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Abstract

Bagging has been found to be successful in increasing the predictive
performance of unstable classifiers. Bagging draws bootstrap samples
from the training sample, applies the classifier to each bootstrap sam-
ple, and then averages over all obtained classification rules. The idea of
trimmed bagging is to exclude the bootstrapped classification rules that
yield the highest error rates, as estimated by the out-of-bag error rate,
and to aggregate over the remaining ones. In this note we explore the
potential benefits of trimmed bagging. On the basis of numerical ex-
periments, we conclude that trimmed bagging performs comparably to
standard bagging when applied to unstable classifiers as decision trees,
but yields better results when applied to more stable base classifiers, like
support vector machines.
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1. Introduction

Originating from the machine learning literature, bagging is based on the princi-
ple of classifier aggregation. This idea has been inspired by Breiman (1996) who
found gains in accuracy by combining several base classifiers, sequentially esti-
mated from perturbed versions of the training sample. Bagging, the acronym
for Bootstrap AGGregatING, consists of sequentially estimating a base classi-
fier from bootstrapped samples of a given training sample. The bootstrapped
classifiers form then a committee of component classifiers from which a final clas-
sification rule can be derived by simple aggregation. Bagging may substantially
reduce the variance of a classifier, without affecting too much its bias. Theo-
retical results on bagging have been obtained by Bühlmann and Yu (2002) and
Buja and Stuetzle (2006), among others. Bagging is conceptually simple and
intuitive, and was shown to be successful in several applications (e.g. Lemmens
and Croux (2006) for an application in customer retention in marketing).

Although its good performance has been demonstrated on several occasions,
some conditions need to be fulfilled to ensure that bagging outperforms the base
classifier. The latter needs to be good on average, but unstable with respect to
the training set. Unstable classifiers have typically low bias but high variance
(Breiman (1998)). Among the different alternatives, decision trees have been
proven to be a good choice as a base classifier for bagging. However, as pointed
out by several authors, e.g. Dietterich (2000), there is no guarantee that bagging
will improve the performance of any base classifier. When using stable base
classifiers, like support vector machines, it may even yield a deterioration of the
predictive accuracy.

In this paper, we propose a new method to improve the performance of
any classifier, called trimmed bagging. The idea behind trimmed bagging is
simple and intuitive: instead of averaging over all bootstrapped classifiers, we
only average over the best performing ones. Hence, we will trim away those
bootstrapped classifiers that result in the highest error rates. The remainder
of the paper is organized as follows. In the next section, we formally define
the trimmed bagging procedure. We also review two other variants of bagging,
namely bragging, first introduced by Bühlmann (2003), and the nice bagging
procedure of Skurichina and Duin (1998). Section 3 outlines the assessment
criterion and Section 4 empirically compares the performance of the various
bagging variants. Section 5 contains the conclusions.

2. Methodology

2.1. Bagging and bragging

Suppose that we want to classify an observation into one of two groups, labeled
by “y = 1” and “y = 0”, using a multivariate predictor variable x. A classifier is
computed on the training set Ztr = {(x1, y1), ... , (xn, yn)}, for which the values
of xi and yi are known. The constructed classifier depends on the training data
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used, and can be expressed as a mapping x → gtr(x) = g(x;Ztr) ∈ [0, 1], which
assigns a score or probability to each observation. The case that the classifier
only takes on the values 0 or 1 is allowed as well.

Bagging has been proposed by Breiman (1996) as a tool to improve the per-
formance of the base classifier gtr(·). Practically, we construct B bootstrapped
versions of the original training sample Ztr, denoted by Z∗1, ..., Z∗B . By con-
struction, some observations will appear several times in a bootstrapped sample,
while others will be missing. The latter will form the out-of-bootstrap or out-
of-bag samples, denoted as Z−∗1, ..., Z−∗B . Using the B bootstrapped samples,
we construct B classifiers g(·;Z∗1), ..., g(·; Z∗B). The bagged classifier is then
obtained by averaging over all B bootstrapped classifiers:

gbag(x) = average
1≤b≤B

g(x;Z∗b). (1)

To determine the optimal number of bootstrapped samples, a strategy is to select
B such that the apparent error rates (i.e. error rates on the training data) remain
stable for values larger than B. An extensive overview of different supervised
classification rules, including bagging, can be found in Hastie, Tibshirani, and
Friedman (2001).

Some extensions of the original bagging algorithm have already been pro-
posed. Instead of computing an average over the outcomes of the B boot-
strapped classifiers, as in (1), one could compute a robust location estimator
instead. As such, Bühlmann (2003) proposed to take the median

gbrag(x) = median
1≤b≤B

g(x;Z∗b), (2)

and called the resulting procedure bragging. Instead of the median, one could
also take a trimmed average in (2). We stress, however, that this does not
correspond to the trimmed bagging procedure proposed in this paper. Our
proposal is to sort the different classifiers with respect to their corresponding
error rate, and not with respect to the numerical values of the outcomes.

2.2. Trimmed Bagging

We start by ordering the different bootstrapped classifiers by increasing error
rate (ER):

ER(g(·, Z∗(1))) ≤ ER(g(·, Z∗(2))) ≤ ... ≤ ER(g(·, Z∗(B))).

Hence, Z∗(b) denotes the bootstrapped training set resulting in a classification
rule with the b th smallest error rate. The idea of trimmed bagging is to trim
off the portion α of “worst” classifiers, in the sense of having the largest error
rates, and to average only over the most accurate classifiers. This results in

gtrimbag(x) = average
1≤b≤b(1−α)Bc

g(x, Z∗(b)). (3)
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(Here bzc indicates the largest integer value smaller or equal to z.) Note that
the trimming in (3) is one-sided, since we want to keep bootstrapped classifiers
with low error rate into the final aggregation scheme, and only trim the bad
classification rules. Instead of a trimmed average one could also consider other
kinds of weighted averages, with the weights inversely proportional to the er-
ror rate. We did experiments with several of these weighting schemes, but it
turned out that the simple trimmed average, as in (3), behaves as good as more
complicated weighted averages.

To compute the error rates ER(g(·, Z∗b)), for b = 1, . . . , B, we used the
out-of-bag error rate, being the proportion of misclassified observations in the
out-of-bootstrap sample, which we denote by Z∗−b. The advantage of the out-of-
bag error rate is that it results in an unbiased estimate of the true error rate, in
contrast to the apparent error rate. The latter is the proportion of misclassified
observation of Ztr when using g(·, Z∗b). One also needs to choose the trimming
portion α. Since bagging is a variance reduction technique, it is of importance
to take α small enough, such that we still aggregate over a substantially large
number of component classifiers. On the other hand, taking α too small implies
that the risk of including “bad” classifiers in the trimmed sum increases. As a
compromise, we selected α = 0.25 throughout this paper.

Another possibility would be to take a data driven choice of α. One could
only average over these base classifiers g(·, Z∗(b)) for which

ER(g(·, Z∗(b))) < ER(g(·, Ztr)). (4)

Hence we only incorporate bootstrapped classifiers performing better than the
initial base classifier g(·, Ztr) in the trimmed average. The resulting aggregated
classifier corresponds then to the nice bagging procedure, already proposed by
Skurichina and Duin (1998). Formally, let B′ be the largest b for which (4)
holds. Then

gnicebag(x) = average
1≤b≤B′

g(x,Z∗(b)).

In the remainder of the paper we will compare the classification performance
of bagging, bragging, trimmed bagging and nice bagging on a number of real
data sets. Note that the computation of all the aggregated classifiers is straight-
forward, and requires B times the computation of the base classifier. Calculation
of the error rates ER(g(·, Z∗(b))), for b = 1, . . . , B is immediate.

3. Assessment Criterion

In line with the classification literature, we assess the performance of the differ-
ent methods on a validation sample that has not been used during the training
step. To do so, we randomly split the data sets in a training sample (80%)
and a validation sample (20%). To prevent the results to rely on this splitting
decision, we repeat the splitting 10 times, and average the results over the 10
samples. The percentage of misclassified observations in the validation sample
is called the validated error rate.
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Table 1: Sample size n and number of predictor variables p for the various data
sets

Data set n p Data set n p
Austral 690 14 Spambase 4601 57
Balloon 156 5 Tictacto 958 9
Breast 699 9 Wdbc 569 30
Cmc 1473 9 Wpbc 198 31
Crx 653 15 Spect 267 23
Iono 351 33 Spectf 369 45

In the following section, we want to test whether bagging (or any bagging
variant) improves or degrades the performance of the base classifier g(·;Ztr). To
do so, we compute the relative improvement in predictive accuracy, by measuring
the decrease in the validated error rate when using bagging (or any variant),

Relative Improvement =
ERbase classifier − ERbagging

ERbase classifier
,

where ERbase classifier and ERbagging are, respectively, the validated error
rates for the base classifier and for the bagging variant. The average value of
the Relative Improvement over the 10 repetitions of the cross-validation will
be reported. We will also indicate whether this average value is significantly
different from zero, in the positive or negative sense. Significance testing is
doen with a standard two-sided t-test for the nullity of an average (based on a
sample of size 10 here).

4. Results

To evaluate the performance of trimmed bagging, we apply the aforementioned
bagging variants to 12 of the well-known UCI (University of California Irvine)
Machine Learning Repository data sets.1 Characteristics of the data sets can
be found in Table 1.

To demonstrate the ability of trimmed bagging in improving the predictive
performance of any base classifier, stable or unstable, we consider the following
base classifiers: (a) decision trees (Table 2), as an example of an unstable classi-
fier (b) support vector machines (SVM) (Table 3), linear discriminant analysis
(Table 4), and logistic regression (Table 5) as examples of stable classifiers. All
these base classifiers are well-known and routineously used. The decision tree
was taken to be the default “tree” from the MASS library in the R software
package, and the support vector machine was the default “svm” of the e1071
package of R, with the RBF kernel. We compare trimmed bagging with other

1See http://www.ics.uci.edu/ m̃learn/MLRepository.html
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Table 2: Mean relative improvements in error rate of Bagging, Bragging, Nice
and Trimmed Bagging with respect to a standard classification tree (significant
improvements at the 5% level are indicated by ∗). The last two rows give the
number of significant improvements (deteriorations) for the 12 considered data
sets.

Data set Bagging Bragging Nice Trimmed
Austral 0.13∗ 0.14∗ 0.04 0.10
Balloon −0.14 −0.10 −0.22 −0.63
Breast 0.27∗ 0.26∗ 0.18∗ 0.23∗

Cmc 0.04∗ 0.04∗ 0.02 0.02
Crx 0.17∗ 0.18∗ 0.10∗ 0.15∗

Iono 0.27∗ 0.29∗ 0.15∗ 0.28∗

Spambase 0.11∗ 0.12∗ 0.12∗ 0.12∗

Tictacto 0.41∗ 0.36∗ 0.45∗ 0.45∗

Wdbc 0.15 0.18 −0.42 0.10
Wpbc 0.10 0.12 −0.07 0.11
Spect 0.07 0.06 0.02 0.04
Spectf 0.25∗ 0.27∗ −0.05 0.21∗

positive 8 8 5 6
negative 0 0 0 0

bagging variants: bagging, bragging, and nice bagging, taking B = 250 repli-
cates throughout. The mean relative improvements over the base classification
rule are reported in Tables 2, 3, 4, and 5. The last two rows in each table give the
number of significant improvements (deteriorations) in relative improvement for
the 12 considered data sets, allowing us to quickly assess the global performance
of each bagging variant.

From Table 2 we see that bagging, as expected, indeed significantly improves
the error rate if a decision tree is used as a base classifier (in 8 out of 12 cases).
The results for bragging are very close to those for bagging, and this for all data
sets. Moreover, as we will see from the subsequent Tables, this in not only the
case for decision trees, bus also for the other base classifiers we consider. As a
first conclusion we already state that bragging and bagging have very similar
performance in this study.

Another conclusion we can draw from Table 2 is that nice and trimmed
bagging also yield significant improvements with respect to the base classifier
(in 6 out of 12 cases), and that in none of the examples a significant deterioration
in error rate is observed. Trimmed bagging behaves slightly worse than standard
bagging, but the difference is rather marginal.

The better performance of bagging becomes questionable when using stable
classifiers. Results in Table 3 indeed confirm that bagging does not work with a
support vector machine. In only one case bagging provides a significant increase
in the predictive performance of SVMs. Even worse, bagging leads to significant
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Table 3: As in Table 2, but now for support vector machines.
Data set Bagging Bragging Nice Trimmed
Austral −4.88∗ −4.85∗ −0.02 0.06
Balloon −2.59 −2.53 0.01 0.71∗

Breast 0.00 0.00 0.00 0.96∗

Cmc −0.01 0.07 −0.01 −0.02
Crx −4.15 −4.09 0.01 0.17
Iono −17.11∗ −17.11∗ 0.10 0.19
Spambase −3.39∗ −3.38∗ −0.01 0.66∗

Tictacto 0.22 0.25 0.21 0.25∗

Wdbc 0.98∗ 0.98∗ 0.98∗ 0.98∗

Wpbc −0.40 −0.40 0.00 0.64∗

Spect −0.05 −0.03 −0.07∗ −0.03
Spectf 0.03 0.01 0.05 0.05∗

positive 1 1 1 7
negative 3 3 1 0

Table 4: As in Table 2, but now for linear discriminant analysis.
Data set Bagging Bragging Nice Trimmed
Austral 0.01 0.01 0.00 0.00
Balloon 0.02 0.02 0.54∗ 0.44∗

Breast -0.02 -0.02 0.03 0.03
Cmc 0.01∗ 0.01∗ 0.01 0.01∗

Crx 0.00∗ 0.00∗ 0.00∗ -0.01
Iono -0.02 -0.02 0.03 0.03
Spambase 0.01 0.01 0.05∗ 0.04∗

Tictacto 0.00 0.00 0.02 0.02∗

Wdbc -0.08∗ -0.08∗ -0.03 -0.01
Wpbc 0.00 0.00 -0.05 -0.05
Spect 0.04∗ 0.04∗ 0.10 0.05∗

Spectf 0.06 0.06 0.19 0.07
positive 3 3 3 5
negative 1 1 0 0
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Table 5: As in Table 2, but now for logistic regression.
Data set Bagging Bragging Nice Trimmed
Austral 0.00 0.00 -0.01 -0.01
Balloon 0.07 0.07 0.43 0.41
Breast 0.07 0.07 0.07 0.04
Cmc 0.00 0.00 0.01 0.00
Crx -0.01 -0.01 -0.02 -0.02
Iono 0.05 0.05 -0.11 0.06
Spambase 0.04 0.04 0.12∗ 0.05
Tictacto 0.01 0.01 0.01 0.01
Wdbc 0.41∗ 0.41∗ 0.27 0.31∗

Wpbc 0.01 0.01 -0.14 0.00
Spect 0.15 0.15 0.13 0.09
Spectf 0.43∗ 0.43∗ -0.05 0.37∗

positive 2 2 1 2
negative 0 0 0 0

loss in accuracy for one quarter of the data sets here. While bragging does not
bend these results, nice bagging alleviates somehow the accuracy losses, but
trimmed bagging performs best. We observe a significant relative improvement
in 5 out of 12 cases. Also important, trimmed bagging never causes a significant
decrease in the accuracy of SVMs.

Tables 4 and 5 present results for the linear base classifiers, i.e. linear dis-
criminant analysis and logistic regression. We see from Table 4 that there is
one case where bagging yields a significant increase of the error rate. Trimmed
bagging, on the other hand, is behaving the best among the bagging variants.
Although the improvements when using trimmed bagging for the linear classi-
fiers are modest, we observe that if there is a loss in error rate when applying
trimmed bagging, it is very small and not significant.

5. Conclusions

In this paper we propose a modification of the bagging algorithm, called trimmed
bagging. Although bagging has been found to be successful in increasing the
predictive performance of unstable classifiers (like decision trees), it may lead to
serious losses in accuracy when used with stable classifiers (like support vector
machines). Trimmed bagging works well for both decision trees and support
vector machines. Also for linear discriminant analysis and logistic regression
it never leads to a significant decrease in the predictive accuracy of the base
classifier in the examples we considered. The trimmed bagging method seems
to be applicable, without much caution, to any stable or unstable base classifier.
Trimmed bagging is based on the idea to restrict the sample of bootstrapped
classifiers to the best ones. In doing so, we hope that the aggregate classifier
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will outperform, or at least perform comparably to, the base classifier.
Trimmed bagging is related to nice bagging, but outperforms it in the ex-

amples we considered. One of the reasons for this is that we implemented nice
bagging exactly as in Skurichina and Duin (1998), using the apparent error rate
to rank the different component classifiers. When using the out-of-bag error
rate instead, one is less subject to overfitting, and the nice bagging procedure
performs almost as good as trimmed bagging.

We also stress the simplicity and general applicability of the trimmed bag-
ging procedure. For instance, Valentini and Dietterich (2003), introduced Lobag
(Low bias bagging), for aggregating Support Vector Machines. They identify
low-biased classifiers, and use these as component classifiers for bagging. This
approach combines the low-bias properties of SVMs with the low-variance prop-
erties of bagging. This method, however, is restricted to support vector ma-
chines only.

This paper focuses on trimmed bagging in the context of binary classifica-
tion. However, the bagging concept can be applied in many different settings.
For example, recent applications of bagging in functional data analysis are given
in Holländer and Schumacher (2006) and Nerini and Ghattas (2007). The idea
of trimmed bagging could easily be adapted to other situations. In a regression
context, for example, one could use the out-of-bag mean squared prediction error
(instead of the error rate) to rank the different bootstrapped regression func-
tions. Another field for future research is the application of the trimming idea
to more sophisticated classifier aggregation schemes, like those corresponding
to Boosting (e.g. Hastie, Tibshirani, and Friedman (2001)) or Random Forests
(Breiman (2001)). Finally, let us emphasize that no statistical theory for the
trimmed bagging concept has been developed in this paper, and that we only
have numerical evidence for its good performance. We do believe, however, that
the trimming bagging idea is simple, easy to put in practice, and may have
major benefits with respect to standard bagging.
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