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Abstract

We propose a mechanism which implements a unique solution to the bargaining

problem with two players in subgame-perfect equilibrium. Players start by making

claims and accept a compromise only if they cannot gain by pursuing their claim

in an ultimatum. The player o¤ering the lowest resistance to his opponent�s claim

can propose a compromise. The unique solution depends on the extent to which

claims can be revised. If no revisions are allowed, compatible claims implement

the Nash solution. If all revisions are allowed, maximal claims implement the

Kalai-Smorodinsky solution.
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1 Introduction

Negotiations in con�icts often share the following two features. First, players commonly

revise their initial claims during negotiations in order to �nd a compromise. Their

willingness or ability to make revisions depends on the issue and may di¤er among

players. Second, concessions may be induced by the threat of an ultimate take-it-

or-leave-it o¤er. However, negotiators discourage such uncompromising behavior by

adopting a �rm posture, which allows them to walk away from negotiations without

agreement when facing such an ultimatum.

These two features also appear in practical guides for negotiators, as in the defense

procurement and acquisition guidelines by the US Department of Defense:1 �Aim high�

but �Give yourself room to compromise�and �Be willing to walk away from or back to

negotiations�. They correspond to the two approaches of creating value and claiming

value described in the negotiation literature (Sebenius, 1992; Lewicki et al., 1994).

Whereas negotiation analysis tends to ignore the interaction in the negotiators�choices

between these two strategies, the game-theoretic bargaining literature has not yet tried

to incorporate these two features in its analysis.

We try to �ll this gap by analyzing the outcome of a stylized mechanism in subgame-

perfect equilibrium. At the same time, we contribute to the Nash program by showing

that the mechanism implements a class of solutions to the bargaining problem as in

Miyagawa (2002), rather than a unique solution as in Moulin (1984), Binmore et al.

(1986) and Howard (1992). The single distinguishing feature is the extent to which

initial claims can be revised. The mechanism nests the solution of Nash (1950) and the

solution of Kalai and Smorodinsky (1975) in the extreme cases excluding or admitting

all revisions.

The restrictions on revising claims can be justi�ed in many ways. Restrictions can

arise from costs of revising plans or frustration from unful�lled expectations raised by

the claims. The general feature of loss aversion appears as concession aversion in the

context of negotiations (Kahneman and Tversky, 1995). The extent to which claims

can be revised can also be explicitly speci�ed in the mandate given to the negotiator by

his principal. Alternatively, it may depend on the mediator who steers the negotiations.

We show that a player can never lose in equilibrium by becoming less restricted in the

revisions of his initial claim. Negotiators who can suppress their frustration or do not

fear to disappoint their principals obtain better agreements.

The mechanism has four stages. In the �rst stage, both players make claims de�n-

ing their demands. In the second stage, they bid resistance to the uncompromising

opponent, who pursues his demand in a take-it-or-leave-it o¤er. In the third stage, the

mediator gives leadership to the player with the lowest resistance. The leader proposes

a compromise within the set of feasible compromises which depends on the initial claims

1The Contract Pricing Reference Guides (Vol5, Ch6) of the DPAP of the US Department of Defense,
http://www.acq.osd.mil/dpap/contractpricing/vol5chap6.htm#6.10.
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but remains beyond his control in all other respects. In the �nal stage, the opponent

accepts or rejects the compromise. If he rejects, then he obtains his demand in an ul-

timatum unless he meets resistance to which the proposer is committed by the second

stage.

We characterize the unique outcome which is implemented in subgame-perfect equi-

librium in two steps. Take any pair of incompatible claims in a �rst step. The resis-

tance chosen by the negotiator in the second stage re�ects his determination to resist

a take-it-or-leave-it o¤er in the �nal stage. The follower will pursue his demand in an

ultimatum and reject any feasible compromise when the leader�s resistance falls short

of a minimum level. Above this minimum, the leader�s payo¤ in his best achievable

compromise is increasing in his resolve. As in the �rst-price sealed-bid auction, the me-

diator gives leadership to the negotiator showing the lowest resistance in order to avoid

impasses, leaving no acceptable compromises for two belligerent opponents. However,

the same outcome would be obtained in an unmediated con�ict if building up resistance

against an uncompromising opponent requires time. Assume that both players build

up their resistance at the same pace and that a player obtains leadership by stopping

this process, as in the Dutch auction. Stopping this process gives leadership for cer-

tain. Yet, early stopping reduces the leader�s payo¤ for lower resolve. Competition for

leadership induces a player to take the lead as soon he is con�dent that he can block a

take-it-or-leave-it o¤er by an acceptable compromise within his mandate. In this way,

the right to make an o¤er is endogenized.2

Schelling (1956) argues that negotiators, as a bargaining tactic, purposely create

uncertainty by reducing the scope of their own authority: union o¢ cials stir up ex-

citement and determination on the part of the membership and governments arouse

public opinion by statements that permit no concessions to be made. As a result, by

rejecting the leader�s compromise and pursuing his claim, the follower runs the risk

of an undesired outcome, such as a strike or a war. This risk is under the leader�s

control. It is increased by his time-consuming e¤ort of mobilizing the rank and �le or

of putting other deterrents in place. Since the player with insu¢ cient room to make

concessions needs too much time to deter a take-it-or-leave-it o¤er, he will lose the

contest for leadership. Similarly, in a modi�cation of the game with alternating o¤ers

of Rubinstein (1982) in which the responder can stop negotiations in an ultimatum,

the proposer needs more time to deter such ultimatum for a better deal. This moves

the outcome of the negotiations towards the one of the four-stage mechanism.

The competition for leadership, given a pair of claims, has two consequences. First,

if the proportional solution is feasible, then it is implemented. The proportional solu-

tion is the Pareto-e¢ cient outcome for which the players�concessions are proportional

to their claims. Therefore, both players need the same minimal resolve for imposing

2The desirability of endogenizing the right to make a bargaining o¤er is emphasized in Perry and
Reny (1993), Sakovics (1993) and Board and Zwiebel (2007).
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that solution as a leader. This minimum guarantees the payo¤ of the proportional

solution in equilibrium. Since leadership is given to the lowest bidder, both players bid

that minimum. Second, if the proportional solution is not feasible, then the revised de-

mands, in which concessions are maximal, are incompatible. The equilibrium outcome

is the revised demand of the strong player, whose claim de�nes the largest extended

Nash product, since the strong player needs lower resistance to impose his own revised

demand. The extended Nash product of a player�s claim is the product of his claim

and his opponent�s payo¤ in his revised demand. It is equal to the Nash product in

case demands and revised demands are equal.

These two observations determine equilibrium claims in a second step. If the pro-

portional solution is not feasible, the weak player may become strong and impose his

own revised demand for a reduced claim. If the revised demands remain incompatible,

this deviation is pro�table. We distinguish between two cases.

In the �rst case, the strategic advantage of being strong induces players to exhibit

restraint in the formulation of claims. This competition equalizes the extended Nash

products for the equilibrium claims. Either revised demands are equalized as well,

or they remain incompatible. If revised demands are equal, then the concessions are

proportional to the claims. The proportional solution for this pair of claims is imple-

mented. If claims cannot be revised, then equalized (revised) demands for equalized

(extended) Nash products de�ne the Nash solution, which maximizes the Nash product.

If revised demands remain incompatible, then some player�s extended Nash product is

maximized and the other player�s revised demand is implemented.

In the complementary case, some player is strong for his maximal claim in all pairs

de�ning incompatible revised demands. For this maximal claim, his opponent becomes

strong by reducing his claim only in pairs de�ning compatible revised demands. For

these pairs, the proportional solution is implemented, so that the opponent loses by

reducing his claim. Hence, no player has reason to exhibit restraint in the formulation

of his claim. Unless the strong player prefers his revised demand for his maximal claim,

the Kalai-Smorodinsky solution is implemented. In this Pareto-e¢ cient solution, both

players make maximal claims and make proportional concessions.

Harsanyi (1977) justi�ed the Nash solution in a two-stage demand game. Players

make demands in the �rst stage. Demands cannot be revised. The player with the

highest risk limit imposes his demand in the second stage. A player�s risk limit is

the minimum level of resistance of his opponent for which he accepts his opponent�s

demand rather than pursuing his own demand in a take-it-or-leave-it o¤er. A player�s

risk limit for the opponent�s revised demand is higher if his extended Nash product is

higher. Hence, the 4-stage mechanism justi�es the strategic advantage for the strong

player in a two stage-demand game, whether or not claims are revisable.

Moulin (1984) justi�ed the Kalai-Smorodinsky solution in an auction game in which

players are assumed to make maximal claims and revisions are unrestricted. Stages
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two to four of the 4-stage mechanism recast Moulin�s auction game, giving �rst-mover

advantage to the player bidding the lowest resistance. By augmenting the auction game

with a demand stage, the assumption that players make maximal claims is justi�ed if

the revision of claims is unrestricted.

The paper is organized as follows. The next section de�nes the bargaining problem

and the 4-stage mechanism. Section 3 introduces a simple mechanism to characterize

the equilibrium claims in the �rst stage of the 4-stage mechanism. Section 4 intro-

duces risk limits and discusses the equilibrium strategies in the later stages. Section 5

establishes the equivalence between the simple mechanism and the 4-stage mechanism

and shows how the 4-stage mechanism justi�es simplifying assumptions in Harsanyi�s

demand game and Moulin�s auction game. The robustness of the mechanism is tested

in section 6 and some examples of revision procedures are given in section 7. The �nal

section concludes.

2 The model

In this section, we de�ne the bargaining problem and a mechanism for selecting a

solution in the bargaining set.

2.1 The bargaining problem

The bargaining problem is de�ned as follows. Let N = f1; 2g be the set of players, 

be the set of jointly feasible outcomes, and vi(!) be the bounded utility of the outcome

! 2 
 for each player i 2 N . The players are male and the mediator is female. Player
�i is player i�s opponent. The players and the mediator are completely informed about
the players�private valuations of the outcomes.

Let �
 be the set of lotteries de�ned over 
. For x; y 2 �
 and for i 2 N; we write
x �i y if the lottery x is at least as desirable as y and x �i y for strict preference. These
preferences are represented by ui(x), player i�s von Neumann-Morgenstern expected

utility of the lottery x 2 �
. Let u(x) = (u1(x); u2(x)) : We write u(x) � u(y) if

ui(x) � ui(y) for all i 2 N . The outcome !0 2 
 obtains when no agreement can be
reached. The dictatorial outcome xi of player i 2 N is the Pareto-e¢ cient outcome in

argmaxx2X� ui(x). As a normalization, vi(!0) = ui(x0) = 0 in the degenerate lottery

x0 and ui(xi) = 1. Let 0 =(0; 0) and 1 = (1; 1). The set of individually rational

lotteries is

X� = fx 2 �
ju(x) � 0g:

The bargaining set is

S� = fu(x)jx 2 X�g � D = [0; 1]� [0; 1]:

Let '��i(ui) = sup fu�iju 2 S�g. Since S� is convex by construction, the function '��i
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is concave and decreasing on [ui(x�i); 1] for all i 2 N . The bargaining problem is

comprehensive if, in addition, '��i is constant on [0; ui(x�i)] for all i 2 N . The set of
Pareto-e¢ cient utility pairs in S� is

PO(S�) = fu 2 [u1(x2); 1]� [u2(x1); 1]ju�i = '��i(ui); i 2 Ng:

The outcome x 2 PO(X�) is Pareto e¢ cient if and only if u(x) 2 PO(S�). Also,
_S� = S� n PO(S�).

2.2 The mechanism

The mechanism �B for selecting a solution in S� is de�ned as follows. It has four stages.

The �rst stage is a demand stage, inspired by Harsanyi�s demand game. Both

players simultaneously formulate their claims p 2 D. The second stage is a bidding

stage, inspired by Moulin�s auction game. Both players simultaneously submit bids

q 2 D. The bid qi is the probability that player i stops negotiations in disagreement

in the fourth stage, if his compromise were rejected by his opponent. The third stage

is the compromising stage. The player with the lowest bid is selected by the mediator

as the leader L, who makes a compromise proposal. The fourth and �nal stage is the

approval stage. The follower F accepts the compromise or pursues his initial claim in

a take-it-or-leave-it o¤er.

The claims of the �rst stage serve a double purpose. First, player i�s claim pi

de�nes his demand zi(pi) which gives him his claim pi = ui(zi(pi)) and his opponent

'��i(pi) = u�i(zi(pi)) as payo¤s. The demand zF (pF ) would be pursued by F in a take-

it-or-leave-it o¤er in stage 4 if F rejects L�s compromise. In that case, L�s resistance

to F�s demand would result in disagreement with probability qL. Hence, the payo¤s of

rejection of a compromise proposal are given by (1� qL)u(zF (pF )).
Second, player i�s claim determines the set XB

i (pi) of compromises which player

i must consider when his opponent proposes in stage 3. The mapping zBi :[0; 1] !
PO(X�) de�nes player i�s revised demand. It is the maximal concession which can be

reconciled with an excessive claim (zi(pi) �i zBi (pi)). It is the maximal remuneration
which is consistent with a modest claim (zi(pi) �i zBi (pi)). We assume that

XB
i (pi) =

�
x 2 X�jui(zBi (pi)) � ui(x) � max

�
pi; ui(z

B
i (pi))

�	
:

This implies that PO(XB
i (pi)) = fzBi (pi)g for modest claims. We also assume that a

player can propose only those compromises as a leader which are also feasible for his

opponent as a leader.3 Hence, the set of feasible compromises is

XB
1 (p1) [XB

2 (p2):

3This assumption is relaxed in section 6.
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Restricting the opponent�s room for maneuver also con�nes the own freedom in �nding

a compromise. The correspondence linking the set of feasible compromises to each pair

of claims is selected by the mediator, depending on the idiosyncrasies of the players�

relationship, costs of revising claims and frustration, among others. It is beyond the

control of the players and the single distinguishing feature of each mechanism �B.

The player, who made the lower bid in the second stage and who will show lower

resistance to his uncompromising opponent in the �nal stage, is rewarded by the medi-

ator with �rst-mover advantage. In case of equal bids, leadership is given to the strong

player �(p), as de�ned in the next subsection. Hence,

L(q; p) =

(
i if qi < q�i;

�(p) if q1 = q2:

The rules of the mechanism �B can be summarized as follows:

� Stage 1: All i 2 N formulate claims p = a1 2 D.

� Stage 2: All i 2 N submit bids q = a2 2 D.

� Stage 3. L(q; p) proposes the compromise c = a3 2 XB
1 (p1) [XB

2 (p2).

� Stage 4: F 2 N n fL(q; p)g chooses a4 2 fY;Ng.

The payo¤s are

u(c) if a4 = Y;

(1� qL)u(zF (pF )) if a4 = N:

The mediator announces the set of feasible compromises for each claim in stage

0 and guarantees that players abide by the rules of the mechanism. She designates

the leader and veri�es whether his compromise proposal is feasible. She also imposes

disagreement with the probability chosen by L and limits F�s payo¤ to his claim if F

rejects L�s compromise proposal.

2.3 The revision procedures

We consider revision procedures in which the revised demand zBi can be related to a

convex subset SBi of D. If S
B
i is convex, then

'B�i(pi) = sup
�
p�ij p 2 SBi

	
is a concave function.

De�nition
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The convex subset SBi � D de�nes a comprehensive revision procedure for the bar-

gaining problem S�if and only if 'B�i(1) � '��i(1) and '
B
�i(pi) = 'B�i(0) > 0 whenever

'B�i(pi) � '��i(pi).

The revised demand zBi (pi) 2 PO(X�) of player i is the outcome for which

ui(z
B
i (pi)) = '�i

�
'B�i(pi)

�
for pi 2 [0; 1] :

Hence, pi and u�i(zBi (pi)) de�ne a point in PO(S
B
i ). The revised demand is insensitive

to the claim for modest demands.

We next give a de�nition of the strong player, who is the leader in stage 3 of �B in

case of equal bids.

De�nition
Player � is strong and his opponent � is weak if and only if p�u�(z

B
� (p�)) �

p�u�(z
B
� (p�)) for � = 1 and p�u�(z

B
� (p�)) > p�u�(z

B
� (p�)) for � = 2:

We call piu�i(zBi (pi)) the extended Nash product of player i�s claim. The extended

Nash product is equal to the Nash product ui(zi(pi))�u�i(zi(pi)) of the demand zi(pi)
if claims cannot be revised. Nash (1950) proposed cN 2 argmaxx2X� u1(x)u2(x) as a

solution to the bargaining problem.

The reduced bargaining problem S(p) for p =2 _S� is de�ned by

S(p) = fu 2 S�ju � pg :

Kalai and Smorodinsky (1975) proposed the Pareto e¢ cient outcome cKS(p) for which

u1(c
KS(p))=p1 = u2(c

KS(p))=p2 as a solution to the comprehensive bargaining problem

S(p) for p =2 _S�. In this solution, the concessions are proportional to the claims and

the payo¤s are increasing in the own claim. Moreover, the extended Nash products are

equal for p if the revised demands for p meet exactly in cKS(p).

3 Simple mechanisms

In this section, we de�ne a simple two-stage demand game �̂B. Players formulate claims

in the �rst stage as in �B and the strong player � imposes a compromise in X̂B
� (p) in

the second stage. We de�ne X̂B
� (p) such that the strong player�s preferred outcome

is equal to the equilibrium outcome in �B for each pair of claims. Hence, the simple

demand game highlights the trade-o¤ for each player i between increasing his claim

pi which increases his payo¤s in X̂B
i (p) and exhibiting restraint to become strong and

impose his preferred outcome in this set. We characterize the equilibrium claims and

outcome for the class of comprehensive revision procedures.

The simple mechanism �̂B for a comprehensive bargaining problem S� is de�ned as

follows:

� Stage a. All i 2 N formulate claims p 2 D.
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� Stage b. Player �(p) selects an outcome in X̂B
�(p)(p),

X̂B
i (p) =

( �
zBi (pi); c

KS(p)
	
if p =2 _S�;

fz1(p1); z2(p2)g if p 2 _S�:

Stage a of �̂B is equivalent to stage 1 of �B and stages 2 to 4 of �B are compressed

in stage b of �̂B. Notice that �̂B nests Harsanyi�s demand game, in which the player,

whose claim has the largest Nash product in stage a, proposes z1(p1) or z2(p2) in stage

b. In this simple demand game, claims cannot be revised, so that zBi (pi) = zi(pi). In

that case, zi(pi) �i cKS(p) �i z�i(p�i) for p =2 _S� and z1(p1) = z2(p2) = cKS(p) for

p 2 PO(S�). Hence, player i selects in stage b the same outcome in fz1(p1); z2(p2)g as
in X̂B

i (p).

The payo¤ of zBi is non-decreasing in the claim by comprehensiveness. The payo¤

of cKS is increasing in the own claim and decreasing in the opponent�s claim. It follows

that for p; p0 =2 _S� and p0i � pi,

min
x2X̂B

�i(p)
ui(x) � max

x2X̂B
i (p)

ui(x) � max
x2X̂B

i (p
0)
ui(x) (F)

By the �rst inequality, it is advantageous to be strong and to select the outcome for

the pair p of claims. The advantage is strict, unless both players prefer proportional

concessions and the identity of the strong player does not matter. By the second

inequality, the strong player will never be worse o¤ by increasing his claim if he remains

strong. The two inequalities together imply that the strong player cannot be better o¤

by reducing his claim.

The privilege of the strong player is given to the player whose claim de�nes the

largest extended Nash product. The extended Nash product is unimodal in pi if SBi is

comprehensive. It reaches its maximum in p̂i. If there exists a pair p of claims such that

the extended Nash products are equal for p � p̂, we write (�p1(p2); p2) = (p1; �p2(p1)).

The players�preferences on X̂B
i (p) for incompatible claims with equal extended Nash

products are as in Remark 1.

Remark 1. If S� is strictly comprehensive and SB1 and SB2 are comprehensive,

then for p = (p1; �p2(p1)) =2 _S� and for all i 2 N ,

zB�i(p�i) �i (�i) zBi (pi) if and only if cKS(p) �i (�i) zBi (pi):

Proof See appendix.

We characterize the solution cB of �̂B for a partition of the set of comprehensive

revision procedures into three subsets. In the �rst subset, some player is strong for his

maximal claim, whatever his opponent claims. In the second subset, some player is

strong for the maximal claim of his opponent, but only for claims de�ning compatible

revised demands. The last subset contains all other comprehensive revision procedures.
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For this partition, the following labelling convention guarantees that, for any claim of

player 2, player 1 is strong for claims belonging to a closed interval. In each of the

three subsets, the labelling is such that i = 1.

9i such that u�i(z
B
i (1)) � p̂�iui(z

B
�i(p̂�i)); (3.1)

or 9i such that ui(z
B
�i(1)) � ui(z

B
i (�pi(1))) and p̂i < �pi(1); (3.2)

or if (3.1) and (3.2) do not hold

9i such that p̂iu�i(zBi (p̂i)) � p̂�iui(z
B
�i(p̂�i)) and p̂i < 1.

In the �rst two elements of the partition, for which respectively (3.1) and (3.2)

hold, none of the players gains by showing restraint in the formulation of their claims.

This is obvious in case (3.1) holds. If a player is always strong for his maximal claim,

then he cannot gain by reducing his claim by the second inequality of (F). If (3.2)
holds, a player can become strong, if he is weak for the pair of maximal claims, but

only for claims for which both players prefer proportional concessions to their revised

demands by Remark 1. By the monotonicity of the proportional solution, this player

can even lose by showing restraint. His claim remains inconsequential as long as the

strong player prefers his revised demand for his maximal claim to the proportional

solution. In both cases, the unique equilibrium outcome cB is player �(1)�s preferred

outcome in fzB�(1)(1); c
KS(1)g as in the �rst part of Proposition 1.

The second part of the proposition characterizes the solution cB for revision proce-

dures in the third element of the partition for which (3.1) and (3.2) do not hold. In that

case, competition for the privilege enjoyed by the strong player induces restraint in the

formulation of claims by (F). Although the payo¤s in X̂B
i (p) are non-increasing in the

own claim pi, only the strong player can impose his preferred solution. This equalizes

the extended Nash products if the conditions of Lemma 1 hold. Let P be the set of

claims in stage a for which an equilibrium is reached in �̂B. This set of equilibrium

claims will never contain compatible claims de�ning unequal demands.

Lemma 1. In any subgame-perfect equilibrium of �̂B for which S� is strictly com-

prehensive and SB1 and SB2 are comprehensive, P \ _S� = ;. Assume, furthermore,
that (3.1) and (3.2) do not hold and that p 2 P . Then 1 > p = (p1; �p2(p1)) � p̂ or

p = (�p1(1); 1) � p̂.

Proof See appendix.

By Lemma 1, it su¢ ces to consider cases in which p1 = �p1(p2) for p =2 _S�. Equilibria

for which cKS(p) �� zB� (p�) are excluded, since the weak player gains by a larger
claim for which he remains weak and for which the strong player chooses proportional

concessions. By Remark 1, revised demands must be incompatible or equal. As long

as revised demands are incompatible and p� > p̂� , the weak player has a reduced claim

p0� < p� for which he is strong such that zB� (p
0
�) is preferred to z

B
� (�p�(p�)).
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In equilibrium, either p� = p̂� or revised demands are equal. In the �rst case,

revised demands are incompatible for the pair (�p�(p̂�); p̂�) =2 _S�. The weak player

cannot become strong by changing his claim. If the weak player claims p̂� , the strong

player cannot claim more than �p�(p̂�) without becoming weak. Nor can he gain by

claiming less than �p�(p̂�) by the second inequality of (F). Hence, cB = zB� (�p�(p̂�)) is

imposed in equilibrium. In the second case, the revised demands are compatible for

the pair (�p1(p̂2); p̂2) =2 _S�. A unique pair of claims p exists such that zB1 (p1) = zB2 (p2)

for p = (�p1(p2); p2). Since compatible and incompatible revised demands are excluded,

this is the unique pair of equilibrium claims, which implements cB = zB1 (p1) = zB2 (p2).

The identity of the leader does not matter since the revised demands zB1 (p1) and z
B
2 (p2)

and the proportional solution all coincide by Remark 1. If some player decreases his

claim, he cannot gain by the second inequality of (F). If some player increases his
claim, the same outcome will be imposed.

Proposition 1. Assume that cB is the outcome implemented in a subgame-perfect
equilibrium of �̂B for which S� is strictly comprehensive and SB1 and S

B
2 are compre-

hensive.

� If (3.1) or (3.2) hold, then cB is player �(1)�s preferred outcome in fzB�(1)(1); c
KS(1)g.

� If (3.1) and (3.2) do not hold, then p = (�p1(p2); p2) and

cB =

(
zB1 (p1) = zB2 (p2) = cKS(p)

zB1 (�p1(p̂2))

if zB1 (�p1(p̂2)) �1 zB2 (p̂2);
if zB1 (�p1(p̂2)) �1 zB2 (p̂2):

Proof See appendix.

If SBi = D for all i 2 N and S� is comprehensive, then u�i(zBi ) = 1. The extended

Nash products reach a maximum for the maximal claim. Hence player 1 is strong for

all claims of player 2 and (3.1) holds. Since player 1 prefers cKS(1) to his revised claim,

the Kalai-Smorodinsky solution cKS(1) of S� is implemented.

If SBi = S� for all i 2 N , then zB1 = z1 and zB1 (�p1(p̂2)) = zB2 (p̂2) for p̂2 = u2(c
N ):

At the same time, zB1 (p1) = zB2 (p2) = cKS(p) for p = u(cN ) 2 PO(S�). This is also the
case for zB1 6= z1; but for p =2 S�, in the following example.

Example
Let '�i (p�i) = [1�(1�

p
1�pp�i)2]2, 'B2 (p1) = [1�(1�

p
1� p1)2]2 and 'B1 (p2) =

('B2 )
�1(p2). Hence, S� = fuju1 2 [0; 1] ; u2 2 [0; '�2(u1)]g and SB1 = SB2 = SB =

fuju1 2 [0; 1] ; u2 2 [0; 'B2 (u1)]g, as in Figure 1. The thick and thin curve represent
respectively '�2(p1) and '

B
2 (p1) for p1 2 [0; 1]. The payo¤ pairs achieved in the set of

feasible compromises XB
1 [ XB

2 belong to the shaded area. The claims p = (:73; :81)

are incompatible and de�ne the same revised demand. If player 1 claims p1 = :73; then

u(zB1 (p)) = (:53; :59). If player 2 claims p = :81; then u(zB2 (p)) = (:53; :59). Also the
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Figure 1: Bargaining Set with Revision Procedures

extended Nash products pi'B�i(pi) are equal for i 2 N . Therefore, the revised demands
meet exactly after proportional concessions, cKS(p) = zB1 (p) = zB2 (p) by Remark 1.�

4 Risk limits and bidding strategies

In the simple demand game, the strong player was granted the privilege of dictating

his preferred solution in X̂B
� . In this section, we justify this assumption, solving for

the equilibrium strategies in �B from the second stage on. We �rst de�ne risk limits,

introduced by Zeuthen (1930) and used by Harsanyi (1977) to justify the Nash solution.

The risk limit de�nes F�s response in stage 4 to L�s compromise proposal in stage 3

and determines the compromise proposal as in a Stackelberg game. We also relate

the extended Nash products to the risk limits of the two players, before we derive

the bidding strategies in the second stage. We distinguish between subgames with

compatible claims and subgames with incompatible claims in case the demands of both

players are Pareto-e¢ cient and excessive. We also derive the bidding strategies for

Pareto-ine¢ cient or modest demands, which never pay in equilibrium.

4.1 Risk limits

In the approval stage, player F chooses between the compromise c and the compound

lottery d which has disagreement x0 and his demand zF as outcomes. The probability

of disagreement equals the leader�s resistance qL. If uF (zF ) > 0, the risk limit of player

F is de�ned as

rF (c) = max

�
uF (zF )� uF (c)
uF (zF )� uF (x0)

; 0

�
:

The risk limit measures the resolve of F in pursuing zF when c is proposed as a

compromise. Given the resistance qL 2 [0; 1] of L to the uncompromising F , the risk
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limit of F de�nes his response in the last stage as

a4F =

(
Y if qL � rF (c) and uF (c) > 0;

N otherwise.
(4.1)

That is, F will accept L�s proposal c if L�s resistance qL to F�s demand is at least

equal to F�s risk limit. A proposal becomes acceptable by reducing F�s resolve in an

improved compromise or by increasing the resistance to F�s demand. In particular, F

always accepts c = zF (because rF (zF ) = 0).

If c is rejected, the outcome d = qLx0 + (1 � qL)zF obtains. It is assumed that F

accepts c 2 XB in a tie. Hence, if uF (c) = uF (d), F accepts c. We add d to the set of

feasible compromises. For a pair p of claims, L can choose from

XB(p) = XB
1 (p1) [XB

2 (p2) [ fdg:

Hence, if there is no acceptable c in XB
1 (p1) [XB

2 (p2), then L proposes d so that

F always responds with Y (because rF (d) = qL). The response of F determines the

compromise proposed by L as in

a3L 2 arg max
x2XB

[uL(x)j a4F (zF ; x; qL) = Y]: (4.2)

Let � = (�1; �2) be a strategy pro�le for �B: The history hs�1 2 Hs�1 at stage
s = 1; :::; 4 is recursively de�ned by hs =

�
as; hs�1

�
and h0 = ;. The strategy of player

i at stage s in the subgame for the history hs�1 in � is denoted by a�i (h
s�1).

Lemma 2. Assume that � is a subgame-perfect equilibrium of �B and that SB1
and SB2 are comprehensive. Then for all h2 2 H2, c = a�L(h

2) = a3L satis�es condition

(4:2) and, for all ĉ 2 XB, a�F (ĉ; h
2) = a4F satis�es condition (4:1) : In particular, if the

pair of incompatible claims p de�nes Pareto-e¢ cient and excessive demands, then c is

always accepted. Moreover,

(i) if qL = 0; then c = zF ,

(ii) if qL 2
�
0; rF (z

B
F )
�
[
�
rF (z

B
L ); rF (zL)

�
, then rF (c) = qL and uL(c) is increas-

ing in qL on each of these intervals,

(iii) if rF (zBF ) � qL < rF (z
B
L ), then c = zBF

(iv) if rF (zL) � qL, then c = zL:

Proof See appendix.

We now recast the de�nition of the strong and the weak player in terms of risk

limits. The follower is indi¤erent between accepting zBL and the lottery d if player L

has submitted the bid

qBL (p) = rF (z
B
L (pL)) for L 2 N: (4.3)

13



Since p�i = u�i(z�i) and u�i(x0) = 0, qBi (p) = 1 � u�i(zBi )

p�i
. Hence, we �nd the

equivalence

piu�i(z
B
i (pi)) � p�iui(z

B
�i(p�i)) if and only if q

B
i (p) � qB�i(p):

The strong player needs less resistance to implement his revised demand. Since the

less militant player is rewarded with �rst-mover advantage, the strong player�s greater

risk limit gives him strategic advantage. Any player can make sure that the propor-

tional solution cKS(p) is implemented, if it is feasible. This result is driven by the

proportionality property of cKS(p). If he leads with resistance qL equal to

qKS(p) = ri(c
KS(p)) for i 2 N ,

the opponent accepts cKS(p), since

u(cKS(p)) = (1� qKS(p))p. (4.4)

Moreover, the opponent cannot gain by taking the lead. By choosing his resistance

below qKS(p), all proposals which he prefers to cKS(p) will be rejected. However, only

the strong player can guarantee that no proposals in XB
� are made or accepted when

XB
1 \XB

2 = ;. If the strong player bids q� = qB� (p) in stage 2, the weak player accepts

zB� as a follower. The weak player becomes leader only by bidding q� < qB� (p) � qB� (p).

In that case, his resistance to z� is too low for imposing his revised demand zB� .

4.2 Incompatible claims

We characterize the equilibrium bidding strategies for incompatible claims de�ning

Pareto-e¢ cient and excessive demands. They depend on whether the strong player

prefers cKS to his revised demand zB� by the following remark.

Remark 2. Assume that zi 2 PO(X�) for p =2 _S� and that SBi is comprehensive.

For all i 2 N ,

cKS(p) �i (�i)zBi (pi) if and only if qKS(p) > (�)qBi (p).

Proof See appendix.

Case 1. zB� (p�) �� cKS(p):
If the strong player strictly prefers cKS to zB� for incompatible claims, then c

KS 2
XB
� . Competition for leadership puts downward pressure on the bids if the leader were

to win with qL > qKS(p). The follower would lead the compromise stage by undercut-

ting his opponent with resistance exceeding qKS(p). He could propose an acceptable

compromise preferred to the proportional solution rather than being forced to accept a
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compromise that is worse than the proportional solution. Conversely, no player would

want to lead the compromise stage for qL < qKS(p), since the leader�s compromise must

be preferred to the proportional solution by the follower to be accepted. Pro�table de-

viations are excluded, only if both players bid resistance equal to qKS(p). Since both

players propose the proportional solution, the identity of the leader is unimportant.

Hence, cKS(p) is the unique outcome implemented in subgame-perfect equilibrium.

Lemma 3. Assume that � is a subgame-perfect equilibrium of �B for which SB1
and SB2 are comprehensive. For all h1 2 H1 with p =2 S� de�ning Pareto-e¢ cient and
excessive demands for which cKS(p) �� zB� (p�), cKS(p) is proposed by � and accepted
by � and

qi = a�i (h
1) = qKS(p) for all i 2 N: (4.5)

Proof See appendix.

Case 2. zB� (p�) �� cKS(p):
If, for p =2 S�, the strong player weakly prefers zB� to cKS , then cKS does not

belong to the feasible set of compromises XB, unless cKS = zB� by Remark 1. Hence,

the revised demands are equal or incompatible. In any case, the strong player can

guarantee himself his revised demand zB� by choosing resistance within [q
B
� ; q

B
� ]. Since

the resistance of � to z� exceeds qB� , � will accept ��s proposal z
B
� . Since the resistance

of � to z� as a leader falls short of qB� , � will reject any proposal of � in X
B
� . If claims

cannot be revised, z� = zB� will be proposed and accepted, independently of the weak

player�s bid. If claims can be revised, then by bidding within [r�(zB� ); q
B
� ], the best

proposal zB� for � in XB
� is accepted by � since ��s resistance to z� exceeds r�(zB� ).

Moreover, � is a leader only if q� = q� = qB� = r�(z
B
� ) and � will propose z

B
� since �

will reject any proposal of � in XB
� n fzB� g. Hence, zB� (p�) is the unique outcome in

subgame-perfect equilibrium.

Lemma 4. Assume that � is a subgame-perfect equilibrium of �B for which SB1
and SB2 are comprehensive. For all h1 2 H1 with p =2 S� de�ning Pareto-e¢ cient and
excessive demands for which zB� (p�) �� cKS(p), zB� (p�) is proposed and accepted with

q� = a�� (h
1) 2

h
qB� (p); q

B
� (p)

i
;

q� = a�� (h
1) 2

(
[0; 1] if zB� (p�) = z�(p�);

[r�(z
B
� (p�)); q

B
� (p)] if z

B
� (p�) 6= z�(p�):

(4.6)

Proof See appendix.

4.3 Compatible claims

For subgames with compatible claims de�ning Pareto-e¢ cient and excessive demands,

the opponent�s demand is the best outcome for each player in the set of feasible compro-
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mises. Moreover, the opponent always accepts his own demand as a follower, regardless

of the opposition of the leader. Hence, competition for �rst-mover advantage excludes

opposition of the leader to the opponent�s demand. Player 1 bids no resistance and

proposes player 2�s demand as a leader. Compatible claims only occur in equilibrium

if claims cannot be revised.

Lemma 5. Assume that � is a subgame-perfect equilibrium of �B in which SB1 and
SB2 are comprehensive and that p 2 S� de�nes Pareto-e¢ cient and excessive demands
for h1 2 H1. If p 2 PO(S�); then q = a�(h1) 2 D. If p 2 _S, then q1 = a�(h1) = 0

and q2 = a�(h1) 2 [0; 1]:
Proof See appendix.

4.4 Ine¢ cient or modest demands

Up to now, claims de�ning Pareto-ine¢ cient or modest demands were excluded. Low

claims may result in Pareto-ine¢ cient demands when S� is not strictly comprehensive.

They may also result in modest demands when S�nSBi 6= ;, even if S� is strictly
comprehensive. We complete the analysis of bidding strategies by characterizing the

outcomes implemented in equilibrium for these cases in Lemma 6.

Lemma 6. Assume that q = a�(h1) in a subgame-perfect equilibrium � for �B,

when SB1 and S
B
2 are comprehensive. First, assume that there exists k 2 N for h1 2 H

such that zk is Pareto ine¢ cient. If z� =2 PO(S�), then player ��s preferred outcome
in XB[fz�g is implemented. If z� 2 PO(S�), then z� is implemented. Second, assume
that zk is Pareto e¢ cient for all k 2 N and that there exists i 2 N for h1 2 H such

that zB�i ��i z�i. If zi �i z�i and cKS 2 XB
� , c

KS is implemented. If zi �i z�i and
cKS =2 XB

� , the preferred outcome of the weak player in fzB� ; z�g is implemented. If
z�i �i zi, z� is implemented.

Proof See appendix.

5 Implementing bargaining solutions

We characterized the strategies in subgame-perfect equilibrium following any pair of

initial claims in any mechanism �B for the bargaining problem S�. The pairs of jointly

feasible and individually rational payo¤s belong to a convex set and the revision pro-

cedure SBi for each player is comprehensive. It remains to determine the claims in the

�rst stage for the complete characterization of a subgame-perfect equilibrium for �B.

We show that they implement the same solution as the simple mechanism �̂B. These

�ndings are related to the bargaining theory of Moulin (1984) for SB1 = SB2 = D and

Harsanyi (1977) for SB1 = SB2 = S�.
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5.1 The solution to �B

It follows from Lemma 3 and Lemma 4 that in �B; as in �̂B; the preferred outcome

of the strong player in fzB� (p�); cKS(p)g is implemented in equilibrium for any pair of

incompatible claims, de�ning excessive and e¢ cient demands. Moreover, from Lemma

5, z�(p�) is implemented for any pair of compatible claims, de�ning excessive and ef-

�cient demands. The mechanisms �B and �̂B will have the same solution for strictly

comprehensive bargaining problems. Since no di¤erent solutions are implemented in

equilibrium by claims de�ning Pareto-ine¢ cient and modest demands in �B, the equi-

librium outcome still coincides with the equilibrium outcome for the mechanism �̂B, in

which only claims de�ning Pareto-e¢ cient and excessive demands are feasible. Hence,

modesty never pays.

Proposition 2. Assume that � is a subgame-perfect equilibrium for the mechanism
�B in which SB1 and SB2 are comprehensive. Then � implements the solution cB of

Proposition 1.

Proof See appendix.

5.2 Harsanyi�s augmented demand game

Corollary 1. Any subgame-perfect equilibrium � of �B for which SB1 and SB2 are

comprehensive and SB1 = SB2 = S� implements the Nash solution to S�.

Proof If SBi = S�, then zBi = zi. Since condition (3.1) and (3.2) do not hold,

by Lemma 1, p1 = �p1(p2) so that zB1 (p1) = zB2 (p2) = cKS(p) if and only if z1(p1) =

z(p2) = cN 2 argmaxx2X� u1(x)u2(x). By Proposition 2, cN is the unique outcome

implemented in subgame-perfect equilibrium.�
Harsanyi (1977) derived the Nash solution cN as an equilibrium for a demand game

in which, according to the conjecture of Zeuthen (1930), the player with the lowest

risk limit submits. By augmenting Harsanyi�s demand game, Zeuthen�s conjecture is

con�rmed.

The inability of the leader to revise his incompatible demand in the compromising

stage gives veto power to the strong player. By his militantness, the weak player accepts

his demand. By his moderation, he dissuades militantness of the weak player which

could compel him to accept the weak player�s demand. By keeping his resistance within

bounds, the strong player imposes his demand on the weak player and the weak player

cannot impose his demand on the strong player. A player is therefore vulnerable if he

has a lower risk limit, as in Zeuthen�s conjecture. By reducing his claim, each player

reduces the opponent�s resoluteness in withstanding his demand. In equilibrium, equal

demands imply zero risk limits and the own risk limit falls below the opponent�s risk

limit after any improvement in the own demand.
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5.3 Moulin�s augmented auction game

Corollary 2. Any subgame-perfect equilibrium � of �M for which SB1 = SB2 = D

implements the Kalai-Smorodinsky solution to S�.

Proof: If SBi = D, then zBi = x�i, so that p̂iu�i(x�i) = 1 and 1 = u2(x1) �
p̂iu�i(x�i). Since (3.1) holds and cKS(1) �1 zB1 (1) = x2, cKS(1) is implemented by

Proposition 2.4�
The stages 2 to 4 of �B recast the mechanism proposed by Moulin (1984). The non-

cooperative justi�cation of the Kalai-Smorodinsky solution relies on two features of the

negotiation procedure. First, the player showing lower resistance to an uncompromising

opponent is given �rst-mover advantage. Although moderation is rewarded with �rst-

mover advantage, militantness improves the own payo¤ in a compromise proposal, as

in Moulin�s model in which each player demands zi = xi for his maximal claim pi = 1.

Let

ci(qi) = arg max
x2X�

[ui(x)j r�i(x) � qi] .

Since u�i(x�i) = 1 and u�i(x0) = 0,

u�i(ci (qi)) = 1� r�i(ci(qi)) = 1� qi for u(ci (qi)) 2 PO(S�):

The winning bid, determining the probability of disagreement, is the lowest bid. If

player i wins the auction, then ui(ci(qi)) is his payo¤. If his opponent wins the auction,

then his payo¤ is 1 � q�i � 1 � qi. Hence, min [ui(ci(qi)); 1� qi] is a lower bound for
his payo¤. Militantness increases ui(ci(qi)), but decreases 1� qi. Moulin proposes

q�i 2 argmaxqi
min fui(ci(qi)); 1� qig for i 2 N

as bidding strategies. For each i 2 N ,

ui(ci(q
�
i )) = max

u2S�
[uiju�i � 1� q�i ] = 1� q�i = u�i(ci(q

�
i )):

Since the Pareto e¢ cient compromise ci(q�i ) gives the same payo¤ to each player in the

normalized bargaining problem, it is the Kalai-Smorodinsky solution to the bargaining

problem S�. Hence, both players submit the same bids for Moulin�s bidding strategies.

If player i were to increase his bid, then his opponent wins with q��i and proposes

c�i(q��i). If player i were to reduce his bid, then he wins and he has to reduce his

payo¤ in a compromise. Moulin�s bidding strategies constitute a Nash equilibrium in

the bidding of resistance when each player demands his dictatorial outcome. The same

argument holds for any pair of incompatible claims p =2 S� in the reduced bargaining

problem S(p).

The second feature of the negotiation procedure implementing the Kalai-Smorodinsky

4The trivial bargaining problem with S� = D is not excluded.
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solution isXB(p) = X(p). Since in the Kalai-Smorodinsky solution for S(p); ui(cKS(p))

is monotone in pi, nobody shows restraint in the formulation of claims. By augmenting

Moulin�s model with a demand stage, �B justi�es Moulin�s assumption that players

make maximal claims for SB1 = SB2 = D.

6 Robustness

In this section, we justify some of the simplifying features of the mechanism �B.

6.1 Unmediated leadership

First of all, we assumed that the mediator gives leadership to the player exhibiting the

lowest resistance. If the mediator were to give leadership to the highest bid, then she

would encourage militantness. Hence both players would make maximal claims and the

labelling would make a dictator of one of the players. The incentives to limit resistance

against a take-it-or-leave-it o¤er can be endogenized in an unmediated mechanism, if

we assume that building up resistance to be armed against a take-it-or-leave-it o¤er

needs time. Arms races are an example. Alternatively, if building up resistance takes

no time, then the time needed by the negotiator to convince his principal or himself that

concessions are necessary in an acceptable proposal may be assumed to be proportional

to the resistance. In the second stage of the mechanism, both players increase resistance

q, simultaneously and at the same pace, until one of the players stops and proposes

a compromise. The resistance built by the proposer at that point is the disagreement

probability to which he is committed when his opponent stops negotiations with a

take-it-or-leave-it o¤er. The equilibrium strategies when players bid for leadership or

when resistance is built until one player takes the lead are the same. The strategy

space and the allocation of leadership do not change. The equivalence between bidding

and building resistance is the same as the equivalence between a sealed-bid �rst-price

auction and a Dutch auction.

6.2 Unmediated revisions

We also assumed that XB
1 (p1) [ XB

2 (p2) is the set of feasible compromises. That is,

any opportunity for compromise available to one player is also made available to the

other player by the mediator. For incompatible claims in unmediated revisions in the

mechanism ~�B, each player i makes compromises within his own set XB
i (pi). This will

be the case when costs of revising plans or frustration restrict the revision of claims,

as in Example 1 and 2. If the proportional solution is unfeasible under this alternative

assumption, the strong player will always lead the negotiations. He will wait for making

a compromise until the weak player�s opposition is high enough to make an acceptable

compromise in XB
� (p�). The strong player�s strategic advantage is enhanced if claims
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de�ne unequal extended Nash products. If the proportional solution is feasible or

the extended Nash products are equal for the equilibrium claims in �B; the outcome

implemented in the equilibrium of ~�B remains unchanged.

In the equilibrium of ~�B for any pair of incompatible claims, de�ning Pareto-e¢ cient

and excessive demands, the strong player implements his preferred solution in ~XB
� (p) =

fyB� (p); cKS(p)g, where

u�(y
B
� (p)) = maxf(1� qB� (p))p� ; u�(z�(p�))g:

By Lemma 2 and Remark 2, qB� (p) � qB� (p) implies that y
B
� (p) �� zB� (p�). Moreover,

qKS(p) < qB� (p) implies that y
B
� (p) �� cKS(p) �� zB� (p�) and cKS(p) =2 XB

� (p�), and

qKS(p) � qB� (p) implies that c
KS(p) �i zBi (pi) and cKS(p) 2 XB

i (pi) for all i 2 N .

Hence, we distinguish between two cases. If qKS(p) � qB� (p), the proportional solution

is feasible for both players. It is implemented and the equilibrium strategies remain

the same. By stopping before qKS(p); the leader is worse o¤ than in the proportional

solution. By stopping after qKS(p); the leader would be better o¤. However, the

follower could gain by stopping and becoming leader at an earlier time. If qKS(p) <

qB� (p), the strong player waits until q
B
� (p) is reached and proposes y

B
� (p). By stopping

before qB� (p), the strong player is worse o¤ than in y
B
� (p). By stopping after q

B
� (p), he

gives the opportunity to the weak player to stop at qB� (p) and to impose z
B
� (p�). As

in �B, both players compete for the strategic advantage of the strong player. Hence,

the equilibrium claims are the same in ~�B and �B, unless condition (3.1) or (3.2) holds

and yB� (1) �� cKS(1). In that case, the equilibrium claim of the weak player �(1) is

unique, in contrast with �B. Since

u�(y
B
� (1; p�)) = p�u�(z

B
� (p�)) � p̂�u�(z

B
� (p̂�)),

the weak player�s payo¤ in yB� (1; p�) increases for a reduced claim p� � p̂� . However,

his payo¤ in cKS(p) decreases. Since the equilibrium outcome equals the strong player�s

preferred outcome in ~XB
� (1; p�), the unique equilibrium claim p�� solves

min
p�
max

�
u�(y

B
� (1; p�)); u�(c

KS(1; p�))
	
. (�)

Notice that if condition (3.1) holds, p�� = p̂� . Hence, yB� (1; p
�
� ) is implemented in

~�B

instead of the strong player�s preferred outcome in fzB1 (1); cKS(1)g in �B.
The equilibrium of a bargaining problem in which the feasible revisions are player

speci�c satis�es the following property. The more a negotiator is susceptible to feelings

of frustrations from unful�lled expectations, the less pro�cient he will be in negotiating.

The higher the negotiator�s fear of disappointing his principal, the less ambitious the

targets set by the principal and the less favorable the resulting agreement. In general,

a player�s payo¤ in the equilibrium outcome can never decrease if larger concessions
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become feasible for this player. If a player can make larger concessions for a given claim,

then his extended Nash product for that claim increases. He may become strong and

impose his own preferred solution for an even larger claim. Even if he remains weak,

he may be able to propose an acceptable compromise for a lower level of resistance,

forcing his opponent to take the lead at an earlier time.

Proposition 3. Assume that the mechanisms ~�X and ~�Y only di¤er in the com-

prehensive revision procedure of player i with

'X�i(pi) � 'Y�i(pi) for all pi 2 [0; 1],

then player i weakly prefers the unique equilibrium outcome cX to cY .

Proof See appendix.

6.3 Alternating o¤ers

The mechanism allows for take-it-or-leave-it o¤ers, possibly resulting in disagreement.

This contrasts with the alternating o¤er game proposed by Rubinstein (1982) in which

players respond to a compromise by accepting or proposing a new compromise. We

propose a modi�cation of the mechanism �B(") in line with Rubinstein�s alternating

o¤er game which shows that this contrast is essential. As in �B, both players start

making claims simultaneously. After the initial claims, players take turns in making

proposals until one player accepts his opponent�s proposal or pursues his initial claim

in a take-it-or-leave-it o¤er. At his turn, each player i builds up resistance qi before he

proposes a compromise in XB
i (pi). Building up resistance to block a take-it-or-leave-it

response of his opponent to his compromise requires time. The depreciation of the

payo¤s in this time interval is exp(�"qi).
For any pair of incompatible claims p("), there exists "0 > 0 such that for any

" < "0, a unique pair of bargaining solutions (ci("); c�i(")) and levels of resistance q(")

solves

ui(c�i(")) = exp(�"qi("))ui(ci("))

= (1� q�i("))pi(") for all i 2 N .

By the �rst equality, accepting his opponent�s o¤er is as good as waiting for the own

proposal. By the second equality, accepting his opponent�s o¤er is as good as stopping

with a take-it-or-leave-it o¤er. If ci(") 2 XB
i (p(")) for all i 2 N , then each player i

proposes ci(") at his turn and accepts any compromise c �i c�i(") at the opponent�s
turn in equilibrium for p(").

If impatience �i = qi(") were exogenously determined, as in Rubinstein�s alternating
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o¤er game, then, by the �rst equality,

lnui(c�i("))� lnui(ci("))
"

= �i for all i 2 N .

For "! 0, ci(") and c�i(") converge to c�. By the chain rule,

d ln'�i (u�i(c
�))

d lnu�i
=

�i
��i

:

This de�nes the generalized Nash bargaining solution, which is equal to the Nash

solution cN for equally impatient players. The former is preferred to the latter by the

less impatient player i for whom �i < ��i. However, by the second equality,

q�i(") = 1�
ui(ci("))

pi(")
= ri(c�i("))jpi(") for all i 2 N:

The impatience of the players is endogenized by the choice of resistance. Since player

i�s payo¤ is increasing in his claim pi, his claim will be maximal or such that ci(") is

constrained by his revised demand. If revisions are unrestricted, players make maximal

claims so that only take-it-or-leave-it o¤ers distinguish �B(") from Rubinstein�s alter-

nating o¤er game. In equilibrium, p(") = p� = 1 and ci(") and c�i(") converge to c�

which satis�es
d ln'�i (u�i(c

�))

d lnu�i
=
r�i(c�)

ri(c�)
:

With unrestricted revisions in �B, the risk limits and, therefore, the resistance levels

are equal in equilibrium, so that cB = cKS(1) is implemented. However, if cN and

cKS(1) do not coincide, d ln'
�
i (u�i(c

KS(1)))
d lnu�i

6= 1. Hence, cKS(1) cannot be a solution

to �B("). Neither can cN , since r�i(cN )
ri(cN )

6= 1. In cN , the player with the lower risk

limit is forced to take more time to build up the necessary resistance for obtaining cN .

However, his higher impatience inhibits him to obtain a compromise as good as cN in

equilibrium. The introduction of take-it-or-leave-it o¤ers in the alternating o¤er game

�B(") moves the equilibrium outcome from the Nash solution towards the equilibrium

outcome cB = cKS(1) in �B.5

7 Examples

We clarify the two Propositions by specifying  B1 (u) and  
B
2 (u). If  

B
i (u) = 0, then

pi = ui is player i�s claim and 'B�i(pi) = u�i is his opponent�s utility after his maximal

5The same result may hold for restricted revisions when c� = zB1 (p
�
1) = zB2 (p

�
2) for p(") ! p�

such that ci(") = zBi (pi(")) for all i 2 N . If some player i decreases his claim pi < pi("),
(ci("); c�i("))j(pi;p�i(")) remains feasible and reduces player i�s payo¤. If some player i increases his
claim pi > pi("), c�i(")j(pi;p�i(")) =2 X

B
�i(p�i(")). The increased gap between the revised demands

allows player �i to propose zB�i(p�i(")) and refuse any feasible compromise of his opponent in an
equilibrium. This excludes all pro�table deviations.
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concession given this claim. The indicator function � (ujD) equals 0 if u 2 D and 1
if u =2 D.

Example 1: Costs of Revising

 B1 (u) =  B2 (u) = � (u) + � (ujD)� �,

with � (u) =

(
inf fju� yjj y 2 S�g ;

or inf[� � 0ju 2 �S]� 1.

The distance of a pair of claims to the set S�; measured by the Euclidian distance or

the gauge, restricts the ability of revising these claims. Obtain cN for � = 0 and cKS

for all � above some threshold �̂. All Pareto e¢ cient outcomes in between these two

solutions can be obtained for some intermediate value of �:

In many applications, negotiators are agents defending interests of their principal.

Crawford (1982) refers to costs for negotiators who retreat on a position that they

have agreed to defend. Negotiators have limited authority and are accountable to their

principals. If revising targets must be justi�ed, revisions of claims will be limited.

Moreover, plans must be well documented before they are workable and the duties of

the parties must be correctly speci�ed before they can be written in a contract for

complex relationships. The costs of replanning become prohibitive for major revisions

after setting the target, which will be pursued in a take-it-or-leave-it o¤er.�

Example 2: Frustration

 Bi (u) = u�i � [�'��i(�i(ui))� + (1� �)��i
�
'��i (ui)

��
]
1
� + � (ujD) ,

with

8><>:
�i(ui) � ui an increasing convex function,

��i(u�i) � u�i an increasing concave function,

� � 1; 0 � � � 1:

If � = 1; the largest concession of player i for his claim pi is pi��i(pi) > 0. This yields
'B�i(pi) = '��i (�i(pi)) as an upper bound for the opponent�s revised payo¤. If � = 0;

'B�i(pi) = ��i
�
'��i (pi)

�
is the upper bound for the opponent�s revised payo¤. This

yields 'i
�
��i

�
'��i (pi)

��
< pi as a lower bound for player i�s payo¤. By combining

the two approaches, the upper bound to the opponent�s payo¤ is a weighted average

(� = 1) or converges to the minimum (� ! �1) of the payo¤s obtained in the two
cases. Since '��i (�i(pi)) and ��i

�
'��i (ui)

�
are decreasing concave functions of pi, the

increasing convex function  Bi de�nes a convex set S
B
i which contains S

�.

Example 2 can be used to model frustration or concession aversion (Kahneman

and Tversky, 1995). Assume that for ��i < 1; ���i < 1 and � ! �1, the opponent�s
payo¤ in the maximal concession of player pi is the minimum of the payo¤s obtained

for �i(ui) = ��iui and ��i(u�i) = ���i + u�i. Player i would be frustrated if his payo¤
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were below �i or his opponent�s payo¤ were above ��i after the revision of a claim.
6

Larger ��i and lower ���i reduce the set of feasible compromises for which player i avoids

frustrations. This results in a less favorable outcome for him by Proposition 3. Before

the own proportional loss and the opponent�s absolute gain is evaluated, one may

transform the normalized payo¤s into monetary payo¤s by the inverse utility function

v�1i . If each player i exhibits risk aversion on
�
0;m�

i = ��1i (1)
�
, then �i = �i�(1���i)��1i

and ��i = ��i�
�
���im�

�i + �
�1
�i � '��i

�
are respectively increasing convex and decreasing

concave function such that  Bi (u) is convex.�

Example 3: Modest Demands

 Bi (u) = u�i � ��i + � (ujD) .

Each player�s revised demand is independent of his initial claim. The payo¤ of player

i in a compromise in XB
i (pi) cannot be lower than '

�
i (��i). Claims below '�i (��i)

are modest. As an example, ��i could be the right of player �i in a claims problem
in which the sum of rights �1 and �2 of the two players exceed the estate (Thomson

2003). The mediator does not allow to make concessions in which the opponent obtains

more than his right. The player with the lowest minimal right is strong for his maximal

claim and for all claims of his opponent. He proposes the Kalai-Smorodinsky solution

in equilibrium, because his opponent�s claim exceeds 1/2.

The approaches in the three examples can be combined by taking the intersection

of the convex sets SBi obtained in each of these examples.�

Example 4: Social Welfare Functions

 B1 (u) =  B2 (u) = u1u
c
2 + u2u

c
1 �max

u2S�
[u1u

c
2 + u2u

c
1] :

Let ŜB be the half-space below the hyperplane
�
u 2 R2ju1uc2 + u2uc1 = maxu2S� [u1uc2 + u2uc1]

	
supporting S�. It follows that SB1 = SB2 = [0; 1] � [0; 1] \ ŜB. The revision process
speci�es a pair of claims pc 2 argmaxu2S� [u1uc2 + u2uc1] for which no revisions are fea-
sible, and a constant exchange rate uc�i=u

c
i belonging to the subdi¤erential �@'��i(pci )

for player i�s other claims. The exchange rate measures player i�s ability to revise an

increased claim. If uc = (uc1; u
c
2) 2 PO(S�), then for some � � 1;

�uc 2 arg max
u2ŜB

u1u2:

For the claims pi = uci (2��1) for i 2 N , the revised demands are equal (i.e. ui(zBi (pi)) =
uci for i 2 N) and both players have the same strength. Therefore, if maxi2N (uci (2��

6 Instead of requiring that L proposes c 2 CB(p) in the compromising stage, a su¢ ciently large
frustration cost can be introduced which penalizes L in the compromising stage if c =2 CBL (p) and F in
the acceptance stage if c =2 CBF (p) is accepted. The players will adjust their claims so that these costs
are always avoided.
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1) � 1, uc is implemented in equilibrium by Proposition 1. In particular, for the ex-

change rate u�i(cN )=ui(cN ) for player i, cN is implemented (� = 1), and, for the same

exchange rate for the two players (uc�i=u
c
i = 1), cKS (1) is implemented. Obtain in-

termediate solutions by varying the exchange rate between these bounds. If player i

prefers cN to cKS(1), his exchange rate has to be increased to move the equilibrium

outcome from cN to cKS(1). The higher the exchange rate, the lower his willingness

to make concessions for larger claims and the lower his �nal success in the negotiation

process. The advantage of making larger concessions for one player in Proposition 3

is con�rmed in this example. As long as the claims de�ned by uc(2�� 1) are feasible,
the mediator, who steers the negotiations by specifying the exchange rate in the revi-

sion procedure, can implement any bargaining solution that maximizes a quasi-concave

social welfare functions, as in Miyagawa (2002).

8 Conclusion

We analyzed a simple, intuitive mechanism that implements a unique solution to the

bargaining problem with two players. The mechanism is also a parsimonious model

for dealing with the Negotiators�Dilemma (Lax and Sebenius, 1986) in negotiation

analysis. A cooperative approach may be self-defeating if one of the negotiators takes

advantage of his opponent in a value-taking approach. We showed that, for completely

informed players, the value-creating approach prevails in equilibrium without giving

up the value-taking approach. In this way, this paper contributes to narrowing the

gap between the game-theoretic approach and the behavioral approach to negotiations

(Sebenius, 1992).

In line with Rubinstein, Safra and Thomson (1992), our approach o¤ers an intuitive

interpretation of a bargaining solution in terms of the primitives of the bargaining

problem, provided that preferences are expected utility preferences. Consider a player�s

appeal against an alternative by an objection in his advantage. The objection to the

alternative is sensible for some rejection rate, if the objection is feasible for the player�s

demand and if the rejection rate deters the opponent�s pursuit of the alternative in

an ultimatum. A player�s relevant alternative for a solution is his preferred demand

for which the solution remains a feasible compromise. A solution is robust if, for each

player, it is a sensible objection to his opponent�s relevant alternative for a rejection

rate not exceeding the one which makes the solution a sensible objection for the player�s

opponent to his own relevant alternative.

In this interpretation, we generate a whole family of solutions by varying the extent

to which demands in the value-claiming approach can be revised in the value-creating

approach. The Nash solution is the unique robust solution, if the relevant alternative is

the solution itself. The ability to revise claims was assumed to be beyond the control of

the negotiators in the course of negotiations. However, if a negotiator were to suppress
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his feelings of frustration or if he did not fear to disappoint his principal by making

large concessions, he would achieve better deals. In the evaluation of the performance

of a negotiator, results loom larger than circumstances under which his results were

achieved. Hence, it seems plausible that professional negotiators will strive for more

room to maneuver. Similarly, principals will learn by experience to give discretionary

power to their negotiators as to decide which concessions have to be made. If maximal

concessions yield compatible revised demands, restraint in the formulation of claims

will disappear. The predicted outcome in con�icts between experienced negotiators

would be the Kalai-Smorodinsky solution. As in its original presentation, the players

start by demanding their dictatorial outcomes, but are still able to �nd a compromise in

which the proportional concessions are the same. Of course, players must still be able

to reconcile their claims in compatible concessions after contemplating the prospect of

their dictatorial outcome.
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9 Appendix

9.1 Proofs of Propositions

Proof of Proposition 1

Assume that (3.1) or (3.2) holds. We show that 1 is a pair of equilibrium claims.

For any unilateral deviation from 1, the pair p of claims does not belong to _S�, hence

XB
�(p) = fzB�(p)(p�(p)); c

KS(p)g. By the labelling convention, player 1 is strong for any
pair of claims if (3.1) holds, player 2 is strong for the pair of maximal claims if (3.2)

holds. By (F), player �(1) cannot gain by reducing his claim. Gains for player �(1) are
excluded as well. If (3.1) holds, player 2 cannot become strong by reducing his claim.

If (3.2) holds, player 1 becomes strong for p1 2 [p̂1; �p1(1)). We consider two subcases.
In the �rst case, zB2 (2) �2 cKS(1). Player 2 proposes the same outcome zB2 (1) as long
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as p1 � max[p+1 (1); �p1(1)] with c
KS(1; p+1 (1)) = zB2 (1). If player 1 remains weak for

p1 < p+1 (1) or becomes strong for p1 < �p1(1), cKS(p1; 1) is proposed and player 1 is

worse o¤. In the second case, cKS(1) �2 zB2 (1). Either player 1 remains weak and player
2 proposes cKS(p1; 1) �1 cKS(1). Or he becomes strong for p1 2 [p̂1; �p1(1)). Then, by
the second inequality of (F), his payo¤ cannot exceed maxx2X̂B

1 (�p1(1);1)
u1(x). By (3.2)

and (3.3), this upper bound cannot exceed the payo¤ of cKS(�p1(1); 1) �1 cKS(1).
We conclude the proof of the proposition�s �rst part by showing that for (3.1)

or (3.2), player �(1)�s preferred outcome in fcKS(1); zB�(1)(1)g is implemented for any
p 2 P . If (3.1) holds and zB�(1)(1) = zB�(1)(0) ��(1) c

KS(1), there may be claims

below 1 for which player �(1) is strong whatever player �(1) claims and for which

zB�(1)(1) is implemented. If c
KS(1) ��(1) zB�(1)(1) or z

B
�(1)(1) ��(1) z

B
�(1)(0) and either

(3.1) or (3.2) holds, p�(1) = 1 is the unique equilibrium claim for �(1). Assume that

p�(1) < 1 in equilibrium. If (3.1) holds (�(1) = 1), player 1 is strong whatever player

2 is claiming. He gains by increasing his claim. If (3.2) holds (�(1) = 2) and p2 < 1,
p = (p1; �p2(p1)) � p̂ for p 2 P by the same argument as in Lemma 1. If not, either

p1 = 1 and player 2 remains or becomes strong by making the maximal claim p2 = 1,

which makes him strictly better o¤ or p1 < 1 and the strong player could remain

strong for a higher claim and strictly increase his payo¤. However for p2 < 1 and

p = (p1; �p2(p1)), zB2 (p2) �1 zB2 (�p2(1)) �1 zB1 (1) �1 zB1 (p1). By (3.3), cKS(p) �i zBi (pi)
is selected for compatible revised demands. However, this cannot be an equilibrium,

because both players can gain for some p0i > pi. Hence, if player 2 claims p2 = 1, from

above, his preferred outcome in fcKS(1); zB2 (1)g is implemented.
In order to prove the proposition�s second part, assume that (3.1) and (3.2) do

not hold. If p 2 P , then by Lemma 1, either p̂2 = 1 and p = (�p1(1); 1) � p̂ or

1 > p = (p1; �p2(p1)) � p̂. We �rst consider the existence of incompatible revised

demands in equilibrium. If zB1 (�p1(p2)) �1 zB2 (p2), then cKS(p) �i zBi (pi) for all i 2 N
by (3:3)) and player 1 selects zB1 (p1). We distinguish between two subcases. In the

�rst subcase, there exists p0 such that p02 < p2, p01 = �p1(p2) and zB2 (p
0
2) �2 zB1 (p01).

Since player 2 is strong for p0 and since zB2 (p
0
2) is feasible, player 2 gains by claiming

p02. In this subcase, p =2 P . In the complementary subcase, player 2 remains weak for
all his claims if player 1 claims �p1(p2): Hence p2 = p̂2. It follows that zB1 (�p1(p̂2)) is

implemented in equilibrium if zB2 (p̂2) �1 zB1 (�p1(p̂2)). By increasing his claim, player 1
becomes weak and player 2 selects zB2 (p̂2). His payo¤ cannot increase. By reducing his

claim, player 1 remains strong. By monotonicity of his payo¤s in X̂B
1 (p) for p =2 _S�,

he cannot gain if his reduced claim remains incompatible. Since he selects z2(p2) for a

reduced compatible claim and since z2(p2) �2 zB2 (p2) for p2 � p̂2, gains are excluded as

well. For any other claim, player 2 remains weak. Since the Pareto-e¢ cient outcomes

in X̂B
1 for incompatible claims do not give a lower payo¤ to player 1 and since player

2 cannot gain for a reduced compatible claim for the same reason as player 1, player

cannot gain for any other claim. It follows that zB1 (�p1(p̂2)) is the unique outcome if
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zB1 (�p1(p̂2)) �1 zB2 (p̂2).7

We next consider the case for which zB1 (�p1(p̂2)) �1 zB2 (p̂2). Since (3.2) does not
hold, zB�(1)(�p�(1)(1)) ��(1) z

B
�(1)(1). By comprehensiveness of S

B
1 and SB2 , there exists

p�2 such that z
B
1 (�p1(p

�
2)) = zB2 (p

�
2). By (3.3), z

B
2 (p

�
2) = cKS(�p1(p

�
2); p

�
2). For p2 < p�2,

zB1 (�p1(p2)) �1 zB2 (p2), so that by (3.3), cKS(p) �i zBi (pi) for all i 2 N . Player 1 is

strong and selects cKS(p). Player 2 claims p02 > p2 such that cKS(p1; p02) = cKS(p) and

gains. For p2 2 (p�2; �p2(1)], zB1 (�p1(p2)) �1 zB2 (p2), so that by (3.3), cKS(p) �i zBi (pi) for
all i 2 N . Player 1 is strong and selects zB1 (p1). Player 2 becomes strong and gains by
claiming p02 < p2 with zB2 (p

0
2) �2 cKS(p) �2 zB1 (p1). Hence, (�p1(p�2); p�2) is the unique

equilibrium pair. By increasing his claim, a player becomes or remains weak. Since

his opponent�s payo¤ in cKS is reduced, his opponent chooses his unchanged revised

demand. By decreasing his claim, a player becomes or remains strong. His payo¤ in

cKS is reduced and his payo¤ in his revised demand is not increased.�

Proof of Proposition 2

In case of incompatible demands, de�ning Pareto-e¢ cient and excessive demands,

cKS(p) is proposed and accepted if zB� (p�) �� cKS(p) by Lemma 3 and zB� (p�) is

proposed and accepted if zB� (p�) �� cKS(p) by Lemma 4. That is, the strong player
implements his preferred outcome in fzB� (p�); cKS(p)g. This set coincides with X̂B

�(p)(p)

for p =2 _S� for �̂B. In case of compatible claims, de�ning Pareto-e¢ cient and excessive

demands, the strong player implements his preferred outcome in fz�(p�); z�(p�)g in
equilibrium by Lemma 5. This set coincides with X̂B

�(p)(p) for p 2 _S� for �̂B. The

choice set for p in any subgame h1 2 H of �B and �̂B coincide, except for Pareto-

ine¢ cient and modest demands. However, as long as p < 1 and some claim de�nes a

Pareto-ine¢ cient or modest demand, at least one player can gain by increasing his claim

from Lemma 6. Maximal claims de�ne Pareto-e¢ cient and excessive demands. Hence,

Pareto-ine¢ cient or modest demands can occur in equilibrium, only if the player, whose

claim p� < 1 de�nes a Pareto-ine¢ cient or modest demand, can never become stronger

than the opponent whose claim is maximal, so that the claim p� is inconsequential for

the equilibrium outcome. That is, if (3.1) holds and zB� (1) �� cKS(1; p�). In this case,
zB� (1) is the unique outcome implemented in equilibrium in �B, which coincides with

the strong player�s preferred outcome in X̂B
�(1;p�)

(1; p�).

This proves that for any equilibrium claim p = a�(h0) in �B, the equilibrium

outcome coincides with the strong player�s preferred outcome in X̂B
�(p)(p). Hence, �

implements the solution cB of Proposition 1.�

Proof of Proposition 3

Assume that pY is the pair of equilibrium claims in ~�Y . By assumption, (1)

p̂Xi ui(z
X
i (p̂

X
i )) � p̂Yi ui(z

Y
i (p̂

Y
i )) and (2) ~p

X
i u�i(z

X
i (~p

X
i )) = pYi u�i(z

Y
i (p

Y
i )) for ~p

X
i �

7Notice that zB1 (�p1(1)) �1 zB2 (1) for p̂2 = 1 when (3.1) and (3.2) do not hold. Hence, P =
f(�p1(1); 1)g:
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max[p̂Xi ; p
Y
i ] or u�i(z

X
i (1)) > pYi u�i(z

B
i (p

Y
i )). We start by considering two cases in

which cX = cY for any change in the revision procedure. In the �rst case, cY =

cKS(1) 2 XY
1 \XY

2 . Since X
Y
1 \XY

2 � XX
1 \XX

2 , c
Y remains feasible and is imple-

mented in ~�X . In the second case, cY = yYi (1; p
�Y
�i ). Since y

X
i (1; p

�Y
�i ) = yYi (1; p

�Y
�i ),

cX = cY . Notice that in this case, player i�s payo¤ would be reduced in �X . We

next consider two cases for which cX �i cY . In the �rst case, cY = yY�i(1; p
�Y
i ), so

that, by (�), yX�i(1; p�Xi ) �i yY�i(1; p
�Y
i ) = cY . Either cX = yX�i(1; p

�X
i ) or player �i

has to reduce his claim pX�i < 1 in equilibrium. In both situations, cX �i cY . In the
second case, the extended Nash products for the players� claims are equal for pY in
~�Y and player i may become strong for pY in ~�X . Either, player i chooses cKS(1) or

yBi (1; p
�X
�i ) weakly preferred to c

Y . Or the extended Nash products in ~�X are equal for

the equilibrium pair pX with pX�i � pY�i. Then, c
X �i cY by (1) if cX = zX�i(p

X
�i) and

by (2) if cX = zXi (p
X
i ).�

9.2 Proofs of Lemmas

Proof of Lemma 1

Since S� is strictly comprehensive, cKS(p) is well-de�ned for p =2 _S�. Also z�i(p�i) �i
zi(pi) for p 2 _S� and for all i 2 N . It follows that P \ _S� = ;. Assume, to the contrary,
that p 2 _S� is an equilibrium. There exists p0 2 _S�; p0� = p� and p0� > p� , such that

z�(p
0
�) �� z�(p�): If �(p) remains strong for p0, he chooses z�(p0�). If �(p) becomes strong

for p0, he chooses z�(p�): Hence, � has a pro�table deviation, a contradiction. In the

remainder of the proof p =2 _S�.

If (3.1) and (3.2) do not hold, by the labelling convention, p̂1 < 1. Either p̂2 = 1

or p̂ < 1. If p̂2 = 1, then �(1) = 1 by the labelling. Moreover, p = (�p1(1); 1) 2 P

and zB1 (p1) is implemented in equilibrium. By (F), player 1 cannot gain by reducing
his claim, which remains incompatible for p2 = 1. Since player 1 becomes weak by

increasing his claim to p01 and since z
B
2 (1) �2 cKS(p) �2 cKS(p01; 1), his payo¤ is

reduced when zB2 (1) is selected. Since player 2 remains weak for all his claims and for

�p1(1), he cannot gain. It remains to proof the lemma for p̂ < 1.

By comprehensiveness of SBi , z
B
i (pi) �i zBi (p̂i) for any pi 2 (p̂i; 1] and for all

i 2 N when p̂ < 1. It follows that X̂i(p) satis�es strict monotonicity for pi 2 [p̂i; 1].
That is, the payo¤ of player i in each outcome of X̂i(p) is strictly increasing in pi

on [p̂i; 1]. Moreover, if p�(p) 2 [0; p̂�(p)), then there exists p0�(p) 2 (p̂�(p); 1], for which
�(p) remains strong and which strictly dominates p�(p). Hence, if p�(p) < 1 for p 2 P ,
then p1u2(zB1 (p1)) = p2u1(z

B
2 (p2)). Assume, to the contrary, that for � = �(p) and

� = �(p); p�u�(z
B
� (p�)) > p�u�(z

B
� (p�)) for p 2 P . Since player � remains strong for

some p0� 2 (p̂�; 1], he has a pro�table deviation by strict monotonicity of X̂�(p) for

p� 2 [p̂�; 1] or because p0� strictly dominates p� 2 [0; p̂�). Hence p =2 P , a contradiction.
But then, pi � p̂i for p 2 P and for all i 2 N . Assume, to the contrary, that some player
claims pi < p̂i for p 2 P . This player remains or becomes strong for some p0i 2 (p̂i; 1],
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since piu�i(zBi (pi)) = p�iu(zB�i(p�i)) and p̂ < 1. By strict monotonicity of X̂i(p) for

p0i 2 (p̂i; 1], the second weak inequality in (F) is strict. Hence, (F) implies a pro�table
deviation for player i and p =2 P , a contradiction. It follows that p = (p1; �p2(p1)) � p̂

for p 2 P .
The proof is completed by showing that p�(p) < 1 for p 2 P when (3.1) and (3.2)

do not hold. Assume, to the contrary, that p�(p) = 1 for p 2 P . It must be that zB�(p)(1)
is selected by �(p). If p�(p) = 1, then �(p) = �(1) and zB�(1)(1) ��(1) c

KS(1), since (3.2)

does not hold: If p�(p) < 1, then �(p) gains by increasing his claim if zB�(p)(p�(p)) were

not selected by �(p). Since pro�table deviations are excluded for p 2 P , zB�(p)(1) is

selected by �(p). Either �(p) = �(1) or �(p) = �(1). In the former case, there exists

p0�(1) < �p�(1)(1) for which �(1) becomes strong and gains by imposing zB�(1)(p
0
�(1)(1)):

In the latter case, �(1) becomes strong and selects zB�(1)(1) for the pair 1 of claims.

In both cases �(p) has a pro�table deviation, which is excluded for p 2 P . Therefore,
if (3.1) and (3.2) do not hold, either p�(p) = 1 and p = (�p1(1); 1) � p̂ for p 2 P or

p�(p) < 1 and 1 > p = (p1; �p2(p1)) � p̂ for p 2 P .�

Proof of Lemma 2

The choices of L after the history h2 and of F after the history h3 = (ĉ; h2) in � are

determined by respectively (4.1) and (4.2) as in a Stackelberg two-stage game. Since

XB is non-empty, closed and bounded, the maxima in condition (4.2) are well de�ned.

For all i 2 N; the unrestricted compromise

ci(qi) = arg max
x2X�

[ui(x)j r�i(x) � qi]

is a uniquely de�ned Pareto e¢ cient outcome inX�: Hence, ui(ci(:)) and �u�i(ci(:)) are
strictly increasing. It follows that F accepts c if and only if c 2 XB and c �F cL(qL).
Therefore, L proposes c 2 PO(XB) such that for all c(q0L) �L c, either q0L < qL or

c(q0L) =2 XB.

By comprehensiveness of SB1 and S
B
2 ; z

B
1 and z

B
2 belong to PO(X

�). In particular, if

zF �F zL and zF 2 PO(X�) is an excessive demand, the outcomes cL(qL) in XB
F and in

XB
L are obtained by varying qL on, respectively,

�
rF (zF ); rF (z

B
F )
�
and [rF (zBL ); rF (zL)].

For any qL in these intervals, c = cL(qL) will be proposed by L and accepted by F:

The interior of these intervals is non-empty if, respectively, zF �F zBF or zL �L zBL .

Notice that rF (zF ) = 0. These imply (i) and (ii). If XB
1 \ XB

2 = ;, then zBL will be

rejected by F and zBF is proposed and accepted for rF (z
B
F ) < qL < rF (z

B
L ). Finally, for

qL � rF (zL), the best outcome zL for L in XB is proposed and accepted. These imply

(iii) and (iv).�

Proof of Lemma 3

Since z� �� cKS for p =2 S�, cKS �� zB� implies that cKS belongs to the interior

of XB
� n fzB� g. From Remark 1, it also follows that qKS > qB� = min[qB1 ; q

B
2 ]. Hence,
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there exists an open neighborhood Nq around qKS in
h
qB� ; r�(z�)

i
such that, by (ii) in

Lemma 2, uL(c(qL)) (and �uF (c(qL))) are strictly increasing in qL on Nq. Any player
can guarantee himself the payo¤ of the proportional solution cKS by bidding qKS .

From Lemma 2, cKS is proposed and accepted in the subgame with qL = qKS and

uF (c(qL)) > uF (c
KS) with qL < qKS . Since cKS 2 PO(X�), no other compromise

c 2 X� nfcKSg exists such that ui(c) � ui(c
KS) for all i 2 N . Hence, cKS is the unique

outcome implemented in equilibrium. If qL < qKS or qF > qKS , L strictly gains by

increasing his bid. Hence, qL = qF = qKS are the unique equilibrium bids.

�

Proof of Lemma 4

For p =2 S�; z� �� zB� �� cKS implies that qKS � qB� � qB� by Lemma 2 and that

r�(z
B
� (p�)) � qKS � qB� (p). The bidding strategies in (4) are well de�ned. We show

that zB� (p�) is proposed and accepted for these bidding strategies. If � is leader, then

q� < q� � qB� and � rejects c 2 XB
� : By Lemma 2, � proposes in X

B
� . Since q� � r�(z

B
� ),

the best outcome zB� in XB
� for � is accepted by �. If � is leader, then q� � q� � qB�

implies that zB� is accepted by �. If zB� = z�, then zB� is the best outcome for �. If

zB� (p�) 6= z�(p�); then q� � qB� implies that q� = qB� and that c 2 XB
� n fzB� g would be

rejected by � because r�(c) > qB� (p).

We show that for all other bids, some player has a pro�table deviation. If q� > qB�

and if � were leader for a bid q� 2
h
qB� ; q�

h
, then � would accept zB� . If q� < qB� , then

� would reject any proposal in XB
� (p) and � would propose in X

B
� (p) by Lemma 2.

In both cases, � would gain by a bid in [qB� ; q
B
� ]. Since there are no deviations for �

when zB� (p�) = z�(p�), it su¢ ces to consider zB� (p�) 6= z�(p�). If q� > qB� , � is leader

for q� = q� > qB� and � accepts compromises in XB
� (p) n fzB� (p�)g giving him a lower

payo¤ than zB� (p�). If q� < r�(z
B
� (p�)), then � is leader and the compromise accepted

by � in XB
� (p) n fzB� (p�)g gives him a lower payo¤ than zB� (p�). In both cases, � would

gain by a bid in [r�(zB� (p�)); q
B
� ].�

Proof of Lemma 5

By assumption, zi 2 PO(X�) and zi 2 XB and for all i 2 N . If qL = 0; then c = zF

by (i) of Lemma 2. If z1 = z2, then rF (zL) = 0. By (iv) of Lemma 2, it is implied

that c = z1 = z2. If p 2 _S and q1 > q2 � 0, then z1 �2 z2 and player 2 is leader by
the bidding rules. Since r1(z1; z1) = 0; c = z1 by (ii) of Lemma 2. However, player 1 is

leader for a zero bid and c = z2 by (i) of Lemma 2. Hence, q1 > q2 � 0 cannot occur
in equilibrium. If p 2 _S and q2 > q1 � 0, then any change of player 2�s bid does not
change the outcome. This proves Lemma 5.�

Proof of Lemma 6

Since zBi 2 PO(X�) for comprehensive revision procedures, claims de�ning ine¢ -

cient demands are modest. Hence, by assumption, PO(XB
i ) = fzBi g for some i 2 N .
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If player L is leader for qL = 0 and if zF 2 PO(S�), then player L makes sure that zF
is implemented. There exists a proposal c 2 XB for player L which is worse than zF
for player F . Since c is unacceptable for player F , c is rejected. For qL = 0; d = zF is

implemented. Player L cannot achieve a better outcome in XB than zF . If player L

prefers x to zF in XB, then player F prefers zF to x and rejects x, so that d = zF is

always implemented for qL = 0:

If zk =2 PO(S�) for some k 2 N , then rk(zk; x) = 0 for all x 2 PO(XB). Therefore,

if zF =2 PO(S�), player L who leads with qL = 0 can implement all x 2 PO(XB)[fzF g.
We consider two cases. If z� =2 PO(S�) in the �rst case, player ��s preferred outcome
in PO(XB)[fz�g is implemented for any pair of equilibrium bids q. Bidding q� = 0 is

weakly dominant for player �, since it allows him to achieve his best outcome. Player

��s bid is inconsequential, so no player has a pro�table deviation. If z� 2 PO(S�) in

the second case, it follows that player � is always leader for q� = 0 and that z� is always

implemented. Player � bids q� = 0 if z� �� zB� , q� 2 [0; r�(zB� )) if zB� �� z� �� zB�
and q� 2 [0; 1] otherwise. For q� > 0, player � would have a pro�table deviation, by

becoming leader for q� = 0 and proposing his preferred outcome in PO(XB) [ fz�g.
This proves the �rst part of the lemma if at least one of the demands is ine¢ cient.

For the second part of the lemma, assume that both demands are e¢ cient, but that

PO(XB
�i) = fzB�ig for some i 2 N . We consider two cases. In the �rst case, the demands

are incompatible so that cKS is well-de�ned. If cKS 2 XB
i , then by the argument of

Lemma 3, (4.5) de�nes q and cKS 2 XB
i is proposed and accepted. If c

KS =2 XB
i , then

by bidding in [qB� ; q
B
� ], as de�ned in (4.6), the strong player can propose z

B
� as a leader

and discourages the weak player of proposing zB� . If z� �� zB� , then by the argument
of Lemma 4, the weak player bids q� 2 [0; 1] and zB� is implemented. If z� �� zB� ,
then PO(XB

� ) = fzB� g. The weak player makes sure that z� is implemented by bidding
q� = 0. If player � were to make a positive bid or if q� =2

h
qB� ; q

B
�

i
, then some player

would have a pro�table deviation. If initial claims are compatible in the second case,

the strong player makes sure that z� is implemented. To avoid that the strong player

gains by increasing opposition, q� = 0 if zB� �� z� and q� 2 [0; r�(zB� )) if zB� �� z� .
For q� > 0, player � would have a pro�table deviation, by becoming leader for q� = 0

and by proposing z�. This proves the second part of the lemma if at least one of the

Pareto-e¢ cient demands is modest.�

9.3 Proofs of Remarks

Proof of Remark 1

If p = (p1; �p2(p1)), then p1=p2 = u1(z
B
2 (p2))=u2(z

B
1 (p1)). By de�nition, p1=p2 =

u1(c
KS(p))=u2(c

KS(p)). It follows that ui(zB�i(p�i)) � (<)ui(zBi (pi)) if and only if

ui(z
B
i (pi))=ui(c

KS(p)) � (>)u�i(zBi (pi))=u�i(cKS(p)):
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From the last inequality, zBi (pi) �i (�i)cKS(p) implies zBi (pi) ��i (��i)cKS(p), which
must be excluded since cKS(p) 2 PO(X�). Hence, zB�i(p�i) �i (�i)zBi (pi) if and only
if cKS(p) �i (�i)zBi (pi).�

Proof of Remark 2

By comprehensiveness of SBi , z
B
i 2 PO(X�). Since the proportional solution and

the revised demands are e¢ cient, it follows immediately that r�i(cKS) > (�)r�i(zBi )
if and only if cKS ��i (��i)zBi . Since qB� � qB� , the proportional solution c

KS belongs

to the feasible set of compromises if and only if it is preferred by the strong player to

his revised demand zB� .�
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