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Abstract

Opening, lunch and closing of financial markets induce a periodic
component in the volatility of high-frequency returns. We propose a
non-parametric weighted standard deviation and parametric truncated
maximum likelihood estimation procedure for the periodic component
in volatility and show that they are robust to price jumps. We also show
that robust periodicity estimates can be used to increase the accuracy of
jump detection methods. We compare the classical and robust methods
for the 5-minute EUR/USD returns. The robust intraweek periodicity
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non-robust estimates are likely to be due to jumps. Accounting for
the periodicity in the volatility of high-frequency returns is especially
important to detect the relatively small jumps occurring at times for
which volatility is periodically low and to reduce the number of spurious
jump detections at times of periodically high volatility.
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1 Introduction

Price jumps and the periodic behavior of intraday volatility due to opening,

lunch and closing of financial markets are salient features of high-frequency

price series. Andersen and Bollerslev (1997) and Andersen et al. (2007) doc-

ument the importance of allowing for jumps and for periodicity of intraday

volatility in the non-parametric estimation and forecasting of volatility, but

treat these two features separately.

Neglecting the potential presence of jumps when estimating the periodic

component of intraday volatility can cause a large estimation bias. Andersen

et al. (2001) illustrate that removing one observation from the sample com-

pletely changes the estimated volatility pattern reported by Ito et al. (1998).

Andersen et al. (2007) note that jump detection based on comparing stan-

dardized intraday returns with critical values of the normal distribution “will

tend to over-reject the diffusive null hypothesis whenever there is substantial

intraday variation in volatility”.

The contribution of this paper is threefold. First of all, we define estima-

tors for the periodic component in intraday volatility that are robust to price

jumps. These estimators are robustifications of Andersen and Bollerslev (1997)

and Taylor and Xu (1997)’s periodicity estimators. Robust estimates of the

periodicity in intraday volatility are useful for a broad range of applications.

Examples include the study of the effect of macroeconomic news (Andersen

and Bollerslev, 1998b) and of intraday volume (Goodhart and O’Hara, 1997)

on intraday volatility, forecasting of intraday variances (Taylor and Xu, 1997)

and intraday jump detection (Andersen et al., 2007; Lee and Mykland, 2008).

Accurate detection of the returns affected by jumps is needed to disentangle

the information in the high-frequency returns affected by jumps and the re-

turns corresponding to the small, erratic price movements. These tests have

been used for the estimation of the daily integrated variance of a log-price

diffusion with jumps (Boudt et al., 2008b) and testing for the semi-martingale

assumption (Andersen et al., 2007).

Our second contribution is to show that the robust periodicity estimate
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can be used to increase the accuracy of the non-parametric jump detection

methods proposed by Andersen et al. (2007) and Lee and Mykland (2008).

Both methods identify the returns affected by jumps by comparing each stan-

dardized return with a given threshold. The standardized return equals the

absolute value of the tested return divided by a robust estimate of its stan-

dard deviation based on the returns observed in a window around that return.

Calendar-linked events such as opening, lunch and closing of the financial mar-

kets around the world cause a strong periodic variation of volatility within the

local window. We show that in the presence of such a periodic pattern in

intraday volatility, the original parametric and non-parametric tests overde-

tect (resp. underdetect) jumps at the intraday times for which volatility is

periodically high (resp. low). Andersen et al. (2007) recognize this and, as a

robustness check, they repeat their analysis for the returns from which peri-

odicity has been filtered away. However, their periodicity estimator is very

sensitive to jumps. We propose the robustly filtered jump test statistic which

equals the original jump test statistic divided by an estimate of the periodicity

component in intraday volatility that is highly robust to jumps. The simula-

tion study confirms that the robustly filtered jump test has better finite sample

properties than the original test in the presence of periodic time-variation in

the volatility of the high-frequency returns.

Finally, the paper contributes to the empirical literature on periodicity

in intraday volatility (see e.g. Andersen and Bollerslev 1998b; Martens et al.

2002) and price jumps (see e.g. Bos 2008; Lahaye et al. 2007; Lee and Mykland

2008). We compare the proposed robust estimation and jump detection pro-

cedures with the standard ones for the 5-minute EUR/USD returns. We find

large differences between the non-robust and robust periodicity estimates for

the Sunday evening trading intervals and the intervals during which macroeco-

nomic news is usually released. We attribute these differences to the presence

of jumps, because these are the intervals for which a higher probability of jump

occurrences is expected. We also compare the results of jump detection using

the original and the filtered tests. We find that these two tests detect a similar

proportion of returns affected by jumps, but the filtered tests detect less jumps
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at times of high periodicity and more jumps at times of low periodicity. From

a market microstructure perspective, this makes sense since periodically low

volatility is associated with periodically low volume. Since jumps are more

likely to occur when markets are less liquid (Farmer et al., 2004), we expect

more jumps at intraday times of periodically low volatility.

The remainder of the paper is organized as follows. Section 2 introduces the

robust periodicity estimators and studies their properties. Section 3 first recalls

the non-parametric jump detection techniques proposed by Andersen et al.

(2007) and Lee and Mykland (2008) and then shows how the robust periodicity

estimates can be used to make these tests more accurate in the presence of

a periodic variation in intraday volatility. Section 4 applies the new method

to the 5-minute EUR/USD return series. Finally, Section 5 summarizes our

conclusions and outlines some implications for further research.

2 Robust estimation of intraweek periodicity

This section proposes robust estimators for the intraweek periodic pattern

in the volatility of high-frequency return series. We suppose that our sample

consists of T days of M equally-spaced and continuously compounded intraday

return observations ri (i = 1, . . . , MT ) of a financial asset. As usual when

dealing with intraday data, we exclude overnight returns from the analysis.

We normalize the length of one trading day to unity such that ∆ = 1/M

equals the time elapsed between two consecutive return observations. Hence,

ri equals the return over the time interval [(i − 1)∆, i∆]. We write these

returns as the discrete changes of the underlying continuous-time log-price

process, i.e. ri = p(i∆)− p((i− 1)∆). Subsections 2.2 and 2.3 propose robust

estimators for the periodicity in the volatility of the ri’s. These estimators are

consistent under the model presented in Subsection 2.1.
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2.1 Model

We assume that the log-price process p(s) follows a Brownian SemiMartin-

gale with Finite Activity Jumps (BSMFAJ) diffusion. Andersen et al. (2007)

and Lee and Mykland (2008) use the same model. Under the BSMFAJ model

the log-price follows a diffusion consisting of the sum of a conditionally nor-

mal random process with mean µ(s)ds and variance σ2(s)ds, and of a jump

generating process. The occurrence of jumps is governed by a finite activity

counting process q(s) and the size of the jumps is given by κ(s).1 Let w(s) be

a standard Brownian motion, then a BSMFAJ log-price diffusion admits the

following representation

BSMFAJ: dp(s) = µ(s)ds + σ(s)dw(s) + κ(s)dq(s). (2.1)

Throughout, we will be operating with sufficiently high-frequency return series

such that the mean process can be safely ignored. Thus, for simplicity, we set

µ(s) = 0 in the sequel. We also assume that the spot volatility process is

continuous. Under the BSMFAJ model, we have that, for small values of ∆,

the returns ri in an interval without jumps in the underlying price diffusion

process, are conditionally normally distributed with mean zero and variance

σ2
i =

∫ i∆

(i−1)∆
σ2(s)ds.

As shown by Andersen and Bollerslev (1998b), the spot volatility at time s

is well approximated by the average volatility in a window around s, multiplied

with a factor that corrects for the diurnal pattern in volatility. We formalize

this as follows.

First of all, consider a division of [0, T ] in time intervals of length λ, called

“local windows”. As such, the MT observations are divided in groups of

bλ/∆c contiguous observations. For descriptive studies of periodicity in intra-

day volatility of exchange rate data such as the 5-minute EUR/USD returns,

it is common to set λ to one day (Andersen and Bollerslev, 1997, 1998b). For

intraday jump detection based on the absolute return divided by a robust esti-

mate of the scale of the returns in a local window of length λ (Andersen et al.,

1A count process is defined to be of finite activity if the change in the count process over

any interval of time is finite with probability 1.
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2007; Lee and Mykland, 2008), the window length depends on the frequency

at which the returns are observed and the persistency of the variance of the

standardized returns. While for intraday jump detection using tick by tick

data of a liquid financial asset λ can be as small as 15 minutes, intraday jump

detection using 5 or 15-minute returns requires a λ of one day.

Secondly, we consider the time transformation τ(s) indicating the position

of s in the periodicity cycle

τ(s) = s mod L, (2.2)

with mod the modulo operator.2 We suppose that the cycle repeats itself every

L days and thus τ(s) = τ(s + L), for any s. Common choices for L are unity

(the cycle repeats itself every day) or five (the cycle repeats itself every week

of five trading days). Without loss of generality, we assume that the number

of windows per cycle, i.e. L/λ, is integer.

We then define the periodicity factor at time s and for windows of length λ

as the square root of the expected value of the ratio between the spot variance

and the mean variance over the window, conditional on the position of s in

the cycle.

Definition 1 The periodicity factor fλ at time s ∈ [(l − 1)λ, lλ] is defined as

f 2
λ(τ(s)) ≡ E

[
σ2(s)

λ−1
∫ lλ

(l−1)λ
σ2(s)ds

∣∣∣∣τ(s)

]
. (2.3)

The periodity factor fλ(τ(s)) is above one at times τ(s) for which volatility is

periodically high and below one if volatility is periodically low.

Remark 1 The periodicity factor depends on the length of the local window.

For simplicity, we will omit the index λ whenever no confusion is possible and

denote

fi ≡ fλ(τ(i∆)). (2.4)

Remark 2 Since f 2
λ(τ(s)) is defined as the expectation of the ratio between

the spot variance and the mean variance over the window, conditional on τ(s),

2The modulo operation a mod b returns the remainder after integer division of a by b.
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the mean of f 2
λ(τ(s)) over the whole local window is unity, i.e.

∫ lλ

(l−1)λ

f 2
λ(τ(s))ds = 1. (2.5)

Denote by Ni the collection of indices j that belong to the same window as i.

The finite sample counterpart of (2.5) is that

1

bλ/∆c
∑
j∈Ni

f 2
j = 1. (2.6)

In the estimation, we impose the standardization condition (2.6), which guar-

antees that the squared periodicity factor has mean one over the local window.

Similar standardization conditions have been considered in the literature. Tay-

lor and Xu (1997) impose that the mean squared periodicity factor equals one

over the whole cycle and not only over the local window. Andersen and Boller-

slev (1997) impose that the mean of the periodicity factor (and not the squared

periodicity factor) equals one over the day.

Our robust estimators for fλ(τ(s)) are based on the assumption that for

small values of λ, the spot volatility σ(s) can be rewritten as a locally constant

process, multiplied with the periodicity factor.

Assumption 1 Let σ̃2
λ(l) = λ−1

∫ lλ

(l−1)λ
σ2(s)ds. We assume that for all s ∈

[(l − 1)λ, lλ]: σ(s) = σ̃λ(l)fλ(τ(s)) + Op(λ).

Assumption 1 requires that the spot volatility after filtering out the period-

icity is approximately constant over the local window. This is less restrictive

than Lee and Mykland (2008)’s assumption that the spot volatility without

filtering out the periodicity is approximately constant over the local window.3

The value si = σi/fi is the periodically adjusted volatility of ri. By As-

sumption 1, si is approximately constant within each local window, provided

3Our definition of windows is slightly different than in Lee and Mykland (2008), where

the window equals the time period of length λ that immediately precedes the return for

which the presence of jumps is tested. The exact definition of the window does not matter

as long as it is reasonable to assume that σ2
i /f2

i is approximately constant within the local

window.
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the window is sufficiently short. Denote by rj+1, . . . , rj+bλ/∆c the bλ/∆c re-

turns in a local window of length λ around ri. We estimate si using the square

root of a normalized version of Barndorff-Nielsen and Shephard (2004)’s real-

ized bipower variation over the local window

ŝi =

√√√√π

2

1

bλ/∆c − 1

j+bλ/∆c∑

l=j+2

|rl||rl−1|. (2.7)

In Subsection 2.4 we provide assumptions under which, for λ → 0 and

λ/∆ →∞ and if ri is not affected by jumps, the standardized high-frequency

return

ri = ri/ŝi (2.8)

is conditionally normally distributed with mean zero and variance equal to

the squared periodicity factor. This result suggests to estimate the periodicity

factor using either a non-parametric or parametric estimator of the scale of the

standardized returns ri. Such an estimator has to be robust to price jumps.

2.2 Non-parametric estimation of periodicity

The non-parametric periodicity estimator is based on a scale estimate of the

standardized returns that share the same periodicity factor. Let r1,i, . . . , rni,i

be the set of standardized returns having the same periodicity factor as ri. If

the periodicity factor depends only on the time of the day and day of the week

at which ri is observed, we have that r1,i, . . . , rni,i are the returns observed

on the same time of the day and day of the week as ri. As in Andersen

and Bollerslev (1997), one could also consider the calendar effects jointly with

macroeconomic news effects. Then r1,i, . . . , rni,i are the returns observed on

the same time of the day and day of the week as ri, on a day with the same

macroeconomic news releases as for ri.

The non-parametric periodicity estimator proposed by Taylor and Xu (1997)

is based on the Standard Deviation (SD) of all standardized returns belonging

to the same local window as ri, i.e. SDi =
√

1
ni

∑ni

j=1 r2
j,i The SD periodicity
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estimator equals

f̂ SD

i =
SDi√

1
bλ/∆c

∑
j∈Ni

SD2
j

. (2.9)

The denominator in (2.9) ensures that the standardization condition (2.6) is

met.

In the absence of jumps, the SD is efficient since the standardized returns

are normally distributed. In the presence of jumps, the SD estimator is strongly

biased, since it suffices that one observation in the sample is affected by a jump

to make the periodicity estimate extremely large. Our proposal is to replace

the standard deviation in (2.9) by a robust estimator.

Amongst the large number of robust scale estimators available in the lit-

erature (see Maronna et al., 2006, for an overview), we recommend the use of

the Shortest Half scale estimator proposed by Rousseeuw and Leroy (1988).

It has the property of being, among a wide class of scale estimators, the esti-

mator for which jumps can cause the smallest maximum bias possible (Martin

and Zamar, 1993). Under normality, it has the same efficiency as the median

absolute deviation and the interquartile range. For the definition of the Short-

est Half (ShortH) scale estimator, we need the corresponding order statistics

r(1),i, . . . , r(ni),i such that r(1),i ≤ r(2),i ≤ . . . ≤ r(ni),i. The shortest half scale is

the smallest length of all “halves” consisting of hi = bni/2c+1 contiguous order

statistics. These halves equal {r(1),i, . . . , r(hi),i}, . . ., {r(ni−hi+1),i, . . . , r(ni),i},
and their length is r(hi),i − r(1),i, . . ., r(ni),i − r(hi),i, respectively. The corre-

sponding scale estimator (corrected for consistency under normality) equals

the minimum of these lengths

ShortHi = 0.741 ·min{r(hi),i − r(1),i, . . . , r(ni),i − r(ni−hi+1),i}. (2.10)

Analogous to the SD estimator in (2.9), the ShortH estimator for the period-

icity factor of ri equals

f̂ ShortH

i =
ShortHi√

1
bλ/∆c

∑
j∈Ni

ShortH2
j

. (2.11)

The ShortH is highly robust to jumps, but it has only a 37% efficiency

under normality of the ri’s (Rousseeuw and Leroy, 1988). A better trade-off

9



between the efficiency of the SD under normality and the high robustness to

jumps of the ShortH is obtained using a Weighted Standard Deviation (WSD),

where the weights depend on the value of the standardized return divided by

the ShortH periodicity estimate

f̂WSD

i =
WSDi√

1
bλ/∆c

∑
j∈Ni

WSD2
j

, (2.12)

with

WSDj =

√
1.081 ·

∑nj

l=1 wl,jr
2
l,j∑nj

l=1 wl,j

.

The weights are given by wl,j = w(rl,j/f̂
ShortH
j ) where we use as a weight func-

tion

w(z) =

{
1 if z2 ≤ 6.635

0 else.
(2.13)

The threshold 6.635 equals the 99% quantile of the χ2 distribution with one

degree of freedom. The WSD in (2.13) has a 69% efficiency under normality

of the ri’s, as apposed to the 37% efficiency of the ShortH (see Boudt et al.,

2008a, for details).

2.3 Parametric estimation of periodicity

The non-parametric estimators for the periodic component of intraday volatil-

ity use only the subset of the data for which the returns have the same period-

icity factor. Andersen and Bollerslev (1997) show that more efficient estimates

can be obtained if the whole time series dimension of the data is used for the

estimation of the periodicity process. They use the result that, in the absence

of jumps, the standardized returns are normally distributed with mean zero

and variance f 2
i . They consider the regression equation

log |ri| − c = log fi + εi, (2.14)

where the error term εi is i.i.d. distributed with mean zero and having the

density function of the centered absolute value of the log of a standard normal
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random variable, i.e.

g(z) =
√

2/π exp[z + c− 0.5 exp(2(z + c))]. (2.15)

The parameter c = −0.63518 equals the mean of the log of the absolute value

of a standard normal random variable. Andersen and Bollerslev (1997) then

propose to model log fi as a linear function of a vector of variables xi (such as

sinusoid and polynomial transformations of the time of the day)

log fi = x′iθ∗, (2.16)

with θ∗ the true parameter value. Combining (2.14) with (2.16), we obtain the

following regression equation

log |ri| − c = x′iθ∗ + εi. (2.17)

It is common to estimate the parameter θ∗ in (2.17) by the OLS estima-

tor. This approach is not efficient, since the error terms are not normally

distributed. The efficient estimator is the maximum likelihood estimator. De-

note ρOLS(z) = z2 and let ρML(z) be the negative log likelihood function

ρML(z) = −0.5 log(2/π)− z − c + 0.5 exp(2(z + c)).

The OLS and ML estimates equal

θ̂OLS = argminθ

1

MT

MT∑
i=1

ρOLS(εi,θ) and θ̂ML = argminθ

1

MT

MT∑
i=1

ρML(εi,θ),

(2.18)

with εi,θ = log |ri| − c − x′iθ. These ρ-functions are called loss functions and

are plotted in Figure 1. The non-robustness of the OLS and ML estimators

to jumps is due to the unbounded effect an observation can have on their loss

function. In the simulation study of Subsection 2.5 we find that in particular

the ML estimator has a large bias in the presence of jumps. Martens et al.

(2002) mention that the effect of jumps on the OLS estimator is attenuated

because the regression is based on the log of the standardized returns, but

solely a log-transformation is not sufficient to attain robustness to jumps.
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Figure 1: Loss functions associated to the OLS and ML estimators. The

horizontal line denotes the likelihood threshold and the vertical lines the upper

and lower truncation levels based on the 99% quantile, used by the TML

estimator.
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As an alternative to the OLS and ML estimators, we propose to use the

Truncated Maximum Likelihood (TML) estimator introduced by Marazzi and

Yohai (2004). This estimator gives a zero weight to observations that are

outliers according to the value of the ML loss function. In a first step the

residuals are computed using the robust non-parametric estimator f̂WSD in

(2.12). Let

eWSD

i = log |ri| − c− log f̂WSD

i . (2.19)

Observations for which ρML(eWSD
i ) is large, have a low likelihood and are there-

fore likely to be outliers. Denote q an extreme upper quantile of the distribution

of εi. The TML estimator is defined as

θ̂TML = argminθ

1∑MT
i=1 wi

MT∑
i=1

wiρ
ML(εi,θ), (2.20)
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with

wi =

{
1 if ρML(eWSD

i ) ≤ ρML(q)

0 else.

The truncation on the basis of the value of the ML-function is illustrated in

Figure 1 for the 99.5% quantile. All observations with ρML(eWSD
i ) > 3.36 receive

a zero weight in the objective function of the TML estimator.

Like for the non-parametric periodicity estimators, we impose that the

squared periodicity factor has mean one in the local window. The parametric

estimate for the periodicity factor thus equals

f̂TML

i =
exp(x′iθ̂

TML)√
1

bλ/∆c
∑

j∈Ni
exp(x′iθ̂TML)

, (2.21)

and similarly for f̂OLS
i and f̂ML

i .

2.4 Asymptotic properties

This subsection presents the properties of the robust periodicity estimators

under the assumption that the log-price series follows the BSMFAJ diffusion

in (2.1). We derive our results for µ(s) = 0 but by Girsanov’s theorem they

also apply for the nonzero drift case, as in Zhang et al. (2005). Consistency of

the periodicity estimators depends on the length of the local window (λ) and

the number of observations in that window (bλ/∆c). We need on the one hand

that we have a sufficiently large number of observations in the local window

(λ/∆ → ∞) and, on the other hand, that (after filtering the periodicity) the

change in the volatility process is negligible for λ → 0 (see Assumption 1). To

prove consistency of the robust periodicity estimators in the presence of finite

activity jumps, we further require that the total number of jumps occurring

at the same intra-cycle time τ is finite. Then, if the total number of days

T → ∞, the proportion of returns affected by a jump for a given intraday

time converges to zero.

Assumption 2 For any i, let Di be the set of indices j for which τ(j∆) =

τ(i∆). We assume that supi

∑
j∈Di

[q(j∆)− q((j − 1)∆)] = Op(1).
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Write now r(i∆) = ri, f̂ SD(τ(i∆)) = f̂ SD
i , f̂ ShortH(τ(i∆)) = f̂ ShortH

i , f̂WSD(τ(i∆)) =

f̂WSD
i and x(τ(i∆)) = xi (these quantities are defined in Subsections 2.2-2.3).

We first present results on the consistency of the SD, ShortH and WSD esti-

mators under the BSM model, which is the BSMFAJ model without jumps.

Proofs are outlined in the Appendix.

Result 1 Under the BSM model with spot volatility process satisfying Assump-

tion 1, we have that f̂ SD(τ(s))−f(τ(s)), f̂ ShortH(τ(s))−f(τ(s)) and f̂WSD(τ(s))−
f(τ(s)) converge in probability to 0 for λ → 0, λ/∆ →∞ and T →∞.

Result 2 shows that the robust non-parametric estimators f̂ ShortH(s) and f̂WSD(s)

are also consistent estimators under the BSMFAJ model.

Result 2 Under the BSMFAJ model with spot volatility process satisfying As-

sumption 1 and with jump occurrence process satisfying Assumption 2, we

have that f̂ ShortH(τ(s))− f(τ(s))
p→ 0 and f̂WSD(τ(s))− f(τ(s))

p→ 0 for λ → 0,

λ/∆ →∞ and T →∞.

A final set of results is that the estimator θ̂TML is consistent for θ∗ under the

BSM (Result 3) and BSMFAJ (Result 4) models, if the parametric specification

of the periodicity function is correct.

Result 3 Under the BSM model with spot volatility process satisfying Assump-

tion 1, and if log f(τ(s)) = θ′∗x(τ(s)), θ̂TML p→ θ∗ for λ → 0, λ/∆ → ∞ and

T →∞.

Result 4 Under the BSMFAJ model with spot volatility process satisfying As-

sumption 1 and with jump occurrence process satisfying Assumption 2, and if

log f(τ(s)) = θ′∗x(τ(s)), θ̂TML p→ θ∗ for λ → 0, λ/∆ →∞ and T →∞.

2.5 Simulation study

In this section we use simulated data to evaluate the effect of jumps on the

bias and efficiency of the periodicity estimators to jumps. Let w(s) and b(s)

be two independent Brownian motions. We generate 5-minute returns from
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the BSMFAJ price diffusion in (2.1) with µ(s) = 0 and σ(s) specified as a

multiplicative process of the periodicity function f(τ(s)), which depends only

on the time of the day τ(s) = s− bsc, and a GARCH diffusion process, i.e.

σ(s) = f(s− bsc)σgarch(s). (2.22)

The GARCH diffusion is calibrated at the values implied by the GARCH

estimates obtained by Andersen and Bollerslev (1998a) for the daily returns

on the Deutschemark-US Dollar exchange rates from 1987 until 1992

dσ2
garch(s) = −.035[σ2

garch(s)− .636]ds + .144σ2
garch(s)db(s). (2.23)

The function f(τ(s)) used in the simulation is plotted in dashed line in Fig-

ure 2. It is based on log f(τ(s)) = θ′x(τ(s)) with x(τ(s)) a vector holding

quadratic and sinusoid transformations of τ(s). The vector θ is calibrated at

its TML estimate for the January 2001 - December 2004 5-minute EUR/USD

returns. The jump size κ(s) is modeled as the the product between σ(s) and

a uniformly distributed random variable on
√

m([−2,−1] ∪ [1, 2]). The pa-

rameter m determines the magnitude of the jumps. We set m equal to either

0.1 (small jumps) or 1 (large jumps). For m = 0.1, jumps cause about 20%

of the daily variance of the returns. Finally, the jump occurrences q(s) are

specified as a Poisson process with on average one jump per day. These jump

occurrences are either independent of f , either occur only in the 16 five-minute

intervals for which volatility is periodically the lowest (f < 0.777) or in the 16

five-minute intervals for which volatility is periodically the highest (f > 1.3).

We simulate K = 500 series of 500 days with 10 observations per 5-minute

interval. Each day consists of 288 5-minute returns. The generated 5-minute

return series is ri = p(i/288) − p((i − 1)/288), with i = 1, . . . , 288 · 500. The

estimation of the periodicity factor is based on a local window length λ equal

to one day. We are interested in the effect of jumps on the bias and efficiency

of the periodicity estimators. Recall that the non-parametric estimators use

either the SD, ShortH or WSD as a scale estimator and that under the para-

metric approach, we have the choice between the OLS, ML or TML parameter

estimators. This yields a total of 6 estimation methods.
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Figure 2: True periodicity function (dashed lines) versus the average estimate

across the simulation (full line), for 6 different estimation procedures. The

shaded region equals the range between the 2.5% and 97.5% quantiles. Jump

occurrences are independent of f and jumps are large (m = 1).
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Bias. Figures 2-3 compare the true periodicity function f with the average

across the 500 simulations of the 6 estimators. The difference between both

indicates the bias of the periodicity estimators caused by the price jumps.

In Figure 2 jumps are large (m = 1) and their occurrences are uniformly

distributed over the day. In Figure 3 jumps are small (m = 0.1) and their

occurrences are concentrated on the intraday times for which f < 0.777. We

concentrate on these two cases because (holding the average number of jumps

per day fixed to 1) the visual evidence of the bias of the non-robust estimators

is more clear when jumps are large and/or jumps are concentrated on certain

times of the day.

We see that jumps cause a large bias in the SD and ML estimators and, if

jumps are concentrated on a part of the day, they also cause a bias in the OLS
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Figure 3: True periodicity function (dashed lines) versus the average estimate

across the simulation (full line), for 6 different estimation procedures. The

shaded region equals the range between the 2.5% and 97.5% quantiles. All

jumps occur when f < 0.777 and jumps are small (m = 0.1).
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estimator. In Figure 3 we see that the SD, ML and OLS estimators overesti-

mate the periodic component for the intervals with jumps and underestimate

it for the intervals without jumps. For all types of jump processes considered,

the WSD and TML estimators are the only estimators without visual evidence

of a bias.

Efficiency. In Figures 2 and 3 we also report the 95% confidence bands. We

see that, in the presence of jumps, the SD estimator has the largest standard

error. More details on the relative efficiency of the estimators in the absence

and presence of jumps are given in Table 1. This table reports for each of

the six estimation procedures the Mean Absolute Error of the estimated value

of the periodicity factors (MAEf ) and for the parametric estimators also the
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MAE of the estimated parameter vector (MAEθ). More precisely,

MAEf =
1

KMT

K∑

k=1

MT∑
i=1

|f̂k
i − fi| and MAEθ =

1

KL

K∑

k=1

L∑
i=1

|θ̂k
i − θi|,

where the number of components of θ equals L = 21 and where k = 1, ..., K =

500 indicates the kth simulation run.

The first panel in Table 1 reports the MAE of the estimators if there are

no jumps in the price diffusion. We see that all parametric estimators have

a much lower MAE than the non-parametric estimators. In the class of non-

parametric estimators, the SD is the most efficient estimator. The ShortH has

the largest MAE and the MAE of the WSD is between the MAE of the SD

and ShortH. For the parametric estimators, the ML estimator is efficient. The

TML estimator is only slightly less efficient than the ML estimator and the

OLS estimator has the largest MAE of all parametric estimators. Note that

the relative difference in the MAE for θ of the OLS estimator with respect to

the ML and TML estimators is much larger than the relative difference of its

MAE for f . This is possible, since it might be that two estimates for θ are

quite different, but still result in a similar periodicity function.

The second and third panel of Table 1 report the MAE for a log-price

diffusion with on average one jump per day. We see that the MAE of the

SD in the presence of jumps is several times higher than its MAE in the

absence of jumps. Also the ML estimator is extremely sensitive to jumps. The

optimality of the ML estimator is thus restricted to the model without jumps.

Since jumps do occur in practice, we recommend to use the TML estimator

as an alternative. Note also that the MAE of the SD and TML estimators is

especially large if jumps are large and/or concentrated on certain parts of the

day.

The MAE for f of the ShortH, WSD, OLS and TML periodicity estimators

is little affected by the inclusion of jumps in the price process. The robustness

of the OLS estimator is surprising at first sight, but it corroborates Martens

et al. (2002)’s intuition that the log-transformation shrinks the outliers and

makes the estimators based on a regression of the log absolute returns more
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Table 1: Mean absolute error (MAE) of the estimators for the periodicity factor

and the associated parameter vector, for six different estimation methods.

Jumps are small (m = 0.1) or large (m = 1) and their occurrences are either

uniformly distributed over the day or concentrated on the parts of the day

when volatility is periodically low (f < 0.777) or high (f > 1.333).

non-parametric estimation parametric estimation

MAE SD ShortH WSD OLS ML TML

No jumps f 0.025 0.039 0.030 0.011 0.006 0.007

θ 0.197 0.010 0.011

One jump per day and jump occurrences are independent of f

small jumps f 0.062 0.039 0.029 0.011 0.016 0.007

θ 0.221 0.032 0.013

large jumps f 0.218 0.039 0.029 0.011 0.056 0.007

θ 0.213 0.142 0.019

One small jump per day and jumps occur only if

f < 0.777 f 0.110 0.041 0.030 0.020 0.111 0.007

θ 0.257 0.192 0.012

f > 1.3 f 0.203 0.042 0.029 0.029 0.193 0.007

θ 0.331 0.136 0.016

robust to jumps. Note, however, that the TML estimator has a significantly

lower MAE than the OLS estimator in all simulations considered here.

The main message of Figures 2 and 3 and of Table 1 is that the non-

parametric WSD and parametric TML estimators have a relatively high ef-

ficiency in the absence of jumps. If jumps are present in the process, they

are (for all configurations of the jump process) the most accurate of all non-

parametric and parametric estimators considered, respectively. In all cases

considered here, the TML estimator based on the correctly specified peri-

odicity function is more efficient than the WSD estimator. For this reason,

we recommend to estimate sufficiently smooth periodicity functions using the

TML estimator based on a flexible parametric specification of the periodicity
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function.

3 Intraday jump tests

3.1 The original test

Andersen et al. (2007) and Lee and Mykland (2008) use the absolute value

of the standardized return ri = ri/ŝi in (2.8) as a test statistic for the null

hypothesis that ri is not affected by jumps.4 Denote the jump test statistic for

ri by

Ji =
|ri|
ŝi

. (3.1)

Under the BSMFAJ model and if ri is not affected by a jump, then for λ → 0

and λ/∆ →∞, the statistic Ji converges in distribution to the absolute value

of a standard normal random variable (see Theorem 1 in Lee and Mykland,

2008).

A straightforward jump detection rule is that return ri is affected by a jump

if Ji exceeds the 1− α/2 quantile of the standard Gaussian distribution. This

rule has a probability of type I error (detect that ri is affected by jumps, if in

reality ri is not affected by jumps) equal to α. But its disadvantage is that the

expected number of false positives over the whole estimation sample becomes

large. For example, with M = 288 intraday returns per day and α = 0.01, one

expects to detect about 0.01 ·288 ≈ 3 jumps per day, even if no single jump has

occurred. Lee and Mykland (2008) call these false positives “spurious jump

detections”.

Andersen et al. (2007) use a Bonferroni correction to control for the number

of spurious jumps detected per day. As a rejection threshold, they propose to

use the [1+(1−α)∆]/2 quantile of the Gaussian distribution. Lee and Mykland

4A similar idea is pursued by Brownlees and Gallo (2006) for outlier detection in high-

frequency return series, but they use the standard deviation as an estimator of local scale.

The standard deviation has the disadvantage of not being robust to jumps. If jumps are

present in the neighborhood of i, the return affected by jumps may, after standardization

by the standard deviation, no longer be large.
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(2008) control for the size of the multiple jump tests using the extreme value

theory result that the maximum of n i.i.d. realizations of the absolute value

of a standard normal random variable is asymptotically (for n →∞) Gumbel

distributed (see e.g. Chapter 3 in Embrechts et al., 1999). More specifically,

in the absence of jumps, the probability that the maximum of any set of n

J-statistics exceeds

gn,α = − log(− log(1− α))bn + an, (3.2)

with an = (2 log n)1/2− [log π + log(log n)]/[2(2 log n)1/2] and bn = 1/
√

2 log n,

is about α. Lee and Mykland (2008)’s proposal is that all returns for which

the J test statistic exceeds this threshold gn,α should be declared as being

affected by jumps. In the sequel of the paper, we use n = 1/∆ = 288. This

corresponds to testing for the joint null hypothesis of no jumps over one day.

We set α = 1%. For these values of n, ∆ and α, Andersen et al. (2007)’s and

Lee and Mykland (2008)’s threshold equals 4.139 and 4.305, respectively.

3.2 The filtered test

The original test in (3.1) assumes that the spot volatility σ(s) is approximately

constant over the local window used to compute ŝi. This is a reasonable

assumption for short local windows such as 30 minutes. However, if returns

are sampled at frequencies of one hour, 30 minutes, 15 minutes or 5 minutes,

Lee and Mykland (2008) recommend to use local windows containing 78, 110,

156 or 270 observations, respectively.5 This corresponds to local windows of at

least 90% of a day. Also Andersen et al. (2007) use local windows of one day in

their application on the 2-min transaction returns from the S&P 500 futures

contract. For such long windows, the assumption of constant volatility is at

odds with the overwhelming empirical evidence that the intraday variation in

market activity causes intraday volatility to be strongly time-varying and even

displays discontinuities (Taylor, 2004). Consequently ŝi does not estimate the

5These numbers correspond to the smallest number of observations for which jumps will

have a negligible effect on ŝi (Lee and Mykland, 2008).
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volatility of ri, but the average level of volatility of the returns in the local

window of ri.

Andersen et al. (2007) recognize this and as a robustness check, they verify

their empirical results using the returns standardized by a periodicity estimate

that is similar to the SD estimator. The test statistic based on the original J

statistic divided by a periodicity estimate is called the “filtered J test statis-

tic”. Andersen et al. (2007) use the filtered J test statistic based on the SD

periodicity estimator

FJSD

i =
|ri|

f̂ SD
i ŝi

. (3.3)

We propose to use a filtered J test based on the robust WSD and TML peri-

odicity estimates, i.e.

FJWSD

i =
|ri|

f̂WSD
i ŝi

and FJTML

i =
|ri|

f̂TML
i ŝi

. (3.4)

We have the following result (proof is in appendix).

Result 5 Under the BSMFAJ model with spot volatility process satisfying As-

sumption 1 and with jump occurrence process satisfying Assumption 2, and

if there is no jump at time s, we have that the statistics FJWSD

i and FJTML

i

converge in distribution to the absolute value of a standard normal random

variable for λ → 0, λ/∆ →∞ and T →∞.

In the absence of a periodic variation of volatility in the local window, the

original J test statistic is of course to be preferred over its filtered counterpart,

because of the uncertainty in the estimated periodicity factor. However, for

sufficiently long local windows such as when λ is equal to one day, there is

a strong periodic intrawindow variation of volatility. Then intraday jump

detection using the filtered J test statistic will yield more accurate results.

3.3 Simulation study

We now compare testing for jumps using the original and filtered J test statis-

tics by means of a simulation study. The implementation is based on a local
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window length λ equal to one day. We use the rejection threshold in (3.2) with

α = 0.01 and n = 288 (the number of 5-minute intervals per day of 24 hours).

This means that the returns for which the J test statistic exceeds 4.305 are

identified as being affected by jumps. We generate K = 500 series of 500 days

of 5-minute returns from a process that is the same as in Subsection 2.5, except

that the specification of the periodicity function is more simple, namely:

f(τ(s)) = 0.447·I(τ(s) ≤ 1/3)+I(1/3 < τ(s) ≤ 2/3)+1.342·I(2/3 < τ(s) ≤ 1).

(3.5)

Under this specification, the intraday volatility is periodically low in the first

8 hours of the day and periodically high in the last 8 hours of the day.

Like Andersen et al. (2007) and Lee and Mykland (2008) we use the pro-

portion of spuriously detected jumps and proportion of actual jumps that have

been detected with success as indicators of the size and power of the test. An-

dersen et al. (2007) call these statistics “effective size” and “effective power”,

respectively. They are reported in Table 2 for the case of no jumps and 1 jump

per day. The jumps we consider are similar as in Table 1: they are either

small (m = 0.1) or large (m = 1) and are either uniformly distributed over

the day or concentrated on the parts where volatility is periodically low or

high. The effective size and power are reported as a function of the value of

the periodicity function.

Effective size. The first panel in Table 2 reports the proportion of returns for

which a jump has been detected by the original and the filtered J tests, if in

reality there are no jumps in the process. Recall that a jump is detected when

the original or filtered J statistics exceed 4.305. Asymptotically (for λ → 0

and λ/∆ →∞) these J statistics converge to the absolute value of a standard

normal random variable for which the probability to be larger than 4.305 equals

1.7e-5. Because we take λ equal to one day and because of the time-varying

volatility the actual effective size is slightly higher. Note that the original J

test has an important size distortion for f 6= 1. If f = 0.447, it detects no

spurious jumps at all and if f = 1.342 then 0.14% of all returns are (spuriously)

identified as being affected by jumps. The original J test thus underdetects

23



(overdetects) jumps if the value of the periodicity function is low (high). The

differences in effective size of the filtered J test are economically insignificant

with respect to the variation in effective size observed for the J test. In the case

of 500 days of 288 5-minute returns, the J statistic detects on average between

0 (f = 0.447) and 202 (f = 1.342) spurious jumps, while the filtered J tests

detect only between 3 (FJSD; f = 1.342) and 7 (FJWSD; f = 0.447) spurious

jumps.

In panel 2 of Table 2 we report the effective size of the tests in the presence

of jumps. Note that also in the presence of jumps, the effective size of the J

test is highly dependent on the value of the periodicity factor. For all types

of jumps considered, the effective size of the filtered J test based on the WSD

or TML estimators has the correct order of magnitude (1e-5). In the case

of large jumps (m = 1), the effective size of the filtered J test based on the

SD estimator is too large. It is about 2.4e-3, which implies on average 345

spurious jump detections per 500 days. This is due to the bias and inefficiency

of the SD periodicity estimator in the presence of large jumps (see Figure 2

and Table 1).

Effective power. The detection of large jumps is only marginally affected

by the presence of periodicity in the spot volatility. Let us therefore focus on

the power to detect small jumps, which are the most difficult to detect. In

panel 2 of Table 2 we see that the original J test detects only 18% of all jumps

if jumps are small (m = 0.1) and occur when volatility is periodically low

(f = 0.447). The robustly filtered J tests detect more than 96% of the actual

jumps in this case. Figure 3 illustrates that if jumps only occur when volatility

is periodically low, the SD periodicity has a large upward bias. Because of this

bias, the power of the filtered J test based on the SD is only 88% in the case

of small jumps occurring only when volatility is periodically low, while for the

robust filtered J test it is 98%.
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Table 2: Effective size and effective power for the original and filtered J tests

with rejection threshold equal to 4.305 as a function of the periodicity factor.

Jumps are small (m = 0.1) or large (m = 1) and their occurrences are either

uniformly distributed over the day or concentrated on the parts of the day

when volatility is periodically low (f = 0.447) or high (f = 1.342).

effective size effective power

J FJSD FJWSD FJTML J FJSD FJWSD FJTML

No jumps

f = 0.447 0 3.0e-5 4.6e-5 3.5e-5

f = 1 2.4e-5 2.1e-5 3.0e-5 2.2e-5

f = 1.342 1.4e-3 1.9e-5 2.6e-5 2.1e-5

One small jump per day and jump occurrences are independent of f

f = 0.447 0 6.5e-5 5.4e-5 6.0e-5 0.1760 0.9684 0.9762 0.9802

f = 1 3.1e-5 4.9e-5 3.9e-5 4.7e-5 0.9758 0.9692 0.9751 0.9799

f = 1.342 1.8e-3 4.2e-5 2.9e-5 3.6e-5 0.9972 0.9681 0.9732 0.9785

One large jump per day and jump occurrences are independent of f

f = 0.447 0 2.5e-3 4.2e-5 3.2e-5 0.9982 0.9996 0.9996 0.9996

f = 1 2.2e-5 2.4e-3 2.7e-5 2.2e-5 0.9996 0.9996 0.9996 0.9996

f = 1.342 1.4e-3 2.4e-3 2.3e-5 1.8e-5 0.9997 0.9996 0.9996 0.9996

One small jump per day and jumps only occur if f = 0.447

f = 0.447 0 2.9e-6 6.7e-5 5.5e-5 0.2075 0.8773 0.9783 0.9785

One small jump per day and jumps only occur if f = 1.342

f = 1.342 1.5e-3 1.7e-5 2.6e-5 2.1e-5 0.9953 0.9264 0.9646 0.9658
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4 Illustration on 5-min EUR/USD returns

Like Andersen and Bollerslev (1997, 1998b), Martens et al. (2002) and Taylor

and Xu (1997), we study the intraweek periodicity in the volatility of 5-minute

EUR/USD returns. Our data set, provided by Olsen and Associates, ranges

from January 2001 - December 2004 and time is expressed in Eastern Standard

Time (EST), taking into account the daylight saving time shifts in Europe and

America. More details on this data set can be found in Beine et al. (2006).

We consider a local window length λ equal to one day and thus assume that

the intraday variation in volatility is mainly due to a periodic function f that

is a deterministic function of the intraweek time.6

Non-parametric periodicity estimates. Figure 4 plots the SD, ShortH and

WSD-based non-parametric estimates of the intraweek periodic component in

the volatility of 5-minute EUR/USD returns. The first value is the periodicity

factor for the 5-minute return on Sunday evening at 16:00-16:05 EST. We see

that for most intervals, the classical and robust periodicity estimates closely

resemble each other. Two notable exceptions are the 8:30-35 and 10:00-10:05

EST intervals during which the most important macroeconomic news are re-

leased (Ederington and Lee, 1993) and Sunday evening. It is likely that these

differences are due to jumps.

Consider e.g. the 8:30-8:35 interval on Friday morning. According to the

SD estimator, the periodicity factor is around 5, while according to the robust

estimators it is around 3. Such a large difference between these estimators can

only be due to the presence of jumps in the data. This mirrors the fact that

in this interval many macroeconomic news are released and that these news

releases are often associated with jumps. Note however that also according to

the robust estimators, there is a sharp increase in the periodic component of

6Alternative approaches for analyzing such time series are to condition not only on in-

traweek time, but also on macroeconomic news announcements (Andersen and Bollerslev,

1997) or to allow the periodicity in intraday volatility to be stochastic (Beltratti and Morana,

2001).

26



intraday volatility at the time of the macroeconomic news releases.7

There is also a noticeable difference in the Sunday evening periodicity es-

timates. The first periodicity factor of the weekly cycle equals 0.51 according

to the SD estimator and only 0.33 according to the WSD estimator. Again,

this difference must be due to jumps. The presence of many jumps in these

intervals is plausible, since at these times there are relatively few trades on

the FX market and price volatility is low. Since the market is then also the

least liquid, it is easier for a trader to create jumps in the price process. These

jumps inflate the SD periodicity estimator.

Parametric periodicity estimates. Figure 5 plots the parametric estimates

of the intraweek periodicity factors obtained using the OLS, ML and TML

parameter estimates. These estimates are based on specifying the log of the

intraweek periodicity factor as a function of the Time of the Day interval

ToDi = 1, . . . , 288 and Day of the Week DoWi = 1, . . . , 5 corresponding to the

time point ti = i∆. We use a specification that is similar to the one proposed

by Andersen and Bollerslev (1997),

log fi = θ1
ToDi

M1

+ θ2
ToD2

i

M2

(4.1)

+
6∑

j=1

θ3+j cos(ToDi
2πj

M
) +

4∑
j=1

θ9+j sin(ToDi
2πj

M
)

+(θ14 + θ15ToDi)I(ToDi ≤ 36)I(DoWi = 1)

+
5∑

d=1

3∑

b=1

θ16+3(d−1)+bPb(ToDi; j)I(ToDi ≥ j1)I(DoWi = d)

+
5∑

d=2

3∑
a=2

3∑

b=1

θ31+6(d−2)+3(a−2)+bPb(ToDi; ja)I(ToDi ≥ ja)I(DoWi = d),

where M1 = M−1
∑M

i=1 i = (M + 1)/2 and M2 = M−1
∑M

i=1 i2 = (2M2 +

3M + 1)/6 are normalizing constants. The unknown parameter vector θ has

7Macro-economic news releases often have a monthly frequency. Since the release of

different types of news are spread over the different weeks of the month (see e.g. Table 2

in Andersen et al., 2003), the release of a news on Friday 8:30 has a weekly frequency and

therefore leads to a sharp increase in the periodic component of intraday volatility of the

Friday 8:30-8:35 return.
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Figure 4: Non-parametric SD, ShortH and WSD estimates of the intraweek

periodicity in the volatility of 5-minute EUR/USD returns. Time is expressed

in EST.
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54 components. The last terms in the specification for log fi are bth order

Almond polynomials of t centered at ja and b = 1, 2 or 3,

Pb(t; ja) = [1− ((t− ja)/M)b](t− ja)
3−b.

We consider 3 centering points: j1, j2 and j3, corresponding to the 2:30-2:35,

8:30-8:35 and 10:00-10:05 time intervals, respectively. The 2:30-2:35 polyno-

mial is needed to accommodate for the increase in activity due to the opening

of the European markets. The 8:30-8:35 and 10:00-10:05 polynomials are in-

cluded to accommodate the increase in the periodic component of volatility

due to the numerous releases of macroeconomic news in these intervals (Eder-

ington and Lee, 1993). These polynomials have previously been used for this

by Andersen et al. (2000) and Bollerslev et al. (2000), among others.
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Figure 5: Parametric OLS, ML and TML estimates of the intraweek periodicity

in the volatility of 5-minute EUR/USD returns. The WSD-based nonparamet-

ric estimates (dashed line) are reported as benchmark. Time is expressed in

EST.
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Figure 5 compares the parametric periodicity estimates with the WSD-

based estimate. We see that, on Sunday evening, the OLS and TML period-

icity estimators are close to the WSD estimate, and that the ML estimate is

completely different than the robust estimates. The peaks in the OLS and

TML parameter estimates are always smaller than the peaks in the WSD es-

timate. Note also that the OLS and TML periodicity estimates resemble each

other. As explained by Martens et al. (2002), the log-transformation atten-

uates the effect of jumps on the estimator and thus makes it more robust to

jumps.

Intraday jump detection. In Table 3 we report the proportion of returns
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affected by jumps according to the original and the filtered J tests (using either

the WSD or TML periodicity estimates). The rejection threshold equals 4.305,

which corresponds to the threshold in (3.2) with α = 0.01 and n = 288. We

find that all three considered test statistics detect that between .36% and .40%

returns are affected by jumps. However, for more than half of the detected

jumps, the original and filtered J tests do not agree.

Let us now study in more detail in which 5-minute intervals of the day

the jumps are detected. Table 3 reports details on this. We find that in the

high periodicity intervals (f̂WSD
i > 1.3), the original J test detects more than 5

times more jumps than do the filtered J tests. The opposite is true for the low

periodicity intervals (f̂WSD
i < 0.77) for which the filtered J tests detect more

than 6 times more jumps. Note also that for most intervals, the proportion

of detected jumps by the filtered J test using the TML estimator is between

the proportion of detected jumps by the J test and the filtered J test using

the WSD. This is because the range of the WSD estimate of the periodicity

function is larger than the range of the TML estimate (Figure 5).

Price jumps are caused by a sudden release of news or arrival of orders. In

the EUR/USD market, most macroeconomic news are released on Tuesday-

Friday 8:30-8:35 EST and Monday-Friday 10:00-10:05 EST. These are also the

time intervals for which intraday volatility is periodically high. In Table 3 we

report the proportion of detected jumps for these periods. We see that the

filtered J tests detect significantly less jumps for these intervals. For Friday

8:30-8:35 EST, and Wednesday-Thursday 10:00-10:05, both the original and

filtered J tests find that more than 5% of the returns correspond to jumps.

According to the original J test 25% of all returns in the Friday 8:30-8:35 EST

interval, are affected by jumps and for the filtered J tests it is 7%.

A second cause of price jumps is a sudden arrival of orders. These arrivals

are more likely to create jumps at a time of low liquidity in the market (Farmer

et al., 2004), such as on Sunday evening and lunch time of the Tokyo market,

when the liquidity on the FX markets is periodically low. We see that for these

intervals the filtered J tests detect several times more jumps than the original

J test.
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Table 3: Proportion of 5-minute EUR/USD returns for which the original and

filtered J tests, with rejection threshold equal to 4.305, detect jumps.

J FJWSD FJTML

All intervals .0040 .0039 .0036

Intervals with f̂WSD
i > 1.3 .0152 .0020 .0030

Tues, 8:30-8:35 .0476 .0265 .0265

Wed, 8:30-8:35 .0645 0 .0108

Thur, 8:30-8:35 .1243 0 .0108

Fri, 8:30-8:35 .2473 .0714 .0714

Mon, 10:00-10:05 .0281 0 .0112

Tues, 10:00-10:05 .1217 0 .0212

Wed, 10:00-10:05 .0591 .0054 .0215

Thu, 10:00-10:05 .0378 .0054 .0108

Fri, 10:00-10:05 .0989 0 .0220

Intervals with 0.77 ≤ f̂WSD
i ≤ 1.3 .0032 .0029 .0027

Intervals with f̂WSD
i < 0.77 .0008 .0059 .0052

Sunday Evening (16:00-19:00) .0022 .0275 .0362

Tokyo Lunch (23:00-00:45) .0004 .0040 .0022

5 Conclusion

In this paper, we propose the weighted standard deviation and truncated

maximum likelihood periodicity estimators as an alternative for Taylor and

Xu (1997)’s non-parametric and Andersen and Bollerslev (1997)’s paramet-

ric periodicity estimators, respectively. The new estimators are robust to

price jumps. For sufficiently smooth periodicity functions, we recommend the

truncated maximum likelihood estimator based on Andersen and Bollerslev

(1997)’s flexible specification for the periodicity function, because of its high

efficiency both in the absence and presence of jumps. We compare the classi-

cal and robust periodicity estimators for the 5-minute EUR/USD returns. We

find large differences between the classical and robust periodicity estimators
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for the Sunday evening trading intervals and the intervals during which usually

macroeconomic news are released.

We also show that the robust periodicity estimates can be used to increase

the accuracy of intraday jump detection methods. It seems that filtering mat-

ters especially for the size of the test: the original test overdetects jumps at

times of periodically low intraday volatility and underdetect jumps at times of

periodically high intraday volatility. Filtering is also important to increase the

power of the test to detect small jumps at times of periodically low volatility,

such as on Sunday evening and at the Tokyo lunch time. Using the filtered

jump test statistics, we detect significantly less jumps for the intraday intervals

during which macroeconomic news are released.

The robust periodicity estimators can yield very different estimates than

the classical ones in the presence of jumps. We illustrated this for the 5-minute

EUR/USD returns, but we expect similar differences for other series. A topic

of future research is to explore the potential gains in accuracy of using these

robust periodicity estimates for forecasting intraday volatility (Taylor and Xu,

1997) or for bootstrapping realized volatility (Gonçalves and Meddahi, 2008).

6 Appendix

The proofs are based on the following lemma.

Lemma 1 Under the BSMFAJ model with spot volatility process satisfying

Assumption 1, we have that, if there is no jump at s, r(s) converges in distri-

bution to a normal random variable with mean zero and variance f 2(τ(s)) for

λ → 0 and λ/∆ →∞.

Proof of Lemma 1. The lemma follows directly from the consistency of the

realized bipower variation for the integrated variance of a BSMFAJ process

and from Assumption 1. ¤

Proof of Result 1. This proposition follows from Lemma 1 and from the

consistency of the sample standard deviation, shortest half dispersion and the
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outlyingness weighted standard deviation (see Boudt et al., 2008b) for the

standard deviation of an i.i.d. sample of standard normal random variables. ¤

Proof of Result 2. If the number of jumps is finite, the proportion of returns

affected by jumps goes to zero when ∆ → 0. By the bounded influence function

property of the shortest half dispersion and the weighted standard deviation

based on the shortest half dispersion (Rousseeuw and Leroy, 1988; Boudt et al.,

2008b), the effect of infinitesimal contamination by jumps on these estimators

is asymptotically negligible. ¤

Proof of Result 3. Denote l and u the values of z for which ρML(z) equals

ρML(q). Result 1 ensures that, for s = i∆,

plim
∆→0

f̂WSD(τ(s)) = f(τ(s)) = exp(θ′∗x(τ(s))).

Let H be the distribution of the design variables x. Then it follows that the

objective function in (2.20) converges in probability to

φ(θ) =

∫ ∫ u

l

ρML(z + θ′∗x− θ′x)g(z)dzdH(x),

with g defined in (2.15). Since ρML(z) is a convex function, there is a unique

minimum and hence, for establishing consistency, it is sufficient to prove that

θ∗ is a critical value of φ(θ). The remainder of the proof follows from Remark

5 in Marazzi and Yohai (2004). The first order condition is that

∂φ(θ)

∂θ

∣∣∣∣
θ=θ∗

= −
∫ ∫ u

l

dρML(z)

dz
xg(z)dzdH(x)

= −[g(u)− g(l)]

∫
xdH(x) = 0.

The latter equality follows from ρML(z) = log g(z) which implies that dρML(z)/dz =

g−1(z)dg(z) and g(u) = g(l). ¤

Proof of Result 4. By the consistency of f̂WSD
i under the BSMFAJ model

(Result 2), all returns affected by jumps have a residual eWSD
i with likelihood

ρML(eWSD
i ) above the threshold ρML(q) and receive a zero weight in the estima-

tion. Jumps therefore have no effect on the TML-estimator, and its consistency
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for θ∗ under the BSMFAJ model follows from its consistency for θ∗ under the

BSM model (Result 3). ¤

Proof of Result 5. By Lemma 1, |r(s)| converges in distribution to the ab-

solute value of normal random variable with mean zero and variance f 2(τ(s)).

By Result 4, f̂WSD(τ(s)) and f̂TML(τ(s)) converge in probability to f(τ(s)).

Hence, by Cramér’s theorem, |r(s)|/f̂WSD(τ(s)) and |r(s)|/f̂TML(τ(s)) converge

in distribution to the absolute value of a standard normal random variable. ¤
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