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AN OPTIMAL PROCEDURE FOR THE UNCONSTRAINED MAx-NPV PROJECT 

SCHEDULING PROBLEM WITH GENERALIZED PRECEDENCE RELATIONS 

Bert De Reyck • Willy Herroelen 

Department of Applied Economics, Katholieke Universiteit Leuven 

ABSTRACT 

The unconstrained max-npv project scheduling problem involves the scheduling of the 

activities of a project in order to maximize its net present value. Assume a P!oject represented in 

activity-on-node (AoN) notation, in which the activities have a known duration and are subject to 

technological precedence constraints. Throughout each activity, a series of cash outflows and 

receipts may occur, which allows for the computation of a terminal cash flow value (positive or 

negative) upon its completion. The project is to be scheduled against a fIxed deadline in the 

absence of resource constraints. Several procedures have been presented in the literature to cope 

with this problem. In this paper, we describe how one ofthe most efficient optimal procedures can 

be adapted to cope with generalized precedence relations, which introduce arbitrary minimal and 

maximal time lags between the start and completion of activities. The procedure has been 

programmed in Microsoft® Visual C++ 2.0 under Windows NT for use on a personal computer. 

Extensive computational results are reported. 
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1. Introduction 

Recently, a number of publications have dealt with various types of project scheduling 

problems with the objective of maximizing the net present value (npv) of the project, in which 

cash flows are associated with the activities of the project, and the objective is to schedule the 

activities in such a way that the net present value of the project is maximized. Generally, a series 

of cash flows may occur over the course of a project in two forms. Cash outflows include 

expenditures for labor, equipment, materials, etc .. Cash inflows take place in the form of progress 

payments for completed work. We assume that these cash flows can be associated with the 

completion of the project activities. 

The research presented in the literature can be classified in different ways. For a recent 

review, we refer the reader to Herroelen et al. (1996a). We distinguish between, on the one hand, 

procedures for the unconstrained max-npv project scheduling problem, i.e. when no constraints on 

the resource usage are imposed such that the activities are only subject to precedence constraints, 

and, on the other hand, procedures for the resource-constrained project scheduling problem with 

max-npv objective, also referred to as the resource-constrained project scheduling problem with 

discounted cash flows (RCPSPDC). Algorithms for the deterministic resource-unconstrained case 

have been presented by Russell (1970), Grinold (1972), Elmaghraby and Herroelen (1990), 

Herroelen and Gallens (1993), Sepil and Kazaz (1994) and Herroelen et al. (1996b), the most 

efficient of which seems to be the procedure of Herroelen et al. (1996b). Optimal algorithms for 

the resource-constrained case have been presented by Doersch and Patterson (1977), Smith­

Daniels and Smith-Daniels (1987), Patterson et al. (1989,1990), Yang et al. (1992), Icmeli and 

Erengti~ (1995) and Baroum and Patterson (1996). Heuristic approaches have been presented by 

Russell (1986), Smith-Daniels and Aquilano (1987), Padman et al. (1990), Padman and Smith­

Daniels (1993a,1993b), Zhu and Padman (1993), Icmeli and Erengti~ (1994), Ozdamar et al. 

(1994), Yang et al. (1995), Ulusoy and Ozdamar (1995) and Sepil and Orta~ (1995). 

In this paper, we present a model and an optimal solution procedure for the unconstrained 

max-npv project scheduling problem with generalized precedence relations (GPRs), which allows 

for arbitrary minimal and maximal time lags between the start and completion of activities. To 

the best of our knowledge, no procedure has been presented yet for the unconstrained max-npv 

problem with GPRs, neither for the minimal time lag case (precedence diagramming), nor for the 

minimal/maximal time lag case (generalized precedence relations). We describe how the 

procedure of Herroelen et al. (1996b) can be adapted to cope with generalized precedence 

relations. 
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The remainder of this paper is organized as follows. In section 2 we introduce the basic 

problem type under study, namely the unconstrained max-npv problem with GPRs. Section 3 

continues with a brief description of time analysis in project networks with generalized 

precedence relations and defines some basic concepts which will be used in the description of the 

solution procedure. The solution procedure itself is described in section 4. In section 5, an example 

will be given to illustrate the algorithm. Section 6 reports extensive computational experience 

using a random problem generator which can generate project networks with generalized 

precedence relations (Schwindt, 1995). Section 7 is reserved for our conclusions and suggestions 

for future research. 

2. The unconstrained max-npv problem with generalized precedence relations 

Assume a project represented in activity-on-node (AoN) notation by a directed graph G = {V, 

E} in which V is the set of vertices or activities, and E is the set of edges or generalized precedence 

relations (GPRs). The non-preemptable activities are numbered from 1 to n, where the dummy 

activities 1 and n mark the beginning and the end of the project. The duration of an activity is 

given by di (l::;; i::;; n), its starting time by si (1::;; i::;; n) and its fmishing time by !i(1::;; i::;; n). The 

problem is unconstrained in the sense that no constraints are imposed on the use of resources. 

Throughout each activity, a series of cash outflows and receipts may occur, which allows for the 

computation of a terminal cash flow value (which may be positive or negative) upon its completion 

as follows: 

d; 
ci = I. fit ea.(d;-t) 

t=l 

where ci represents the terminal value of all the cash flows occurring during the execution of 

activity i, fit denotes the cash flow occurring during the ttil (1::;; t ::;; d i ) period activity i is in 

progress and ex is the discount rate. 

The minimal and maximal time lags between two activities i andj are of the form: 
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The different types of GPRs can be represented in a standardized form by reducing them to 

just one type, e.g. the minimal start-start precedence relations, using the following 

transformation rules (Bartusch et al., 1988): 

s· +SS"!!,in <s· 
l 1J - J ~ Si + lij ~ s j with lij = sstjin 

s· + SS"!!,ax > S . 
l 1J - J ~ Sj + lji ~ Si with l .. =_SS"!!,ax 

Jl lJ 

Si + SF/tin ~ f j ~ Si + lij ~ S j with lij = SF/tin - d j 

s· + SF·T?ax > f· 
l lJ - J ~ S j + I ji ~ si with l .. = d . - SF·max 

Jl J lJ 

{,. + FS"!!,in < S . 
l 1J - J ~ Si + lij ~ S j with [.. = d. + FS"!!,in 

lJ l lJ 

{,. + FS"!!'ax > S . 
l 1J - J ~ Sj + lji ~ Si with I·· = -d· - FS"!!'ax 

Jl l 1J 

(,. + FF.T?in < f. 
l lJ - J ~ s·+l··<s· l 1J - J with lij = d i - d j + FF/tn 

t,. + FF·T?ax > f· 
l lJ - J ~ s·+l··<s· J Jl - l 

with l .. = d . - d. - Fpmax 
Jl J l lJ 

If there is more than one time lag lij between two activities i and j, only the maximal time 

lag is retained. The interval [si + lij , si - I) is called the time window of Sj relative to si (Bartusch 

et aI., 1988). Applying these transformation rules to an activity network with GPRs results in a 

so-called constraint digraph, which is short for digraph of temporal constraints (Bartusch et al., 

1988). 

Then, the unconstrained max-npv project scheduling problem with generalized precedence 

relations can be conceptually formulated as follows: 

n-1 

Maximize LC' e-a,(s,+d) 
£ [1] 

i=2 
Subject to 

s·+l··<s· £ £) - J V(i, j) E E [2] 

s1 =0 [3] 

sn -D~O [4] 

si EN i = 1,2, ... ,n [5] 

where D denotes the project deadline, which is enforced by a maximal start-start time lag of D 

between the dummy start activity 1 and the dummy end activity n. 

We will show how the procedure of Herroelen et ai. (1996b) can be adapted to cope with 

GPRs, allowing it to be incorporated in a procedure for the resource-constrained project 

scheduling problem with discounted cash flows and generalized precedence relations (RCPSPDC­

GPR) for the calculation of upper bounds on the net present value of a project. 
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3. Temporal analysis of project networks with GPRs 

Because activity networks with GPRs contain cycles, additional concepts are needed 

(Bartusch et al., 1988). A path <is' ik , iz, ... , it> is called a cycle if s = t. With 'path' we mean a 

directed path, and with 'cycle' we mean a directed cycle. The length of a path (cycle) is defined as 

the sum of all the lags associated with the arcs belonging to that path (cycle). Activity durations 

do not have to be included in the calculation of a path length, since all time lags l .. in a constraint 
lJ 

digraph are of the SS-type. To ensure that the dummy start and finish activities correspond to the 

beginning and the completion of the project, we assume that there exists at least one path with 

nonnegative length from node 1 to every other node i and at least one path from every node i to 

node n which is equal to or larger than d i . If there are no such paths, we can insert arcs (l,i) or 

(i,n) with weight zero and d i respectively. P(i) = {j I (j,i) E E} is the set of all immediate 

predecessors of node i, Q(i) = {j I (i, j) E E} is the set of all its immediate successors. If there exists 

a path from i toj, then we call i apredecessor ofj andj a successor ofi. 

The goal of project scheduling problems is to obtain a schedule B, which is a vector of 

starting times {sl' S2' ... , snl for all activities. Schedules can be subject to temporal constraints and 

resource constraints. In this paper, we focus on the temporal constraints. A schedule is called 

time·feasible, if all the starting times satisfy all GPRs. In other words, a time-feasible schedule 

with starting times {s l' S2' •.. , snl satisfies the conditions that: 

{
Si ;;:: 0 

s· + l·· < s . 
! U - J v (i,j) E E 

[6] 

[7] 

where Eqs. 6 ensure that no activity starts before the current time (time zero), and Eqs. 7 denote 

the precedence constraints in standardized form. The minimum starting times {sl' S2' ••• , sn l 

satisfying both Eqs. 6 and 7 form the early start schedule EBB = {est' es2, ••• , esnl associated with 

the temporal constraints. 

The calculation of an EBB can be related to the test for existence of a time-feasible schedule. 

The earliest start of an activity i can be calculated by finding the longest path from node 1 to node 

i. We also know that there exists a time-feasible schedule for G iff G has no cycle of positive 

length (Bartusch et al., 1988). Cycles of positive length would unable us to calculate starting 

times for the activities which satisfy conditions [6] and [7]. Therefore, if we calculate the 

distance matrix D = [d i), where d ij denotes the maximal distance (path length) from node i to 
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node j, a positive path length from node i to itself indicates the existence of a cycle of positive 

length and, consequently, the non-existence of a time-feasible schedule. 

The calculation of the distance matrix D can be done by standard graph algorithms for 

longest paths in (cyclic) networks, for instance by the Floyd-Warshall algorithm (for details, see 

Lawler, 1976). Ifwe start with the matrix D(1) = [df,~] (i,j = 1,2, ... , n) with 

d>l~ = {;''j' l,j 

-00 

ifi = j 

otherwise 

we can compute the matrix D = D(n+lJ according to the updating formula 

d~v~ =max{d>V:-l),d~Vl-l) +dlcv:-1)} (i,j, l = 1, 2, ... , n). Ifd .. = 0 for all i = 1, 2, ... , n (the numbers 
t,j t,j £, ,j lIZ 

in the diagonal of D), there exists a time-feasible schedule. The EBB is given by the numbers in 

the upper row of D: EBB = (d1,1' d 1,2' ... , d1,nL 

The computation of D takes O( I V1 3) time (Bartusch et aI., 1988). The EBB can be calculated 

more efficiently by using the Modified Label Correcting Algorithm (Ahuja et aI., 1989), which is of 

time complexity O( I V I I E I ) and which also allows for the identification of positive cycles. 

4. The optimal solution procedure 

4.1. Description 

The procedure of Herroelen et aI. (1996b) can be extended to cope with GPRs in the 

following way: We start in STEP 1 by computing the constraint digraph using the transformation 

rules discussed in section 2 (time complexity O[n 2 ]). Then, the distance matrix is computed using 

the Floyd-Warshall algorithm (time complexity O[n 3 ]). If the project is not time-feasible, i.e. if 

there is an activity i for which di,i > 0, the algorithm stops. Otherwise, in STEP 2, the early tree, 

which spans all activities (nodes) scheduled at their earliest start time, is computed as follows: 

For every activity i, a predecessor j is determined for which dl,j + d j,i = dl,i, upon which 

activities j and i are linked. For every activity i, there always exists a predecessor activity j 

satisfying dl,j + d j,i = dl,i, since dummy activity 1 will always satisfy this constraint for any 

given activity i. In other words, if we would link activity 1 to every other activity, we would get a 

valid early tree. However, this early tree contains very little information about the activities in 

the project and their precedence relations (e.g. critical paths) and would lead to a large number of 
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'unnecessary' recursion steps later on in the procedure. Therefore, we link every activity i to the 

highest numbered predecessor j (j<i) for which dl,j +dj,i = dl,i holds (using a reverse search 

scheme). 

The current tree is calculated in STEP 3 of the algorithm by delaying, in reverse order, all 

activities i with a negative cash flow and no successor in the early tree as much as possible within 

the early tree, i.e. without affecting the start times of the successor activities in the constraint 

digraph. Each such activity i is then linked to its successor j restricting a further delay of activity 

i, except for the case where activity j is itself a predecessor of activity i in the current tree (which 

is possible because activity networks with GPRs can contain cycles), which would lead to the 

creation of a cycle in the current tree. In that case, activities i andj remain fixed at their current 

starting times because only a simultaneous delay of both activities would ensure that the time­

feasibility of the project network is not violated. Simultaneous delays will be examined in STEP 4. 

If any activity i has been delayed while calculating the current tree, STEP 3 has to be 

repeated, since it is possible that delaying activity i will allow for an additional delay of another 

activity j (j>i). Searching in reverse order makes sure that no other activity j<i will be delayed, 

but the delay of activitiesj>i cannot always be avoided. 

After STEP 3 has been repeated a sufficient number of times, the procedure will enter a 

recursive search, in which partial trees PT (with a negative net present value) will be identified 

that may be shifted forwards in time in order to increase the npv of the project. When such a 

partial tree is found, the algorithm computes the maximal shift of the partial tree by identifying 

the maximal possible increase in the starting times of the activities belonging to the partial tree 

without violating any of the precedence constraints, keeping all activities not belonging to PT at 

their current starting times. Therefore, we look for a new arc with minimal displacement, i.e. an 

arc (k,l) (k E PT, l ~ PT) with minimal value for dl,l - dl,k - dk,l . We disconnect the partial tree 

from the remainder of the current tree and we add the arc (k,l) to the current tree, thereby 

relinking the forward-shifted partial tree to the current tree. Then, we update the completion 

times of the activities III the partial tree as follows: V j E PT: dl,j = dl,j + 

min {dll - dl,k - d k l }. If a shift has been found and implemented, the recursive procedure is 
kEPT ' , 
l~PT 

restarted until no further shift can be accomplished. Then, the optimal schedule with its 

corresponding npv is reported. 

Notice that, contrary to the procedure of Herroelen et al. (1996b), it is not possible that the 

current tree disconnects into two parts, one part being shifted forward till it hits the deadline. 
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When the deadline is enforced using a generalized precedence relation (a maximal start-start 

time lag between the dummy start and the dummy end activity), the current tree will never 

disconnect because this deadline-GPR will always keep both parts together. Therefore, the extra 

step that is needed in the procedure of Herroelen et aL (1996b) to cope with such disconnected 

current trees is not needed in our procedure. 

4.2. The algorithm 

STEP 1. DISTANCE MATRIX CALCULATION 

Compute the constraint digraph cd. 

Compute the distance matrix. 

Ifthe project is not time-feasible (i.e. :3 i E V:di,i > 0), STOP. 

STEP 2. EARLY TREE CALCULATION 

Compute the early tree as follows: For each activity i E V \ {I}, search for an activity 

j E V (j < i) for which dl,j + d j,i = dl,i. In case several such activitiesj exist, choose the one 

with the highest number smaller than i (search in reverse order starting from activity i-I). 

Link activitiesj and i in the early tree. Make the early tree the current tree. 

STEP 3. CURRENT TREE CALCULATION 

Compute a new current tree by delaying, in reverse order, each activity i with a negative cash 

flow and no successor in the current tree as much as possible (by increasing dl,i), thereby 

linking it to the activity j preventing a further delay. Remove the link to any predecessor in 

the current tree. The delay of activity i is calculated as jEVi\{i}{dl,j - d1,i -di,j}. If, however, 

activity j preventing a further delay of activity i is itself a predecessor of activity i in the 

current tree, activity i can neither be delayed nor linked to activity j. Rather, activities i andj 

are fixed at their current starting times. Make the so obtained tree the current tree. 

If any activity has been delayed in this step, repeat STEP 3. 

STEP 4. 

A=0. 

Do RECURSION(l) ~ PT, DC' (parameters returned by the recursive function) 

Report the optimal schedule {dl,l>d1,2, ... ,dl,n} and net present value DC'. STOP. 



RECURSION (NEWNODE) 

Initialize PT={newnode}, DC=cnewnode, A=Au{newnode}. 

Do for each successor activity i ~ A of newnode (in the current tree): 

RECURSION(i) ~ PT,DC' 

If DC';::: 0 

Else 

set PT = PT u PT' and DC = DC + DC' . 

Delete arc (newnode, i) from the current tree. 

Find a new arc with minimal displacement, i.e. arc (k,l) (k E PT, I ~ PT) with 

minimal value for dl,l - dl,k - dk,l . 

Add arc (k,l) to the current tree. 

Update the completion times of the activities in PT as follows: 

V j E PT: dl,j = dl,j + k~FT {dl,l - dl,k - dk,l}' 

I~PT 

Go to STEP 4. 

Do for each predecessor activity i ~ A of newnode (in the current tree): 

RECURSION (i) ~ PT, DC' 

PT=PTuPT' and DC=DC+DC'. 

Return. 

5. Example 
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Consider the project with cash flows and GPRs given in Fig. 1 (adapted from Elmaghraby 

and Kamburowski, 1992). The nodes represent the project activities. The number above each node 

denotes the activity duration, the number below denotes the associated cash flow. The labels 

associated with the arcs denote the GPRs. The critical paths are indicated in bold. Notice that the 

maximal start-start time lag between dummy activities 1 and 10 represents the project deadline, 

which is assumed to be 25. The discount rate a equals 0.02. We will compute the optimal solution 

by going through the steps of the algorithm. 

STEP 1. DISTANCE MATRIX CALCULATION 

Compute the constraint digraph cd (see Fig. 2). 

Compute the distance matrix (see Fig. 3). 

The project is time-feasible (Vi E V: di,i = 0 ). As can be seen from Fig. 3, the critical path length, 

or, equivalently, the length of the earliest start schedule equals 16 time units: 
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ESS = {dl,l,d1,2, ... ,dl,n} = {0,0,2,2,8,3,9,10,11,16}. The net present value ofthe ESS equals 2.10. 

SSmin(l) ssmax(25) 

Fig. 1. A project network with GPRs and cash flows 

250 150 

Fig. 2. The example of Fig. 1 in standardized form 



0 0 2 2 8 3 9 10 11 16 

0 -4 2 2 3 4 6 7 12 

-2 0 0 6 1 7 8 9 14 

-2 -6 0 0 1 2 4 5 10 

-8 -8 -6 0 -5 1 2 3 8 
D 

-5 -9 -3 -3 0 -1 1 2 7 

-9 -9 -7 -3 -6 0 1 2 7 

-10 -10 -8 -4 -7 -2 0 1 6 

-11 -12 -9 -6 -8 -3 -2 0 5 

-17 -17 -15 -11 -14 -8 -7 -6 0 

Fig. 3. The distance matrix ofthe example in Fig. 1 

STEP 2. EARLY TREE CALCULATION 

Compute the early tree (see Fig. 4). As stated before, the early tree corresponds to a feasible 

schedule with a net present value of 2.10. Make this tree the current tree. 

3 4 

o 

® 
o 

250 150 

Fig. 4. The early tree with an npv of2.10 

STEP 3. CURRENT TREE CALCULATION 

12 

Compute a new current tree. Activity 9 has a negative cash flow but cannot be delayed because 

it is already linked to successor activity 10. Activity 6 with a negative cash flow and no 

successor in the current tree can be delayed. The delay is calculated as: 
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min {d1 J" - dl,i - d i J"} = d1,2 - d 16 - d 6 2 = 0 - 3 - (-5) = 2 " Therefore, delay activity 6 till 
jEV\{6} '. ' " 

time period 5, i.e. set d1,6 = 5 , remove the link between activities 5 and 6 and link activity 6 to 

activity 2. Activity 4 with a negative cash flow and no successor in the current tree can be 

delayed. The delay is calculated as: min {d1 J' - dl,i - d i J"} = d 12 - d1,4 - d 4 2 = 
jEV\{4} , " , 

0- 2 - (-2) = 0 . The delay is equal to zero, which implies that a delay of activity 4 is 

impossible due to the precedence relation with activity 2. However, we do remove the link 

between activities 3 and 4 and link activity 4 to activity 2. Activity 3 cannot be delayed since it 

is already linked to successor activity 5 in the current tree. Notice that, contrary to the case 

when only zero-lag finish start precedence constraints are present, it is possible that loose 

nodes are created during this step. For instance, if the cash flow associated with activity 2 

would have been negative, activity 2 would have been delayed till time period 4 (d1,2 = 4 ), 

thereby linking activity 2 to activity 8 and removing the link between activities 1 and 2, 

activities 4 and 2 and activities 6 and 2. Consequently, activities 4 and 6 would not be 

connected anymore to any other activity. This, however, would be resolved when Step 3 is 

repeated, in which the loose nodes will be relinked with their appropriate successor. 

3 

4 

-150 

250 150 

Fig. 5. The current tree with an npv of 161.36 

STEP 3. CURRENT TREE CALCULATION 

No activities can be delayed any further. Make the so obtained tree the current tree (Fig. 5) 
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with starting times {0,0,2,2,8,5,9,10,11,16} and net present value 161.36. Notice that, when the 

cash flow associated with activity 2 would have been negative, the loose nodes 4 and 6 would 

have been connected to their appropriate successor in the current tree, namely activity 2. 

STEP 4. 

A=0 

RECURSION (1) 

PT={l}, DC=O,A={l}. 

RECURSION (2) 

PT = {2}, DC = 100e-0.02(0+2) = 96.08, A = {1,2}. 

RECURSION (4) 

PT = {4}, DC = -150 e-0.02(2+3) = -135.73, A = {1,2,4}. 

PT = {2,4}, DC = 96.08 - 135.73 = -39.65 . 

RECURSION (6) 

PT = {6}, DC = _100e-0.02(5+4) = -83.53, A = {1,2,4,6}. 

PT = {2,4,6}, DC = -39.65 - 83.53 = -123.17 . 

DC = -123.17 < 0. Delete arc (1,2). Add arc (2,8) with displacement d1,8 -d1,2 -d2,8 

= 10 - ° -6 = 4 to the current tree: d1,2 = 4 ; d1,4 = 6 ; d1,6 = 9 . The npv now equals 170.83. The 

resulting current tree is displayed in Fig. 6. 

3 

4 

-150 

-2 -5 

250 150 

Fig. 6. The intermediate current tree with an npv of 170.83 



RECURSION (1) 

PT = {I}, DC = 0, A = {I}. 

RECURSION (3) 

PT={3}, DC=_200e-O.02(2+7) =-167.05, A={1,3}. 

RECURSION (5) 

PT = {5}, DC = 250e-O.02(8+4) = 196.66, A = {1,3,5}. 

RECURSION (7) 

PT = {7}, DC = 150e-O.02(9+5) = 113.37, A = {1,3,5,7}. 

RECURSION (8) 

PT = {8}, DC = 450e-O.02(lO+6) = 326.77, A = {1,3,5,7,8}. 

RECURSION (9) 

PT = {9}, DC = _250e-O·02 (11+4) = -185.20, A = {1,3,5,7,8,9}. 

RECURSION (10) 

PT={10}, DC=O, A={1,3,5,7,8,9,10}. 

PT = {9,10}, DC = -185.20 + 0 = -185.20. 

DC = -185.20 < o. Delete arc (8,9). Add arc (9,7) with displacement 

dl, 7 - d1,9 - d 9,7 = 9 -11- (-3) = 1 to the current tree: d1,9 = 12; dl,lO = 17 . The npv of this 

schedule is 174.50. The resulting current tree is given in Fig. 7. 

3 4 

4 6 

-150 -100 

-2 

o 
(lo) --450 o 

250 150 

Fig. 7. The intermediate current tree with an npv of 174.50 
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RECURSION (1) 

PT={l}, DC=O, A={l}. 

RECURSION (3) 

PT = {3}, DC = _200e-0.02(2+7) = -167.05, A = {1,3}. 

RECURSION (5) 

PT={5}, DC = 250e-0.02(8+4) =196.66, A={1,3,5}. 

RECURSION (7) 

PT = {7}, DC = 150 e -0.02(9+5) = 113.37 , A = {1,3,5,7}. 

RECURSION (8) 

PT = {S}, DC = 450 e -0.02(10+6) = 326.77 , A = {1,3,5, 7,S}. 

RECURSION (2) 

PT = {2}, DC = 100e-0.02(4+2) = SS.69, A = {1,2,3,5,7,S}. 

RECURSION (4) 

PT = {4}, DC = _150e-0.02(6+3) = -125.29, A = {1,2,3,4,5,7,S}. 

PT = {2,4}, DC = SS.69 - 125.29 = -36.60 . 

RECURSION (6) 

PT = {6}, DC = _100e-0.02(9+4) = -77.11, A = {1,2,3,4,5,6,7,S}. 

PT = {2,4,6}, DC = -36.60 -77.11= -113.70. 

PT = {2,4,6,S}, DC = 326.77 - 113.70 = 213.06 

PT = {2,4,6,7,S}, DC = 113.37 + 213.06 = 326.43 

RECURSION (9) 

PT = f9} DC = _250e-O·02(12+4) = -IS~54 A = {1,2 3 4 5 6 7 S 9} t ' , , , , , , " . 

RECURSION (10) 

PT = {10}, DC = 0, A = {1,2,3,4,5,6,7,S,9,lO}. 

PT={9,10}, DC=-lS~54+0=-lS~54 

PT = {2,4,6,7,S,9,10}, DC = 326.43 - lS~54 = 144.S9 

PT = {2,4,5,6,7,S,9,10}, DC = 196.66 + 144.89 = 34~55 

PT = {2,3,4,5,6,7,S,9,10}, DC = -167.05 + 34~55 = 174.50 

PT = {1,2,3,4,5,6,7,S,9,10}, DC = 174.50 + 0 = 174.50 

Report the optimal schedule with activity starting times {0,4,2,6,S,9,9,10,12,17} and net 

present value 174.50. The optimal current tree is the one given in Fig. 7. 

STOP. 

16 
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6. Computational experience 

The procedure has been programmed in Microsoft® Visual C++ 2.0 under Windows NT for use 

on a Digital Venturis Pentium-60 personal computer. The code itself requires 75kb of memory, 

whereas only 83kb are reserved for data storage, which makes it very well suited to run on any 

platform, even those with a small amount of available memory. In order to validate the search 

procedure, we solved one of the problem sets used by Herroelen et al. (1996b) to validate their 

solution procedure for the unconstrained max-npv case with zero-lag finish-start precedence 

relations. The problem set consists of 98 of the 110 RCPSP instances assembled by Patterson 

(1984) with up to 27 (non-dummy) activities, for which the resource requirements have been 

deleted and randomly generated cash flows have been added. The experiment showed identical 

results, and indicated that our procedure was almost 12 times slower (5.11 milliseconds on the 

average vs. 0.43 milliseconds on the average) for that problem set than the procedure of Herroelen 

et al. (1996b), the latter, however, being unable to solve GPR-instances. The fact that our 

procedure is slower on problem instances without GPRs is quite logical and due to the fact that it 

is developed especially for problem instances with GPRs, in which cycles may occur, whereas the 

procedure of Herroelen et al. (1996b) can ignore cyclic structures due to the absence of cycles in 

project networks with zero-lag fmish-starl precedence relations. 

6.1. Benchmark problem set 

Schwindt (1995) developed a random problem generator ProGenlmax which can randomly 

generate instances of various types of generalized resource-constrained project scheduling 

problems, based on the problem generator ProGen for the RCPSP developed by Kolisch et al. 

(1995). ProGenlmax can generate RCPSP instances, multiple-mode RCPSP (MRCPSP) instances, 

RCPSP-GPR instances as well as MRCPSP-GPR (a combination of multiple modes and GPRs) 

instances. In addition, instances of the resource levelling problem with generalized precedence 

relations (RLP-GPR) and the resource availability cost problem with generalized precedence 

relations (RACP-GPR) can be generated. Two methods are proposed: DIRECT, which directly 

generates entire projects, and CONTRACT, which first generates cycle structures, upon which the 

(acyclic) contracted project network is generated. Several control parameters can be specified, as 

indicated in Table 1. Obviously, the resource-based measures given in the second column are 

irrelevant for the unconstrained max-npv project scheduling problem. 



18 

Table I. The control parameters of ProGenimax (Schwindt, 1995) 

Problem size-based 

# activities (n) 

Resource-based 

# resource types (m) 

min. / max. number of 

resources used per activity 

resource factor (RF) 

(Pascoe, 1966) 

resource strength (RS) 

(Kolisch et aI., 1995) 

Acyclic network-based 

# initial and terminal 

activities 

maximal # predecessors 

and successors 

order strength (OS)' 

(Mastor, 1970) 

Cyclic network-based 

% maximal time lags 

# cycle structures 

min. / max. # nodes 

per cycle structure 

coefficient of cycle structure 

density (Schwindt, 1995) 

cycle structure tightness 

(Schwindt, 1995) 

Three RCPSP-GPR problem sets have already been generated using ProGenimax. The first 

set (Schwindt, 1996) consists of 1080 instances, of which 540 are generated using the DIRECT 

method and 540 using the CONTRACT method. The second set (Franck and Neumann, 1996) 

consists of 1440 problem instances generated using the DIRECT method. The third set (De Reyck 

and Herroelen, 1996b) consists of 7200 problem instances generated using the DIRECT method, 

which allows for a more extensive testing of the impact of several problem characteristics. We will 

use the third benchmark set to test the effectiveness and efficiency of our solution procedure. 

The control parameters used to generate the 7200 instances are given in Table II. For each 

combination of control parameter values, 120 problem instances have been generated. The 

indication [x,y] means that the value is randomly generated in the interval [x,y], whereas x; y; z 

means that three settings for that parameter were used in a full factorial experiment. The 

parameters used in the full factorial experiment are the number of activities as a problem size­

based measure, the order strength (OS) as an acyclic network-based measure and the percentage 

of maximal time lags as a cyclic network-based measure. The cash flows for each of the activities 

are generated randomly from the interval [-500,+ 500]. 

1 Schwindt (1996) uses an estimator for the restrictiveness (The sen, 1977) as a network complexity measure. However, 
De Reyck (1995) has shown that this measure is identical to the order strength (Mastor, 1970), the flexibility ratio (Dar­
El, 1973) and the density (Kao and Queyranne, 1982). We will use order strength when referring to this measure. 



Table II. The parameter settings of the benchmark problem set 

Control parameter 

# activities 

activity durations 

# initial and terminal activities 

maximal # predecessors and successors 

as 
% maximal time lags 

# cycle structures 

minimall maximal # nodes per cycle structure 

coefficient of cycle structure density 

cycle structure tightness 

6.2. Basic results 

Value 

10;20;30;50; 100 

[2,10] 

[2,4] 

3 

0.25; 0.50; 0.75 

0%; 10%; 20%; 30% 

[0,10] 

2/100 

0.3 

0.5 
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The results are given in Tables III through V. The reported values are the average CPU 

time in milliseconds, its range and its standard deviation. 

Table III. The impact of the number of activities 

Activities # problems Average CPU time CPU time range Standard Deviation 

10 1440 0,94 [0-3] 0,20 

20 1440 5,69 [3 - 10] 0,84 

30 1440 17,20 [11- 35] 2,51 

50 1440 137,38 [110 - 270] 19,47 

100 1440 836,12 [550 -1,843] 181,60 

A first observation we can make from Table III is that the required CPU times are very 

small. The average computation times are smaller than 1 second, even for the 100-activity 

projects. However, we should keep in mind that the unconstrained max-npv project scheduling 

problem (with GPRs) is probably not a goal by itself. Its solution may be used to compute an 

upper bound on the project npv for a resource-constrained project scheduling problem with 
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discounted cash flows (and GPRs), to be solved by an optimal procedure such as branch-and­

bound. In that case, the unconstrained problem should be solved in every (undominated) node of 

the branch-and-bound tree, which may run in the thousands. Therefore, we should be able to 

execute the algorithm thousands of times within acceptable computation times, which is, as Table 

III indicates, clearly the case. Notice also the very low standard deviations and small ranges, 

reflecting a very robust behaviour of the procedure over the different problem instances. 

Table III reveals that the number of activities has a strong impact on the required 

computation time. Moreover, Table IV shows a positive correlation between as and the required 

CPU time: when as increases, the problem becomes harder. The more dense the project network 

becomes, the more recursion steps are needed and, consequently, the more computation time is 

spent. These findings are completely in line with the results for the case with zero-lag fmish-starl 

precedence relations only reported by Herroelen et al. (1996b), who also found that an increased 

network complexity (density), either in the form of a higher complexity index CI (De Reyck and 

Herroelen, 1996a) or a higher order strength as, leads to an increase in computational 

requirements. The effect of the percentage of maximal time lags as a cyclic network-based 

measure can be observed from Table V. The addition of more maximal time lags adversely affects 

the efficiency of our procedure, thus reflecting an increased problem complexity. However, the 

effect of the percentage of maximal time lags is less pronounced than the effect of as. 

Table IV. The impact of the order strength 

as # problems Average CPU time CPU time range Standard Deviation 

0.25 2400 177,56 [0 -1,542] 288,00 

0.50 2400 199,02 [0 -1,592] 328,95 

0.75 2400 221,82 [0 -1,843] 373,67 

Table V. The impact of the percentage of maximal time lags 

Max. time lags # problems Average CPU time CPU time range Standard Deviation 

0% 1800 178,33 [0 -1,232] 288,60 

10 % 1800 198,46 [0 - 1,562] 329,16 

20% 1800 209,18 [0 -1,843] 352,37 

30% 1800 211,91 [0 -1,642] 354,84 



21 

6.3. The effect of the distance matrix computation 

The major part of the required computation time is needed to calculate the distance matrix 

(STEP 1). Table VI displays the portion of the total CPU time spent on (initializing and) 

calculating the distance matrix. 

Table VI. Portion of the CPU time needed for computing the distance matrix 

Activities Number of problems % of CPU time needed to compute the distance matrix 

10 1440 65 % 

20 1440 77% 

30 1440 77% 

50 1440 77% 

100 1440 62% 

Due to the fact that the distance matrix computation accounts for a major portion of the 

required CPU time, the effect of the network-based measures on the computational complexity of 

the max-npv project scheduling problem (Table IV and V) may be obscured or deflated, since these 

measures will not have any significant effect on the time needed to compute the distance matrix. 

Tables VII through IX therefore report the computational requirements excluding the time 

needed to calculate the distance matrix. Note that the computation times reported in Tables VII 

through IX will determine the extra amount spent in the nodes of a branch-and-bound algorithm 

for the resource-constrained project scheduling problem with discounted cash flows and 

generalized precedence relations (RCPSPDC-GPR), if this algorithm is used to compute an upper 

bound on the net present value of the project network in each node, represented by its distance 

matrix. 

Table VII. The impact ofthe number of activities 

Activities # problems Average CPU time CPU time range Standard Deviation 

10 1440 0,33 [0-2] 0,19 

20 1440 1,33 [0-7] 0,79 

30 1440 3,91 [0 - 22] 2,50 

50 1440 31,84 [6 - 154] 19,39 

100 1440 313,56 
f' 

[20 -1,292] 178,17 
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When we compare Tables III and VII, it is clear that the calculation of the distance matrix is 

largely responsible for the total computation time needed to solve these problem instances. When 

the time spent on calculating the distance matrix is removed from the reported CPU times, the 

effect of the network-based problem characteristics on the required computational effort of the 

recursive procedure becomes even more clear. From Table VIII, we again observe a positive 

correlation between OS and the required CPU time. Table IX now clearly indicates the effect of 

the percentage of maximal time lags as a cyclic network-based measure, although it is still not as 

pronounced as the effect of OS. For instance, the hardest problem in the set, with a CPU time of 

1.29 seconds, has an OS of 0.75 but only has 20% maximal time lags. 

Table VIII. The impact of the order strength 

OS # problems Average CPU time CPU time range Standard Deviation 

0.25 2400 49,30 [0 -1,042] 99,06 

0.50 2400 69,75 [0 -1,071] 139,76 

0.75 2400 91,52 [0 - 1,292] 184,06 

Table IX. The impact of the percentage of maximal time lags 

Max. time lags # problems Average CPU time CPU time range Standard Deviation 

0% 1800 49,35 [0 -721] 95,80 

10% 1800 69,50 [0 -1,042] 141,29 

20% 1800 79,87 [0 -1,292] 166,65 

30% 1800 82,05 [0 -1,082] 167,09 

6.4. The impact of the cash flow distribution 

In the experiment described above, the cash flows for each of the activities were randomly 

generated from the interval [-500, + 500]. This means that, on the average, 50% of the activities 

will have a negative cash flow associated with it. In practice, the distribution of the cash flows 

may take very different forms, depending on the contract and payment structure of the project. In 

some projects, there may be few activities with a negative cash flow, whereas in other projects, all 
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the activities except for the last activity of the project carry negative cash flows (for a clarifying 

review of the different types of contracts and payment structures, we refer the reader to 

Herroelen et al., 1996a). In order to examine the impact of different cash flow distributions on the 

complexity of the unconstrained max-npv project scheduling problem, we randomly generated the 

cash flows of each of the activities from the interval [0, + 500] , and assigned a negative cash flow 

to some activities by reversing the sign of the associated cash flow. The number of such activities 

was varied from 0% to 100% in steps of 10%. The effect on the average CPU time required to solve 

the 7200 problem instances is indicated in Fig. 8 (for the projects with up to 30 activities) and Fig. 

9 (for the projects with 50 and 100 activities). 
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As can be seen from Fig. 8 and 9, the percentage of activities with a negative cash flow has 

an impact on the computational complexity of the unconstrained max-npv project scheduling 

problem, albeit not very significant. Clearly, if no activities with a negative cash flow are present, 

the problem becomes very easy since the earliest start schedule will always represent the optimal 

solution, i.e. no forward shifts of the activities and no recursion steps are necessary. Only the 

distance matrix needs to be computed. If all activities carry negative cash flows, the problem is 

also relatively easy, because all activities can be shifted forward till one of them hits the deadline. 

If, however, activities with positive and negative cash flows are mixed, the problem becomes 

harder. This is why, in the experiments reported above, we have set the number of activities with 

a negative cash flow to 50%, representing more or less the hardest problem instances. 

As mentioned before, the effect of the problem characteristics on the computational 

complexity of the max-npv project scheduling problem may be obscured by the fact that the 
., 

calculation of the distance matrix is included in the reported computation times. Fig. 10 and 11 

show graphs similar to Fig. 8 and 9, but with the calculation of the distance matrix excluded from 

the reported average computation times. The complexity of the distance matrix computation is 

independent of the number of activities with a negative cash flow, since no cash flow 

considerations are taken into account. As can be seen from Fig. 10 and 11, the effect of the 

percentage of activities with a negative cash flow on the average CPU time excluding the time 

needed to compute the distance matrix is much more pronounced. 
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7. Conclusions 

The unconstrained max-npv project scheduling problem involves the scheduling of the 

activities of a project in order to maximize its net present value. In this paper, we presented a 

model and an optimal solution procedure for the unconstrained max-npv project scheduling 

problem with generalized precedence relations (GPRs), which allows for the introduction of 

arbitrary minimal and maximal time lags between the start and completion of activities. We 

described how one of the most efficient optimal procedures for the unconstrained max-npv project 

scheduling problem with zero-lag finish-start precedence constraints only, namely the procedure 

of Herroelen et al. (1996b), can be adapted to cope with generalized precedence relations. 

Computational results are reported which show the effectiveness and efficiency of the 

proposed procedure, in that it is able to solve randomly generated problem instances up to 100 

activities with very modest computation time and memory requirements. Even 100-activity 

problem instances can be solved in, on the average, less than 1 second of CPU time on a Pentium-

60 personal computer. The promising results indicate that the proposed procedure is very well 

suited to be implemented for the calculation of upper bounds on the project npv in a more general 

solution procedure for the resource-constrained cas,e, i.e. the resource-constrained project 

scheduling problem with discounted cash flows and generali~ed precedence relations (RCPSPDC­

GPR). 
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Fig. 1. A project network with GPRs and cash flows 

Fig. 2. The example of Fig. 1 in standardized form 
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Fig. 7. The intermediate current tree with an npv of 174.50 
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