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Technological Diversification, Coherence and  
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Abstract 
Technological diversification at the level of the firm, i.e. the expansion of a firm’s technology base into a wide 
range of technology fields, is found to be a prevailing phenomenon in all three major industrialized regions: US, 
Europe and Japan, prompting the term multi-technology corporation. Whereas previous studies have provided 
insights into the composition of technology portfolios of multi-technology firms, little is known about the link 
between technological diversification and firms’ technological performance. Against a backdrop of the 
technology and innovation management literature, this article investigates the relationship between technological 
diversification and technological performance, taking into account the moderating role of technological 
coherence in firms’ technology portfolios. Hereby, technological coherence is defined as the degree to which 
technologies in a technology portfolio are technologically related. In order to measure the technological 
coherence of portfolios, a measure of technological relatedness of technology fields is constructed based on 
patent citation patterns found in 450,000 EPO patent grants. Two hypotheses are presented in this article: (1) 
Technological diversification has an inverted U-shaped relationship with technological performance; and (2) 
Technological coherence moderates the relationship between technological diversification and technological 
performance positively. These hypotheses are tested empirically using a panel dataset (1995-2003) on patent 
portfolios pertaining to 184 US, European, and Japanese firms. The firms selected are the largest R&D actors in 
five industries: Pharmaceuticals & Biotechnology, Chemicals, Engineering & General Machinery, IT Hardware 
(computers and communication equipment), and Electronics & Electrical Machinery. Empirical results, obtained 
by fixed-effects negative binomial regressions, support both hypotheses in this article. Technological 
diversification has an inverted U-shaped relationship with technological performance. While technological 
diversification offers opportunities for cross-fertilization and technology fusion, high levels of diversification 
may yield few marginal benefits as firms risk lacking sufficient levels of scale to benefit from wide-ranging 
technological capabilities, and firms may encounter high levels of coordination and integration costs. Further, the 
results show that the net benefits of technological diversification are higher in technologically coherent 
technology portfolios. If firms build up a technologically coherent diversified portfolio, the presence of sufficient 
levels of scale is ensured and coordination costs are limited. This article clearly identifies the important role of 
technological coherence and points out in the discussion session the relevance of future research on interface 
management practices directed to the realization of the benefits of technological diversification.   
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Introduction 

Innovation is not only one of the driving forces behind welfare creation at the level of regions 

and nations; it has also been acknowledged as crucial to the long-term survival and growth of 

the firm (e.g. Schumpeter, 1934: Van de Ven, et al. 1989, 1999; Tushman and Anderson, 

1997; Baumol, 2002). Hence, firms build up and/or acquire knowledge in different 

technology fields, resulting in technology portfolios which can vary in terms of technological 

diversification and technological coherence. Technology portfolios in which knowledge is 

spread over many technology fields are considered as signaling higher levels of technological 

diversification. When the different technology fields share a similar underlying knowledge 

base, a firm’s technology portfolio is considered as technologically coherent. While 

technological coherence is greatest for focused (non-diversified) technology portfolios, it can 

and does differ widely between firms that have equally diversified technology portfolios. The 

impact of these varying degrees of coherence on the relationship between technological 

diversification and technological performance at the firm level has received scant attention to 

date1.  

 

Drawing on insights from the technology and innovation management literature, this article 

examines the relationship between technological diversification and technological 

performance, in conjunction with the technological coherence of firms’ technology portfolios. 

The next section provides an overview of the existing literature on technological 

diversification and coherence, which allows us to advance the two hypotheses of this article. 

These focus on the curvilinear relationship between technological diversification and 

technological performance, on the one hand, and the moderating role of technological 

coherence on this relationship, on the other. Next, the data, indicators and methods used to 

assess empirically the central constructs of the paper are discussed. In order to measure the 

technological coherence of portfolios, a measure of technological relatedness of technology 

fields is constructed based on patent citation patterns found in approximately 450,000 granted 

patents. The article finishes with a results section and a discussion of the major findings. 

Directions for future research are also suggested. 

 



Theory and Hypotheses 

Large firms’ technology portfolios tend to be highly diversified, and technological 

diversification levels exceed diversification levels of product portfolios (Gambardella and 

Torrisi, 1998; Pavitt et al, 1989; Patel and Pavitt, 1997). Several reasons have been advanced 

to explain the technological diversity of large firms’ technology portfolios. One driving force 

is the increasing complexity of products and production processes over time (Rycroft and 

Kash, 1999), making it necessary for companies to invest in a variety of technology fields. 

This investment remains a necessity, even in the presence of technological outsourcing as 

effective assimilation of externally acquired technologies requires the presence of ‘absorptive 

capacity’ (Cohen and Levinthal, 1989; Granstrand, Patel and Pavitt, 1997)2. Second, firms 

explore and experiment with new technologies to learn about their commercial potential, 

which is rarely clear immediately after a new scientific or technological breakthrough occurs 

(Patel and Pavitt, 1997). The widespread practice of pharmaceutical firms, whose core 

competencies in the past resided in chemistry, to experiment with biochemical and biological 

technologies can be seen as an example. Third, as advanced by Penrose (1959), firms learn to 

use their resources (such as R&D capabilities) more efficiently over time, which leads to the 

creation of excess resources. Since R&D capabilities are often specific in nature, high 

transaction costs are associated with exploiting them in arm’s length markets. Hence, firms 

may use these excess resources to diversify into promising new technologies.  

The drivers of technological diversification present themselves partly as industry-specific as 

demonstrated by Stephan (2002). He finds that pharmaceutical and telecom firms have 

technology portfolios which are on average considerably less diverse than those of firms 

within the automotive, electric engineering, chemical or material industries. Yet, considerable 

variance in technological diversification levels remains among firms within the same sector. 

This variance reflects the different bets made by management in the face of technological 

complexity and uncertainty (Nelson and Winter, 1977; Patel and Pavitt, 1997). At the same 

time, there is a high persistency over time in the composition of firms’ technology portfolios 

which can be related to the nature of the innovation process that takes place within firms. 

Innovation can be defined as a cumulative process of incremental problem definition and 

solving activities (Rosenberg 1982). As many problems are firm-specific, a firm’s learning 

experience is distinctive. Due to the distinctiveness and cumulativeness of a firm’s learning 

experience, its technological trajectory can be characterized as unique and path-dependent 

(Dosi, 1982; Garud and Karnoe, 2002). Consequently, firms’ current technology portfolios 
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are, at least partly, a reflection of their past problems, interests and capabilities. Fai (2003) 

and Cantwell (2004) have found that, even over time periods of 100 years, most firms 

continue to develop competencies in technology fields in which they gained their initial 

technological competencies.  

 

Hypotheses 

Several potential positive effects of technological diversification on the technological 

performance of firms can be pointed out. Firms building up knowledge in multiple fields 

create the potential to cross-fertilize, yielding new inventions and functionalities and/or 

increased product and process performances (Granstrand, 1998)3. Closely related, a broad 

technology base may enable firms to create completely new products and services resulting 

from the combination of knowledge from different technology fields (Argyres, 1996; 

Hargadon, 1997; Kodama, 1992). According to Kodama (1992), the impact of so-called 

‘technology fusion’ innovations has become more and more important over time. The rise of 

mechatronics, implying a ‘fusion’ of knowledge in electronic, mechanical and materials 

technologies, is a case in point4. Recent empirical evidence by Nesta and Saviotti (2005) and 

Garcia-Vega (2006) has confirmed a general positive impact of technological diversification 

on firms’ technological performance5. 

 

Technological diversification is, however, not costless. First, it may prevent firms from 

creating the focus needed to develop sufficiently strong capabilities in any specific technology 

domain, necessary to realize economies of scale in technology development. Second, firms 

with a technologically diversified portfolio are likely to bear larger integration, coordination 

and communication costs (Granstrand, 1998). These additional coordination costs arise in 

particular when diversifying firms try to combine more mature technologies with novel, 

emerging technologies that might conflict with the dominant core technologies of the firm. In 

line with the notion of creative destruction, advanced by Schumpeter in the mid-1930s, 

several scholars have pointed to the tensions that organizations encounter when organizing 

exploitation (of mature technologies) and exploration (of emerging technologies) 

simultaneously.6  Such tensions are experienced especially by ‘incumbent firms’ as they put in 

place multiple resources and capabilities aimed at exploitation. The very presence of these 

resources might hamper engaging in activities of a more explorative nature (Leonard-Barton, 

1992). Abernathy (1991) argued that it is almost impossible for an organization to be 

simultaneously creative and productive. In addition, both activities do differ in terms of their 
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contribution to the competitive advantage of a firm, depending on the stage a technology 

and/or industry finds itself in: whereas creativity can be seen as highly relevant during the 

pre-dominant design – exploration-oriented – phase; productivity dominates during post-

dominant design – exploitation-oriented – phase (Abernathy and Utterback, 1978; Anderson 

and Tushman, 1991). Along similar lines, Ghemawat (1991) – adopting a game-theoretic 

perspective – points to the irreconcilable nature of ‘flexibility’ and ‘commitment’. As long as 

exploration is a priority, one needs to remain flexible from an organizational point of view. 

Once committed, i.e. once a firm has adopted a determined exploitation trajectory, flexibility 

is at odds with the dominant mode of organization required for exploitative purposes. 

Ghemawat argues that this duality of ‘flexibility’ versus ‘commitment’ is extremely difficult 

to handle and to maintain simultaneously within an organization. More recently, Benner and 

Tushman (2003) also point to these tensions when discussing the impact of process 

management activities on exploitation and exploration trajectories. 

 

The above suggests a complex, non-linear relationship between the level of technological 

diversification and firms’ technological performance. While technological diversification 

offers opportunities for cross-fertilization and technology fusion, higher levels of 

technological diversification may yield fewer marginal benefits as firms risk lacking 

sufficient levels of scale to benefit sufficiently from wide-ranging technological 

diversification. In addition, coordination and integration costs may increase exponentially 

with higher levels of technological diversification, as more diversified firms are more likely to 

encounter difficulties in combining mature (exploitative) technologies with explorative 

trajectories. This leads to the following hypothesis: 

 
Hypothesis 1: Technological diversification has an inverted U-shaped relationship with 

technological performance.  

 

As outlined above, when implementing technological diversification strategies, firms may 

encounter situations in which they have to find ways to handle the tensions between 

exploiting existing technological trajectories and exploring new technologies. Recently, 

several scholars have advanced the notions of semi- or quasi-structures (Schoonhoven and 

Jellinek, 1990; Brown and Eisenhardt, 1997) and ambidextrous organizations (Tushman, 

Anderson and O’Reilly, 1997; Benner and Tushman, 2003, O’Reilly and Tushman, 2004) to 

handle the opposing requirements. An additional moderator of the organizational and 
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managerial complexities encountered – besides organizational design choices – might be 

found in the level of synergetic potential in a firm’s technology portfolio. Diversified firms 

might be able to outperform focused or less diversified firms when technological relatedness 

allows such synergies to be enacted (Van Looy, Martens and Debackere, 2005). Stated 

otherwise, the potential for synergy might be dependent on the technological coherence of a 

firm’s technology portfolio. A technology portfolio is considered technologically coherent 

when it combines technologies that share a common knowledge base, rely upon common 

scientific principles or have similar heuristics of search (Breschi, Lissoni and Malerba, 2003). 

Firms that diversify their technology portfolio in a technologically coherent way may be able 

to attenuate the potential negative impact of technological diversification: coherence implies 

the presence of sufficient scale and facilitates coordination and communication (Allen, 1977; 

Peltz and Andrews, 1967). At the same time, technologically coherent diversification is likely 

to put firms in a better position to enact the cross-fertilization potential offered by their 

presence in a variety of technology fields. Therefore, the following is hypothesized: 

 

Hypothesis 2: The higher the degree of technological coherence in a firm’s technology 

portfolio, the greater the positive impact of technological diversification on technological 

performance. 

 

Data and Methods  
 

Data 

In order to investigate the impact of technological diversification and coherence on firms’ 

technological performance, a panel data set is built up. This data set contains information on 

patent applications from 184 European, US, and Japanese firms that are active in 5 industries: 

(1) Engineering & General Machinery, (2) Pharmaceuticals & Biotech, (3) Chemicals, (4) IT 

Hardware (computers and communication equipment), and (5) Electronics & Electrical 

Machinery. The firms selected are the top R&D spenders in their region of origin and industry 

as indicated by the ‘2004 EU Industrial R&D Investment Scoreboard’. The resulting sample 

contains roughly the same number of firms in each industry for each region of origin (Table 

1). The sample firms are observed over 9 years (1995-2003).  

 

INSERT TABLE 1 
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Patent application data are used as an indicator of a firm’s technological performance and to 

construct technological diversification and coherence measures. Compared to other 

technology indicators, the use of patent data has several advantages: (1) they are easily 

available at the level of the firm (2) they cover fairly long time series and (3) they provide 

detailed information on the technological content of a firm’s innovation activities. 

Disadvantages of working with patent data include the poor coverage of software innovations 

(particularly important in the IT sector) and varying patent propensities among industries and, 

to a lesser extent, firms7 (Griliches, 1990). While patent grants are more reliable indicators of 

innovations, our dataset is constructed based on patent applications. Patent granting decisions 

in the European Patent Office, our source of patent data, take on average 4 years, making 

patent grants a poor indicator of recent innovation activities of firms. 

 

Patent data are collected at the consolidated level, i.e. all patents assigned to the parent firm as 

well as consolidated (majority-owned) subsidiaries of the parent firm are taken into account to 

assess the technological performance, diversification, and coherence of the sample firms. For 

this purpose, yearly lists of subsidiaries included in annual reports, yearly 10-K reports filed 

with the SEC in the US and, for Japanese firms, information on foreign subsidiaries published 

by Toyo Keizai in the yearly Directories of Japanese Overseas Investments, are used. The 

consolidation was performed on a yearly basis since the group structures of parent firms may 

change substantially over time due to acquisitions, mergers, de-mergers, and spin-offs. 

Constructing ‘consolidated’ patent portfolios is important since on average 20 percent of the 

patents in the patent portfolios of parent firms are not applied under the (current) name of the 

parent firm (Magerman et al, 2005). 

 

The consolidated patent portfolios of parent firms are constructed on the basis of a moving 

time window of 5 years. Hence, the consolidated patent portfolio of a parent firm in year i 

consists of all patent applications in the past five years by the entities that were part of the 

parent firm in year i. Such a moving window of five years allows for a reliable measurement 

of the levels of technological coherence and technological diversification in firm patent 

portfolios and has been found an appropriate time frame for assessing technological impact in 

high-tech industries (Vanhaverbeke, Duysters and Beerkens, 2002).  
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Dependent variable and Estimation Method 

The dependent variable, PATENT, is the yearly number of firm EPO patent applications over 

the time period 1995-2003. Since the dependent variable takes only non-negative integer 

values, a negative binomial panel data fixed effects model is employed. This panel data 

estimation technique controls for the impact of unobserved firm-specific characteristics on 

firms’ technological performance (characteristics that may correlate with, and bias the effect 

of the explanatory variables, if not controlled for). 

 

Technological diversification 

All patents contain one or more technology field codes (IPC classification), which are given 

by the patent examiners of EPO. Each of those 8-digit IPC codes (+- 64000) stands for a 

particular technical function or application (OECD, 1994). This article uses a technology-

oriented classification that assigns each IPC code to one of 30 different technology fields. 

This classification has been elaborated jointly by Fraunhofer-Gesellschaft-ISI, Institut 

National de la Propriété Industrielle (INPI) and Observatoire des Sciences and des Techniques 

(OST) and is reported in Appendix 1. The technology class information of the patents in a 

firm’s patent portfolio is used to derive measures of technological diversification and 

technological coherence. Technological diversification is defined as the spread of the patent 

portfolio over technology classes. Let Ni denote the number of patents in the technology 

portfolio of a certain firm that are assigned to technology class i, such that N = Σi Ni. 

Technological diversification is then defined as: 

 

DIV = 1 / ( Σi (Ni/N)2) 

 

This definition is a transformation of the so-called Herfindahl index (Σi (Ni/N)2). The 

Herfindahl index measures the degree of concentration of patents among patent classes. It 

takes the value 1 if firms have patents in a single class only, and approaches zero if patents 

are evenly dispersed over a large number of technology fields. This variable is a more 

accurate measurement of technological diversification than a simple count of technologies in 

a firm’s knowledge base, since the latter is very sensitive to accidental discoveries in 

particular technology fields. The variable DIV transforms the Herfindahl measure into a 

measure of diversification by taking the inverse. The index is usually termed the ‘equal 

distribution number equivalent’ of the Herfindahl index: the value represents the number of 

technology fields over which patents would have to be equally distributed in order to generate 
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the same value of the equal distribution number equivalent. In the case of the above-

mentioned technology classification, the minimum value is 1 and the theoretical maximum is 

30. For example, if a firm has a portfolio of 100 patents, which are equally spread among 10 

technology classes, the Herfindahl index is 0.1 and the diversification index DIV is equal to 

10. If, however, among the 10 classes, patents are largely concentrated in one or two classes, 

the level of diversification DIV drops below 10. For instance, if two classes have 30 patents, 

and the remaining 8 each have 5, the Herfindahl index is 0.2 and the index DIV is 5: the 

distribution of patents leads to the same DIV index as an equal distribution of the 100 patents 

over 5 classes.  

 

In order to test for a non-linear relationship between technological diversification and 

technological performance, both the linear (DIV) and squared (DIV2) term of technological 

diversification are included in the empirical model. As stated in hypothesis 1, a positive sign 

for DIV and a negative sign for DIV2 are expected.  

 

Technological Coherence 

Technological coherence is defined as the degree to which technologies share the same 

underlying knowledge base (‘technologically-related’ technologies). In order to calculate the 

technological coherence of a firm’s patent portfolio, one needs, for each pair of technology 

classes in a patent portfolio, a measure of the level of technological-relatedness. The most 

common approach to constructing such a measure is to examine technological information 

available in patent databases. The approach taken in past research builds on the joint-

occurrence of different technology classes as found in patent documents (Engelsman and Van 

Raan, 1992; Breschi, Lissoni and Malerba, 2003). Two technology classes are considered as 

technologically-related if they occur frequently together as technology classification codes on 

the same patents. In this article, a novel approach, which relies on citation patterns in patent 

documents, is followed. Two technology classes are considered as technologically-related if 

patents classified in one technology class often cite patents classified in the other technology 

class (and visa versa). Since the variation among patent citations is much larger than that of 

the joint-occurrence of technology classification codes, this approach allows for a more fine-

grained characterization of technological-relatedness. Furthermore, arguably patent citations 

are a more direct measure of technological-relatedness since the cited patents represent ‘prior 

art’ relevant to qualify the claims advanced in the citing patent applications. The 

‘technological universe’ on the basis of which our technological-relatedness measure is 
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calculated is the collection of all EPO patent grants up to 2003 applied for between 1990 and 

2003 (and granted before June 2005). Most of these 456,340 EPO patent grants (98%) contain 

cited patents, which originate mainly from USPTO and EPO8. For these citations (969,471) 

information on technological classes can be extracted and used subsequently to assess 

technological-relatedness between classes.  

 

A straightforward way to measure the technological-relatedness of two technology classes is 

to compare the observed numbers of citations between these classes with expected numbers of 

citations, under the hypothesis of random occurrence of technology classes on cited patents. 

Let Oij be the observed number of cited patents of technology class j in citing patent grants of 

technology class i, with Oi= ∑j Oij
9. A certain technology class has a higher random 

probability to be cited if many patents are classified in that technology class. Let Nj

j j

ij

 be the 

total number of patents that are classified in technology class j, with T=∑  N . This gives the 

following expression for the expected – random – number of cited patents of technology class 

j in citing patents of technology class i (E ):  

 

Eij = Oi * (Nj/T)  

A measure of technological-relatedness is then calculated as follows: 

 

Rij = (Oij+ Ojj)/(Eij+Eji) 

 

This leads to the creation of a ‘symmetric’ matrix (30x30, with empty diagonal elements) of 

relatedness measures for each pair of (distinctive) technology classes. The interpretation of Rij 

is straightforward: if Rij >1, then technologies i and j are more related than could be expected 

on the basis of random citation patterns. The technology-relatedness matrix is given in 

Appendix 2.  

 

The technology-relatedness matrix is used to calculate the technological coherence of a firm’s 

technology portfolio, with the latter defined as the weighted (by means of consolidated patent 

numbers on the level of the firm) average technological-relatedness of all pairs of 

technologies in a technology portfolio. In line with the work of Teece et al (1994) on product-

relatedness measures, our measure of technological coherence at the level of the firm is 

calculated in two steps. First, for each technology in a firm’s patent portfolio, the weighted 
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average relatedness (COHi) of that technology to all other technologies within the firm is 

calculated:  

 

COHi = (∑i≠j Rij*Pj) / (∑i≠j Pj). 

 

This measure indicates to which extent technology field i is related to all other technology 

fields in a firm’s technology portfolio, weighted by the patent counts in each technology field 

(Pj). The overall coherence measure of a firm’s technology portfolio is then defined as the 

weighted average of all the COHi measures:  

 

COH = (∑i COHi * Pi)/ (∑i Pi) 

 

The coherence index COH is calculated on the 1-year lagged patent portfolio of the firm, 

which is taken as a five-year moving window of firms’ patent applications. Hypothesis 2 

predicts that COH has a positive moderating effect on the impact of DIV on technological 

performance. Hence, we include the interaction effect of DIV and COH in our empirical 

analyses and expect a positive sign. The analysis also includes a main effect of COH, to avoid 

a bias in the estimates of the interaction term between diversification and coherence 

(Braumoeller, 2004). 

 

Control variables 

Our empirical model controls for other factors that are likely to impact technological 

performance. As emphasized already by Pakes and Griliches (1984), changes in R&D 

expenditures are likely to result (with small time lags) in subsequent changes in patent 

numbers10. To control for changes in R&D expenditures, the 1-year lagged R&D expenditures 

of the firm (R&D), measured in constant US dollars (millions) are included. The data on 

firms’ R&D expenditures are collected from annual financial reports (source: Worldscope, 

Compustat and annual reports). A second control variable is the size of the lagged patent 

portfolio of the firm (PORTFOLIO). Firms with a large stock of patent applications are 

expected to be more effective in producing new patent applications. Finally, the model also 

includes 8 time dummies to account for time-specific factors affecting the number of patent 

applications.  
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Descriptive Statistics 

Descriptive statistics of the dependent and explanatory variables can be found in Table 2. The 

mean numbers of patent applications and lagged R&D expenditures in our sample amount to 

125 and 674 million dollars in respective order. The mean technological diversification 

measure is 4.56. As one may expect, the patent portfolios exhibit technological coherence: an 

average value of 1.33 (above 1) for the COH variable indicates that firms combine 

technologies that cite each other more frequently than a random citation pattern would 

suggest. 

 

Table 3 contains the coefficients of correlation between the variables of interest. The patent 

stock correlates highly with the rate of new patent applications. Technological diversification 

correlates negatively, but not particularly strong, with the level of technological coherence. 

As to be expected, the correlation between diversification and its squared term is 

considerable.  

 

INSERT TABLES 2 and 3 

 

Empirical Results 
 

The results of the fixed effects negative binomial estimation of the relationship between 

technological performance (the number of patent applications, PATENT), technological 

diversification and coherence are presented in Table 411. Model 1 includes only the control 

variables. R&D and the size of the lagged patent portfolio have the expected positive signs 

and are significant12. The time dummy coefficients indicate a yearly increase in patent 

applications up to 2002 (the reference year is 1995), followed by a decline in 2003. The 

decline in 2003 is partly due to the fact that not all patent applications filed in 2003 had been 

published and recorded in our database at the moment of data retrieval. In addition, the 

increasing trend to file patents directly under the PCT Treaty – extending the period between 

application and publication – explains the observed coefficient.  

 

The linear (DIV) and squared (DIV2) terms of technological diversification are added in 

Model 2, showing a positive and significant impact of the linear term and a negative and 

significant impact of the squared term. These results strongly confirm hypothesis 1: the 
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marginal effect of technological diversification is initially positive, but decreases after a 

certain level of diversification to become negative for highly diversified firms. In Model 3, 

the interaction term between technological diversification and technological coherence, as 

well as the main effect of coherence, are added. The coefficient of the interaction term is 

positive and significant while the coefficient of the main effect is negative but not significant. 

This supports our hypothesis 2: the higher the level of technological coherence of a firm’s 

technology portfolio, the greater the positive impact of technological diversification on a 

firm’s technological performance. Figure 1 illustrates our findings graphically. The figure 

depicts the predicted values of Model 3, calculated at the sample mean (average values for 

controls and fixed effect, year dummy 1999 set to 1), for varying values of DIV and COH. 

Technological diversification varies between 1 and 20 for three different values of coherence: 

average coherence (COH mean), average coherence minus one standard deviation (COH low), 

and average coherence plus one standard deviation (COH high). The figures illustrate that the 

relationship between technological diversification and performance is inverted U-shaped, 

while higher levels of technological coherence lead to a greater positive impact of 

diversification on performance. The optimal level of technological diversification depends on 

the level of technological coherence. For low coherent firms it is around 9, but this value 

increases to 13 and 16 for mean coherent and high coherent firms, respectively. While one has 

to be cautious in interpreting the predicted impacts13, Figure 1 shows that the magnitude of 

the impact of technological coherence on patent applications is substantial. A high-coherent 

firm active in 4 equally important (in terms of patent numbers) technology fields is predicted 

to have 60 percent (123 versus 77) more patent applications than an equally diversified firm 

characterized by low levels of coherence. Similarly, diversification conditional on sufficient 

coherence can have a large impact on patent applications. An average coherent firm active in 

4 equally important technology fields increases its yearly number of patent applications by 15 

percent  (97.5 to 115) if it becomes active in a 5th (equally important) technology class. 

 

Conclusion and Discussion 
This article examined the relationship between technological diversification and technological 

performance of firms in conjunction with the technological coherence of firms’ technology 

portfolios. Based on insights from the technology and innovation management literature, 

technological diversification is expected to have an inverted U-shaped relationship with 

technological performance. While technological diversification offers opportunities for cross-
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fertilization and technology fusion, higher levels of technological diversification may yield 

fewer marginal benefits as firms risk lacking sufficient levels of scale to benefit sufficiently 

from wide-ranging technological capabilities. In addition, coordination and integration costs 

may increase exponentially with higher levels of technological diversification, as highly 

diversified firms are more likely to encounter difficulties in combining mature (exploitative) 

technologies with explorative trajectories. Second, the level of technological coherence of 

firms’ technology portfolios is expected to moderate the relationship between technological 

diversification and performance positively. If firms diversify into ‘technologically-related’ 

technologies – i.e. technologies that share a common knowledge base rely upon common 

scientific principles or have similar heuristics of search – the presence of sufficient levels of 

scale is ensured while, at the same time, coordination costs may be reduced. Hence, 

technological coherent diversification puts firms in a better position to increase their 

technological output. Strong empirical support for our hypotheses is found in a fixed effects 

panel data analysis of the technological performance (as measured by yearly patent 

applications) of 184 high R&D spending US, European, and Japanese firms in five high-tech 

industries.  

 

These findings inform managerial practices with respect to technological diversification in 

different ways. The study shows that there exist limits with respect to the net benefits of 

firms’ technological diversification, and that too much diversification may negatively impact 

technological performance. Firms can increase the benefits of diversification and limit the 

disadvantages by choosing the direction of diversification carefully and extending their 

activities into technology fields that share a common knowledge base with the firm’s existing 

technology portfolio. So, besides organizational design choices (e.g. O’Reilly and Tushman, 

2004), technology characteristics (such as technological-relatedness) should be taken into 

account when taking strategic decisions on the composition and organization of technology 

portfolios. The study clearly identifies technological coherence as a promising area for further 

research. Future research focusing on the adoption of interface management practices directed 

towards enacting synergies and the precise nature of technological coherence within such 

processes seems highly relevant. Another avenue for future research relates to analyzing the 

relationship between technological diversification and firms’ financial performance, taking 

into account the moderating role of technological coherence. The omission of technological 

 15



coherence in previous work (Gambardella and Torrisi, 1998; D’Este, 2005; Giuri, Hagedoorn 

and Mariani, 2004) may be one factor explaining the mixed results of those studies. 
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TABLES, FIGURES AND APPENDICES 
 

Table 1: Distribution of sample firms by industry and region of origin 

Industry Europe Japan United States 
Engineering & General machinery 14 11 11 
Pharmaceuticals & Biotech 12 12 14 
Chemicals 12 11 11 
IT hardware 13 12 17 
Electronics & Electrical machinery  12 15 7 
Total 63 61 60 

 

 

Table 2: Descriptive statistics 

Variable Description Mean Std. Dev 
PATENT Number of patent applications 125.15 253.07 
RD R&D expenditures 674.54 1070.14 
SIZE Size of patent stock 547.86 1012.03 
DIV Technological diversification 4.56 2.53 
COH Knowledge coherence  1.33 0.95 
 

 

Table 3: Correlation Matrix 

  PAT RD PORTFOLIO DIV DIV2 COH DIV*COH 
PAT 1       
RD 0.722* 1      
PORTFOLIO 0.926* 0.754* 1     
DIV 0.17* 0.103* 0.192* 1    
DIV2 0.131* 0.087 0.146* 0.963* 1   
COH -0.138* 0.008 -0.14* -0.338* -0.297* 1  
DIV*COH -0.018 0.056 -0.002 0.451* 0.430* 0.620* 1 

Note: Significance of correlations is indicated by * (0.01) 
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Table 4: Results of Negative Binomial Fixed Effects Panel Data Analysis of Firm 
Technological Performance (PATENT) 
 
  Model 1 Model 2 Model 3 
PORTFOLIO .1312*** .1193*** .1344*** 
 (.0211) (.0189) (.0198) 
R&D .0934*** .1021*** .0786** 
 (.0320) (.0310) (.0323) 
DIV  .2652*** .1593*** 
  (.0368) (.0507) 
DIV2  -.0137*** -.0100*** 
  (.0029) (.0030) 
COH   -.04725 
   (.0824) 
DIV*COH   .0740*** 
   (.0264) 
y1996 .1550*** .1301** .1711*** 
 (.0579) (.0555) (.0561) 
y1997 .2134*** .1969*** .2325*** 
 (.0533) (.0510) (.0513) 
y1998 .3027*** .2918*** .3267*** 
 (.0520) (.0495) (.0497) 
y1999 .3770*** .3709*** .4045*** 
 (.0507) (.0483) (.0483) 
y2000 .4557*** .4473*** .4746*** 
 (.0496) (.0474) (.0474) 
y2001 .5045*** .4973*** .5177*** 
 (.0478) (.0457) (.0458) 
y2002 .5622*** .5619*** .5866*** 
 (.0462) (.0441) (.0443) 
y2003 .47685*** .4708*** .4913*** 
 (.0465) (.0446) (.0446) 
_cons 1.3012*** .5096*** .6006*** 
  (.0647) (.1179) (.1725) 
N 1514 1510 1496 
Number of Groups 184 184 184 
ll -5683.998 -5634.725 -5573.248 
chi2 376.558 500.8676 478.41 

Note: significance of coefficients is indicated by * (0.1), ** (0.05) and *** (0.01). R&D and portfolio are 
divided by a factor 1000 in this analysis for reporting issues. 
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Figure 1: Predicted Values of Patent Application (PATENT) as a function of 
Technological  Diversification (DIV) and Technological coherence (COH) 
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Appendix 1: Technology classification table 
 

1.  Electrical machinery  
2.  Audio-visual technology 
3.  Telecommunications 
4.  Information technology 
5.  Semiconductors 
6.  Optics 
7.  Analysis, measurement and control technology 
8.  Medical technology 
9.  Nuclear engineering 
10. Organic fine chemistry 
11. Macromolecular chemistry, polymers 
12. Pharmaceuticals, cosmetics 
13. Biotechnology 
14. Agriculture, food chemistry 
15. Chemical and petrol industry, basic materials 
16. Chemical engineering 
17. Surface technology, coating 
18. Materials, metallurgy 
19. Materials processing, textiles, paper 
20. Handling, printing 
21. Agricultural and food processing machinery 
22. Environmental technology 
23. Machine tools 
24. Engines, pumps, turbines 
25. Thermal processes and apparatus 
26. Mechanical elements 
27. Transport 
28. Space technology, weapons 
29. Consumer goods and equipment 
30. Civil engineering, building, mining 



Appendix 2: Technology Relatedness Matrix 

 
                                1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1                               
2 0.58                              
3 0.5                            0 2.10  
4 0.3 4                           5 1. 3 2.13  
5 1.1 4 3                          5 0. 6 0. 5 0.75  
6 0.55 1.29 0.64 0.36 1.04                          
7 0.60 0.49 0.84 1.39 0.47 0.50                         
8 0.14 0.13 0.06 0.22 0.05 0.25 0.52                        
9 1.12 0.44 0.23 0.34 0.84 0.74 0.98 1.10                       

10 0.04 0.05 0.00 0.01 0.03 0.36 0.29 0.07 0.03                      
11 0.33 0.18 0.01 0.01 0.20 0.90 0.07 0.51 0.05 1.14                     
12 0.01 0.01 0.00 0.01 0.01 0.04 0.27 0.74 0.08 4.86 0.65                    
13 0.01 0.01 0.01 0.03 0.02 0.04 1.68 0.30 0.07 2.44 0.27 2.56                   
14 0.07 0.00 0.00 0.01 0.01 0.01 0.08 0.19 0.02 0.68 0.46 1.86 3.26                  
15 0.17                            0.16 0.00 0.01 0.15 0.71 0.12 0.26 0.73 2.77 2.07 1.18 0.91 1.19  
16 0.23                            0.06 0.02 0.11 0.28 0.16 0.74 0.57 0.59 1.41 0.88 0.40 0.67 0.93 1.70  
17 0.91                        0.45 0.04 0.06 1.67 0.73 0.19 0.57 0.94 0.14 1.98 0.08 0.07 0.19 0.70 1.08  
18 0.90                       0.13 0.03 0.01 0.88 0.45 0.13 0.17 1.28 0.34 0.96 0.21 0.07 0.14 1.21 2.18 2.41  
19 0.30                       0.22 0.02 0.08 0.14 0.49 0.21 0.59 0.15 0.18 2.69 0.16 0.13 0.29 1.05 1.02 2.61 1.00  
20 0.24                      0.31 0.14 0.32 0.21 0.74 0.70 0.38 0.16 0.05 0.43 0.05 0.05 0.43 0.21 0.72 1.19 0.15 1.07  
21 0.10                            0.05 0.03 0.07 0.02 0.02 0.31 0.24 0.02 0.05 0.17 0.14 0.32 4.40 0.43 0.72 0.29 0.07 0.34 0.54  
22 0.18                            0.02 0.01 0.01 0.04 0.08 0.22 0.26 1.05 0.30 0.44 0.10 0.59 0.48 1.31 6.41 0.82 2.78 0.48 0.12 0.39  
23 0.47                            0.07 0.03 0.11 0.54 0.28 0.37 0.27 0.86 0.02 0.14 0.02 0.01 0.12 0.25 0.44 1.08 1.30 1.01 0.80 0.53 0.33  
24 0.46                            0.02 0.05 0.07 0.11 0.02 0.51 0.21 0.16 0.01 0.02 0.00 0.00 0.02 0.08 0.55 0.34 0.42 0.11 0.13 0.09 2.14 0.45  
25 0.73                            0.03 0.04 0.06 0.34 0.10 0.51 0.16 0.60 0.02 0.06 0.01 0.05 0.39 0.46 1.38 0.41 1.83 0.35 0.19 0.52 2.89 0.75 1.76  
26 0.44                            0.10 0.04 0.07 0.08 0.08 0.41 0.31 0.23 0.01 0.13 0.00 0.01 0.03 0.08 0.31 0.51 0.30 0.58 0.47 0.37 0.44 0.99 1.74 0.63  
27 0.52                         0.10 0.17 0.19 0.05 0.13 0.53 0.09 0.05 0.01 0.23 0.00 0.00 0.01 0.04 0.11 0.33 0.13 0.44 0.33 0.29 0.29 0.30 0.86 0.59 2.65     
28 0.22                            0.11 0.28 0.17 0.19 0.35 0.87 0.05 0.13 0.05 0.14 0.03 0.03 0.03 0.12 0.23 0.60 0.45 0.20 0.18 0.13 0.19 0.19 0.35 0.34 0.31 1.12  
29 0.27                            0.36 0.09 0.28 0.23 0.19 0.37 0.71 0.10 0.01 0.22 0.06 0.02 0.37 0.10 0.40 0.86 0.12 0.72 0.77 0.50 0.22 0.73 0.13 0.92 0.55 0.58 0.43  
30 0.23                            0.10 0.12 0.09 0.05 0.08 0.36 0.06 0.17 0.02 0.21 0.01 0.03 0.02 0.27 0.35 0.65 0.50 0.40 0.29 0.53 0.61 0.61 0.26 0.46 1.40 0.78 0.43 0.68  

 

 



 

                                                 
ENDNOTES 
 
1 An exception is Nesta and Saviotti (2005) who examine technological diversification and coherence of patent 
portfolios for a small sample of US bio-pharmaceutical firms. They use a coherence measure due to Breschi, 
Lissoni and Malerba (2003) and find that coherence has a positive impact on a firm’s number of biotech patent 
applications.   
2 Prencipe (2004) provides evidence for the absorptive capacity argument. For three leading firms in the aircraft 
engine industry, he noted that their internal technology portfolio remained very broad over time, despite an 
increase in the outsourcing of the development of components to suppliers. 
3 Suzuki & Kodama (2004) found empirical proof of such intra-firm cross-fertilization dynamics when analyzing 
the inventive activities of two large Japanese firms, Canon and Takeda. Canon benefited from the knowledge of 
camera technologies to develop the technological trajectories of both copiers and semiconductor manufacturing 
equipment, while knowledge in the field of ‘microbes and fermentation’ enabled Takeda to deepen competencies 
in ‘organic chemistry’. 
4 See, for instance, the development of a first affordable computerized numerical controller for industrial 
machine tools by Fanuc as documented by Kodama (1992). 
5 These studies examined patent application data of 31 US bio-pharmaceutical firms, and 544 EU firms (from 
different sectors), respectively. 
6 For the distinction between exploration and exploitation we refer to March (1991).  
7 We selected industries with the highest patent propensities as reported by Arundel and Kabla (1998): 
Pharmaceuticals (74%), Chemicals (57%), Machinery (54%), Precision instruments (53%), Electrical equipment 
(43%) and IT Equipment (36.5%). 
8 For citations to patents granted by patent authorities other than EPO and USPTO (about 40 percent of 
citations), no technology class information was available on a systematic basis. We have worked thus 
exclusively with EPO and USPTO cited patents found in EPO patent grants. 
9 We make no specific assumption about the form of the distribution of technology classes across cited patents 
10 Pakes and Griliches (1987) show that the relationship between R&D expenditures and patents is especially 
strong at the cross-sectional level (R-squares of 0.9), while the same relationship is also significant (but weaker) 
in the within-firms time-series dimension (R-squares of 0.3) 
11 We executed a Hausman test which compares random effects and fixed effects estimations of the model. This 
test rejected the appropriateness of using random effects estimation. 
12 Conservative 2-tailed tests are being used throughout. 
13 We note that parts of the graphs fall out of our sample range: the maximum sample values for DIV are 15, 8 
and 5.5 for low, mean and high coherent firms, respectively. In addition the predictions are conditional on taking 
all other covariates in the sample mean.  
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