine the
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second order influence function of the error rate. This proposition states that

IF2
(
(x, y); ER,Hm

)
=

π−∆
CL(Hm)2

φ
( θ

∆
− ∆

2

)( p∑

k=2

( IF
(
(x, y);BL,Hm

)t
ek

∆

)2

+
( IF

(
(x, y);AL, Hm

)

∆
− θet

1

IF
(
(x, y);BL,Hm

)

∆2

)2
)

,

for Fisher consistent decision rules. This implies that we should determine the

influence functions of the estimators of the parameters on the various binary

classification rules.

Proposition 5.3 For a Fisher-consistent convex risk minimisation rule, with

loss function L(·), the influence functions of the estimators of the parameters can

be expressed as

IF
(
(x, y);AL,Hm

)
= −yL′

(
yCL(Hm)(θ + ∆x1)

)A2 −A1x1

D

et
1IF

(
(x, y);BL,Hm

)
= −yL′

(
yCL(Hm)(θ + ∆x1)

)A0x1 −A1

D

et
kIF

(
(x, y);BL,Hm

)
= −yL′

(
yCL(Hm)(θ + ∆x1)

) xk

A0
(1 < k ≤ p),

where we define et
k = (0, . . . , 0, 1, 0, . . . , 0) with a one at the kth position, D =

A0A2 −A2
1 and

Aj = EHm

[
L′′

(
Y CL(Hm)(θ + ∆X1)

)
Xj

1

]
for j = 0, 1, 2. (5.8)

Using the expressions obtained in Proposition 5.3, we can prove the following

corollary.

Corollary 5.4 For any convex risk minimisation method defined by a function

L(·), the influence functions on the estimators of the parameters, and by extension

the second-order influence function on the error rate, is unbounded.

This result does not contradict the robustness properties obtained in Christmann

and Steinwart (2004), who assumed the use of a bounded, continuous kernel. This

assumption is violated here as we restrict to the use of a linear kernel.
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5.3.3 Asymptotic Relative Classification Efficiencies

Estimating the decision rule at the finite sample level results in a generalisation

error rate ERn. When the training data are from the model Hm, the expected

loss in classification performance is given by

Lossn = EHm [ERn − ERopt]

where ERopt is the error rate of the optimal decision rule, as given in (5.6).

Proposition 3 of Croux, Filzmoser, and Joossens (2008) states that at the model

distribution Hm, the expected loss in error rate of an estimated optimal discrim-

inant rules satisfies

Lossn =
1
2n

EHm [IF2((X, Y ); ER,Hm)] + o(n−1),

where n is the sample size. This leads to the asymptotic loss

A-Loss = lim
n→∞nLossn =

1
2
EHm [IF2((X, Y ); ER, Hm)]

such that

ERn = ERopt +
A-Loss

n
+ o(n−1).

Our goal is now to compare the classification performance of the methods under

consideration with the efficient method, Fisher’s linear discriminant rule, which

corresponds to the maximum likelihood method at the normal model.

We work with the canonical model described in Section 5.3. For a Fisher-

consistent classification rule, defined by a loss function L, the asymptotic loss

satisfies

A-LossL(Hm) =
π−

2CL(Hm)2∆
φ
( θ

∆
− ∆

2

)(
ASV(A)− 2θ

∆
ASC(A,B1)

+
θ2

∆2
ASV(B1) + (p− 1)ASV(B2)

)
,

(5.9)

where

ASV(A) = EHm

[(
IF((X, Y );A,Hm)

)2]

ASV(Bj) = EHm

[(
et
jIF((X, Y );B, Hm)

)2]
, j = 1, 2

ASC(A,B1) = EHm

[
IF((X,Y );A,Hm)et

1IF((X, Y );B, Hm)
]
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depend on the classification rule and on ∆ and θ. This follows immediately from

the definition of the asymptotic loss. As the number of variables p increases, it is

obvious that the asymptotic loss is dominated by the ASV (B2) term. For a CRM

rule with loss function L(·), these asymptotic variances and covariances can be

written as

ASVL(A) =
1

D2
EHm

[
L′

(
Y CL(Hm)(θ + ∆X1)

)2(A2 −A1X1)2
]

ASVL(B1) =
1

D2
EHm

[
L′

(
Y CL(Hm)(θ + ∆X1)

)2(A0X1 −A1)2
]

ASVL(B2) =
1

A2
0

EHm

[
L′

(
Y CL(Hm)(θ + ∆X1)

)2]

ASCL(A,B1) =
1

D2
EHm

[
L′

(
Y CL(Hm)(θ + ∆X1)

)2(A2 −A1X1)(A0X1 −A1)
]
,

(5.10)

where we used the expressions obtained in Section 5.3.2. It is important to remark

that for CRM methods the final expression of the asymptotic loss depends on the

first and second derivative on the loss function.

The optimal asymptotic loss obtained by Fisher’s linear discriminant rule is

A-Lossopt(Hm) =
1

2π+∆
φ
( θ

∆
− ∆

2

){
p +

∆2

4
+

θ2

∆2
+ (π− − π+)θ

+ (p− 1)∆2π+π− + 2θ2π−π+

}
.

(5.11)

This expression has been obtained in Efron (1975). Using (5.11), we can define

the asymptotic relative classification efficiency (ARCE) as

ARCEL(Hm) =
A-Lossopt(Hm)
A-LossL(Hm)

.

Due to Fisher’s rule being the efficient rule, this ratio cannot exceed one. The

closer to one, the more efficient the convex risk minimisation rule is.

5.4 Specific Results

Section 5.3 contains the results for general convex risk minimisation techniques.

In this section, we study four specific CRM rules in detail. We start with Ad-

aBoost in Section 5.4.1. We also repeat the analysis of Efron (1975) for logistic
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regression in Section 5.4.2 though now using influence functions and arrive the

same results. The support vector machine is examined in detail in Section 5.4.3.

We finish by investigating least squares in Section 5.4.4.

5.4.1 AdaBoost

AdaBoost (Freund and Schapire, 1996; Friedman et al., 2000; Hastie et al., 2001)

is an example of a convex risk minimisation technique for binary classification

with loss function L(u) = exp(−u). This function satisfies all the conditions in

Proposition 5.2, thus AdaBoost is Fisher consistent at the normal model with

θ = 0. The next proposition states that Fisher consistency holds at any value of

θ.

Proposition 5.5 AdaBoost is Fisher consistent for all θ, and CL(Hm) = 1
2 for

all choices of ∆ > 0 and θ.

With this result, we may compute the asymptotic loss using (5.9). For AdaBoost,

it is possible to derive an analytic expression for the asymptotic loss. After

tedious calculations, which can be found in the appendix, we have the result of

the following proposition.

Proposition 5.6 The asymptotic loss for AdaBoost satisfies

A-Loss(Ada) =
1

2∆π+
φ
( θ

∆
− ∆

2

)
exp

(∆2

4

)(
p + θ +

θ2

∆2

(∆2

4
+ 1

))
(5.12)

at the canonical model.

5.4.2 Logistic Regression

For comparative purposes, we analyse the logistic regression setting. Originally,

Efron (1975), did not use influence functions for studying the efficiency of logistic

regression. Our alternative calculations coincide with those found earlier. Recall

that the loss function here is L(u) = log
(
1 + exp(−u)

)
. Hence, we find that

L′(u) = − exp(−u)/
(
1 + exp(−u)

)
= F (u) − 1, where we used the shorthand
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notation F (u) =
(
1 + exp(−u)

)−1, and that L′′(u) = F (u)
(
1 − F (u)

)
. For

obtaining the quantities A0, A1, and A2 as in Proposition 5.3, we need to compute

the expressions

Aj = EHm

[
F (θ + ∆X1)

(
1− F (θ + ∆X1)

)
Xj

1

]

=
∫

IR

π+π−
π+ exp(∆x1/2) + π− exp(−∆x1/2)

xj
1√
2π

exp
(
− ∆2

8

)
exp

(
− x2

1

2

)
d x1,

for j = 0, 1, 2. This integral can be evaluated numerically for a given ∆ and θ.

After tedious calculations (available upon request), we find that the expressions

for the asymptotic variances of the parameters in (5.10) reduce to ASV(A) =

A2/D, ASV(B1) = A0/D, ASC(A,B1) = −A1/D, and ASV(B2) = A−1
0 , with Aj

and D as in Proposition 5.3. This confirms the results in Efron (1975).

5.4.3 Support Vector Machine

The loss function for the support vector machine, L(u) = [1 − u]+, satisfies all

the requirements in Proposition 5.2. Thus, we know that the SVM is Fisher

consistent in the normal model for θ = 0.

However, we have observed empirically that the support vector machine is

not Fisher-consistent if θ 6= 0 (π+ 6= π−). To illustrate this, we have optimised

RHm(a, b) = EHm

[
L

(
Y (a + b1X1)

)]
,

with Hm the canonical model for several values of ∆ and θ. The results are

shown in Table 5.2. This table lists the values of a and b1 = bte1 which optimise

RHm(a, b). We observe that, for θ 6= 0, the values are not in accordance with

relation (5.7), and hence, that the support vector machine is not Fisher consistent.

The two last lines in the table give the results of the same optimisation, this time

when θ = 0. These results verify empirically that the SVM is Fisher consistent for

balanced populations. For the remainder of this section, we assume that θ = 0.

The asymptotic loss can be computed analytically, and after tedious calculation,

which can be found in the appendix, we find the following proposition.
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∆ θ a b1

1 3
2 0.67 θ 0.005 ∆

3
2 1 0.765 θ 0.725 ∆
3
2

3
2 0.7 θ 0.595 ∆

3
2 2 0.67 θ 0.005 ∆

1 0 0 0.98 ∆
3
2 0 0 0.805 ∆

Table 5.2: Estimated values for a and b for SVM in the normal model, for several

values of ∆ and θ.

Proposition 5.7 If θ = 0, the asymptotic loss for support vector machines sat-

isfies

A-LossL(Hm) =
pΦ(T )

4A2
0CL(Hm)2∆

φ
(
− ∆

2

)
(5.13)

at the canonical model, where φ(·) and Φ(·) are the density and cumulative density

function of the standard normal distribution, and where

T =
1− CL(Hm)∆2/2

CL(Hm)∆
and A0 =

φ(T )
CL(Hm)∆

.

5.4.4 Least squares

As mentioned above, we treat the least squares loss function differently because

its loss function L(u) = (u − 1)2 is not monotone decreasing. The risk function

to minimise is

RHm(a, b) = EHm [(Y (a + btX)− 1)2].
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The minimum is found where the first derivative is zero, thus

∂RHm(a, b)
∂a

= 2EHm [Y (Y (a + btX)− 1)]

= 2π+EH+ [a + btX − 1]− 2π−EH− [−a− btX − 1]

= 2a + (π+ − π−)∆bte1 − 2(π+ − π−)

= 2a + (π+ − π−)∆b1 − 2(π+ − π−) = 0,

leads to a = 1
2(π+− π−)(2−∆b1). Differentiating the expected risk with respect

to the slope parameters b gives

∂RHm(a, b)
∂b

= 2EHm [Y (Y (a + btX)− 1)X]

= 2π+EH+ [X(a + Xtb− 1)]− 2π−EH− [X(−a−Xtb− 1)]

= (π+ − π−)a∆e1 −∆e1 + 2
(
Ip +

∆2

4

)
b

=
1
2
(π+ − π−)(π+ − π−)(2−∆bte1)∆e1 −∆e1 + 2

(
Ip +

∆2

4
e1e

t
1

)
b

=
(
(π+ − π−)2 − 1

)
∆e1 + 2

(
Ip +

∆2

4
(
1− (π+ − π−)2

)
e1e

t
1

)
b = 0,

from which follows that

b =
1
2

(
Ip +

∆2

4
(
1− (π+ − π−)2

)
e1e

t
1

)−1(
(π+ − π−)2 − 1

)
∆e1 6= CL(Hm)∆e1.

For Fisher consistency to hold, the matrix Ip + ∆2

4

(
1− (π+ − π−)2

)
e1e

t
1 must be

the identity matrix, up to a constant factor. However, this is only true in the

degenerate case when either π+ = 1 or π− = 1. Hence, convex risk minimisation

using the least squares loss function is not Fisher-consistent.

5.5 Numerical results

In this section we visualise the asymptotic relative classification efficiencies of the

various convex risk minimisation methods.

Figure 5.1 contains graphs of the asymptotic loss of the various convex risk

minimisation methods we analysed, and of the Fisher rule as benchmark, with
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different settings for every plot. In each plot, the solid line corresponds to Fisher’s

rule, the dashed line to AdaBoost, the dotted line to logistic regression, and the

dash-dotted line (only in plot (a)) corresponds to the support vector machine.

For (a), we set the log-odds ratio θ = 0, the number of variables p = 2, and we

varied ∆ between 0 and 8 on the horizontal axis. By looking at the asymptotic

losses, we observe that logistic regression is the best CRM method amongst those

we studied, and this holds for all ∆. When the two groups are well-mixed,

∆ ≤ 2, SVM is the least efficient, whereas for larger ∆, the exponential loss

function of AdaBoost significantly deteriorates its efficiency compared to the

other techniques. If we set θ = 1, which corresponds to plot (b), we again observe

that logistic regression is more efficient than AdaBoost, this for all values of ∆.

Here we do not plot SVM, because it is not Fisher consistent when θ differs from

zero. For the bottom plot we kept ∆ = 2 fixed, and varied θ between 0 and 4.

Once again, we observe that logistic regression is more efficient than AdaBoost.

We believe logistic regression performs better than the other CRM methods, in

terms of efficiency, because logistic regression can be written as a conditional

maximum likelihood, whereas this cannot be done for the other CRM techniques.

To investigate exactly how efficient the studied CRM techniques are, we con-

structed plots of the asymptotic relative classification efficiencies, see Figure 5.2.

We have used the same setting as for the plots in Figure 5.1. For the case where

θ = 0 is fixed (a), we verify that logistic regression is the most efficient of the

studied CRM methods, and we observe that indeed, AdaBoost is more efficient

than SVM when ∆ ≤ 2. Also, we find that all the studied CRM methods are

highly efficient (> 80%) when the two populations are well-mixed, that is when

∆ < 2. When we fix θ = 1, plot (b), we again observe that logistic regression is

more efficient than AdaBoost, and that the latter seems to have lost some of its

efficiency (40% when ∆ = 2) compared to when θ = 0. If we keep ∆ = 2 con-

stant, and vary θ between 0 and 4, we observe that both logistic regression and

AdaBoost have lost efficiency when the populations become more unbalanced.

The drop in efficiency is larger for AdaBoost.

Next, we consider the asymptotic case where we increase the number of vari-

ables p towards infinity. As mentioned above, the asymptotic relative classifi-
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cation efficiencies are in this case determined by the ASV (B2) of each decision

rule. This is illustrated in Figure 5.3, which shows the ARCEs for the three cases

above, but with the number of variables p →∞. As in the two previous figures,

we varied ∆ between 0 and 8 while keeping θ = 0 in (a), fixed θ = 1 for (b), and

we varied θ between 0 and 4 while holding ∆ = 2 in (c). We arrive at similar

conclusions as in the case where p = 2.

5.6 Conclusions

Convex risk optimisation methods are a class of broadly adaptable techniques

for binary classification. We compared the efficiency of these techniques in the

specific setting of two normally distributed populations with the same variance.

We calculated the asymptotic loss of these techniques using influence functions,

and made comparisons with the Fisher linear discriminant rule, which is optimal

in this setting. We found that for two badly-separated groups, where the Maha-

lanobis distance between the group means is smaller than 2, the studied convex

risk minimisation techniques have a reasonably good efficiency if the two classes

are reasonably balanced (θ close to zero).

One interesting topic for further research is to extend this theory to more

general settings, such as two normally distributed populations with unequal vari-

ances or cases with non-normal distributions. However, for these more general

settings, the computations are too complex to perform analytically, and numerical

approximations or Monte Carlo simulations are needed.

Another interesting topic for future research is to investigate whether the the-

ory developed in this paper can be extended to compute classification efficiencies

with the regularisation parameter in the convex risk minimisation kept constant

at the population level.
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Figure 5.1: Asymptotic loss for Fisher’s linear discriminant rule (solid), AdaBoost

(dashed), logistic regression (dotted) and support vector machines (dash-dotted)

with p = 2. (a) θ = 0; (b) θ = 1; (c) ∆ = 1.
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Figure 5.2: Asymptotic relative classification efficiencies for AdaBoost (solid),

logistic regression (dashed), and SVM (dotted) for p = 2. (a) θ = 0; (b) θ = 1;

(c) ∆ = 1.
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Figure 5.3: ARCEs for: AdaBoost (solid), logistic regression (dashed), and in

(a), SVM (dotted), for p = ∞. (a) θ = 0; (b) θ = 1; (c) ∆ = 1.





Chapter 6

Discussion

In this thesis, we have addressed a few important issues in predictive modelling,

ranging from focussed variable selection in the logistic regression model and the

autoregressive time series model, where we provided several extensions to the

existing focussed selection techniques, over variable selection in the support vector

machine setting, to determining the classification efficiencies of various convex

risk minimisation rules in the normal model. Most certainly, this thesis answers

several questions, but it also raises several others.

The first question arises when we look at the boxplots of the error rates in

Figure 2.2. Comparing the top plot to the bottom plot in that figure, we see that

the median error rates decreases as the sample size n increases from 50 to 200

as expected. However, contrary to intuition, the highest observed generalisation

error rates do not decrease with increasing sample size. Indeed, Efron (1975)

demonstrated that, for a fixed model, the observed generalisation error of a linear

decision rule for normally distributed populations with equal variance follows a

χ2 distribution, which explains the shape of the distribution of the observed

generalisation error. For the error rates observed in our simulation experiment

the situation is different, because the chosen model is not necessarily the same

between each simulation run. Hence, we expect that the resulting distribution of

estimated generalisation errors is a mixture of χ2 distribution, arising from the
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various different models, both good and bad ones. One topic for future research

here is to verify the expectation, and to gain more insight into the exact nature

of this mixture distribution.

We illustrated in Chapter 2 that using the focussed information criterion for

variable selection results in a lower generalisation error for the selected mod-

els, due to the property that FIC can select different models for different new

observations. However, this major strength of FIC can also be criticised, just be-

cause the user has to repeat the variable selection step for every new observation.

Especially when a large number of predictions are needed, using this criterion

becomes very time-consuming. Recently, Claeskens and Hjort (2008) developed

a weighted version of the basic FIC based on mean squared error, which allows

the user to select a model for an entire region of the space of observations. In

the WESDR study addressed in Section 2.5, this would for example mean that

it allows to select one model for all males living in an urban county, where the

other variables are allowed to range freely over the entire observation space. A

possible direction for future study is investigating the possibility of constructing

weighted versions of the Lp-based FIC, and the FIC based on error rate, which

would allow these criteria to be used for selecting a model for prediction across

an entire region of the space of observations.

In Chapter 4, we have defined two new information criteria for support vector

machines. We have chosen to let the penalty term depend linearly on the number

of variables included in the model. This is not the only possible choice. An other

alternative would be to use the (generalised) dimension of the feature (sub-)space

as implied by the used kernel. The generalised dimension of the feature space

would be akin to the degrees of freedom that a point has in that space. For the

linear kernel, it will make no difference whether the number of variables or the

dimension of the feature space is used. The advantage of using a penalty based

on generalised dimension becomes apparent when using other kernels. With this

penalty you acknowledge that more degrees of freedom are lost when a variable is

eliminated while it can still be applied with the implied feature space of the Gaus-

sian kernel, which has an infinite basis. The difference between both approaches,

the number of variables and the generalised dimension of the input space, would
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be an interesting topic to research.

A very important remark is that the criteria developed in Chapter 4 are meant

to be used for selecting variables, and we did not concern ourselves with tuning

the regularisation parameter C of the support vector machine (and by extension

the kernel parameters). Nevertheless, it is well known that these parameters

must be optimised as well to ensure that the support vector machine performs

well as a classification tool. To mitigate this issue in some way, the user can

optimise the hyperparameters of the support vector machine in the largest model

under consideration, and use these during the variable selection step. Another

good topic for future research is to examine whether these criteria can be used for

simultaneous tuning of the hyperparameters and variable selection. Alternatively,

it would be interesting to examine how these criteria perform if they are used

for selection between models where the hyperparameters have been optimised for

each model under consideration.

As mentioned in the conclusions to Chapter 4, the newly developed informa-

tion criteria can also be used for variable selection in similar problems such as

multicategory support vector machines or support vector regression. Especially

in the latter case, where variable selection is very important, an examination of

the performance of our proposed criteria is warranted.

We mentioned in Chapter 5 that we used the normal model because we knew

the efficient rule in that setting, and also because it allowed us to find analytic

expressions for the asymptotic losses of the studied decision rules. If this ideal

situation does not hold, these two advantages disappear, and we are forced to

obtain the asymptotic loss by means of simulation. Nonetheless, even though an

efficient estimation method is not known in general, this technique would still

allow us to compare the efficiency of two classification rules in a more general

setting by comparing the losses with each other, without resorting to a benchmark

efficient classification rule.

One important model which we haven’t studied in Chapter 5 is the decision

tree, which is also a very popular tool for classification, especially since it auto-

matically performs variable selection. Our study did not include this technique

because of the fact that decision trees cannot be interpreted as a convex risk
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minimisation problem. Nevertheless, a comparison between decision trees and

the convex risk minimisation methods could be interesting to explore in depth.



Appendix A

Proofs and computations

In this appendix we provide the proofs of the propositions, lemma, etc. We also

give the analytical derivations for several results obtained in the main chapters.

Appendix A.1 provides detailed results for the FIC based on Lp-norm from Chap-

ter 2, Appendix A.2 gives the proofs for the results obtained in Chapter 3, and

Appendix A.3 provides the proofs and analytical derivations for the results from

Chapter 5.

A.1 FIC in logistic regression

Computation of the Lp-norm related risk rp(S), for p integer.

For ΛS ∼ N (λ, σ2), we write E[|ΛS |p] = E[|σZ + λ|p] where Z has a standard

normal distribution. From this it follows that:

E[|ΛS |p] =
1√
2π

∫ +∞

−λ
σ

(σz + λ)pe−
z2

2 d z + (−1)p

∫ −λ
σ

−∞
(σz + λ)pe−

z2

2 d z

=
1√
2π

p∑

j=0

(
p

j

)
σjλp−j

{∫ +∞

−λ
σ

zje−
z2

2 d z + (−1)p

∫ −λ
σ

−∞
zje−

z2

2 d z

}
.
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From this expression, we can derive the following two formulae:

E[|ΛS |p] =
1√
π

p/2∑

j′=0

(
p

2j′

)
2j′σ2j′λp−2j′Γ

(
j′ +

1
2

)
,

for p even, and

E[|ΛS |p] =
1√
π

(p−1)/2∑

j′=0

(
p

2j′

)
σ2j′ |λ|p−2j′2j′Γ

(
j′ +

1
2

)

+
1√
π

p∑

j=0

(
p

j

)
σj(−|λ|)p−j2j/2Γ

(
j + 1

2
,

λ2

2σ2

)
,

for p odd. Here, we denoted Γ(·) for the gamma function, and Γ(a, x) =
∫ +∞
x ta−1e−td t

(for a > 0) for the incomplete gamma function.

For p even, say p = 2r, the expression can be simplified as follows.

E[|ΛS |2r] =
1√
2π

2r∑

j=0

(
2r

j

)
σjλ2r−j

∫ +∞

−∞
zje−

z2

2 d z

=

√
2
π

r∑

j′=0

(
2r

2j′

)
σj′λ2r−2j′

∫ +∞

0
z2j′e−

z2

2 d z

u=z2/2
=

1√
π

r∑

j′=0

(
2r

2j′

)
2j′σ2j′λ2r−2j′

∫ +∞

0
uj′−1/2e−u du

=
1√
π

r∑

j′=0

(
2r

2j′

)
2j′σ2j′λ2r−2j′Γ

(
j′ +

1
2

)
.
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For p odd, say p = 2r + 1, this leads to

E[|ΛS |p]

=
1√
2π

p∑

j=0

(
p

j

)
σjλp−j

{∫ +∞

−λ
σ

zje−
z2

2 d z − (−1)j

∫ +∞

λ
σ

zje−
z2

2 d z

}

=
1√
2π

r∑

j′=0

{ (
2r+1
2j′

)
σ2j′λ2r+1−2j′

{∫ +∞
−λ

σ

z2j′e−
z2

2 d z − ∫ +∞
λ
σ

z2j′e−
z2

2 d z
}

+
(

2r+1
2j′+1

)
σ2j′+1λ2r−2j′

{∫ +∞
−λ

σ

z2j′+1e−
z2

2 d z +
∫ +∞

λ
σ

z2j′+1e−
z2

2 d z
}

}

=

√
2
π

r∑

j′=0





(
2r+1
2j′

)
σ2j′λ2r+1−2j′ sign(λ)

∫ |λ|
σ

0 z2j′e−
z2

2 d z

+
(

2r+1
2j′+1

)
σ2j′+1λ2r−2j′ ∫ +∞

|λ|
σ

z2j′+1e−
z2

2 d z





u = z2/2
=

1√
π

r∑

j′=0





(
2r+1
2j′

)
σ2j′λ2r+1−2j′ sign(λ)2j′ ∫ λ2

2σ2

0 uj′− 1
2 e−u du

+
(

2r+1
2j′+1

)
σ2j′+1λ2r−2j′2j′+1/2

∫ +∞
λ2

2σ2

uje−u du





=
1√
π

r∑

j′=0

{ (
2r+1
2j′

)
σ2j′λ2r+1−2j′ sign(λ)2j′{Γ(j′ + 1

2)− Γ(j′ + 1
2 , λ2

2σ2 )}
+

(
2r+1
2j′+1

)
σ2j′+1λ2r−2j′2j′+1/2Γ(j′ + 1, λ2

2σ2 )

}

=
1√
π

r∑

j′=0

(
2r + 1

2j′

)
σ2j′ |λ|2r+1−2j′2j′Γ

(
j′ +

1
2

)

+
1√
π

2r+1∑

j=0

(
2r + 1

j

)
σj(−|λ|)2r+1−j2j/2Γ

(
j + 1

2
,

λ2

2σ2

)
.

This ends the proof.

A.2 FIC for time series

Assumptions

We make the following assumptions on the series {xt} and {yt}:

(A1) The maximum and minimum eigenvalues of XtX satisfy (for constants

B > 0 and b > 0)

λmax(XtX) ≤ BT ; λmin(XtX) ≥ bT,

where X =
(
xpT +h+1(pT , h), . . . , xT (pT , h)

)t.
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(A2) We define αt(pT , h) = (XtX)−1/2xt(pT , h), for t = pT +h+1, . . . , T . Then

uniformly in t1 and t2,

αt1(pT , h)tαt2(pT , h) = O(pT /T ).

(A3) ‖y(
pT

)‖ = O(
√

pT ), and max{|xt(pT , h)ty(pT )| : t = pT + h + 1, . . . , T} =

O(pT
√

log T ).

These assumptions on the time series {xt} have an intuitive explanation.

Assumption (A1) amounts to having an empirical autocovariance matrix which

is bounded for all lengths T , and for which the inverse exists and is bounded.

(A2) states that there are no outlying observations of the time series, and (A3)

limits the extent of the dependency between the series {xt} and {yt}.
We first prove the following lemma, which is an adaptation of Theorem 3.2

in Portnoy (1985) for the setting in which we work.

Lemma A.1 Under assumptions (A1), (A2), and (A3), and bounding condition

pT
√

log T/T → 0 for T →∞, the following result holds,

y(pT )t
(
δ̂(pT , h)− δtrue(pT , h)

) (
1
vσ

)
→d N (0, 1) for T →∞

where v2 = y(pT )t(XtX)−1y(pT ) and σ2 is as in model (3.2).

The proof follows the same lines as the proof of Theorem 3.2 in Portnoy

(1985).

Proof. Let b(pT ) = (XtX)−1/2y(pT ). Then we can write that

v2 = ‖b(pT )‖2 and y(pT )t
(
δ̂(pT , h)− δtrue(pT , h)

)(
1
vσ

)
=

b(pT )tθ̂

‖b(pT )‖ ,

with θ̂ = 1
σ (XtX)1/2

(
δ̂(pT , h) − δtrue(pT , h)

)
. It suffices to show that, for

‖b(pT )‖ = 1, b(pT )tθ̂ →d N (0, 1). So assume that ‖b(pT )‖ = 1. For OLS

estimation and normally distributed error terms, Lemma 3.4 of Portnoy (1985)

is applicable, and gives

b(pT )tθ̂ =
1
σ

T∑

t=pT +h

αt(pT , h)tb(pT )εt(pT , h).
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Using the definition of b(pT ) and assumptions (A1) and (A2), we find αt(pT , h)tb(pT ) =

xt(pT , h)t(XtX)−1y(pT ) = c
T xt(pT , h)ty(pT ) for some constant c. Using as-

sumption (A3) and the constraint on pT , we then arrive at maxt |αt(pT , h)b(pT )| =
O(pT

√
T/T ) → 0 as T →∞. With

T∑

t=pT +h

(
αt(pT , h)tb(pT )

)2 = ‖b(pT )‖2 = 1,

the Central Limit Theorem implies that b(pT )tθ̂ →d N (0, 1) as T →∞, and the

lemma holds. 2

Proof of Proposition 3.1

Proof. For h-step ahead prediction,
√

T
(
µ̂(p, h)− µtrue(pT , h)

)

=
√

T
(
µ̂(p, h)− µ̂true(p, h)

)
+
√

T
(
µ̂true(p, h)− µ̂true(pT , h)

)

=
√

T
(
φ̂(p, h)− φ(p, h)

)t
y(p) +

√
T

(
φ(p, h)ty(p)− φ(pT , h)ty(pT )

)
.

The first term converges in distribution to a normal distribution. This follows by

application of the limiting result in Hjort & Claeskens (2003, Lemma 3.3), where

the maximal order is equal to p finite. The second term converges to a constant,

since φ(pT , h)ty(pT ) is Op(1/
√

T ). Hence, for each p fixed, the proposition holds.

However, the proposition must also hold for a growing number of time series

components:
√

T
(
µ(pT , h)− µtrue(pT , h)

)
=

√
T

(
φ̂(pT , h)− φ(pT , h)

)t
y(pT )

=
(
δ̂(pT , h)− δ(pT , h)

)t
y(pT ).

Lemma A.1 proves that this converges to a normal distribution as T → ∞, and

the proposition holds. 2

Proof of Extension 3.6.1

Assume that h is the fixed prediction horizon and assume that pT , the maximal

AR-order of the considered models, satisfies the condition in Proposition 3.1. We
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also assume that h ≤ pT . Then recursive substitution reveals that

µ̂(pT , h) = φ̂1(pT )µ̂(pT , h− 1) + · · ·+ φ̂h−1(pT )µ̂(pT , 1)

+ φ̂h(pT )yT + · · ·+ φ̂pT (pT )yT+h−pT

=
(
φ̂h(pT ) + g̃1

(
φ̂(pT )

))
yT + · · ·+

(
φ̂pT (pT ) + g̃pT−h

(
φ̂(pT )

))
yT+h−pT

+ g̃pT−h+1

(
φ̂(pT )

)
yT+h−pT−1 + · · ·+ g̃pT

(
φ̂(pT )

)
yT−pT

,

where we used that µ̂(pT ,−i) = yT−i for i ≥ 0. In this expression, g̃i

(
φ̂(pT )

)

for 1 ≤ i ≤ pT are polynomials of degree h in φ̂1(pT ), . . . , φ̂pT (pT ) without a

constant term or a first degree term. Since φ̂(pT ) = δ̂(pT )/
√

T , it can be verified

easily that g̃i

(
φ̂(pT )

)
= Op(1/T ) for all 1 ≤ i ≤ pT . We use this to rewrite the

expression
√

T (µ̂(pT , h)− µ(pT , h)) as

√
T (µ̂(pT , h)− µ(pT , h)) =

√
T

( pT−h∑

i=0

φ̂h+i(pT )yT−i

)
+
√

T
( pT∑

i=0

g̃i

(
φ̂(pT )

)
yT−i

)
,

where µ(pT , h) is the true value of the plug-in estimator. From the previous

argument about the convergence rate of g̃i

(
φ̂(pT )

)
, we see that the second term

is Op(1/
√

T ) and hence will have no contribution in the limit. We can then

apply the same reasoning as in the proof of Proposition 3.1, but with ỹ(pT ) =

(0, . . . , 0, yT , . . . , yT+h−pT
)t of length pT , which proves the validity of Extension

3.6.1. 2

A.3 CRM classification efficiencies

Proof of Proposition 5.2: Under the conditions listed in the proposition, and at

the canonical model distribution, we have that

RL,Hm(a, b) =
1
2
EH+ [L(a + btX)] +

1
2
EH− [L(−a− btX)]

=
1
2
E

[
L

(b1∆
2

+
√

btbZ + a
)]

+
1
2
E

[
L

(b1∆
2

+
√

btbZ − a
)]

,

where Z follows a standard normal distribution and b1 = bte1. Denote σ(b) =√
btb. We first keep σ > 0 fixed and minimise RL,Hm(a, b) over b under the restric-

tion that σ(b) = σ. Because L(·) is a decreasing function, it follows immediately
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that RL,Hm(a, b) decreases as b1 increases. The Cauchy-Schwarz inequality yields

b1∆ ≤ ‖b‖2∆ = σ∆,

and this inequality becomes an equality if b = σe1. Hence, the minimal value of

the expected risk for a and σ fixed becomes

RL,Hm(a, σ) =
1
2
E

[
L

(σ∆
2

+ σZ + a
)]

+
1
2
E

[
L

(σ∆
2

+ σZ − a
)]

,

which has to be minimised with respect to σ and a.

Setting the first order derivative with respect to a to zero implies that the

optimal σ and a have to satisfy

E
[
L′

(σ∆
2

+ σZ + a
)]

= E
[
L′

(σ∆
2

+ σZ − a
)]

.

This can only be true if a = 0, from which it follows that AL(Hm) = 0. Then,

with CL(Hm)/∆ the minimiser of RL,Hm(0, σ), one has

BL(Hm) = CL(Hm)∆e1.

Since θ = 0, we conclude that (5.7) holds, from which Fisher consistency follows.

2

Proof of Proposition 5.3: Denote B̃L(H) =
(
AL(H), BL(H)t

)t, X̃ = (1, Xt)t, and

x̃ = (1, xt)t. We know that the first order derivatives of RL,H(a, b) with respect

to a and b, evaluated in B̃L(H), are equal to zero. This holds in particular for

Hε = (1− ε)Hm + ε∆x̃. With b̃ε = B̃L(Hε), we have that

ψ
(
ε, b̃ε

) ≡ ∂

∂b̃
RL,Hε(b̃)

∣∣∣
b̃ε

= (1− ε)
∂

∂b̃
EHm [L(Y b̃tX̃)]

∣∣∣
b̃ε

+ ε
∂

∂b̃
L(yb̃tx̃)

∣∣∣
b̃ε

= (1− ε)EHm [Y L′(Y b̃t
εX̃)X̃] + εyL′(yb̃t

εx̃)x̃ = 0

holds for all ε. From this it follows that

dψ(ε, b̃ε)
d ε

∣∣∣
ε=0

=
∂ψ(ε, b̃0)

∂ε

∣∣∣
ε=0

+
(∂ψ

(
0, b̃ε

)

∂b̃

∣∣∣
b̃=b̃0

)(∂b̃ε

∂ε

∣∣∣
ε=0

)
= 0,
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or in other words, that

∂b̃ε

∂ε

∣∣∣
ε=0

= IF
(
(x, y); B̃L,Hm

)

= −
(∂ψ

(
0, b̃ε

)

∂B̃L

∣∣∣
b̃ε=B̃L(Hm)

)−1(∂ψ
(
ε, B̃L(Hm)

)

∂ε

∣∣∣
ε=0

)
. (A.1)

The second factor is easily seen to be

∂ψ
(
ε, B̃L(Hm)

)

∂ε

∣∣∣
ε=0

= −EHm [Y L′(Y B̃L(Hm)tX̃)X̃] + yL′(yB̃L(Hm)tx̃)x̃

= yL′
(
yCL(Hm)(θ + ∆x1)

)
x̃,

because ψ(0, b̃0) = 0.

For the first factor, observe that

∂ψ
(
0, b̃ε

)

∂B̃L

∣∣∣
b̃ε=B̃L(Hm)

= EHm

[
L′′

(
Y B̃L(Hm)X̃

)
X̃X̃t

]

= EHm

[
L′′

(
Y CL(Hm)(θ + ∆X1)

)
X̃X̃t] = K.

Because we work in the canonical model defined in Section 5.3, it immediately

follows from symmetry arguments that

K =




A0 A1 0

A1 A2 0

0 0 A0Ip−1


 ,

with A0, A1, and A2 as in (5.8). From (A.1) we can easily find the expressions

for the first-order influence functions as stated in proposition 5.3. 2

Proof of Corollary 5.4: We have

lim
x1→−∞

IF
(
(x, y);AL,Hm

)
= − lim

x1→−∞
yL′

(
yCL(Hm)(θ + ∆x1)

)A2 −A1x1

D
.

Because L is a decreasing, convex function, we find that L′ is a negative, increas-

ing function, where it is defined. Hence, it holds that

lim
x1→−∞

L′
(
yCL(Hm)(θ + ∆x1)

)
< 0,
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and

− lim
x1→−∞

yL′
(
yCL(Hm)(θ + ∆x1)

)A2 −A1x1

D
= sign(y)∞.

An analogous reasoning holds for the first order influence functions on the slope

parameters. Thus, the first order influence functions on the parameters are un-

bounded, and by extension, the second order influence function on the error rate

is unbounded as well. 2

Proof of Proposition 5.5: To determine whether Fisher consistency holds for any

θ, the values of c and d minimising

EHm

[
exp

(− Y (cθ + d + c∆X1)
)]

must satisfy d = 0, and c = CL(Hm).

We rewrite the expected risk as

EHm

[
exp

(− Y (cθ + d + c∆X1)
)]

= π+EH+ [exp(−cθ − d− c∆X1)] + π−EH− [exp(cθ + d + c∆X1)]

= π+E
[
exp

(
− cθ − d− c

∆2

2
− c∆Z

)]
+ π−E

[
exp

(
cθ + d− c

∆2

2
+ c∆Z

)]

= π+ exp
(
− cθ − d− c

∆2

2
+ c2 ∆2

2

)
+ π− exp

(
cθ + d− c

∆2

2
+ c2 ∆2

2

)
.

The first order conditions with respect to c and d give

0 =
∂RL,Hm(c, d)

∂d
= −π+ exp(−cθ − d) exp

(
c2 ∆2

2
− c

∆2

2

)

+ π− exp(cθ + d) exp
(
c2 ∆2

2
− c

∆2

2

)

This is equivalent to π+ exp(−cθ − d) = π− exp(cθ + d), and thus π+/π− =

exp(2cθ + 2d), and θ/2 = cθ + d. Further,

0 =
∂RL,Hm(c, d)

∂c

= exp
(
− c

∆2

2
+ c2 ∆2

2

)(
π+ exp(−cθ − d)

(
− θ − ∆2

2
+ c∆2

)

+ π− exp(cθ + d)
(
θ − ∆2

2
+ c∆2

))
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= π+ exp
(
− θ

2

)(
− θ − ∆2

2
+ c∆2

)
+ π− exp

(θ

2

)(
θ − ∆2

2
+ c∆2

)

=
√

π+π−
(
− θ + θ −∆2 + 2c∆2

)
.

From this it follows that c = 1/2. Combined, this yields d = 0 and c = CL(Hm) =

1/2. Hence, AdaBoost is Fisher consistent for all ∆ and θ, which concludes the

proof. 2

Proof of Proposition 5.6: For computing the asymptotic loss, we first need to

find an expression for the asymptotic variances of the parameters, see equation

(5.9). The general form of these asymptotic parameters can be found in equation

(5.10), and the unknown A0, A1, and A2 are obtained using equation (5.8).

First, observe that we have L′′(u) = exp(−u) = L(u). Using this result, we

find that

An = EHm

[
exp

(
− Y

2
(θ + ∆X1)

)
Xn

1

]

= π+EH+

[
exp

(
− Y

2
(θ + ∆X1)

)
Xn

1

]
+ π−EH−

[
exp

(Y

2
(θ + ∆X1)

)
Xn

1

]

=
(

π+ exp
(
− θ

2

)
+ (−1)nπ− exp

(θ

2

))
EH+

[
exp

(
− ∆

2
X1

)
Xn

1

]

=





2√π+π− exp
(− ∆2

4

)
E

[
exp

(− ∆
2 Z

)(
∆
2 + Z

)n]
for n even

0 for n odd.

Using the above expression with n = 1, we obtain that A1 = 0. In general, for

Z ∼ N (0, 1) and any real c it holds that E[exp(cZ)] = exp(c2/2), E[exp(cZ)Z] =

c exp(c2/2), and E[exp(cZ)Z2] = (c2 + 1) exp(c2/2). This is used to get that

A0 = 2
√

π+π− exp
(
− ∆2

4

)
E

[
exp

(
− ∆

2
Z

)]
= 2

√
π+π− exp

(
− ∆2

8

)
, and

A2 = 2
√

π+π− exp
(
− ∆2

4

)
E

[
exp

(
− ∆

2
Z

)(∆
2

+Z
)2]

= 2
√

π+π− exp
(
− ∆2

8

)
.

Having found A0, A1, and A2, we compute the asymptotic variances in (5.10),
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and we obtain

ASV(A) =
1

4π+π−
exp

(∆2

4

)
EHm

[
exp

(− Y (θ + ∆X1)
)]

=
1

4π+π−
exp

(∆2

4

)

× (
π+EH+ [exp(−θ −∆X1)] + π−EH− [exp(θ + ∆X1)]

)

=
1

4π+π−
exp

(∆2

4

)

× (
π+ exp(−θ) + π− exp(θ)

)
E

[
exp

(
−∆

(∆
2

+ Z
))]

=
1

4π+π−
exp

(∆2

4

)
,

ASV(B1) =
1

4π+π−
exp

(∆2

4

)
EHm

[
exp

(− Y (θ + ∆X1)
)
X2

1

]

=
1

4π+π−
exp

(
− ∆2

4

)
E

[
exp(−∆Z)

(∆2

4
+ ∆Z + Z2

)]

=
1

4π+π−
exp

(∆2

4

)(∆2

4
+ 1

)
,

ASV(B2) =
1

4π+π−
exp

(∆2

4

)
EHm

[
exp

(− Y (θ + ∆X1)
)
X2

2

]

=
1

4π+π−
exp

(∆2

4

)
EHm

[
exp

(− Y (θ + ∆X1)
)]

EHm [X2
2 ]

=
1

4π+π−
exp

(∆2

4

)
,

and

ASC(A,B1) =
1

4π+π−
exp

(∆2

4

)
EHm

[
exp

(− Y (θ + ∆X1)
)
X1

]

=
1

4π+π−
exp

(
− ∆2

4

)
E

[
exp(−∆Z)

(∆
2

+ Z
)]

= − 1
8π+π−

exp
(∆2

4

)
.

Inserting the above quantities in (5.9), together with CL(Hm) = 1
2 , yields the

result in (5.12), proving the proposition. 2
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Proof of Proposition 5.7: Because we assume that θ = 0, the expression in (5.9)

simplifies to

A-LossL(Hm) =
1

4CL(Hm)2∆
φ
(
− ∆

2

)(
ASV(A) + (p− 1)ASV(B2)

)

where ASV(A) and ASV(B2) are defined as in (5.10), with L′(u) = −I{u ≤ 1}
and I{·} the indicator function. For Z ∼ N (0, 1) and any real c, d it holds

that E[δ(cZ − d)Zj ] =
(

d
c

)j
φ
(

d
c

)
/|c|, for j = 0, 1, 2, where φ(·) and Φ(·) are

respectively the density and the distribution function of the standard normal

distribution, and δ(·) is the Dirac-delta function. Using (5.8), and noting that

L′′(u) = δ(u− 1), we evaluate the expressions for A0, A1, and A2 as follows.

A0 = EHm

[
δ
(
Y CL(Hm)∆X1 − 1

)]

=
1
2
EH+

[
δ
(
CL(Hm)∆X1 − 1

)]
+

1
2
EH−

[
δ
(− CL(Hm)∆X1 − 1

)]

=
1
2
E

[
δ
(
CL(Hm)(∆2/2 + ∆Z)− 1

)]

+
1
2
E

[
δ
(− CL(Hm)(−∆2/2 + ∆Z)− 1

)]

=
1

2CL(Hm)∆
φ
(1− CL(Hm)∆2/2

CL(Hm)∆

)
+

1
2CL(Hm)∆

φ
(1− CL(Hm)∆2/2

CL(Hm)∆

)

=
1

CL(Hm)∆
φ(T ),

where we used the notation

T =
1− CL(Hm)∆2/2

CL(Hm)∆
,

A1 = EHm

[
δ
(
Y CL(Hm)∆X1 − 1

)
X1

]

=
1
2
EH+

[
δ
(
CL(Hm)∆X1 − 1

)
X1

]
+

1
2
EH−

[
δ
(− CL(Hm)∆X1 − 1

)
X1

]

=
1
2
E

[
δ
(
CL(Hm)(∆2/2 + ∆Z)− 1

)
(∆/2 + Z)

]

+
1
2
E

[
δ
(− CL(Hm)(−∆2/2 + ∆Z)− 1

)
(−∆/2 + Z)

]

=
∆φ(T )

4CL(Hm)∆
+

Tφ(T )
2CL(Hm)∆

− ∆φ(T )
4CL(Hm)∆

− Tφ(T )
2CL(Hm)∆

= 0,
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and

A2 = EHm

[
δ
(
Y CL(Hm)∆X1 − 1

)
X2

1

]

=
1
2
E

[
δ
(
CL(Hm)∆X1 − 1

)
X2

1

]
+

1
2
E

[
δ
(− CL(Hm)∆X1 − 1

)
X2

1

]

=
1
2
E

[
δ
(
CL(Hm)(∆2/2 + ∆Z)− 1

)
(∆2/4 + ∆Z + Z2)

]

+
1
2
E

[
δ
(− CL(Hm)(−∆2/2 + ∆Z)− 1

)
(∆2/4−∆Z + Z2)

]

=
φ(T )

CL(Hm)∆

(∆2

4
+ ∆T + T 2

)
.

For the evaluation of the asymptotic losses ASV(A) and ASV(B2) we further use

that for Z ∼ N (0, 1) and any real c, E[I{Z ≤ c}] = Φ(c), E[I{Z ≤ c}Z] = −φ(c),

E[I{Z ≤ c}Z2] = Φ(c) − cφ(c), where I{·} = 1 is the indicator function. This

leads to

ASV(A) =
1

A0
EHm [I{Y CL(Hm)∆X1 ≤ 1}]

=
1

2A2
0

E+1[I{CL(Hm)∆X1 ≤ 1}] +
1

2A2
0

E−1[I{−CL(Hm)∆X1 ≤ 1}]

=
1

2A2
0

E
[
I
{

CL(Hm)
(∆2

2
+ ∆Z

)
≤ 1

}]

+
1

2A2
0

E
[
I
{
− CL(Hm)

(
− ∆2

2
+ ∆Z

)
≤ 1

}]

=
Φ(T )
A2

0

and ASV(B2) = ASV(A) = Φ(T )/A2
0. Plugging these expressions into the asymp-

totic loss leads to

A-LossL(Hm) =
1

4CL(Hm)2∆
φ
(
− ∆

2

)(Φ(T )
A2

0

+ (p− 1)
Φ(T )
A2

0

)
,

which proves the proposition. 2
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Lee, Y., Kim, Y., Lee, S., and Koo, J.-Y. (2006). Structured multicategory sup-

port vector machines with analysis of variance decomposition. Biometrika,

93, 555–571.

Lin, Y. and Zhang, H. H. (2006). Component selection and smoothing in mul-

tivariate nonparametric regression. Annals of Statistics.

Ljung, G. M. and Box, G. E. P. (1979). The likelihood function of stationary

autoregressive-moving average models. Biometrika, 66, 265–270.

Neter, J., Kutner, M. H., Nachtsheim, C. J. and Wasserman, W. (1996). Applied

linear statistical models: Fourth edition. Chicago (Illnois): Irwin.
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