
DEPARTEMENT TOEGEPASTE
ECONOMISCHE WETENSCHAPPEN

ONDERZOEKSRAPPORT· NR 9642

An Optimal Procedure for the Unconstrained

Max-NPV Project Scheduling Problem with

Generalized Precedence Relations

by

Bert De Reyck

Willy Herroelen

Katholieke Universiteit Leuven

Naamsestraat 69, 8-3000 Leuven

ONDERZOEKSRAPPORT NR 9642

An Optimal Procedure for the Unconstrained

Max-NPV Project Scheduling Problem with

Generalized Precedence Relations

D/1996/2376/42

by

Bert De Reyck

Willy Herroelen

AN OPTIMAL PROCEDURE FOR THE UNCONSTRAINED

MAx-NPV PROJECT SCHEDULING PROBLEM WITH

GENERALIZED PRECEDENCE RELATIONS

Bert DE REYCK

Willy HERROELEN

August 1996

Operations Management Group
Department of Applied Economics

Katholieke Universiteit Leuven
Hogenheuvel College

Naamsestraat 69, B-3000 Leuven, Belgium
Phone: 32-16-32 69 66 or 32-16-326970

Fax: 32-16-32 67 32
E-mail: Bert.DeReyck@econ.kuleuven.ac.beorWilly.Herroelen@econ.kuleuven.ac.be

WWW -page: http://econ.kuleuven.ac.be/tew/academic/om/people/bert
http://econ.kuleuven.ac.be/tew/academic/om/people/willy

2

AN OPTIMAL PROCEDURE FOR THE UNCONSTRAINED MAx-NPV PROJECT

SCHEDULING PROBLEM WITH GENERALIZED PRECEDENCE RELATIONS

Bert De Reyck • Willy Herroelen

Department of Applied Economics, Katholieke Universiteit Leuven

ABSTRACT

The unconstrained max-npv project scheduling problem involves the scheduling of the

activities of a project in order to maximize its net present value. Assume a P!oject represented in

activity-on-node (AoN) notation, in which the activities have a known duration and are subject to

technological precedence constraints. Throughout each activity, a series of cash outflows and

receipts may occur, which allows for the computation of a terminal cash flow value (positive or

negative) upon its completion. The project is to be scheduled against a fIxed deadline in the

absence of resource constraints. Several procedures have been presented in the literature to cope

with this problem. In this paper, we describe how one ofthe most efficient optimal procedures can

be adapted to cope with generalized precedence relations, which introduce arbitrary minimal and

maximal time lags between the start and completion of activities. The procedure has been

programmed in Microsoft® Visual C++ 2.0 under Windows NT for use on a personal computer.

Extensive computational results are reported.

3

1. Introduction

Recently, a number of publications have dealt with various types of project scheduling

problems with the objective of maximizing the net present value (npv) of the project, in which

cash flows are associated with the activities of the project, and the objective is to schedule the

activities in such a way that the net present value of the project is maximized. Generally, a series

of cash flows may occur over the course of a project in two forms. Cash outflows include

expenditures for labor, equipment, materials, etc .. Cash inflows take place in the form of progress

payments for completed work. We assume that these cash flows can be associated with the

completion of the project activities.

The research presented in the literature can be classified in different ways. For a recent

review, we refer the reader to Herroelen et al. (1996a). We distinguish between, on the one hand,

procedures for the unconstrained max-npv project scheduling problem, i.e. when no constraints on

the resource usage are imposed such that the activities are only subject to precedence constraints,

and, on the other hand, procedures for the resource-constrained project scheduling problem with

max-npv objective, also referred to as the resource-constrained project scheduling problem with

discounted cash flows (RCPSPDC). Algorithms for the deterministic resource-unconstrained case

have been presented by Russell (1970), Grinold (1972), Elmaghraby and Herroelen (1990),

Herroelen and Gallens (1993), Sepil and Kazaz (1994) and Herroelen et al. (1996b), the most

efficient of which seems to be the procedure of Herroelen et al. (1996b). Optimal algorithms for

the resource-constrained case have been presented by Doersch and Patterson (1977), Smith­

Daniels and Smith-Daniels (1987), Patterson et al. (1989,1990), Yang et al. (1992), Icmeli and

Erengti~ (1995) and Baroum and Patterson (1996). Heuristic approaches have been presented by

Russell (1986), Smith-Daniels and Aquilano (1987), Padman et al. (1990), Padman and Smith­

Daniels (1993a,1993b), Zhu and Padman (1993), Icmeli and Erengti~ (1994), Ozdamar et al.

(1994), Yang et al. (1995), Ulusoy and Ozdamar (1995) and Sepil and Orta~ (1995).

In this paper, we present a model and an optimal solution procedure for the unconstrained

max-npv project scheduling problem with generalized precedence relations (GPRs), which allows

for arbitrary minimal and maximal time lags between the start and completion of activities. To

the best of our knowledge, no procedure has been presented yet for the unconstrained max-npv

problem with GPRs, neither for the minimal time lag case (precedence diagramming), nor for the

minimal/maximal time lag case (generalized precedence relations). We describe how the

procedure of Herroelen et al. (1996b) can be adapted to cope with generalized precedence

relations.

4

The remainder of this paper is organized as follows. In section 2 we introduce the basic

problem type under study, namely the unconstrained max-npv problem with GPRs. Section 3

continues with a brief description of time analysis in project networks with generalized

precedence relations and defines some basic concepts which will be used in the description of the

solution procedure. The solution procedure itself is described in section 4. In section 5, an example

will be given to illustrate the algorithm. Section 6 reports extensive computational experience

using a random problem generator which can generate project networks with generalized

precedence relations (Schwindt, 1995). Section 7 is reserved for our conclusions and suggestions

for future research.

2. The unconstrained max-npv problem with generalized precedence relations

Assume a project represented in activity-on-node (AoN) notation by a directed graph G = {V,

E} in which V is the set of vertices or activities, and E is the set of edges or generalized precedence

relations (GPRs). The non-preemptable activities are numbered from 1 to n, where the dummy

activities 1 and n mark the beginning and the end of the project. The duration of an activity is

given by di (l::;; i::;; n), its starting time by si (1::;; i::;; n) and its fmishing time by !i(1::;; i::;; n). The

problem is unconstrained in the sense that no constraints are imposed on the use of resources.

Throughout each activity, a series of cash outflows and receipts may occur, which allows for the

computation of a terminal cash flow value (which may be positive or negative) upon its completion

as follows:

d;
ci = I. fit ea.(d;-t)

t=l

where ci represents the terminal value of all the cash flows occurring during the execution of

activity i, fit denotes the cash flow occurring during the ttil (1::;; t ::;; d i) period activity i is in

progress and ex is the discount rate.

The minimal and maximal time lags between two activities i andj are of the form:

5

The different types of GPRs can be represented in a standardized form by reducing them to

just one type, e.g. the minimal start-start precedence relations, using the following

transformation rules (Bartusch et al., 1988):

s· +SS"!!,in <s·
l 1J - J ~ Si + lij ~ s j with lij = sstjin

s· + SS"!!,ax > S .
l 1J - J ~ Sj + lji ~ Si with l .. =_SS"!!,ax

Jl lJ

Si + SF/tin ~ f j ~ Si + lij ~ S j with lij = SF/tin - d j

s· + SF·T?ax > f·
l lJ - J ~ S j + I ji ~ si with l .. = d . - SF·max

Jl J lJ

{,. + FS"!!,in < S .
l 1J - J ~ Si + lij ~ S j with [.. = d. + FS"!!,in

lJ l lJ

{,. + FS"!!'ax > S .
l 1J - J ~ Sj + lji ~ Si with I·· = -d· - FS"!!'ax

Jl l 1J

(,. + FF.T?in < f.
l lJ - J ~ s·+l··<s· l 1J - J with lij = d i - d j + FF/tn

t,. + FF·T?ax > f·
l lJ - J ~ s·+l··<s· J Jl - l

with l .. = d . - d. - Fpmax
Jl J l lJ

If there is more than one time lag lij between two activities i and j, only the maximal time

lag is retained. The interval [si + lij , si - I) is called the time window of Sj relative to si (Bartusch

et aI., 1988). Applying these transformation rules to an activity network with GPRs results in a

so-called constraint digraph, which is short for digraph of temporal constraints (Bartusch et al.,

1988).

Then, the unconstrained max-npv project scheduling problem with generalized precedence

relations can be conceptually formulated as follows:

n-1

Maximize LC' e-a,(s,+d)
£ [1]

i=2
Subject to

s·+l··<s· £ £) - J V(i, j) E E [2]

s1 =0 [3]

sn -D~O [4]

si EN i = 1,2, ... ,n [5]

where D denotes the project deadline, which is enforced by a maximal start-start time lag of D

between the dummy start activity 1 and the dummy end activity n.

We will show how the procedure of Herroelen et ai. (1996b) can be adapted to cope with

GPRs, allowing it to be incorporated in a procedure for the resource-constrained project

scheduling problem with discounted cash flows and generalized precedence relations (RCPSPDC­

GPR) for the calculation of upper bounds on the net present value of a project.

6

3. Temporal analysis of project networks with GPRs

Because activity networks with GPRs contain cycles, additional concepts are needed

(Bartusch et al., 1988). A path <is' ik , iz, ... , it> is called a cycle if s = t. With 'path' we mean a

directed path, and with 'cycle' we mean a directed cycle. The length of a path (cycle) is defined as

the sum of all the lags associated with the arcs belonging to that path (cycle). Activity durations

do not have to be included in the calculation of a path length, since all time lags l .. in a constraint
lJ

digraph are of the SS-type. To ensure that the dummy start and finish activities correspond to the

beginning and the completion of the project, we assume that there exists at least one path with

nonnegative length from node 1 to every other node i and at least one path from every node i to

node n which is equal to or larger than d i . If there are no such paths, we can insert arcs (l,i) or

(i,n) with weight zero and d i respectively. P(i) = {j I (j,i) E E} is the set of all immediate

predecessors of node i, Q(i) = {j I (i, j) E E} is the set of all its immediate successors. If there exists

a path from i toj, then we call i apredecessor ofj andj a successor ofi.

The goal of project scheduling problems is to obtain a schedule B, which is a vector of

starting times {sl' S2' ... , snl for all activities. Schedules can be subject to temporal constraints and

resource constraints. In this paper, we focus on the temporal constraints. A schedule is called

time·feasible, if all the starting times satisfy all GPRs. In other words, a time-feasible schedule

with starting times {s l' S2' •.. , snl satisfies the conditions that:

{
Si ;;:: 0

s· + l·· < s .
! U - J v (i,j) E E

[6]

[7]

where Eqs. 6 ensure that no activity starts before the current time (time zero), and Eqs. 7 denote

the precedence constraints in standardized form. The minimum starting times {sl' S2' ••• , sn l

satisfying both Eqs. 6 and 7 form the early start schedule EBB = {est' es2, ••• , esnl associated with

the temporal constraints.

The calculation of an EBB can be related to the test for existence of a time-feasible schedule.

The earliest start of an activity i can be calculated by finding the longest path from node 1 to node

i. We also know that there exists a time-feasible schedule for G iff G has no cycle of positive

length (Bartusch et al., 1988). Cycles of positive length would unable us to calculate starting

times for the activities which satisfy conditions [6] and [7]. Therefore, if we calculate the

distance matrix D = [d i), where d ij denotes the maximal distance (path length) from node i to

7

node j, a positive path length from node i to itself indicates the existence of a cycle of positive

length and, consequently, the non-existence of a time-feasible schedule.

The calculation of the distance matrix D can be done by standard graph algorithms for

longest paths in (cyclic) networks, for instance by the Floyd-Warshall algorithm (for details, see

Lawler, 1976). Ifwe start with the matrix D(1) = [df,~] (i,j = 1,2, ... , n) with

d>l~ = {;''j' l,j

-00

ifi = j

otherwise

we can compute the matrix D = D(n+lJ according to the updating formula

d~v~ =max{d>V:-l),d~Vl-l) +dlcv:-1)} (i,j, l = 1, 2, ... , n). Ifd .. = 0 for all i = 1, 2, ... , n (the numbers
t,j t,j £, ,j lIZ

in the diagonal of D), there exists a time-feasible schedule. The EBB is given by the numbers in

the upper row of D: EBB = (d1,1' d 1,2' ... , d1,nL

The computation of D takes O(I V1 3) time (Bartusch et aI., 1988). The EBB can be calculated

more efficiently by using the Modified Label Correcting Algorithm (Ahuja et aI., 1989), which is of

time complexity O(I V I I E I) and which also allows for the identification of positive cycles.

4. The optimal solution procedure

4.1. Description

The procedure of Herroelen et aI. (1996b) can be extended to cope with GPRs in the

following way: We start in STEP 1 by computing the constraint digraph using the transformation

rules discussed in section 2 (time complexity O[n 2]). Then, the distance matrix is computed using

the Floyd-Warshall algorithm (time complexity O[n 3]). If the project is not time-feasible, i.e. if

there is an activity i for which di,i > 0, the algorithm stops. Otherwise, in STEP 2, the early tree,

which spans all activities (nodes) scheduled at their earliest start time, is computed as follows:

For every activity i, a predecessor j is determined for which dl,j + d j,i = dl,i, upon which

activities j and i are linked. For every activity i, there always exists a predecessor activity j

satisfying dl,j + d j,i = dl,i, since dummy activity 1 will always satisfy this constraint for any

given activity i. In other words, if we would link activity 1 to every other activity, we would get a

valid early tree. However, this early tree contains very little information about the activities in

the project and their precedence relations (e.g. critical paths) and would lead to a large number of

8

'unnecessary' recursion steps later on in the procedure. Therefore, we link every activity i to the

highest numbered predecessor j (j<i) for which dl,j +dj,i = dl,i holds (using a reverse search

scheme).

The current tree is calculated in STEP 3 of the algorithm by delaying, in reverse order, all

activities i with a negative cash flow and no successor in the early tree as much as possible within

the early tree, i.e. without affecting the start times of the successor activities in the constraint

digraph. Each such activity i is then linked to its successor j restricting a further delay of activity

i, except for the case where activity j is itself a predecessor of activity i in the current tree (which

is possible because activity networks with GPRs can contain cycles), which would lead to the

creation of a cycle in the current tree. In that case, activities i andj remain fixed at their current

starting times because only a simultaneous delay of both activities would ensure that the time­

feasibility of the project network is not violated. Simultaneous delays will be examined in STEP 4.

If any activity i has been delayed while calculating the current tree, STEP 3 has to be

repeated, since it is possible that delaying activity i will allow for an additional delay of another

activity j (j>i). Searching in reverse order makes sure that no other activity j<i will be delayed,

but the delay of activitiesj>i cannot always be avoided.

After STEP 3 has been repeated a sufficient number of times, the procedure will enter a

recursive search, in which partial trees PT (with a negative net present value) will be identified

that may be shifted forwards in time in order to increase the npv of the project. When such a

partial tree is found, the algorithm computes the maximal shift of the partial tree by identifying

the maximal possible increase in the starting times of the activities belonging to the partial tree

without violating any of the precedence constraints, keeping all activities not belonging to PT at

their current starting times. Therefore, we look for a new arc with minimal displacement, i.e. an

arc (k,l) (k E PT, l ~ PT) with minimal value for dl,l - dl,k - dk,l . We disconnect the partial tree

from the remainder of the current tree and we add the arc (k,l) to the current tree, thereby

relinking the forward-shifted partial tree to the current tree. Then, we update the completion

times of the activities III the partial tree as follows: V j E PT: dl,j = dl,j +

min {dll - dl,k - d k l }. If a shift has been found and implemented, the recursive procedure is
kEPT ' ,
l~PT

restarted until no further shift can be accomplished. Then, the optimal schedule with its

corresponding npv is reported.

Notice that, contrary to the procedure of Herroelen et al. (1996b), it is not possible that the

current tree disconnects into two parts, one part being shifted forward till it hits the deadline.

9

When the deadline is enforced using a generalized precedence relation (a maximal start-start

time lag between the dummy start and the dummy end activity), the current tree will never

disconnect because this deadline-GPR will always keep both parts together. Therefore, the extra

step that is needed in the procedure of Herroelen et aL (1996b) to cope with such disconnected

current trees is not needed in our procedure.

4.2. The algorithm

STEP 1. DISTANCE MATRIX CALCULATION

Compute the constraint digraph cd.

Compute the distance matrix.

Ifthe project is not time-feasible (i.e. :3 i E V:di,i > 0), STOP.

STEP 2. EARLY TREE CALCULATION

Compute the early tree as follows: For each activity i E V \ {I}, search for an activity

j E V (j < i) for which dl,j + d j,i = dl,i. In case several such activitiesj exist, choose the one

with the highest number smaller than i (search in reverse order starting from activity i-I).

Link activitiesj and i in the early tree. Make the early tree the current tree.

STEP 3. CURRENT TREE CALCULATION

Compute a new current tree by delaying, in reverse order, each activity i with a negative cash

flow and no successor in the current tree as much as possible (by increasing dl,i), thereby

linking it to the activity j preventing a further delay. Remove the link to any predecessor in

the current tree. The delay of activity i is calculated as jEVi\{i}{dl,j - d1,i -di,j}. If, however,

activity j preventing a further delay of activity i is itself a predecessor of activity i in the

current tree, activity i can neither be delayed nor linked to activity j. Rather, activities i andj

are fixed at their current starting times. Make the so obtained tree the current tree.

If any activity has been delayed in this step, repeat STEP 3.

STEP 4.

A=0.

Do RECURSION(l) ~ PT, DC' (parameters returned by the recursive function)

Report the optimal schedule {dl,l>d1,2, ... ,dl,n} and net present value DC'. STOP.

RECURSION (NEWNODE)

Initialize PT={newnode}, DC=cnewnode, A=Au{newnode}.

Do for each successor activity i ~ A of newnode (in the current tree):

RECURSION(i) ~ PT,DC'

If DC';::: 0

Else

set PT = PT u PT' and DC = DC + DC' .

Delete arc (newnode, i) from the current tree.

Find a new arc with minimal displacement, i.e. arc (k,l) (k E PT, I ~ PT) with

minimal value for dl,l - dl,k - dk,l .

Add arc (k,l) to the current tree.

Update the completion times of the activities in PT as follows:

V j E PT: dl,j = dl,j + k~FT {dl,l - dl,k - dk,l}'

I~PT

Go to STEP 4.

Do for each predecessor activity i ~ A of newnode (in the current tree):

RECURSION (i) ~ PT, DC'

PT=PTuPT' and DC=DC+DC'.

Return.

5. Example

10

Consider the project with cash flows and GPRs given in Fig. 1 (adapted from Elmaghraby

and Kamburowski, 1992). The nodes represent the project activities. The number above each node

denotes the activity duration, the number below denotes the associated cash flow. The labels

associated with the arcs denote the GPRs. The critical paths are indicated in bold. Notice that the

maximal start-start time lag between dummy activities 1 and 10 represents the project deadline,

which is assumed to be 25. The discount rate a equals 0.02. We will compute the optimal solution

by going through the steps of the algorithm.

STEP 1. DISTANCE MATRIX CALCULATION

Compute the constraint digraph cd (see Fig. 2).

Compute the distance matrix (see Fig. 3).

The project is time-feasible (Vi E V: di,i = 0). As can be seen from Fig. 3, the critical path length,

or, equivalently, the length of the earliest start schedule equals 16 time units:

11

ESS = {dl,l,d1,2, ... ,dl,n} = {0,0,2,2,8,3,9,10,11,16}. The net present value ofthe ESS equals 2.10.

SSmin(l) ssmax(25)

Fig. 1. A project network with GPRs and cash flows

250 150

Fig. 2. The example of Fig. 1 in standardized form

0 0 2 2 8 3 9 10 11 16

0 -4 2 2 3 4 6 7 12

-2 0 0 6 1 7 8 9 14

-2 -6 0 0 1 2 4 5 10

-8 -8 -6 0 -5 1 2 3 8
D

-5 -9 -3 -3 0 -1 1 2 7

-9 -9 -7 -3 -6 0 1 2 7

-10 -10 -8 -4 -7 -2 0 1 6

-11 -12 -9 -6 -8 -3 -2 0 5

-17 -17 -15 -11 -14 -8 -7 -6 0

Fig. 3. The distance matrix ofthe example in Fig. 1

STEP 2. EARLY TREE CALCULATION

Compute the early tree (see Fig. 4). As stated before, the early tree corresponds to a feasible

schedule with a net present value of 2.10. Make this tree the current tree.

3 4

o

®
o

250 150

Fig. 4. The early tree with an npv of2.10

STEP 3. CURRENT TREE CALCULATION

12

Compute a new current tree. Activity 9 has a negative cash flow but cannot be delayed because

it is already linked to successor activity 10. Activity 6 with a negative cash flow and no

successor in the current tree can be delayed. The delay is calculated as:

13

min {d1 J" - dl,i - d i J"} = d1,2 - d 16 - d 6 2 = 0 - 3 - (-5) = 2 " Therefore, delay activity 6 till
jEV\{6} '. ' "

time period 5, i.e. set d1,6 = 5 , remove the link between activities 5 and 6 and link activity 6 to

activity 2. Activity 4 with a negative cash flow and no successor in the current tree can be

delayed. The delay is calculated as: min {d1 J' - dl,i - d i J"} = d 12 - d1,4 - d 4 2 =
jEV\{4} , " ,

0- 2 - (-2) = 0 . The delay is equal to zero, which implies that a delay of activity 4 is

impossible due to the precedence relation with activity 2. However, we do remove the link

between activities 3 and 4 and link activity 4 to activity 2. Activity 3 cannot be delayed since it

is already linked to successor activity 5 in the current tree. Notice that, contrary to the case

when only zero-lag finish start precedence constraints are present, it is possible that loose

nodes are created during this step. For instance, if the cash flow associated with activity 2

would have been negative, activity 2 would have been delayed till time period 4 (d1,2 = 4),

thereby linking activity 2 to activity 8 and removing the link between activities 1 and 2,

activities 4 and 2 and activities 6 and 2. Consequently, activities 4 and 6 would not be

connected anymore to any other activity. This, however, would be resolved when Step 3 is

repeated, in which the loose nodes will be relinked with their appropriate successor.

3

4

-150

250 150

Fig. 5. The current tree with an npv of 161.36

STEP 3. CURRENT TREE CALCULATION

No activities can be delayed any further. Make the so obtained tree the current tree (Fig. 5)

14

with starting times {0,0,2,2,8,5,9,10,11,16} and net present value 161.36. Notice that, when the

cash flow associated with activity 2 would have been negative, the loose nodes 4 and 6 would

have been connected to their appropriate successor in the current tree, namely activity 2.

STEP 4.

A=0

RECURSION (1)

PT={l}, DC=O,A={l}.

RECURSION (2)

PT = {2}, DC = 100e-0.02(0+2) = 96.08, A = {1,2}.

RECURSION (4)

PT = {4}, DC = -150 e-0.02(2+3) = -135.73, A = {1,2,4}.

PT = {2,4}, DC = 96.08 - 135.73 = -39.65 .

RECURSION (6)

PT = {6}, DC = _100e-0.02(5+4) = -83.53, A = {1,2,4,6}.

PT = {2,4,6}, DC = -39.65 - 83.53 = -123.17 .

DC = -123.17 < 0. Delete arc (1,2). Add arc (2,8) with displacement d1,8 -d1,2 -d2,8

= 10 - ° -6 = 4 to the current tree: d1,2 = 4 ; d1,4 = 6 ; d1,6 = 9 . The npv now equals 170.83. The

resulting current tree is displayed in Fig. 6.

3

4

-150

-2 -5

250 150

Fig. 6. The intermediate current tree with an npv of 170.83

RECURSION (1)

PT = {I}, DC = 0, A = {I}.

RECURSION (3)

PT={3}, DC=_200e-O.02(2+7) =-167.05, A={1,3}.

RECURSION (5)

PT = {5}, DC = 250e-O.02(8+4) = 196.66, A = {1,3,5}.

RECURSION (7)

PT = {7}, DC = 150e-O.02(9+5) = 113.37, A = {1,3,5,7}.

RECURSION (8)

PT = {8}, DC = 450e-O.02(lO+6) = 326.77, A = {1,3,5,7,8}.

RECURSION (9)

PT = {9}, DC = _250e-O·02 (11+4) = -185.20, A = {1,3,5,7,8,9}.

RECURSION (10)

PT={10}, DC=O, A={1,3,5,7,8,9,10}.

PT = {9,10}, DC = -185.20 + 0 = -185.20.

DC = -185.20 < o. Delete arc (8,9). Add arc (9,7) with displacement

dl, 7 - d1,9 - d 9,7 = 9 -11- (-3) = 1 to the current tree: d1,9 = 12; dl,lO = 17 . The npv of this

schedule is 174.50. The resulting current tree is given in Fig. 7.

3 4

4 6

-150 -100

-2

o
(lo) --450 o

250 150

Fig. 7. The intermediate current tree with an npv of 174.50

15

RECURSION (1)

PT={l}, DC=O, A={l}.

RECURSION (3)

PT = {3}, DC = _200e-0.02(2+7) = -167.05, A = {1,3}.

RECURSION (5)

PT={5}, DC = 250e-0.02(8+4) =196.66, A={1,3,5}.

RECURSION (7)

PT = {7}, DC = 150 e -0.02(9+5) = 113.37 , A = {1,3,5,7}.

RECURSION (8)

PT = {S}, DC = 450 e -0.02(10+6) = 326.77 , A = {1,3,5, 7,S}.

RECURSION (2)

PT = {2}, DC = 100e-0.02(4+2) = SS.69, A = {1,2,3,5,7,S}.

RECURSION (4)

PT = {4}, DC = _150e-0.02(6+3) = -125.29, A = {1,2,3,4,5,7,S}.

PT = {2,4}, DC = SS.69 - 125.29 = -36.60 .

RECURSION (6)

PT = {6}, DC = _100e-0.02(9+4) = -77.11, A = {1,2,3,4,5,6,7,S}.

PT = {2,4,6}, DC = -36.60 -77.11= -113.70.

PT = {2,4,6,S}, DC = 326.77 - 113.70 = 213.06

PT = {2,4,6,7,S}, DC = 113.37 + 213.06 = 326.43

RECURSION (9)

PT = f9} DC = _250e-O·02(12+4) = -IS~54 A = {1,2 3 4 5 6 7 S 9} t ' , , , , , , " .

RECURSION (10)

PT = {10}, DC = 0, A = {1,2,3,4,5,6,7,S,9,lO}.

PT={9,10}, DC=-lS~54+0=-lS~54

PT = {2,4,6,7,S,9,10}, DC = 326.43 - lS~54 = 144.S9

PT = {2,4,5,6,7,S,9,10}, DC = 196.66 + 144.89 = 34~55

PT = {2,3,4,5,6,7,S,9,10}, DC = -167.05 + 34~55 = 174.50

PT = {1,2,3,4,5,6,7,S,9,10}, DC = 174.50 + 0 = 174.50

Report the optimal schedule with activity starting times {0,4,2,6,S,9,9,10,12,17} and net

present value 174.50. The optimal current tree is the one given in Fig. 7.

STOP.

16

17

6. Computational experience

The procedure has been programmed in Microsoft® Visual C++ 2.0 under Windows NT for use

on a Digital Venturis Pentium-60 personal computer. The code itself requires 75kb of memory,

whereas only 83kb are reserved for data storage, which makes it very well suited to run on any

platform, even those with a small amount of available memory. In order to validate the search

procedure, we solved one of the problem sets used by Herroelen et al. (1996b) to validate their

solution procedure for the unconstrained max-npv case with zero-lag finish-start precedence

relations. The problem set consists of 98 of the 110 RCPSP instances assembled by Patterson

(1984) with up to 27 (non-dummy) activities, for which the resource requirements have been

deleted and randomly generated cash flows have been added. The experiment showed identical

results, and indicated that our procedure was almost 12 times slower (5.11 milliseconds on the

average vs. 0.43 milliseconds on the average) for that problem set than the procedure of Herroelen

et al. (1996b), the latter, however, being unable to solve GPR-instances. The fact that our

procedure is slower on problem instances without GPRs is quite logical and due to the fact that it

is developed especially for problem instances with GPRs, in which cycles may occur, whereas the

procedure of Herroelen et al. (1996b) can ignore cyclic structures due to the absence of cycles in

project networks with zero-lag fmish-starl precedence relations.

6.1. Benchmark problem set

Schwindt (1995) developed a random problem generator ProGenlmax which can randomly

generate instances of various types of generalized resource-constrained project scheduling

problems, based on the problem generator ProGen for the RCPSP developed by Kolisch et al.

(1995). ProGenlmax can generate RCPSP instances, multiple-mode RCPSP (MRCPSP) instances,

RCPSP-GPR instances as well as MRCPSP-GPR (a combination of multiple modes and GPRs)

instances. In addition, instances of the resource levelling problem with generalized precedence

relations (RLP-GPR) and the resource availability cost problem with generalized precedence

relations (RACP-GPR) can be generated. Two methods are proposed: DIRECT, which directly

generates entire projects, and CONTRACT, which first generates cycle structures, upon which the

(acyclic) contracted project network is generated. Several control parameters can be specified, as

indicated in Table 1. Obviously, the resource-based measures given in the second column are

irrelevant for the unconstrained max-npv project scheduling problem.

18

Table I. The control parameters of ProGenimax (Schwindt, 1995)

Problem size-based

activities (n)

Resource-based

resource types (m)

min. / max. number of

resources used per activity

resource factor (RF)

(Pascoe, 1966)

resource strength (RS)

(Kolisch et aI., 1995)

Acyclic network-based

initial and terminal

activities

maximal # predecessors

and successors

order strength (OS)'

(Mastor, 1970)

Cyclic network-based

% maximal time lags

cycle structures

min. / max. # nodes

per cycle structure

coefficient of cycle structure

density (Schwindt, 1995)

cycle structure tightness

(Schwindt, 1995)

Three RCPSP-GPR problem sets have already been generated using ProGenimax. The first

set (Schwindt, 1996) consists of 1080 instances, of which 540 are generated using the DIRECT

method and 540 using the CONTRACT method. The second set (Franck and Neumann, 1996)

consists of 1440 problem instances generated using the DIRECT method. The third set (De Reyck

and Herroelen, 1996b) consists of 7200 problem instances generated using the DIRECT method,

which allows for a more extensive testing of the impact of several problem characteristics. We will

use the third benchmark set to test the effectiveness and efficiency of our solution procedure.

The control parameters used to generate the 7200 instances are given in Table II. For each

combination of control parameter values, 120 problem instances have been generated. The

indication [x,y] means that the value is randomly generated in the interval [x,y], whereas x; y; z

means that three settings for that parameter were used in a full factorial experiment. The

parameters used in the full factorial experiment are the number of activities as a problem size­

based measure, the order strength (OS) as an acyclic network-based measure and the percentage

of maximal time lags as a cyclic network-based measure. The cash flows for each of the activities

are generated randomly from the interval [-500,+ 500].

1 Schwindt (1996) uses an estimator for the restrictiveness (The sen, 1977) as a network complexity measure. However,
De Reyck (1995) has shown that this measure is identical to the order strength (Mastor, 1970), the flexibility ratio (Dar­
El, 1973) and the density (Kao and Queyranne, 1982). We will use order strength when referring to this measure.

Table II. The parameter settings of the benchmark problem set

Control parameter

activities

activity durations

initial and terminal activities

maximal # predecessors and successors

as
% maximal time lags

cycle structures

minimall maximal # nodes per cycle structure

coefficient of cycle structure density

cycle structure tightness

6.2. Basic results

Value

10;20;30;50; 100

[2,10]

[2,4]

3

0.25; 0.50; 0.75

0%; 10%; 20%; 30%

[0,10]

2/100

0.3

0.5

19

The results are given in Tables III through V. The reported values are the average CPU

time in milliseconds, its range and its standard deviation.

Table III. The impact of the number of activities

Activities # problems Average CPU time CPU time range Standard Deviation

10 1440 0,94 [0-3] 0,20

20 1440 5,69 [3 - 10] 0,84

30 1440 17,20 [11- 35] 2,51

50 1440 137,38 [110 - 270] 19,47

100 1440 836,12 [550 -1,843] 181,60

A first observation we can make from Table III is that the required CPU times are very

small. The average computation times are smaller than 1 second, even for the 100-activity

projects. However, we should keep in mind that the unconstrained max-npv project scheduling

problem (with GPRs) is probably not a goal by itself. Its solution may be used to compute an

upper bound on the project npv for a resource-constrained project scheduling problem with

20

discounted cash flows (and GPRs), to be solved by an optimal procedure such as branch-and­

bound. In that case, the unconstrained problem should be solved in every (undominated) node of

the branch-and-bound tree, which may run in the thousands. Therefore, we should be able to

execute the algorithm thousands of times within acceptable computation times, which is, as Table

III indicates, clearly the case. Notice also the very low standard deviations and small ranges,

reflecting a very robust behaviour of the procedure over the different problem instances.

Table III reveals that the number of activities has a strong impact on the required

computation time. Moreover, Table IV shows a positive correlation between as and the required

CPU time: when as increases, the problem becomes harder. The more dense the project network

becomes, the more recursion steps are needed and, consequently, the more computation time is

spent. These findings are completely in line with the results for the case with zero-lag fmish-starl

precedence relations only reported by Herroelen et al. (1996b), who also found that an increased

network complexity (density), either in the form of a higher complexity index CI (De Reyck and

Herroelen, 1996a) or a higher order strength as, leads to an increase in computational

requirements. The effect of the percentage of maximal time lags as a cyclic network-based

measure can be observed from Table V. The addition of more maximal time lags adversely affects

the efficiency of our procedure, thus reflecting an increased problem complexity. However, the

effect of the percentage of maximal time lags is less pronounced than the effect of as.

Table IV. The impact of the order strength

as # problems Average CPU time CPU time range Standard Deviation

0.25 2400 177,56 [0 -1,542] 288,00

0.50 2400 199,02 [0 -1,592] 328,95

0.75 2400 221,82 [0 -1,843] 373,67

Table V. The impact of the percentage of maximal time lags

Max. time lags # problems Average CPU time CPU time range Standard Deviation

0% 1800 178,33 [0 -1,232] 288,60

10 % 1800 198,46 [0 - 1,562] 329,16

20% 1800 209,18 [0 -1,843] 352,37

30% 1800 211,91 [0 -1,642] 354,84

21

6.3. The effect of the distance matrix computation

The major part of the required computation time is needed to calculate the distance matrix

(STEP 1). Table VI displays the portion of the total CPU time spent on (initializing and)

calculating the distance matrix.

Table VI. Portion of the CPU time needed for computing the distance matrix

Activities Number of problems % of CPU time needed to compute the distance matrix

10 1440 65 %

20 1440 77%

30 1440 77%

50 1440 77%

100 1440 62%

Due to the fact that the distance matrix computation accounts for a major portion of the

required CPU time, the effect of the network-based measures on the computational complexity of

the max-npv project scheduling problem (Table IV and V) may be obscured or deflated, since these

measures will not have any significant effect on the time needed to compute the distance matrix.

Tables VII through IX therefore report the computational requirements excluding the time

needed to calculate the distance matrix. Note that the computation times reported in Tables VII

through IX will determine the extra amount spent in the nodes of a branch-and-bound algorithm

for the resource-constrained project scheduling problem with discounted cash flows and

generalized precedence relations (RCPSPDC-GPR), if this algorithm is used to compute an upper

bound on the net present value of the project network in each node, represented by its distance

matrix.

Table VII. The impact ofthe number of activities

Activities # problems Average CPU time CPU time range Standard Deviation

10 1440 0,33 [0-2] 0,19

20 1440 1,33 [0-7] 0,79

30 1440 3,91 [0 - 22] 2,50

50 1440 31,84 [6 - 154] 19,39

100 1440 313,56
f'

[20 -1,292] 178,17

22

When we compare Tables III and VII, it is clear that the calculation of the distance matrix is

largely responsible for the total computation time needed to solve these problem instances. When

the time spent on calculating the distance matrix is removed from the reported CPU times, the

effect of the network-based problem characteristics on the required computational effort of the

recursive procedure becomes even more clear. From Table VIII, we again observe a positive

correlation between OS and the required CPU time. Table IX now clearly indicates the effect of

the percentage of maximal time lags as a cyclic network-based measure, although it is still not as

pronounced as the effect of OS. For instance, the hardest problem in the set, with a CPU time of

1.29 seconds, has an OS of 0.75 but only has 20% maximal time lags.

Table VIII. The impact of the order strength

OS # problems Average CPU time CPU time range Standard Deviation

0.25 2400 49,30 [0 -1,042] 99,06

0.50 2400 69,75 [0 -1,071] 139,76

0.75 2400 91,52 [0 - 1,292] 184,06

Table IX. The impact of the percentage of maximal time lags

Max. time lags # problems Average CPU time CPU time range Standard Deviation

0% 1800 49,35 [0 -721] 95,80

10% 1800 69,50 [0 -1,042] 141,29

20% 1800 79,87 [0 -1,292] 166,65

30% 1800 82,05 [0 -1,082] 167,09

6.4. The impact of the cash flow distribution

In the experiment described above, the cash flows for each of the activities were randomly

generated from the interval [-500, + 500]. This means that, on the average, 50% of the activities

will have a negative cash flow associated with it. In practice, the distribution of the cash flows

may take very different forms, depending on the contract and payment structure of the project. In

some projects, there may be few activities with a negative cash flow, whereas in other projects, all

23

the activities except for the last activity of the project carry negative cash flows (for a clarifying

review of the different types of contracts and payment structures, we refer the reader to

Herroelen et al., 1996a). In order to examine the impact of different cash flow distributions on the

complexity of the unconstrained max-npv project scheduling problem, we randomly generated the

cash flows of each of the activities from the interval [0, + 500] , and assigned a negative cash flow

to some activities by reversing the sign of the associated cash flow. The number of such activities

was varied from 0% to 100% in steps of 10%. The effect on the average CPU time required to solve

the 7200 problem instances is indicated in Fig. 8 (for the projects with up to 30 activities) and Fig.

9 (for the projects with 50 and 100 activities).

~
" 8

t
'" S
'';::

::>
p.,
CJ

'" .<

20

18

16

14

12

10

8

6

4

2

0

0% 10% 20% 30% 40% 50% 60%

% activities with negative cash flow

70.'11> 80% 90%

__ 10 activities

__ 20 activities

....... 30 activities

100%

Fig. 8. The effect of the % of activities with a negative cash flow on the average CPU time

'" "d

" 8

f
" S :p

~
U
bD
~

900

800

700

600

500

400

300

200

100

0

0% 10% 20% 30% 40% 50% 60%

% activities with negative cash flow

70% 80% 90%

__ 50 activities

-+-100 activities

100%

Fig. 9. The effect of the % of activities with a negative cash flow on the average CPU time

24

As can be seen from Fig. 8 and 9, the percentage of activities with a negative cash flow has

an impact on the computational complexity of the unconstrained max-npv project scheduling

problem, albeit not very significant. Clearly, if no activities with a negative cash flow are present,

the problem becomes very easy since the earliest start schedule will always represent the optimal

solution, i.e. no forward shifts of the activities and no recursion steps are necessary. Only the

distance matrix needs to be computed. If all activities carry negative cash flows, the problem is

also relatively easy, because all activities can be shifted forward till one of them hits the deadline.

If, however, activities with positive and negative cash flows are mixed, the problem becomes

harder. This is why, in the experiments reported above, we have set the number of activities with

a negative cash flow to 50%, representing more or less the hardest problem instances.

As mentioned before, the effect of the problem characteristics on the computational

complexity of the max-npv project scheduling problem may be obscured by the fact that the
.,

calculation of the distance matrix is included in the reported computation times. Fig. 10 and 11

show graphs similar to Fig. 8 and 9, but with the calculation of the distance matrix excluded from

the reported average computation times. The complexity of the distance matrix computation is

independent of the number of activities with a negative cash flow, since no cash flow

considerations are taken into account. As can be seen from Fig. 10 and 11, the effect of the

percentage of activities with a negative cash flow on the average CPU time excluding the time

needed to compute the distance matrix is much more pronounced.

6

5

j 3

~ o
~

...: 2

0% 10% 20% 30%

25

---10 activities

--+- 20 activities

--<k'- 30 activities

40% 50% 60% 70% 80% 90% 100%

% activities with negative cash flow

Fig. 10. The effect of the % of activities with a negative cash flow on the average CPU time

350

300

250

'" 1 200

~
~
" 150
.~

~
bil 100
~

50

-50

00

---50 activities
--+-100 activities

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

% activities with negative cash flow

Fig. 11. The effect of the % of activities with a negative cash flow on the average CPU time

26

7. Conclusions

The unconstrained max-npv project scheduling problem involves the scheduling of the

activities of a project in order to maximize its net present value. In this paper, we presented a

model and an optimal solution procedure for the unconstrained max-npv project scheduling

problem with generalized precedence relations (GPRs), which allows for the introduction of

arbitrary minimal and maximal time lags between the start and completion of activities. We

described how one of the most efficient optimal procedures for the unconstrained max-npv project

scheduling problem with zero-lag finish-start precedence constraints only, namely the procedure

of Herroelen et al. (1996b), can be adapted to cope with generalized precedence relations.

Computational results are reported which show the effectiveness and efficiency of the

proposed procedure, in that it is able to solve randomly generated problem instances up to 100

activities with very modest computation time and memory requirements. Even 100-activity

problem instances can be solved in, on the average, less than 1 second of CPU time on a Pentium-

60 personal computer. The promising results indicate that the proposed procedure is very well

suited to be implemented for the calculation of upper bounds on the project npv in a more general

solution procedure for the resource-constrained cas,e, i.e. the resource-constrained project

scheduling problem with discounted cash flows and generali~ed precedence relations (RCPSPDC­

GPR).

27

References

Ahuja, R.K., Magnanti, T.L. and Orlin, J.B., 1989, "Network flows", in: Nemhauser, G.L., Rinnooy

Kan, A.H.G. and Todd, M.J. (Eds.), Handbooks in Operations Research and Management

Science, Elsevier, Amsterdam, 258-263.

Baroum, S. and Patterson, J.H., 1996, "An exact solution procedure for maximizing the net

present value of cash flows in a network", Fifth International Workshop on Project

Management and Scheduling, 11 - 13 april, Poznan.

Bartusch, M., Mohring, R.H. and Radermacher, F.J., 1988, "Scheduling project networks with

resource constraints and time windows", Annals of Operations Research, 16,201-240.

Baroum, S.M., 1992, "An Exact Solution Procedure for Maximizing the Net Present Value of

Resource-Constrained Projects", unpublished Ph.D. dissertation, Indiana University.

Dar-EI, E.M., 1973, "MALB - A heuristic technique for balancing large single-model assembly

lines", AIlE Transactions, 5, 343-356.

De Reyck, B., 1995, "On the use of the restrictiveness as a measure of complexity for resource­

constrained project scheduling", Research Report 9535, Department of Applied Economics,

Katholieke Universiteit Leuven.

De Reyck, B. and Herroelen, W., 1996a, "On the use of the complexity index as a measure of

complexity in activity networks", European Journal of Operational Research, 91, 347-366;

De Reyck, B. and Herroelen, W., 1996b, "Computational experience with a branch-and-bound

procedure for the resource-constrained project scheduling problem with generalized precedence

relations", Research Report 9628, Department of Applied Economics, Katholieke Universiteit

Leuven.

Doersch, R.H. and Patterson, J.H., 1977, "Scheduling a Project to Maximize its Present Value: A

Zero-One Programming Approach", Management Science, 23, 882-889

Elmaghraby, S.E. and Herroelen, W., 1990, "The scheduling of activities to maximize the net

present value of projects", European Journal of Operational Research, 49, 35-49.

Elmaghraby, S.E. and Kamburowski, J., 1992, "The analysis of activity networks under

generalized precedence relations", :Management Science, 38,1245-1263.

Franck, B. and Neumann, K., 1996, "Priority-rule methods for the resource-constrained project

scheduling problem with minimal and maximal time lags - an emprical analysis", Fifth

International Workshop on Project Management and Scheduling, 11- 13 april, Poznan.

Grinold, R.C., 1972, "The payment scheduling problem", Naval Research Logistics Quarterly,

19(1), 123-136.

Herroelen, W. and Gallens, E., 1993, "Computational experience with an optimal procedure for

the scheduling of activities to maximize the net present value of projects", European Journal of

Operational Research, 65, 274-277.

28

Herroelen, W., Demeulemeester, E. and Van Dommelen, P., 1996a, "Project network models with

discounted cash flows: A guided tour through recent developments", European Journal of

Operational Research, to appear.

Herroelen, W., Demeulemeester, E. and Van Dommelen, P., 1996b, "An optimal recursive search

procedure for the deterministic unconstrained max-npv project scheduling problem", Research

Report 9603, Department of Applied Economics, Katholieke Universiteit Leuven.

Icmeli, O. and Erengii~, S.S., 1994, "A tabu search procedure for resource-constrained project

scheduling with discounted cash flows", Computers and Operations Research, 21, 841-853.

Icmeli, O. and Erengii~, S.s., 1995, "A branch-and-bound procedure for the resource-constrained

project scheduling problem with discounted cash flows", Working Paper, Cleveland State

University.

Jensen, P.A. and Barnes, J.W., 1987, Network Flow Programming, Robert E. Krieger Publishing

Company, Florida.

Kao, E. P. C. and Queyranne, M., 1982, "On dynamic programming methods for assembly line

balancing", Operations Research, 30, 375-390.

Kolisch, R, Sprecher, A. and Drexl, A., 1995, "Characterization and generation of a general class

of resource-constrained project scheduling problems", Management Science, 41 (10),1693-1703.

Lawler, E.L., 1976, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and

Winston, New York.

Mastor, A. A., 1970, "An experimental and comparative evaluation of production line balancing

techniques", Management Science, 16 (11),728-746.

Ozdamar, L., Ulusoy, G. and Bayyigit, M., 1994, "A heuristic treatment of tardiness and net

present value criteria in resource-constrained project scheduling", Working Paper, Department

ofIndustrial Engineering, Marmara University.

Padman, R, Smith-Daniels, D.E. and Smith-Daniels, V.L., 1990, "Heuristic scheduling of

resource-constrained projects with cash flows: an optimization-based approach", Working

Paper 90-6, Carnegie-Mellon University.

Padman, R and Smith-Daniels, D.E., 1993a, "Maximizing the net present value of capital­

constrained projects: an optimization-guided approach", Working Paper 93-56, Carnegie­

Mellon University.

Padman, R and Smith-Daniels, D.E., 1993b, "Early-Tardy Cost Trade-Oft's in Resource

Constrained Projects with Cash Flows: An Optimization-Guided Heuristic Approach",

European Journal o{Operational Research, 64, 295-311.

Pascoe, T.L., 1966, "Allocation of resources - CPM", Revue Franrraise de Recherche Operationelle,

38,31-38.

Patterson, J.H., 1984, "A Comparison of Exact Procedures for Solving the Multiple-Constrained

Resource Project Scheduling Problem", Management Science, 20, 767-784.

29

Patterson, J.H., Slowinski, R, Talbot, F.B., and Weglarz, J., 1989, "An Algorithm for a General

Class of Precedence and Resource Constrained Scheduling Problems", Part I, Chapter 1 in

Slowinski, R & Weglarz, J. (eds.), Advances in Project Scheduling, Elsevier Science

Publishers, Amsterdam, 3-28.

Patterson, J.H., Talbot, F.B. , Slowinski, R and Weglarz, J., 1990, "Computational Experience

with a Backtracking Algorithm for Solving a General Class of Precedence and Resource­

Constrained Scheduling Problems", European Journal of Operational Research, 49, 68-79.

Russell, A.H., 1970, "Cash flows in networks", Management Science, 16,357-373.

Russell, RA., 1986, "A Comparison of Heuristics for Scheduling Projects with Cash Flows and

Resource Restrictions", Management Science, 32, 291-300.

Schwindt, C., 1995, "ProGenimax: a new problem generator for different resource-constrained

project scheduling problems with minimal and maximal time lags", Technical Report WIOR-

449, Institut fur Wirtschaftstheorie und Operations Research, Universitat Karlsruhe.

Schwindt, C., 1996, private communication.

Sepil, C. and Kazaz, B., 1994, "Project scheduling with discounted cash flows and progress

payments", Working Paper 94-7, Middle East Technical University, Ankara.

Sepil, C. and Orta<;, N., 1995, "Performance of the heuristic procedures for constrained projects

with progress payments", Working Paper, Middle East Technical University.

Smith-Daniels, D.E. and Aquilano, N.J., 1987, "Using a Late-Start Resource-Constrained Project

Schedule to Improve Project Net Present Value", Decision Sciences, 18,617-630.

Smith-Daniels, D.E. and Smith-Daniels, V.L., 1987, "Maximizing the Net Present Value of a

Project Subject to Materials and Capital Constraints", Journal of Operations Management, 7,

33-45.

Thesen, A., 1977, "Measures of the restrictiveness of project networks", Networks, 7,193- 208.

Ulusoy, G. and Ozdamar, L., 1995, "A Heuristic Scheduling Algorithm for Improving the Duration

and Net Present Value of a Project", International Journal of Operations and Production

Management, 15, 89-98.

Yang, KK, Talbot, F.B. and Patterson, J.H., 1992, "Scheduling a Project to Maximize Its Net

Present Value: An Integer Programming Approach", European Journal of Operational

Research, 64, 188-198.

Yang, KK, Tay, L.C. and Sum, C.C., 1995, "A Comparison of Stochastic Scheduling Rules for

Maximizing Project Net Present Value", European Journal of Operational Research, 85, 327-

339.

Zhu, D. and Padman, R, 1993, "Heuristic selection in resource-constrained project scheduling:

experiments with neural networks", Working Paper 93-43, Carnegie-Mellon University.

Figure Captions

Fig. 1. A project network with GPRs and cash flows

Fig. 2. The example of Fig. 1 in standardized form

Fig. 3. The distance matrix of the example in Fig. 1

Fig. 4. The early tree with an npv of2.10

Fig. 5. The current tree with an npv of 161.36

Fig. 6. The intermediate current tree with an npv of 170.83

Fig. 7. The intermediate current tree with an npv of 174.50

Fig. 8. The effect of the % of activities with a negative cash flow on the average CPU time

Fig. 9. The effect ofthe % of activities with a negative cash flow on the average CPU time

Fig. 10. The effect ofthe % of activities with a negative cash flow on the average CPU time

Fig. 11. The effect ofthe % of activities with a negative cash flow on the average CPU time

Table Captions

Table I. The control parameters of ProGenlmax (Schwindt, 1995)

Table II. The parameter settings of the benchmark problem set

Table III. The impact of the number of activities

Table IV. The impact ofthe order strength

Table V. The impact ofthe percentage of maximal time lags

Table VI. Portion of the CPU time needed for computing the distance matrix

Table VII. The impact ofthe number of activities

Table VIII. The impact of the order strength

Table IX. The impact of the percentage of maximal time lags

30

