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English preface

This thesis focuses on the design of conjoint experiments for measuring the

trade-offs people make in choosing between alternative products and ser-

vice providers. Marketing consultants and researchers frequently use these

experiments to predict people’s choices for prospective goods. In this way,

they assist companies in launching innovative products or services. The en-

tire process from collecting consumer preference data to analyzing them and

simulating the marketplace is generally known as conjoint analysis.

Conjoint analysis assumes that a product or service can be decomposed into

its component attributes and levels. For example, Table 1 contains three pro-

files or alternatives of a car that are described by levels for five attributes.

By presenting a series of profiles to a number of test persons and finding

out which are most preferred, conjoint analysis allows the determination of

the relative importance of each attribute and level in the purchasing deci-

sion. The relative values or utilities respondents derive from the attribute

levels are also called part-worths. Conjoint analysis is based on the fact that

the part-worths can better be measured when the attributes are considered

jointly rather than in isolation. This is because the evaluation task is easier

if the respondent is presented with combinations of attribute levels than with

individual attributes and levels.

Respondents usually evaluate profiles in one of the following two ways. They

either choose their preferred profile from a set of profiles, also called a choice

set, and they repeat this task for several other choice sets presented to them.

Or, they rate a number of profiles on a scale, for example a 10-point scale.

The first type of conjoint experiment is a choice-based conjoint experiment,

also referred to as a conjoint choice or discrete choice experiment, or more

vii
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Table 1: Three example profiles of a car.

Attribute Profile 1 Profile 2 Profile 3
Price 18, 000 EUR 17, 000 EUR 14, 000 EUR

Transmission manual automatic manual
Airbags front and dual side front front and dual side

Door lock auto lock function
key-less entry

key
remote control

Audio system radio and CD player
radio and CD player

radio
and surround sound

succinctly, a choice experiment. The second type of conjoint experiment is a

rating-based conjoint experiment. These experiments have traditionally been

used in conjoint analysis from its introduction in the seventies. Later on, in

the eighties, conjoint choice experiments originated. They have become very

popular because they are more realistic in imitating real shopping behavior

which makes the task less difficult. However, they require more respondents

since making choices is less informative than providing ratings.

In this thesis we deal with the question of how to properly design choice-based

and rating-based conjoint experiments. This means that we search for profiles

that, when administered to respondents, result in maximum information on

the part-worths. To find the best possible design in each case, we make use of

design criteria or optimality criteria resulting in optimal designs. The thesis is

split into two parts each involving the design of one type of experiment. The

first part consists of three chapters that concern the design of choice-based

conjoint experiments. In Chapter 1 we discuss and compare four optimality

criteria to construct choice designs. In Chapter 2 we develop an efficient

algorithm to generate the designs. Chapter 3 concludes the part on choice

designs providing practical recommendations on their use. The second part

has two chapters focusing on the design of rating-based conjoint experiments.

The first chapter, Chapter 4, describes an algorithmic construction of these

designs, whereas the second chapter, Chapter 5, provides a manual building

strategy addressing two-level designs for a large number of attributes. Each

chapter starts with an introduction and ends with a conclusion in which

avenues for future research are considered.



Dutch preface

Optimale ontwerpen voor het meten van

consumentenvoorkeuren

Deze thesis handelt over het ontwerp van conjoint experimenten die gebruikt

worden om inzicht te verwerven in de afwegingen van consumenten bij het

kiezen van producten en diensten. Marketing consultants en onderzoekers

voeren deze experimenten vaak uit om de voorkeuren voor toekomstige goe-

deren te voorspellen. Op deze manier helpen ze bedrijven bij het lanceren

van innovatieve producten of diensten. Het complete proces vanaf het verza-

melen van gegevens met consumentenvoorkeuren tot het analyseren van de

gegevens en het nabootsen van de markt staat bekend als conjoint analyse.

Conjoint analyse gaat uit van de veronderstelling dat een product of dienst

kan ontbonden worden in een reeks van componenten of attributen die elk

een bepaald niveau aannemen. Bijvoorbeeld, Tabel 2 toont drie profielen of

alternatieven van een wagen die samengesteld zijn uit niveaus voor vijf at-

tributen. Door een aantal proefpersonen een reeks profielen voor te leggen

en hen te bevragen naar de meest aantrekkelijke profielen, kan met conjoint

analyse het relatieve belang van elk attribuut en niveau in de aankoopbeslis-

sing bepaald worden. De waarde die respondenten hechten aan elk van de

attribuutniveaus wordt weergegeven door zogenaamde ”part-worths”. Con-

joint analyse is gebaseerd op het feit dat de part-worths beter gemeten kun-

nen worden wanneer de attributen tezamen worden beschouwd (in het Engels

wordt dit vertaald als ”considered jointly”) dan elk afzonderlijk. Dit is omdat

de evaluatietaak gemakkelijker is wanneer combinaties van attribuutniveaus

worden voorgelegd in plaats van individuele attributen en niveaus.
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Table 2: Drie voorbeeldprofielen van een wagen.

Attribuut Profiel 1 Profiel 2 Profiel 3
Prijs 18.000 EUR 17.000 EUR 14.000 EUR

Transmissie manueel automatisch manueel
Airbags frontaal en lateraal frontaal frontaal en lateraal

Deurvergrendeling automatisch
afstandsbediening

sleutel
zonder sleutel

Audiosysteem radio en CD-speler
radio en CD-speler

radio
met klankeffect

Gewoonlijk evalueren respondenten profielen op één van de volgende twee

manieren. Ofwel kiezen de respondenten het meest aantrekkelijke profiel uit

een keuzeset van profielen, en doen ze dit voor verschillende keuzesets. Ofwel

geven ze hun voorkeur voor alle profielen weer op een schaal, bijvoorbeeld een

10-puntenschaal. Het eerste type conjoint experiment is een keuze-gebaseerd

conjoint experiment, ook wel een conjoint of discreet keuze-experiment ge-

noemd, of simpelweg, een keuze-experiment. Het tweede type conjoint ex-

periment is een score- of rating-gebaseerd conjoint experiment, of kortweg,

een rating-experiment. Deze laatste experimenten werden traditioneel ge-

bruikt in conjoint analyse sinds haar onstaan in de jaren ’70. Later in de

jaren ’80 deden keuze-experimenten hun intrede. Keuze-experimenten zijn

erg populair omdat ze een realistischer beeld geven van hoe het er in de

markt aan toegaat. Dit maakt het voor de respondenten gemakkelijker om

profielen te beoordelen. Daarentegen vereisen ze meer respondenten dan

rating-experimenten omdat het maken van keuzes minder informatief is dan

het verschaffen van scores.

In deze thesis houden we ons bezig met de vraag op welke manier keuze- en

rating-experimenten het best ontworpen kunnen worden. Meer specifiek gaan

we op zoek naar profielen die, wanneer ze voorgelegd worden aan proefperso-

nen, zoveel mogelijk informatie verschaffen over de part-worths. Om het best

mogelijke ontwerp te vinden voor een bepaalde situatie maken we gebruik van

ontwerpcriteria of optimaliteitscriteria. Hiermee kunnen optimale ontwerpen

berekend worden. Deze thesis is opgesplitst in twee delen. Elk deel behan-

delt het ontwerp van een bepaald experiment. Het eerste deel bestaat uit
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drie hoofdstukken die elk gaan over het ontwerp van keuze-experimenten.

In Hoofdstuk 1 bespreken en vergelijken we vier optimaliteitscriteria die

gebruikt kunnen worden voor de samenstelling van keuze-ontwerpen. In

Hoofdstuk 2 ontwikkelen we een efficiënt algoritme om dergelijke ontwer-

pen te genereren. Hoofdstuk 3 sluit het deel over keuze-ontwerpen af met

het verlenen van praktisch advies over hun gebruik. Het tweede deel omvat

twee hoofdstukken die handelen over het ontwerp van rating-experimenten.

Hoofdstuk 4 beschrijft een algoritmische opbouw van deze ontwerpen, ter-

wijl Hoofdstuk 5 een manuele strategie voorstelt voor de samenstelling van

ontwerpen die bestaan uit een groot aantal attributen met elk twee niveaus.

Ieder hoofdstuk begint met een introductie en eindigt met een besluit waarin

suggesties voor verder onderzoek geformuleerd worden.
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Choice-based conjoint design
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Chapter 1

A comparison of optimality

criteria for choice designs

This chapter has been published as

1 Kessels, R., Goos, P. and Vandebroek M. (2006). A comparison of criteria to

design efficient choice experiments, Journal of Marketing Research 43: 409–419.

A shorter Dutch version has also appeared as

1 Kessels, R., Goos, P. and Vandebroek M. (2005). Het optimaal ontwerp van

keuze-experimenten, Business InZicht 20: 2–3.

Abstract

To date, no attempt has been made to design efficient conjoint choice ex-

periments by means of the G- and V-optimality criteria. These criteria are

known to make precise response predictions which is exactly what conjoint

choice experiments aim to do. In this chapter, we elaborate on the G- and

V-optimality criteria for the multinomial logit model and compare their pre-

diction performances with those of the D- and A-optimality criteria. We

make use of Bayesian design methods that integrate the optimality criteria

over a prior distribution of likely parameter values. A modified Fedorov al-

gorithm is employed to generate the optimal choice designs. Other aspects

of the designs, such as level overlap, utility balance, estimation performance

and computational effectiveness, are also discussed.

3



4 1.1. Introduction

1.1 Introduction

Since Louviere and Woodworth’s (1983) article, conjoint choice experiments

or more succinctly, choice experiments, have become increasingly popular to

explore consumer preferences for the attributes of various goods. In applied

research, these experiments have been used extensively, and in fundamental

research, they have been the subject of rigorous study and research. The

reason for their popularity is that they enable researchers to model real mar-

ketplace choices and thus to emulate real market decisions and predict market

demand (Carson et al. 1994). In a typical choice experiment, respondents are

presented with a series of choice sets, each composed of several alternatives,

also called profiles, of products or services that are defined as combinations

of different attribute levels. Respondents then indicate their preferred alter-

native for every choice set.

Louviere, Street and Burgess (2003) present an overview of the recent de-

velopments in choice experiments, with a special emphasis on the design of

these experiments. Designing an efficient choice experiment involves selecting

alternatives that, when put into choice sets, provide maximum information

on the parameters of a probabilistic choice model. Until now, the efficiency

of a choice design has been expressed primarily in terms of the D-optimality

criterion (Atkinson and Donev 1992). Only Street, Bunch and Moore (2001)

applied the A-optimality criterion to the design of paired comparison experi-

ments with two-level attributes. In a paired comparison design, every choice

set consists of two alternatives. To date, the G- and V-optimality criteria,

specifically developed for making precise response predictions, have not been

applied in the experimental choice context. However, choice experiments are

conducted for predictive purposes, and therefore, we turn attention to the G-

and V-optimality criteria.

The main difficulty in the construction of a proper choice design is that the

probabilistic choice models are nonlinear in the parameters, implying that the

efficiency of the design depends on the unknown parameter vector (Atkinson

and Haines 1996). Consequently, researchers need to assume values for the

parameters before deriving the experimental design. To circumvent this cir-

cular problem, three approaches have been introduced. We discuss them for
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logit choice models, the best known of which is the multinomial logit model

(McFadden 1974).

The first approach is to use zero prior parameter values so that methods

of linear experimental design can be applied. It is implicitly assumed that

the respondents prefer all attribute levels and, thus, all alternatives equally

(Grossmann, Holling and Schwabe 2002). The following authors are rep-

resentatives of this approach. Anderson and Wiley (1992) and Lazari and

Anderson (1994) provided a catalog of orthogonal arrays for logit choice

models. To address a broader range of design classes, Kuhfeld, Tobias and

Garratt (1994) made use of Cook and Nachtsheim’s (1980) modification of

Fedorov’s (1972) exchange algorithm to generate D-optimal designs. Kuhfeld

and Tobias (2005) continued this line of research by integrating the modi-

fied Fedorov algorithm in a comprehensive algorithm, contained in the SAS

%MktEx macro, which also exploits a large catalog of orthogonal arrays and

Meyer and Nachtsheim’s (1995) coordinate-exchange algorithm.

Furthermore, Bunch, Louviere and Anderson (1996) developed the so-called

D-optimal shifted or cyclic designs characterized by the minimal level overlap

property. This property is satisfied when the frequencies of the attribute lev-

els within a choice set are distributed as equally as possible. The results for

D-optimal paired comparison designs for two-level attributes have been de-

scribed in the work of Street, Bunch and Moore (2001), Street and Burgess

(2004) and references therein. As we mentioned previously, Street, Bunch

and Moore (2001) also computed A-optimal paired comparison designs for

two-level attributes. Finally, Burgess and Street (2003) derived D-optimal

choice designs for two-level attributes of any choice set size and extended

these results in Burgess and Street (2005) to apply to attributes with any

number of levels.

The second approach, attributed to the work of Huber and Zwerina (1996),

advocates the use of nonzero prior values rather than zero values. The result-

ing locally DP -optimal designs prove to be more efficient than the D-optimal

designs based on zero prior values. Carlsson and Martinsson (2003) confirmed

this finding with a comparison study in health economics. To generate the
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DP -optimal designs, Huber and Zwerina (1996) proposed the relabeling (R)

and swapping (S) techniques, shortly referred to as the RS algorithm. The

SAS %ChoicEff macro that uses a modified Fedorov algorithm also allows

building the designs, as illustrated by Zwerina, Huber and Kuhfeld (1996;

see updated [2005] version).

Finally, the most recent approach has been introduced by Sándor and Wedel

(2001) and consists of integrating the associated uncertainty on the assumed

parameter values by the use of Bayesian design techniques (Chaloner and

Verdinelli 1995). If there is substantial uncertainty about the unknown pa-

rameters, the so-called Bayesian DB-optimal designs outperform the locally

DP -optimal designs. The algorithm used is the RS algorithm and an addi-

tional cycling (C) procedure, accordingly called the RSC algorithm. Sándor

and Wedel (2002) developed an updated version of this algorithm.

The foregoing researchers have proposed designs for the multinomial logit

model to be administered to various respondents whose choices are pooled.

As a result, homogeneous parameters across respondents are assumed. In

this chapter, we adopt the same experimental choice scenario to compare the

performances of the D-, A-, G- and V-optimality criteria. Note that we study

main-effects choice designs only. Our approach is similar to that of Sándor

and Wedel (2001) in that we also implement Bayesian design methods. How-

ever, we do not apply the RSC algorithm but rather the modified Fedorov

algorithm to generate the optimal designs.

The outline of the remainder of this chapter is as follows. Section 1.2 de-

scribes the multinomial logit model and the D-, A-, G- and V-optimality

criteria using this model. The approach to generate the optimal designs with

the modified Fedorov algorithm is discussed in Section 1.3. In Section 1.4, the

different optimal designs are presented and compared. Finally, Section 1.5

concludes the chapter and provides suggestions for future research.
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1.2 Multinomial logit and optimality criteria

The multinomial logit model is derived from McFadden’s (1974) random

utility model of consumer choice. In the random utility model, the utility a

person attaches to a given profile j is predicted by

Uj = x′jβ + εj, (1.1)

where xj is a k× 1 vector of the attribute levels of profile j, β = [β1, . . . , βk]
′

is a k × 1 vector of parameter values or part-worths weighing the attribute

levels and εj is an i.i.d. extreme value error term.

Now, consider presenting N respondents with a choice experiment containing

S choice sets, s = 1, 2, ..., S, where each choice set consists of J profiles,

j = 1, 2, ..., J . Each respondent indicates the profile that maximizes that

respondent’s perceived utility for every choice set. The multinomial logit

probability that a respondent chooses profile j in choice set s is

pjs(Xs,β) =
ex′jsβ

∑J
t=1 ex′tsβ

, (1.2)

where Xs = [x1s, ...,xJs]
′ is the design matrix for choice set s. The stacked

Xs matrices provide the design matrix X for the choice experiment.

Because of the assumption of independent error terms, the choices from the N

respondents in the S choice sets represent independent draws from a multi-

nomial distribution. Therefore, if Y = [y1, ...,yN ] denotes the matrix of

choices from the N respondents with elements yjsn, each of which equals one

if respondent n, n = 1, 2, ..., N , chooses alternative j in choice set s and zero

otherwise, then the log-likelihood of the N samples in Y is defined by

LL(Y|X,β) =
S∑

s=1

J∑
j=1

N∑
n=1

yjsn ln (pjs(Xs,β)) . (1.3)

Maximizing this expression with respect to β yields the maximum likelihood

estimator β̂ for a particular choice design.



8 1.2. Multinomial logit and optimality criteria

The construction of efficient choice designs is based on the Fisher informa-

tion matrix, which is the inverse of the variance-covariance matrix of the

parameter estimators, and given by

M(X,β) = N

S∑
s=1

X′
s(Ps − psp

′
s)Xs, (1.4)

where ps = [p1s, ..., pJs]
′ and Ps = diag[p1s, ..., pJs]. In Appendix A, we show

how the information matrix is obtained from the log-likelihood function (1.3).

In optimal design theory (Atkinson and Donev 1992; Fedorov 1972; Silvey

1980), direct functions of the information matrix, referred to as optimality

criteria or design criteria, are proposed to generate optimal designs that yield

precise parameter estimates or accurate predictions. However, the informa-

tion matrix (1.4) depends on the unknown parameters through the prob-

abilities so that parameter values are required before constructing optimal

choice designs. As we mentioned in Section 1.1, Sándor and Wedel (2001)

adopted a Bayesian design approach that involves the specification of a prior

parameter distribution π(β). Usually, this distribution is the normal distri-

bution, N (β|β0,Σ0), from which R prior parameter values βr, r = 1, ..., R,

are drawn to approximate it. In general, the resulting Bayesian optimal

designs outperform locally optimal designs that are based on a single prior

parameter.

1.2.1 D- and A-optimality criteria

The most popular optimality criterion to design choice experiments is the

D-optimality criterion. The D-optimality criterion seeks to maximize the

determinant of the information matrix (1.4), or to minimize its inverse, the

determinant of the variance-covariance matrix of the parameter estimators.

It is related to the A-optimality criterion that prefers the design for which the

sum or the average of the variances of the parameter estimators is minimized.

However, a drawback of the A-optimality criterion is that the ordering of de-

signs with respect to this criterion depends on the type of coding. We refer

to the work of Goos (2002, pages 38–40) for an example in the case of linear

models. Note that the A-optimality criterion is more suited for obtaining

precise parameter estimates because it considers the variances of the estima-

tors only. In addition, the D-optimality criterion takes the covariances into
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account. Formally, the Bayesian D-criterion value, the DB-criterion value, is

DB =

∫

Rk

{
det(M−1(X,β))

}1/k
π(β)dβ, (1.5)

where the exponent 1/k ensures that it is independent of the dimension k

of the parameter vector β. Minimizing this value results in the DB-optimal

design. The AB-optimal design minimizes

AB =

∫

Rk

tr(M−1(X,β))π(β)dβ. (1.6)

1.2.2 G- and V-optimality criteria

The G- and V-optimality criteria both look for designs that make precise pre-

dictions about the response. Although choice experiments are carried out to

make precise predictions about consumers’ future purchasing behavior, the

G- and V-optimality criteria have not yet been applied in the experimental

choice context. To derive the G- and V-optimality criteria for the nonlinear

choice model, predicted probabilities must be computed, and to do so, choice

sets must be specified. In particular, we computed the predicted probabilities

with respect to all possible choice sets of size J that can be composed from

the candidate profiles. These choice sets make up the so-called design region

χ. Thus, if there are Q possible choice sets, χ = {{x1q, ...,xJq}| q = 1, ..., Q}.
Then, by definition, the G-optimality criterion aims to minimize the maxi-

mum prediction variance over the design region χ, whereas the V-optimality

criterion aims to minimize the average prediction variance over this region.

Mathematically, the GB-criterion value is given by

GB =

∫

Rk

max
xjq∈χ

var{p̂jq(xjq,β)}π(β)dβ,

=

∫

Rk

max
xjq∈χ

c′(xjq)M
−1(X,β)c(xjq)π(β)dβ,

(1.7)

where p̂jq(xjq, β) denotes the predicted choice probability for xjq and

c(xjq) =
∂pjq(xjq,β)

∂β
, (1.8)

the first-order truncated Taylor series expansion of the multinomial logit

probability (1.2). This approach is similar to the computation of locally D-
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and c-optimal designs for nonlinear models in general (Atkinson and Donev

1992; Atkinson and Haines 1996). Using the multinomial logit model (1.2),

we can write (1.8) as

c(xjq) =
ex′jqβxjq

∑J
t=1 ex′tqβ − ex′jqβ ∑J

t=1 ex′tqβxtq(∑J
t=1 ex′tqβ

)2 ,

=
ex′jqβ

∑J
t=1 ex′tqβ

(
xjq

∑J
t=1 ex′tqβ −∑J

t=1 ex′tqβxtq∑J
t=1 ex′tqβ

)
,

= pjq

(
xjq −

J∑
t=1

(
ex′tqβ

∑J
v=1 ex′vqβ

)
xtq

)
,

= pjq

(
xjq −

J∑
t=1

ptqxtq

)
.

(1.9)

Akin to the A-optimality criterion, the relative design efficiency in terms of

the G-optimality criterion is contingent on the type of coding. The same

applies to the V-optimality criterion, the Bayesian value of which is obtained

as

VB =

∫

Rk

∫

χ

c′(xjq)M
−1(X, β)c(xjq)dxjqπ(β)dβ, (1.10)

with c(xjq) defined in (1.8) and (1.9).

In Appendix B, we present a simple numerical example of the construction of

Bayesian optimal designs by means of the DB-, AB-, GB- and VB-optimality

criteria.

1.3 Algorithmic approach

The most embedded algorithms in the literature to generate choice designs

are the RSC algorithm, embracing relabeling, swapping and cycling, and the

modified Fedorov algorithm. There are two versions of the RSC algorithm

developed by Sándor and Wedel, one in 2001 and one in 2002. As opposed to

the first version, the updated version does not restrict its searches to designs
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that satisfy the minimal level overlap property, provided that the starting de-

sign complies with it. This makes the RSC algorithm more prone to design

improvements. As a result to its modification, the RSC algorithm generates

designs that are statistically as efficient as those produced by the modified

Fedorov algorithm. In the modified Fedorov algorithm, design profiles are ex-

changed with the profiles from a predefined set of candidate profiles without

the enforcement of any constraint. We prefer the modified Fedorov algo-

rithm because it is faster than the adjusted RSC algorithm in generating

Bayesian optimal designs. Thus, we incorporated the DB-, AB-, GB- and VB-

optimality criteria in the modified Fedorov algorithm to obtain four distinct

Bayesian modified Fedorov choice algorithms. To avoid poor local optima,

we repeated each of the algorithms for several starting designs. We refer to

each repetition as a try and we performed 200 tries.

With the Bayesian modified Fedorov choice algorithms, we constructed DB-,

AB-, GB- and VB-optimal designs of two classes. The first class is given by

designs of type 32 × 2/2/12— that is, designs with 12 choice sets, each of

size two, in which each alternative is described by three attributes. The first

two attributes have three levels each and the third attribute has two levels.

The designs in the second class are of type 32 × 2/3/8, comprising 8 choice

sets of size three and a similar attribute structure as the first design class.

As a result, the sets of candidate profiles of both design classes are identical,

enclosing the same 32 × 2 = 18 profiles. In addition, the designs of the two

classes consist of the same number of profiles (i.e., 24) to compare the two-

and three-alternative optimal designs with respect to specific design measures

(see Section 1.4). To compute the GB- and VB-optimal designs, the design

region χ needs to be specified for each class. For the two-alternative design

class, χ consists of Q =
(
18
2

)
= 153 choice sets, or 306 profiles, whereas for

the three-alternative design class, it includes Q =
(
18
3

)
= 816 choice sets, or

2,448 profiles.

Furthermore, through the use of effects-type coding (see Appendix B), the

number of parameter values, k, is five. As prior parameter distribution,

we used the multivariate normal distribution π(β) = N (β|β0,Σ0), with

β0 = [−1, 0,−1, 0,−1]′ and Σ0 = I5. The β0 vector is special because the
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values for the levels of each of the attributes are equally spaced between −1

and 1. Through this scaling, the utilities increase with the levels of each

attribute. For example, for the first two attributes that possess three levels

each, a utility of −1 is attached to level 1, a utility of 0 to level 2 and a

utility of 1 to level 3. A more extensive account on the specification of β0

can be found in the work of Huber and Zwerina (1996). Following Sándor

and Wedel’s (2001) example, we drew R = 1, 000 samples βr from π(β).

1.4 Results

In this section, we compare the two- and three-alternative DB-, AB-, GB- and

VB-optimal designs with respect to their performances on several measures

whilst taking into account some computational aspects. We performed all

computations with the SAS 8.02 procedure IML (Interactive Matrix Lan-

guage).

1.4.1 Performance of the DB-, AB-, GB- and VB-opti-

mality criteria

We begin by illustrating the two- and three-alternative DB-, AB-, GB- and

VB-optimal designs, followed by a study of their amount of level overlap and

degree of utility balance. We then score the robustness of the designs on

other design criteria for which they are not optimized. Finally, we discuss

the accuracy and predictive validity of the parameter estimates.

Designs, overlap and utility balance

The two- and three-alternative Bayesian optimal designs appear in Tables 1.1

and 1.2, respectively. Their criterion values appear in Table 1.3. The designs

clearly exhibit some level overlap. As in the work of Sándor and Wedel

(2002), we computed the percentage of the cases in which the columns of

the choice sets do not satisfy the minimal level overlap property. The results

appear in Table 1.4. The DB-optimal designs have the lowest level overlap in

the two design classes, followed by the VB-optimal designs. In contrast, the
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GB- and AB-optimal designs have the highest level overlap.

Table 1.1: Two-alternative Bayesian optimal designs.

DB AB GB VB

Choice Alt Attr Attr Attr Attr

set 1 2 3 1 2 3 1 2 3 1 2 3

1 I 2 3 1 3 2 1 3 1 2 2 2 2

II 1 2 1 3 1 1 2 2 2 1 1 1

2 I 2 2 2 2 3 1 3 2 1 2 1 2

II 1 1 1 1 2 1 2 3 1 1 2 1

3 I 1 2 2 2 1 2 1 2 1 1 2 2

II 3 1 2 1 2 2 2 1 1 3 1 1

4 I 2 2 1 3 1 1 1 3 1 2 2 1

II 1 3 1 2 2 1 3 1 2 1 3 2

5 I 2 2 1 2 2 1 3 3 2 2 1 1

II 3 3 2 1 1 1 2 1 1 3 2 2

6 I 2 1 2 3 3 2 2 3 1 1 3 1

II 1 2 1 2 1 1 1 1 1 2 1 1

7 I 1 1 2 1 3 1 1 3 1 1 2 1

II 2 2 2 2 2 1 2 1 1 3 3 2

8 I 1 2 2 1 3 1 2 2 2 3 2 1

II 2 1 1 3 1 2 1 1 1 2 3 1

9 I 3 2 1 3 2 1 3 2 2 3 2 2

II 2 1 1 2 3 2 1 2 2 1 1 2

10 I 3 1 1 1 2 2 1 2 1 2 3 1

II 2 3 2 2 1 1 1 3 2 1 1 1

11 I 1 3 1 1 3 2 3 2 1 2 3 1

II 3 1 2 3 3 2 2 2 2 2 2 2

12 I 2 1 1 2 1 2 1 2 2 3 1 2

II 3 2 2 1 1 1 2 2 1 2 2 2
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Table 1.2: Three-alternative Bayesian optimal designs.

DB AB GB VB

Choice Alt Attr Attr Attr Attr

set 1 2 3 1 2 3 1 2 3 1 2 3

1 I 3 2 1 1 3 2 2 2 1 1 2 2

II 2 1 1 2 3 1 3 1 2 3 1 1

III 1 2 2 1 2 1 1 3 1 2 2 1

2 I 1 1 1 1 1 1 3 2 2 3 2 1

II 2 2 1 2 1 1 1 1 2 1 3 1

III 1 3 2 1 2 1 3 1 2 2 1 1

3 I 1 3 1 3 1 1 2 3 2 2 1 1

II 2 3 2 2 2 1 1 2 1 1 2 1

III 2 1 1 2 2 2 2 3 1 1 1 2

4 I 3 1 2 1 1 1 3 3 2 3 3 2

II 1 2 1 1 3 2 3 1 1 2 2 2

III 2 1 1 2 2 2 2 2 2 2 1 1

5 I 3 1 1 1 3 2 2 1 1 1 2 1

II 3 2 2 2 1 2 2 3 2 2 3 1

III 1 2 1 3 2 2 3 2 2 3 3 2

6 I 2 1 2 2 2 1 1 3 1 2 3 2

II 1 2 1 3 2 2 2 3 2 3 1 2

III 2 3 1 1 1 1 2 1 2 1 3 1

7 I 3 2 2 1 2 1 1 2 2 3 3 1

II 1 1 1 2 1 2 2 1 2 3 2 2

III 2 3 2 2 2 2 3 1 2 1 3 1

8 I 1 3 1 3 1 1 1 2 2 2 3 2

II 2 2 1 1 3 1 1 1 1 1 1 1

III 3 1 1 3 3 1 2 2 1 2 2 1
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Table 1.3: DB-, AB-, GB- and VB-criterion values of the two- and three-
alternative DB-, AB-, GB- and VB-optimal designs.

Optimal # Alternatives

design 2 3

DB 0.73024 0.76617

AB 6.60563 6.02261

GB 0.51997 0.51843

VB 0.07219 0.06285

Table 1.4: Percentages of level overlap in the two- and three-alternative Bayesian
optimal designs.

Optimal # Alternatives

design 2 3

DB 14% 38%

AB 28% 63%

GB 28% 54%

VB 17% 42%

To measure the utility balance of the computed designs, we built on the cu-

mulative entropy of a choice design, as suggested by Swait and Adamowicz

(2001). Utility balance is a concept that Huber and Zwerina (1996) intro-

duced and it refers to the situation in which respondents prefer the alter-

natives in a choice set equally and thus face a difficult choice task. In the

Bayesian framework, the cumulative entropy of a choice design is defined as

CH(X,β) = −
S∑

s=1

∫

Rk

(
J∑

j=1

{
pjs(Xs, β)ln(pjs(Xs,β))

}
)

π(β)dβ. (1.11)

To derive the lower and upper bounds for the cumulative entropy for the two

design classes, we constructed for each class a Bayesian design that is not at

all utility balanced, or minimum utility balanced, and a Bayesian design that

is maximum utility balanced. We obtained the former design by selecting the

S choice sets that produced the smallest Bayesian cumulative entropy out
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of all possible ones, whereas we initially constructed the latter by choosing

the S choice sets that produced the largest Bayesian cumulative entropy.

This could easily be done by enumerating all Q possible choice sets of size

J . However, in doing so, the Bayesian maximum utility balanced designs

turned out to be singular. We solved this problem by optimally replacing

a minimum number of choice sets with choice sets with a slightly smaller

Bayesian entropy.

The Bayesian minimum and maximum utility-balanced designs for the two

design classes appear in Tables C1 and C2 of Appendix C together with their

efficiencies with respect to the different optimality criteria. The minimum

utility-balanced designs exhibit only a small amount of level overlap, whereas

the maximum utility-balanced designs are characterized by a great deal of

level overlap. The efficiencies of the designs are very low, particularly those

of the minimum utility-balanced designs which are essentially zero. For the

two-alternative design class, the values for the cumulative entropy of the

Bayesian minimum and maximum utility-balanced designs are equal to 1.93

and 5.53, respectively. So these are the minimum and maximum values for

the Bayesian cumulative entropy in the two-alternative design case. For the

three-alternative design class, these values amount to 2.00 and 5.97.

Subsequently, we computed the values of the cumulative entropy for the

two- and three-alternative Bayesian optimal designs and compared them with

their maximum value. The values and their percentages appear in Table 1.5.

On the whole, the designs are not maximum utility balanced but entail a

moderate choice task complexity. This finding is counter to Huber and Zwe-

rina’s (1996) statement that proper choice designs must be maximum utility

balanced. Although not perfectly utility balanced, the AB-optimal designs

display the largest cumulative entropy, which extends Arora and Huber’s

(2001) result that AP -optimal designs for binary logit models are utility bal-

anced to a Bayesian context. Conversely, the VB-optimal designs, which

are developed especially for making precise predictions, exhibit the smallest

cumulative entropy or the least complicated choice tasks. In addition, the

three-alternative designs appear to be more complex than the two-alternative

ones.
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Table 1.5: Values and percentage values of cumulative entropy of the two- and
three-alternative Bayesian optimal designs.

Optimal # Alternatives

design 2 3

DB 3.98 72% 4.41 74%

AB 4.27 77% 4.70 79%

GB 3.96 72% 4.55 76%

VB 3.72 67% 4.29 72%

Performance in terms of other optimality criteria

Because the DB-, AB-, GB- and VB-optimality criteria all have a different

aim, it is interesting to observe how robust the Bayesian optimal designs are

to other design criteria for which they are not optimized. Panels a and b

of Table 1.6 give the efficiencies of the two- and three-alternative optimal

designs with respect to the different optimality criteria. As we expected

from optimal design theory, the efficiencies of the DB-optimal designs on the

AB-optimality criterion and of the AB-optimal designs on the DB-optimality

criterion are quite high. This interdependence of criterion efficiencies also

occurs between the GB- and VB-optimality criteria. Furthermore, compared

with the DB-optimal designs, the AB-optimal designs do not score well in

terms of GB- and VB-efficiency. As a result, the predictive ability of the

AB-optimal designs is relatively low.

Accuracy and predictive validity of the parameter estimates

We now examine more closely the accuracy and predictive validity of the

parameter estimates produced by the two- and three-alternative Bayesian

optimal designs. To this end, we investigate the expected mean squared errors

of the parameter estimates, EMSEβ̂, and of the predicted probabilities,

EMSEp̂c . Both measures depend on a true parameter βt. The EMSEβ̂

pertains to the accuracy of the parameter estimates and is given by

EMSEβ̂(βt) =

∫

Rk

(
β̂ − βt

)′ (
β̂ − βt

)
f(β̂)dβ̂, (1.12)
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Table 1.6: Performances of the Bayesian optimal designs in terms of other design
criteria.

Evaluation a) Two-alternative designs

criterion DB AB GB VB

DB 100.00% 90.82% 89.08% 93.28%

AB 97.59% 100.00% 92.43% 87.13%

GB 94.49% 85.68% 100.00% 99.68%

VB 96.95% 88.12% 96.03% 100.00%

Evaluation b) Three-alternative designs

criterion DB AB GB VB

DB 100.00% 93.49% 94.13% 96.36%

AB 94.03% 100.00% 96.63% 89.80%

GB 80.81% 80.19% 100.00% 95.04%

VB 95.65% 86.04% 96.24% 100.00%

where f(β̂) is the distribution of the estimates. The smaller the EMSEβ̂

value, the more accurately the parameters are estimated. The EMSEp̂c con-

cerns the predictions with respect to the design that contains all Q possible

choice sets of size J . This design is chosen so as not to favor any optimal

design and is referred to as the complete choice design. It contains the same

Q choice sets as the design region χ we defined in Sections 1.2.2 and 1.3. To

compare the prediction performances of the two- and three-alternative opti-

mal designs, we averaged the EMSEp̂c values over the number of profiles in

the complete choice design. Formally,

EMSEp̂c(βt) =
1

J ×Q

∫

Rk

(
p̂c(β̂)− pc(βt)

)′ (
p̂c(β̂)− pc(βt)

)
f(β̂)dβ̂,

(1.13)

where pc(βt) is the vector of true logit probabilities in the complete choice

design and p̂c(β̂) is the corresponding vector of predicted logit probabilities.

The smaller the EMSEp̂c value, the more precisely the probabilities are

predicted.
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To approximate the distribution of the parameter estimates, f(β̂), in (1.12)

and (1.13), we performed a simulation study. Based on βt we simulated 1, 000

datasets with choices yjsn from N = 50 respondents with respect to each

Bayesian optimal design by drawing for each choice set s of the design and

for each respondent n a random number υsn from the uniform distribution

U [0, 1]. These random numbers represent cumulative probabilities which we

compared with the true logit probabilities ps(βt) of the design to assign

values to yjsn in the following way:

yjsn =

{
1 if vsn ∈

]∑j−1
t=1 pts(βt),

∑j
t=1 pts(βt)

]
,

0 otherwise.
(1.14)

We obtained 1, 000 estimates β̂ by substituting the matrix Y for each dataset

in the log-likelihood function (1.3) that we maximized with respect to β. Be-

cause the EMSE measures depend on a true parameter βt, we repeated their

computation 50 times, each time for a different true parameter. Each com-

putation for another βt is called a replication.

We summarize the results of the 50 replications of the EMSEβ̂ in Panel a

of Table 1.7 and in Figure 1.1. Using percentage values, Table 1.7, Panel a,

depicts the number of replications for which the two- and three-alternative

DB-, AB-, GB- and VB-optimal designs have the lowest EMSEβ̂ value. The

values themselves are collected in box plots in Figure 1.1. The white line in

each of the boxes is the median. Overall, for the two design classes, it appears

that there is no salient optimality criterion that leads to the most accurate

estimates. From the box plots, we observe that the estimation performances

of the design criteria are comparable. The median EMSEβ̂ values and the

average EMSEβ̂ values, which are practically identical to the medians but

not shown in the box plots, are equal across the different optimality criteria.

Furthermore, Table 1.7, Panel a, indicates that the GB-optimality criterion

has the smallest number of replications with the lowest EMSEβ̂ value. With

regard to estimation differences between the two- and three-alternative de-

signs, the box plots reveal that occasionally, larger EMSEβ̂ values are ob-

tained for the two-alternative designs than for the three-alternative designs.

Therefore, the parameter estimates produced by the three-alternative designs

are somewhat more accurate.
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Table 1.7: Percentage of replications with the lowest values for the EMSEβ̂ and
EMSEp̂c among the two- and three-alternative Bayesian optimal de-
signs.

a) Rep. with lowest EMSEβ̂ b) Rep. with lowest EMSEp̂c

Optimal # Alternatives # Alternatives

design 2 3 2 3

DB 26% 32% 18% 14%

AB 16% 28% 6% 10%

GB 14% 18% 16% 22%

VB 44% 22% 60% 54%

We carried out an analogous study for the 50 replications of the EMSEp̂c .

The number of replications with the lowest EMSEp̂c value for each of the

optimal designs appears in Panel b of Table 1.7. The box plots with the

EMSEp̂c values for the two- and three-alternative optimal designs appear in

Figure 1.2. As is illustrated by the medians in the plots, the occurrence of

larger EMSEp̂c values for the two-alternative than for the three-alternative

designs is more pronounced. As a result, predictions based on the three-

alternative designs tend to be more precise. With respect to the prediction

performances of the optimality criteria, there are no real surprises. Table 1.7,

Panel b, and the box plots palpably point toward the VB-optimality criterion

as the criterion that provides the most precise predictions. The GB-optimality

criterion is second best, followed by the DB-optimality criterion and the

AB-optimality criterion. From the box plots, it is also apparent that the

predictive capabilities of the customarily used DB-optimal designs do not

differ that much from those of the VB- and GB-optimal designs, which are

developed particularly for predictive purposes. Therefore, the DB-optimal

designs seem to perform reasonably well in this respect.
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Figure 1.1: Distributions of the EMSEβ̂ obtained from 50 replications and com-
puted for the two- and three-alternative DB-, AB-, GB- and VB-
optimal designs.
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Figure 1.2: Distributions of the EMSEp̂c obtained from 50 replications and com-
puted for the two- and three-alternative DB-, AB-, GB- and VB-
optimal designs.
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1.4.2 Some computational aspects

We now embark on the account of some computational aspects of the two- and

three-alternative DB-, AB-, GB- and VB-optimal designs. We consecutively

discuss the computing times to generate the designs and the computational

effectiveness of the design criteria.

Computing time

Table 1.8 reports computing times for one try of the modified Fedorov al-

gorithm to produce the two- and three-alternative DB-, AB-, GB- and VB-

optimal designs. We generated the designs with the SAS 8.02 procedure

IML. We obtained the times using a Dell personal computer with a 1.80

GHz Intel Processor and 256 MB RAM. Overtly, the computing times for

the GB- and VB-optimal designs are much longer than those for the DB- and

AB-optimal designs. This is because of the numerous prediction variances

that need to be computed when evaluating a design by means of the GB- or

VB-optimality criterion. Furthermore, the number of prediction variances to

derive is proportional to the design region χ that is eight times larger for

the three-alternative design class than for the two-alternative class. This ex-

plains why it takes much more time to construct GB- and VB-optimal designs

with three alternatives than with two alternatives.

Table 1.8: Computing times for one try of the modified Fedorov algorithm to
generate the two- and three-alternative Bayesian optimal designs. The
times are expressed in hours:minutes.

Design # Alternatives

criterion 2 3

DB 00:05 00:05

AB 00:05 00:05

GB 02:30 11:00

VB 02:30 11:00
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Computational effectiveness of the design criteria

The computational effectiveness of a Bayesian design criterion refers to the

quality and the speed of the modified Fedorov algorithm in which this cri-

terion is embedded. We compared the computational effectiveness of the

Bayesian design criteria by means of the estimated expected efficiencies from

several numbers of tries. The estimated expected efficiency of an optimal

design produced by a number of tries, T , is defined as the efficiency to ex-

pect when T tries have been performed. We explain the calculation of the

expected efficiency from T tries in Appendix D. For each of the two- and

three-alternative DB-, AB-, GB- and VB-optimal designs, we plotted the ex-

pected efficiencies against various numbers of tries. The plots appear in

Figure 1.3. We obtained the highest expected efficiencies when we used the

DB- and AB-optimality criteria. Applying the GB- and VB-optimality crite-

ria requires more tries to reach a given efficiency. Consequently, the smallest

number of tries is needed for calculating the DB- and AB-optimal designs.

In addition, if the algorithm fails to find the DB- and AB-optimal designs, it

still produces highly efficient designs.
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Figure 1.3: Estimated expected efficiencies of the two- and three-alternativeDB-,
AB-, GB- and VB-optimal designs.
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1.5 Conclusion

In this chapter, we incorporated the DB-, AB-, GB- and VB-optimality crite-

ria in the modified Fedorov algorithm to generate two- and three-alternative

Bayesian optimal choice designs containing the same number of profiles. We

devoted special attention to the GB- and VB-optimality criteria which look

for designs that produce precise predictions. After all, choice experiments

are carried out to predict the future market share of related products or

services as precisely as possible. We observed that the VB-optimal designs

and, to a lesser extent, the GB-optimal designs are best suited for predictive

purposes. The DB-optimal designs rank third in this aspect, but the differ-

ences in predictive ability compared with the VB- and GB-optimal designs

are rather small. Furthermore, the three-alternative optimal designs lead to

better predictions than the two-alternative designs. The three-alternative

optimal designs also yield the most accurate parameter estimates, but there

is no real difference in estimation performance between the distinct optimal-

ity criteria.

However, the computation of the VB- and GB-optimal designs takes a long

time, particularly those with three alternatives, and many tries are needed.

The DB- and AB-optimal designs are much faster to compute. To speed up

the computations, one can slightly reduce the number of prior parameters

drawn from the prior distribution when evaluating a design. Nevertheless, in

weighing the large computational efforts against the small improvements in

predictive ability of the VB- and GB-optimal designs, it seems preferable to

retain the use of the DB-optimality criterion to build optimal choice designs.

Moreover, as a rule of thumb, we cogently argue that if more than three

attributes with more than two levels each are involved in the design opti-

mization, the use of the VB- and GB-optimality criteria in combination with

the modified Fedorov algorithm is no longer practically feasible. Drawing

on the VB- and GB-optimality criteria to deal with large problem situations

awaits the exploration of computationally more efficient algorithms. Finally,

the Bayesian optimal designs are characterized by some level overlap and are

not maximum utility balanced.
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Appendix A. Derivation of the information ma-

trix

The information matrix M(X,β) in (1.4) can be estimated by −H(X,β),

where H(X,β) is the Hessian matrix or the matrix of second-order derivatives

of the log-likelihood function (1.3) with respect to β. We begin by calcu-

lating the first-order derivative of the log-likelihood function given N = 1

respondent:

∂LL(β)

∂β
=

∂

∂β

S∑
s=1

J∑
j=1

yjs ln (pjs(Xs,β)) ,

=
S∑

s=1

J∑
j=1

yjs

∑J
t=1 ex′tsβ

ex′jsβ


ex′jsβxjs

∑J
t=1 ex′tsβ

(∑J
t=1 ex′tsβ

)2




−
S∑

s=1

J∑
j=1

yjs

∑J
t=1 ex′tsβ

ex′jsβ




ex′jsβ
(∑J

t=1 ex′tsβxts

)

(∑J
t=1 ex′tsβ

)2


 ,

=
S∑

s=1

J∑
j=1

yjsxjs −
S∑

s=1

J∑
j=1

yjs

∑J
t=1 ex′tsβxts∑J

t=1 ex′tsβ
.

(A1)
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The Hessian matrix H(X,β) given N = 1 respondent then equals

∂2LL(β)

∂β∂β′
=

∂

∂β′

(
−

S∑
s=1

J∑
j=1

yjs

∑J
t=1 ex′tsβxts∑J

t=1 ex′tsβ

)
,

=−
S∑

s=1

J∑
j=1

yjs




∑J
t=1 ex′tsβxtsx

′
ts

∑J
t=1 ex′tsβ

(∑J
t=1 ex′tsβ

)2




+
S∑

s=1

J∑
j=1

yjs




∑J
t=1 ex′tsβxts

∑J
t=1 ex′tsβx′ts(∑J

t=1 ex′tsβ
)2


 ,

=−
S∑

s=1

J∑
j=1

yjs

(
J∑

t=1

ex′tsβ

∑J
v=1 ex′vsβ

xtsx
′
ts

)

+
S∑

s=1

J∑
j=1

yjs

(
J∑

t=1

ex′tsβ

∑J
v=1 ex′vsβ

xts

)(
J∑

t=1

ex′tsβ

∑J
v=1 ex′vsβ

x′ts

)
,

=−
S∑

s=1

J∑
j=1

yjs

(
J∑

t=1

ptsxtsx
′
ts −

J∑
t=1

ptsxts

J∑
t=1

ptsx
′
ts

)
,

=−
S∑

s=1

(
J∑

t=1

ptsxtsx
′
ts −

J∑
t=1

ptsxts

J∑
t=1

ptsx
′
ts

)
,

=−
S∑

s=1

(X′
sPsXs −X′

spsp
′
sXs) ,

=−
S∑

s=1

X′
s (Ps − psp

′
s)Xs,

(A2)

where Xs = [x1s, ...,xJs]
′, ps = [p1s, ..., pJs]

′ and Ps = diag[p1s, ..., pJs]. As

such, the information matrix given N respondents is obtained as

M(X,β) =N

(
−∂2LL(β)

∂β∂β′

)
,

=N

S∑
s=1

X′
s (Ps − psp

′
s)Xs.

(A3)
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Appendix B. Numerical example

We compute the DB-, AB-, GB- and VB-criterion values of a small design

consisting of three choice sets with two alternatives each. The alternatives

include two attributes: Attribute 1 has three levels and Attribute 2 has two

levels. The design matrix can be composed either by assigning numerical

values (i.e., 1, 2, 3, and so forth) to the attribute levels or by employing

effects-type coding. However, because of the categorical nature of the ex-

planatory variables, it is more common to work with the design matrix from

effects-type coding. With effects-type coding, the three levels of Attribute 1

are coded as [1 0], [0 1] and [−1 − 1], and the two levels of Attribute 2 are

coded as −1 and 1. The design matrix containing numerical values, X0, and

its companion in effects-type coding, X, which we use in the computations,

appear as follows:

X0 =




1 2

2 1

2 2

3 1

3 2

1 1




, X =




1 0 1

0 1 −1

0 1 1

−1 −1 −1

−1 −1 1

1 0 −1




. (B1)

The three choice sets are separated by horizontal lines. Each row specifies an

alternative and the column dimension of the design matrix X corresponds to

the number of parameters k. Here, k = 3. We compute the Bayesian criterion

values as we do in (1.5), (1.6), (1.7) and (1.10). For the sake of illustration,

we use only three prior parameters βr = [βr
11, β

r
12, β

r
2 ]
′, r = 1, 2, 3, randomly

drawn from π(β) = N (β|β0,Σ0), where β0 = [−1, 0,−1]′ and Σ0 = I3.

For each of these parameters, we compute the local Dr
P -, Ar

P -, Gr
P - and Vr

P -

criterion values and subsequently average them to obtain the Bayesian values.
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We compute the information matrix M(X,βr) as we do in (1.4) by taking

N = 1 so that M(X,βr) =
∑3

s=1 X′
s(Ps−psp

′
s)Xs with choice sets given by

X1 =

[
1 0 1

0 1 −1

]
,X2 =

[
0 1 1

−1 −1 −1

]
,X3 =

[
−1 −1 1

1 0 −1

]
,

(B2)

where ps is the vector of probabilities in choice set s and Ps is the correspond-

ing diagonal matrix. As a first draw, we have β1 = [0.805,−0.080,−0.603]′.
Using the multinomial logit model (1.2), we obtain the following for choice

set s = 1:

p1 =

[
0.420

0.580

]
,P1 − p1p

′
1 = 0.244×

[
1 −1

−1 1

]
and (B3)

X′
1(P1 − p1p

′
1)X1 =




0.244 −0.244 0.487

−0.244 0.244 −0.487

0.487 −0.487 0.975


 . (B4)

Repeating the computations for choice sets 2 and 3 and summing the three

matrices yields the information matrix pertaining to β1:

M(X,β1) =




0.703 0.333 0.721

0.333 1.226 0.324

0.721 0.324 2.128


 . (B5)

The local D1
P -criterion value then becomes

D1
P =

{
det(M−1(X,β1))

}1/3
= 0.986, (B6)

and the local A1
P -criterion value becomes

A1
P = tr(M−1(X,β1)) = 4.057. (B7)

To obtain the local G1
P - and V1

P -criterion values, we compute the prediction

variances over the design region χ that consists of all possible choice sets of

size two. For our small example, there are 3 × 2 = 6 candidate profiles so

that χ comprises Q =
(
6
2

)
= 15 choice sets, or 30 profiles. For each of these

profiles, we compute the c vector according to (1.9):
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x11 1 0 −1 → p11 = 0.770 →
x21 1 0 1 → p21 = 0.230 →

χ =
... =

... (B8)

x1,15 −1 −1 −1 → p1,15 = 0.770 →
x2,15 −1 −1 1 → p2,15 = 0.230 →

c(x11) = [0, 0,−0.354]′,
c(x21) = [0, 0, 0.354]′,

c(x1,15) = [0, 0,−0.354]′,
c(x2,15) = [0, 0, 0.354]′.

Then, we derive the local G1
P - and V1

P -criterion values as

G1
P = max




c′(x11)M
−1(X, β1)c(x11) = 0.090

c′(x21)M
−1(X, β1)c(x21) = 0.090

...

c′(x1,15)M
−1(X, β1)c(x1,15) = 0.090

c′(x2,15)M
−1(X, β1)c(x2,15) = 0.090




= 0.338 and (B9)

V1
P = avg




c′(x11)M
−1(X, β1)c(x11) = 0.090

c′(x21)M
−1(X, β1)c(x21) = 0.090

...

c′(x1,15)M
−1(X, β1)c(x1,15) = 0.090

c′(x2,15)M
−1(X, β1)c(x2,15) = 0.090




= 0.170. (B10)

Similar computations for a second draw, β2 = [−2.083, 2.238,−1.624]′, yield

D2
P = 5.562,

A2
P = 486.821,

G2
P = 7.950,

V2
P = 1.163,

(B11)
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and for a third draw, β3 = [−0.486,−0.087,−1.594]′, we obtain

D3
P = 3.930,

A3
P = 17.804,

G3
P = 1.371,

V3
P = 0.462.

(B12)

Finally, we average the local criterion values over the three draws to obtain

the Bayesian values:

DB(X) = 3.493,

AB(X) = 169.561,

GB(X) = 3.219,

VB(X) = 0.598.

(B13)

Appendix C. Minimum and maximum utility-

balanced designs
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Table C1: Bayesian minimum and maximum utility-balanced designs for the
32×2/2/12 example and their efficiencies with respect to the different
optimality criteria.

Min UB Max UB

Choice Alt Attr Attr

set 1 2 3 1 2 3

1 I 1 1 2 3 1 1

II 3 3 1 3 2 1

2 I 1 1 2 3 1 2

II 3 2 1 3 2 2

3 I 1 1 2 2 1 1

II 2 3 1 2 2 1

4 I 1 2 2 2 1 2

II 3 3 1 2 2 2

5 I 2 1 2 1 1 1

II 3 3 1 1 2 1

6 I 1 1 2 1 1 2

II 2 2 1 1 2 2

7 I 1 1 2 1 3 1

II 3 1 1 2 3 1

8 I 1 2 2 1 3 2

II 3 2 1 2 3 2

9 I 1 3 2 1 1 1

II 3 3 1 2 1 1

10 I 1 2 2 2 3 1

II 2 3 1 3 3 1

11 I 1 1 2 3 2 1

II 3 3 2 3 3 1

12 I 1 1 1 1 3 1

II 3 3 1 2 3 2

DB-efficiency 0.43% 37.92%

AB-efficiency 0.15% 18.49%

GB-efficiency 0.08% 8.50%

VB-efficiency 0.15% 15.25%
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Table C2: Bayesian minimum and maximum utility-balanced designs for the
32 × 2/3/8 example and their efficiencies with respect to the differ-
ent optimality criteria.

Min UB Max UB

Choice Alt Attr Attr

set 1 2 3 1 2 3

1 I 1 1 2 1 2 1

II 1 2 2 2 1 1

III 3 3 1 2 2 1

2 I 1 1 2 1 2 2

II 2 1 2 2 1 2

III 3 3 1 2 2 2

3 I 1 1 2 1 1 1

II 1 3 2 1 2 1

III 3 3 1 2 1 1

4 I 1 1 2 1 1 2

II 2 2 2 1 2 2

III 3 3 1 2 1 2

5 I 1 2 2 2 2 1

II 2 1 2 3 1 1

III 3 3 1 3 2 1

6 I 1 1 2 2 2 2

II 1 1 1 3 1 2

III 3 3 1 3 2 2

7 I 1 1 2 1 3 2

II 3 1 2 2 2 2

III 3 3 1 2 3 2

8 I 1 2 2 3 1 1

II 1 3 2 3 2 2

III 3 3 1 3 2 1

DB-efficiency 0.24% 40.01%

AB-efficiency 0.07% 12.01%

GB-efficiency 0.04% 5.71%

VB-efficiency 0.08% 11.44%
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Appendix D. Estimated expected efficiency

If T refers to the number of tries for the algorithm, the efficiency Et of a

design Xt, t = 1, ..., T , generated by try t of the algorithm is given by

Et =
B(X∗)
B(Xt)

, (D1)

where B represents the DB-, AB-, GB- or VB-criterion value of a design and

X∗ is the optimal design according to that criterion.

Assume that for a large number of tries, T , we obtain G distinct designs

X1, ...,XG, with efficiencies E1 > ... > EG in terms of a particular optimality

criterion. As such, X1 is the best design and an estimate of the probability

of finding X1 in T tries, say π1, is given by the number of times X1 is found

divided by T . Correspondingly, if π2, ..., πG refer to the probabilities of

finding X2, ...,XG in T tries, the estimated expected efficiency from T tries

is given by

E(efficiency) =
G−1∑
i=1





(
G∑

j=i

πj

)T

−
(

G∑
j=i+1

πj

)T


Ei + πT

GEG. (D2)

The mathematical derivation underlying this expression can be retrieved in

the work of Trinca and Gilmour (2000) who introduced the estimated ex-

pected efficiency in the context of block designs.





Chapter 2

An efficient algorithm for

constructing choice designs

This chapter has been submitted as

1 Kessels, R., Jones, B., Goos, P. and Vandebroek M. (2006). An efficient

algorithm for constructing Bayesian optimal choice designs.

Abstract

Recently, Kessels, Goos and Vandebroek (2006) developed a way to produce

Bayesian G- and V-optimal designs for the multinomial logit model. These

designs allow for precise response predictions which is the goal of conjoint

choice experiments. The authors showed that the G- and V-optimality criteria

outperform the D- and A-optimality criteria for prediction. However, their

G- and V-optimal design algorithm is computationally intensive, which is a

barrier to its use in practice. In this chapter, we present an efficient algorithm

for calculating Bayesian optimal designs by means of the different criteria.

Particularly, the speed of computation for the V-optimality criterion has

improved dramatically. The new algorithm makes it possible to use Bayesian

D-, A-, G- and V-optimal designs that are tailored to individual respondents

in computerized conjoint choice studies.

35
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2.1 Introduction

Conjoint choice experiments or more concisely, choice experiments, are widely

used in marketing to measure how the attributes of a product or service

jointly affect consumer preferences. In a choice experiment, a product or ser-

vice is characterized by a combination of attribute levels called a profile or

an alternative. Respondents then choose one from a group of profiles called

a choice set. They repeat this task for several other choice sets presented

to them. All submitted choice sets make up the experimental design. The

aim of a choice experiment is to estimate the importance of each attribute

and its levels based on the respondents’ preferences. The estimates are then

exploited to mimic real marketplace choices by making predictions about

consumers’ future purchasing behavior.

Designing an efficient choice experiment involves selecting those choice sets

that result in an accurately estimated model providing precise predictions.

Kessels, Goos and Vandebroek (2006) compared four different design criteria

based on the multinomial logit model to reach this goal. They studied the

predictive performance of the D- and A-optimality criteria versus the G- and

V-optimality criteria. Special attention was paid to the G- and V-optimality

criteria which aim at making precise predictions. The authors were the first

to work out these criteria for the multinomial logit model. On the other

hand, the D- and A-optimality criteria focus on accurate estimates. Until

now, theD-optimality criterion has been most often employed to construct ef-

ficient choice designs (see Huber and Zwerina 1996; Sándor and Wedel 2001).

Because the multinomial logit model is nonlinear in the parameters, the com-

putation of the optimality criteria depends on the unknown parameter vec-

tor. To solve this problem, Kessels, Goos and Vandebroek (2006) adopted a

Bayesian design procedure as proposed by Sándor and Wedel (2001). Follow-

ing these authors, they approximated the design criteria using a Monte Carlo

sample from a multivariate normal prior parameter distribution. Monte Carlo

sampling involves taking a large number of random draws from a probabil-

ity distribution as a surrogate for that distribution. Like Sándor and Wedel

(2001), Kessels, Goos and Vandebroek (2006) used 1, 000 random draws. The

four optimality criteria in the Bayesian context are labelled the DB-, AB-,
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GB- and VB-optimality criteria. Kessels, Goos and Vandebroek (2006) imple-

mented these criteria in a modified Fedorov algorithm (Cook and Nachtsheim

1980; Fedorov 1972) to construct DB-, AB-, GB- and VB-optimal designs. We

refer to their complete algorithm as the Monte Carlo modified Fedorov algo-

rithm (MCMF).

Kessels, Goos and Vandebroek (2006) showed that the GB- and VB-optimality

criteria outperform the DB- and AB-optimality criteria in terms of prediction

accuracy. They warn, however, that the computation of GB- and VB-optimal

designs is substantially more demanding than the search for DB- and AB-

optimal designs. The long computing times resulting from MCMF make the

GB- and VB-optimality criteria impractical to use. Also, the computational

burden implies that the application of the DB-, AB-, GB- and VB-optimality

criteria to computerized conjoint choice studies is limited. Ideally, comput-

erized conjoint studies use choice designs that are tailored to the individual

respondents so that maximum information is obtained on the individuals’

preferences and thus on the heterogeneity between subjects.

The goal of this chapter is to present a novel design construction algorithm

that is much faster than MCMF employed by Kessels, Goos and Vandebroek

(2006). The speed of the new algorithm allows the GB- and VB-optimality

criteria to be used in practice and it also opens the perspective of applying

individualized Bayesian optimal choice designs in web-based conjoint studies.

The new algorithm has four key features. First, it uses an update formula

to economically calculate the change in any of the optimality criteria for two

designs that differ only in one profile. In this way, the optimality criterion

values do not need to be re-computed from scratch. Second, it involves a

formula for the VB-optimality criterion so that its computation is even more

efficient. Third, the algorithm is an adaptation of Meyer and Nachtsheim’s

(1995) coordinate-exchange algorithm which is much faster than the modi-

fied Fedorov algorithm. Lastly, it relies on a designed sample of only 20 prior

parameters instead of the Monte Carlo sample of 1, 000 draws. However, the

algorithm still checks the designs produced by each random start using the

Monte Carlo sample. Because of this re-evaluation, the algorithm is called
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the adaptive algorithm.

The outline of the remainder of the chapter is as follows. Section 2.2 reviews

the DB-, AB-, GB- and VB-optimality criteria for the multinomial logit model.

In Section 2.3, we present the adaptive algorithm as an alternative to MCMF

for faster computation of the optimal designs for all four criteria. We use the

design example from Kessels, Goos and Vandebroek (2006) for comparison

purposes. Section 2.4 discusses the four key features of the adaptive algo-

rithm and Section 2.5 considers a more challenging scenario made possible

by the faster method. Section 2.6 summarizes the results and suggests some

opportunities for further research.

2.2 Design criteria for the multinomial logit

To present our improved design construction approach, we start with an

overview of the different design criteria for the multinomial logit model. The

model draws on a choice design matrix X = [x′js]j=1,...,J ;s=1,...,S, where xjs is a

k× 1 vector of the attribute levels of profile j in choice set s. A respondent’s

utility for that profile is modelled as Ujs = x′jsβ + εjs, where β is a k × 1

vector of parameters and εjs is an i.i.d. extreme value error term. The

multinomial logit probability a respondent chooses profile j in choice set s

is pjs = ex′jsβ/
∑J

t=1 ex′tsβ. The information matrix M, which is the inverse

of the variance-covariance matrix of the parameter estimators, is the sum of

the information matrices of the S choice sets Ms as shown below:

M(X,β) = N

S∑
s=1

Ms(Xs,β)

= N

S∑
s=1

X′
s(Ps − psp

′
s)Xs,

(2.1)

where Xs = [x1s, ...,xJs]
′, ps = [p1s, ..., pJs]

′, Ps = diag[p1s, ..., pJs] and N

is the number of respondents. Kessels, Goos and Vandebroek (2006) im-

plemented different design criteria or functions of the information matrix

(2.1) for constructing optimal choice designs. This task is complicated by

the fact that the information on the parameters depends on the unknown
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values of those parameters through the probabilities. Therefore, the authors

adopted a Bayesian design strategy that integrates the design criteria over

a prior parameter distribution π(β). The multivariate normal distribution

N(β|β0,Σ0) was chosen for this purpose.

The design criteria employed are the D-, A-, G- and V-optimality criteria.

The D- and A-optimality criteria both are concerned with a precise estima-

tion of the parameters β in the multinomial logit model. The D-optimality

criterion aims at designs that minimize the determinant of the variance-

covariance matrix of the parameter estimators, while the A-optimality cri-

terion aims at designs that minimize the trace of the variance-covariance

matrix. The Bayesian D-optimality criterion is

DB =

∫

Rk

{
det(M−1(X,β))

}1/k
π(β)dβ, (2.2)

with the DB-optimal design minimizing (2.2). The AB-optimal design mini-

mizes

AB =

∫

Rk

tr(M−1(X,β))π(β)dβ. (2.3)

The G- and V-optimality criteria were developed to make precise response

predictions. These criteria are important in this context since predicting con-

sumer responses is the goal of choice experiments. The G- and V-optimality

criteria for the multinomial logit model were first elaborated by Kessels, Goos

and Vandebroek (2006). They are defined with respect to a design region χ

consisting of all Q possible choice sets of size J that can be composed from

the candidate profiles: χ = {{x1q, ...,xJq}| q = 1, ..., Q}. A G-optimal design

minimizes the maximum prediction variance over the design region χ, while

a V-optimality design minimizes the average prediction variance over this

region. Formally, the GB-optimality criterion is

GB =

∫

Rk

max
xjq∈χ

var{p̂jq(xjq,β)}π(β)dβ

=

∫

Rk

max
xjq∈χ

c′(xjq)M
−1(X,β)c(xjq)π(β)dβ,

(2.4)

where p̂jq(xjq, β) denotes the predicted choice probability for xjq and

c(xjq) =
∂pjq(xjq,β)

∂β
= pjq

(
xjq −

J∑
t=1

ptqxtq

)
, (2.5)
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the partial derivative of the multinomial logit probability with respect to β.

The VB-optimality criterion is

VB =

∫

Rk

∫

χ

c′(xjq)M
−1(X, β)c(xjq)dxjqπ(β)dβ (2.6)

with c(xjq) given by (2.5).

2.3 The adaptive algorithm versus MCMF

We propose the adaptive algorithm for generating DB-, AB-, GB- and VB-

optimal designs instead of the Monte Carlo modified Fedorov algorithm

(MCMF) employed by Kessels, Goos and Vandebroek (2006) (see Section 2.1).

The adaptive algorithm is much faster than MCMF so that for a given

computing time the resulting designs outperform the designs produced by

MCMF.

We illustrate the better results from the adaptive algorithm versus MCMF

using the design example of Kessels, Goos and Vandebroek (2006). These

authors constructed DB-, AB-, GB- and VB-optimal designs of two classes:

32×2/2/12 and 32×2/3/8. The design profiles in the two classes have a sim-

ilar attribute structure with two attributes at three levels and one attribute

at two levels. Hence, the sets of candidate profiles of the classes comprise the

same 32 × 2 = 18 profiles. The designs of the first class consist of 12 choice

sets of size two, while the designs of the second class consist of 8 choice sets

of size three. So, the designs of both classes contain 24 profiles. Since we

exploit this design example of 24 profiles to compare the adaptive algorithm

with MCMF, we refer to it as the comparison example and label it 32×2/24.

Using effects-type coding (see Kessels, Goos and Vandebroek 2006), the num-

ber of elements, k, in the parameter vector is five. As prior parameter dis-

tribution, Kessels, Goos and Vandebroek (2006) proposed the multivariate

normal distribution π(β) = N (β|β0,Σ0), with β0 = [−1, 0,−1, 0,−1]′ and

Σ0 = I5. They approximated this distribution by drawing a Monte Carlo

sample of R = 1, 000 prior parameter values βr, r = 1, ..., R, from it. The
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Bayesian optimal designs were then obtained from 200 tries or random starts

of the modified Fedorov algorithm. This algorithm iteratively improves the

starting design by exchanging its profiles with profiles from the candidate

set. To compute the GB- and VB-optimality criteria for the two-alternative

designs, the design region χ consists of Q =
(
18
2

)
= 153 choice sets, or 306

profiles, whereas for the three-alternative designs, it includes Q =
(
18
3

)
= 816

choice sets, or 2, 448 profiles.

Based on the same normal prior distribution we employed the adaptive al-

gorithm to reproduce the DB-, AB-, GB- and VB-optimal designs for the

comparison example. Besides the two- and three-alternative designs, we also

generated the four-alternative designs containing six choice sets. The design

region χ in this case is quite extensive involving Q =
(
18
4

)
= 3, 060 choice

sets, or 12, 240 profiles. The optimal designs from the adaptive algorithm ap-

pear in Tables A1, A2 and A3 of the Appendix. In Table 2.1, we compared

their criterion values with the criterion values from MCMF that we copied

from the work of Kessels, Goos and Vandebroek (2006). As can be seen,

the two-alternative DB-optimal designs from both algorithms are equivalent.

However, in all the other cases with two and three alternatives, the designs

generated with the adaptive algorithm outperform the designs generated with

MCMF.

Table 2.1: DB-, AB-, GB- and VB-criterion values of the DB-, AB-, GB- and
VB-optimal designs for the comparison example 32 × 2/24 computed
using the adaptive algorithm and the Monte Carlo modified Fedorov
algorithm.

Optimal 2 alternatives 3 alternatives 4 alternatives
design Adaptive MCMF Adaptive MCMF Adaptive MCMF
DB 0.73024 0.73024 0.75362 0.76617 0.86782 —
AB 6.55212 6.60563 5.97903 6.02261 6.57135 —
GB 0.49887 0.51997 0.51051 0.51843 0.60494 —
VB 0.07184 0.07219 0.06267 0.06285 0.05728 —
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The best criterion values from the adaptive algorithm were the result of 1, 000

random starts rather than the 200 random starts utilized to obtain the best

criterion values from MCMF. Because the adaptive algorithm is so much

faster than MCMF, the extra random starts were still accomplished using

far less computing time. The computing times for one try of the adaptive

algorithm and MCMF appear in Tables 2.2a and 2.2b, respectively. We per-

formed all computations in MATLAB 7 using a Dell personal computer with

a 1.60 GHz Intel Processor and 2 GB RAM.

Tables 2.2a and 2.2b show the huge reductions in computing time using the

adaptive algorithm. Particularly important are the reductions in computing

time for the GB- and VB-optimality criteria. With the adaptive algorithm

the construction of the GB- and VB-optimal designs has become practically

feasible. Even the four-alternative GB- and VB-optimal designs were gener-

ated quickly, while their computation was not doable with MCMF. Notice

also the faster running time for the VB-optimality criterion compared with

the GB-optimality criterion. This is due to a computational short cut in the

calculation of the VB-optimality criterion which we lay out in Section 2.4.2.

Table 2.2: Computing times for one try of the adaptive algorithm and the Monte
Carlo modified Fedorov algorithm to generate the Bayesian optimal
designs for the comparison example 32×2/24. The times are expressed
in hours:minutes:seconds.

a) Adaptive algorithm

Design # Alternatives

criterion 2 3 4

DB 00:00:03 00:00:04 00:00:05

AB 00:00:03 00:00:04 00:00:05

GB 00:00:07 00:00:32 00:04:23

VB 00:00:03 00:00:05 00:00:08

b) Monte Carlo modified Fedorov

Design # Alternatives

criterion 2 3 4

DB 00:08:00 00:08:00 —

AB 00:08:00 00:08:00 —

GB 03:00:00 12:00:00 —

VB 03:00:00 12:00:00 —

Note that the adaptive algorithm is computationally less effective per number

of tries than MCMF. This can be seen from the plots in Figure 2.1 in which

we compare the estimated expected efficiencies against various numbers of

tries of the adaptive algorithm and MCMF for computing the two-alternative
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DB- and VB-optimal designs. These are the efficiencies to expect if a number

of tries are performed with each of the algorithms. Details on the calculation

of the expected efficiency from a number of tries can be found in the work of

Kessels, Goos and Vandebroek (2006).

The plots for the two-alternative DB- and VB-optimal designs in Figure 2.1

are also representative of the two-alternative AB- and GB-optimal designs,

respectively. The plots for the three-alternative designs exhibit a similar pat-

tern. From the plots, we observe that the differences in efficiency in favor of

MCMF are smaller when a prediction-based design criterion is used instead

of an estimation-based design criterion. This might be due to the fact that

design optimization with the GB- and VB-optimality criteria is generally more

difficult than with the DB- and AB-optimality criteria.

A more realistic comparison of the effectiveness of the adaptive algorithm

versus MCMF appears in the plots of Figure 2.2. In these graphs, we plotted

the estimated expected efficiencies of the two-alternative DB- and VB-optimal

designs against the number of seconds of computing time. We expressed

the number of seconds on a log-scale. These plots provide compelling evi-

dence of the practical value of the adaptive algorithm. The huge increase

in speed created by the adaptive algorithm overtly leads to more efficient

designs in a given amount of computing time. This is especially the case

for the prediction-based design criteria as illustrated by the plot for the VB-

efficiencies. Note however, that the bend in the plot for the DB-efficiencies

reveals that the adaptive algorithm has a little difficulty making the final

jump from 99% efficiency to 100% or global efficiency.
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Figure 2.1: Estimated expected efficiencies against various numbers of tries of the
adaptive algorithm and the Monte Carlo modified Fedorov algorithm
for computing the two-alternative DB- and VB-optimal designs.
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Figure 2.2: Estimated expected efficiencies against various numbers of seconds
of the adaptive algorithm and the Monte Carlo modified Fedorov
algorithm for computing the two-alternative DB- and VB-optimal
designs.
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2.4 Features of the adaptive algorithm

There are four features of the adaptive algorithm that result in increased

speed compared with MCMF. They are:

1. updating the Cholesky decomposition of the information matrix,

2. an efficient computation of the VB-optimality criterion,

3. a coordinate-exchange algorithm,

4. a small designed sample of prior parameters.

The next sections discuss each of these in succession.

2.4.1 Updating the Cholesky decomposition of the in-

formation matrix

Updating the Cholesky decomposition of the information matrix is an eco-

nomical way to compute the DB-, AB-, GB- and VB-criterion values of designs

that differ only in one profile from another design. The Cholesky decomposi-

tion forms a symmetric positive definite matrix as an upper triangular matrix

multiplied on the left by its transpose. The information matrix M is symmet-

ric because the information matrices of the S choice sets Ms are symmetric.

They are of the form X′
sCsXs, where Cs = Ps − psp

′
s is symmetric. If M is

positive definite, then its Cholesky decomposition is defined as

M = L′L, (2.7)

where L is an upper triangular matrix named the Cholesky factor.

In the adaptive algorithm, different designs are generated by changing only

one attribute level of a single profile at a time (see Section 2.4.3). The

starting design is denoted by Xs. We compute the DB-, AB-, GB- and VB-

criterion values of each of the designs as follows. For each prior parameter

vector, we compute the information matrix Ms through (2.1) and derive its

Cholesky factor Ls. We then update the Cholesky factor after every profile

change with low rank updates based on the work of Bennett (1965). Using

the Cholesky factors the four criterion values for each design can be obtained
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as shown below. In this way, we avoid re-computation of the information

matrix through (2.1). For the comparison example 32× 2/24, this procedure

reduced the computing times by roughly a factor of three.

We now illustrate how the different design criteria rely on the Cholesky fac-

tor L of the information matrix M. For any vector of coefficients, the D-

optimality criterion becomes

D =(det(M−1))1/k = 1/(det(M))1/k = 1/(det(L′)det(L))1/k

=1
/

(
k∏

i=1

lii

)2/k

,
(2.8)

where lii is the ith diagonal element of L. Thus, to obtain the DB-criterion

value of a design in which a profile has been changed, we do not need to

re-compute the information matrix for every prior parameter vector. Only

an update of the Cholesky factor is required.

To show the dependency of the AB-, GB- and VB-optimality criteria on the

Cholesky factor L, the Cholesky decomposition (2.7) has to be inverted.

Denoting L−1 by Linv, the inverse is given by

M−1 = (L′L)−1 = LinvL
′
inv. (2.9)

Because the Cholesky factor, L, is triangular, inverting it is easier than in-

verting M. Then, for any prior parameter vector, the A-optimality criterion

is

A = tr(M−1) = tr(LinvL
′
inv) =

k∑
i=1

k∑
j=i

m2
ij, (2.10)

where mij is the ijth element in Linv. So to obtain the AB-criterion value

of a design in which a profile has been changed, we need to derive the new

Cholesky factor for every prior parameter vector and take its inverse. This

goes much faster than computing the new information matrix and inverting

it.

In a similar manner, the GB- and VB-criterion values are obtained. The

prediction variance of profile xjq ∈ χ is expressed as

c′(xjq)M
−1c(xjq) = c′(xjq)LinvL

′
invc(xjq). (2.11)
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Here, c(xjq) does not depend on the design X and therefore only needs to

be computed once for each prior parameter vector. The GB-criterion value

is obtained by inserting (2.11) in (2.4). For the VB-optimality criterion, we

performed some initial calculations that make its computation even more

efficient. We describe these calculations in the next section.

2.4.2 Efficient computation of the VB-optimality crite-

rion

In the adaptive algorithm, the VB-optimality criterion is implemented in an

efficient way. For each prior vector of coefficients, it is possible to compute

the average prediction variance without first computing the prediction vari-

ances for each profile xjq ∈ χ separately. A similar approach does not apply

to the GB-optimality criterion since finding the worst prediction variance re-

quires the computation of all variances.

To explain our method, we start from the prediction variance (2.11), but for

the sake of clarity, we leave the implementation of the inverse of the Cholesky

decomposition for the end. The prediction variance is naturally a scalar since

c(xjq) is a k× 1 vector and M−1 a k× k matrix. The trace of a scalar is the

scalar itself so that

c′(xjq)M
−1c(xjq) = tr(c′(xjq)M

−1c(xjq)). (2.12)

Now, tr(ABC) = tr(CAB) if A, B, C are matrices such that ABC is a

square matrix and the matrix product CAB exists. This equality is known

as the cyclic property of the trace. Since the prediction variance is a scalar

and c(xjq)c
′(xjq) is a k × k matrix that conforms with M−1,

tr(c′(xjq)M
−1c(xjq)) = tr(c(xjq)c

′(xjq)M
−1). (2.13)

Let Wjq = c(xjq)c
′(xjq). Because c(xjq) does not depend on the design X,

Wjq is not a function of X either so that it only has to be computed once for

each prior parameter vector. We now average the individual matrices Wjq

over all profiles xjq ∈ χ and denote the subsequent matrix by W:

W =
1

JQ

J∑
j=1

Q∑
q=1

Wjq. (2.14)
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The average prediction variance across all profiles xjq ∈ χ for a given prior

parameter vector is then

∫

χ

c′(xjq)M
−1c(xjq)dxjq = tr(WM−1) (2.15)

We refer to the work of Meyer and Nachtsheim (1995) for a similar expression

of the V-optimality criterion in the linear design setting. Finally, in terms of

the inverse of the Cholesky decomposition of the information matrix (2.9),

the average prediction variance is

tr(WM−1) = tr(WLinvL
′
inv). (2.16)

So, to obtain the VB-optimality criterion, we have to compute W for each

prior parameter vector only once. The set of W matrices can be re-used from

one random start to the next.

2.4.3 Coordinate-exchange algorithm

The adaptive algorithm uses Meyer and Nachtsheim’s (1995) coordinate-

exchange algorithm to generate Bayesian optimal designs. As opposed to

the modified Fedorov algorithm employed in Kessels, Goos and Vandebroek

(2006), it allows the computation of choice designs with a large number of

profiles, attributes and/or attribute levels in a reasonable amount of time.

The coordinate-exchange algorithm can be seen as a greedy profile exchange

algorithm. Whereas the modified Fedorov algorithm possibly changes every

”coordinate” or attribute level of a profile, the coordinate-exchange algo-

rithm only changes one coordinate. For each attribute level in the design,

the coordinate-exchange algorithm tries all possible levels and chooses the

level corresponding to the best value of the optimality criterion under con-

sideration.

In contrast with the modified Fedorov algorithm, the coordinate-exchange

algorithm is a candidate-set-free algorithm. That is, it does not require the

specification of a set of candidate profiles. This aspect becomes more im-

portant when the candidate set is very large because of a large number of

attributes and/or attribute levels. The coordinate-exchange algorithm is also
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substantially faster than the modified Fedorov algorithm. It runs in polyno-

mial time, while the modified Fedorov algorithm runs in exponential time.

For the comparison example, this leads to roughly a factor of three speed

increase of the coordinate-exchange algorithm over the modified Fedorov al-

gorithm. For designs with more profiles, attributes and/or attribute levels,

this increase in speed becomes more pronounced.

A small disadvantage of the coordinate-exchange algorithm compared with

the modified Fedorov algorithm is that it generally takes more random starts

to find a globally optimal design, especially when the DB- and AB-optimality

criteria are utilized. The plots in Figure 2.1 with estimated expected DB-

and VB-efficiencies for various numbers of tries illustrate this (see also Sec-

tion 2.3). Nevertheless, if the global optimum is not reached, the coordinate-

exchange algorithm still finds a very efficient design. Also, in terms of com-

puting time, the coordinate-exchange algorithm may be more effective than

the modified Fedorov algorithm. This is certainly the case for large, real-

istic design problems. Therefore, the lesser performance of the coordinate-

exchange algorithm per number of tries can be disregarded.

The coordinate-exchange algorithm has also been applied by Kuhfeld and

Tobias (2005) to generate D-efficient factorial designs for large choice exper-

iments based on a linear model. In their SAS %MktEx macro, the coordinate-

exchange algorithm is incorporated together with the modified Fedorov al-

gorithm and a large catalog of orthogonal arrays. If no orthogonal design

meets the design problem and the modified Fedorov algorithm is impractical

to use, then the coordinate-exchange algorithm is addressed. It may also be

combined with simulated annealing.

2.4.4 Small designed sample of prior parameters

In this section, we present a new method to approximate the integral related

to a multivariate normal prior π(β) = N (β|β0,Σ0) in the definitions of the

Bayesian optimality criteria. The solution of the integral with respect to a

multivariate normal prior for the various criteria has not been accomplished

analytically. In general for models that are nonlinear in the parameters some

numeric approximation to the integral is necessary (Chaloner and Verdinelli
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1995).

Sándor and Wedel (2001) and Kessels, Goos and Vandebroek (2006) used a

Monte Carlo estimate of the integral from 1, 000 random draws of the prior.

Such estimates are known to converge to the true value of the integral at

a rate proportional to the square root of the number of draws. This neces-

sitates a large number of draws to reduce the sample-to-sample variability

to the point where different samples do not lead to different design choices.

This approach is costly because the computing time for the Bayesian design

is then roughly 1, 000 times longer than the computing time for the local

design, that is, the design for one prior parameter vector.

To solve integrals related to a multivariate normal distribution for the con-

struction of choice designs, Sándor and Wedel (2002) utilized samples based

on orthogonal arrays (Tang 1993) and Sándor and Wedel (2005) constructed

quasi-Monte Carlo samples (Hickernell et al. 2000). In several cases, esti-

mates using these methods are more efficient than Monte Carlo estimates

so that it is possible to employ smaller samples to obtain the same accuracy

(Sándor and András 2004; Sándor and Train 2004). There is also an extensive

literature on quadrature, which is another approach to numerical integration.

However, for integrals of functions in more than four dimensions, Monte Carlo

estimates tend to outperform quadrature estimates (Geweke 1996; Monahan

and Genz 1997).

A 20-point set

We propose to approximate the integrals in (2.2), (2.3), (2.4) and (2.6) with

a designed sample of only 20 parameters. Assuming that the prior variance-

covariance matrix Σ0 is the identity matrix, the multivariate normal distri-

bution is spherically symmetric around the prior mean. As a result, every

parameter has the same density on a k-dimensional hypersphere of a given

radius. The 20 prior parameters are uniformally distributed on such a sphere.

In this way, they sample the different directions away from the prior mean

fairly.
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For the comparison example, the designed sample of 20 parameters yields an

approximation that is worse than the Monte Carlo sample of 1, 000 draws.

However, in the computation of Bayesian optimal designs, it is not necessary

for the approximation of the integral to be accurate. All that is required is

that the sign of the difference from a rough approximation corresponding to

two slightly different designs matches the sign of the difference from a better

approximation. With the plot in Figure 2.3 we illustrate that the system-

atic 20-point sample and the Monte Carlo sample largely agree on design

improvements in a random start.
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Figure 2.3: VB-criterion values according to the 1, 000-point Monte Carlo sample
versus the systematic 20-point sample and correlation between them.
The points represent the course of one try of the coordinate-exchange
algorithm for the two-alternative designs using the 20-point sample.

The plot compares the VB-criterion value for the Monte Carlo sample with

the VB-criterion value for the systematic 20-point sample. It depicts the

course of one random start of the coordinate-exchange algorithm for the

two-alternative designs. A random starting design is thereby monotonically

improved by making a sequence of changes, each of which improves the VB-

criterion value for the systematic 20-point sample. By re-evaluating each of

these changes with the VB-criterion value for the Monte Carlo sample, we

find out whether every change also leads to an improvement using the better
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approximation.

The starting design is represented by the point at the top right of the plot,

which of all points has the highest or worst VB-criterion value according to

the 20-point sample as well as the Monte Carlo sample. After making one

change in the original design, the second point from the top right shows an

improvement in the VB-criterion value for both samples. The points proceed

from the top right to the bottom left of the plot. The point at the bottom left

denotes the final and best design produced in the random start. Note that

this point has the lowest or best VB-criterion value as approximated by both

samples. Also note that the drop in the VB-criterion value is not monotonic,

indicating that the two approximations are not in complete agreement about

the VB-criterion value of each change in the sequence.

Still, the agreement between the VB-criterion value for the Monte Carlo sam-

ple and the VB-criterion value for the systematic 20-point sample is clear from

a correlation of 99%. Similar correlations are obtained using the coordinate-

exchange algorithm with every other design criterion and for a larger choice

set size. However, this does not imply that designs that are optimal using

the systematic 20-point sample are also optimal with respect to the Monte

Carlo sample. The plot in Figure 2.4 demonstrates this.

Like the plot in Figure 2.3, the plot in Figure 2.4 displays the VB-criterion

value for the Monte Carlo sample versus the VB-criterion value for the sys-

tematic 20-point sample. Now each point in the plot represents the best two-

alternative design found in a single random start of the coordinate-exchange

algorithm. Again, the algorithm used the VB-criterion value for the 20-point

sample to generate the designs and the VB-criterion value for the Monte Carlo

sample to re-evaluate them. From the plot, we see that the worst design by

both VB-criterion values is the same. On the other hand, the best design

according to the VB-criterion value for the 20-point sample differs from the

best design indicated by the VB-criterion value for the Monte Carlo sample.

In this case, the correlation between the VB-criterion values for the Monte

Carlo sample and the VB-criterion values for the 20-point sample from the
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Figure 2.4: VB-criterion values according to the 1, 000-point Monte Carlo sam-
ple versus the systematic 20-point sample and correlation between
them. The points correspond to two-alternative designs produced
by different tries of the coordinate-exchange algorithm using the 20-
point sample.

different tries is only 66%. This result also applies to the other design criteria

and larger choice set sizes. The fact that the correlation is not close to 100%

means that it is important to check each random start using the 20-point

sample with one calculation of the objective function using the Monte Carlo

sample. Therefore, our approach is an adaptive one in which we re-evaluate

the Bayesian designs from the 20-point sample after each try using the Monte

Carlo sample. The design with the best criterion value in terms of the 1, 000

draws is then selected.

Note that, if the correlation were near 100%, it would not be necessary to

check the designs. On the other hand, if the correlation were not fairly large,

then the adaptive approach would not work because designs using the 20-

point sample would not be substantially better than random designs. Also,

observe that thanks to the decrease in the number of prior parameters from

1, 000 to 20 during a try we save up to 98% of the computational work!
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Constructing a small sample of prior parameters

For any choice design problem, we can construct a small set of prior param-

eters based on minimum potential designs or space filling designs created

in JMP 6. The points of these designs are uniformally distributed on a k-

dimensional hypersphere at a radius of one away from the zero vector. So

on the sphere, the minimum distance to a neighboring point from any of the

design points is roughly the same for all the points.

To understand how minimum potential designs are created, consider n points

on a k-dimensional sphere around the zero vector. Each point, p, has levels

between [−1, 1] for k continuous factors and is denoted as (zp1, ..., zpk). Let

def be the distance between the eth and fth points. That is,

def =

√√√√
k∑

i=1

(zei − zfi)2. (2.17)

The optimization problem is to find the n × k values of zpi that minimize

Epot, the potential energy of the system:

Epot =
n−1∑
e=1

n∑

f=e+1

(
d2

ef +
1

def

)
. (2.18)

Here, d2
ef is proportional to the energy stored in a spring when you pull it

and 1/def is the potential energy between two like charged particles. When

the distance between two points increases, d2
ef increases. When the distance

between two points decreases, 1/def increases. To visualize this, Figure 2.5

shows a plane with 3 design points. Each point has springs attached to the

other two points. The springs pull the points together. However, each point

is also positively charged and the charges repel to push the points apart. The

result is that the points end up forming an equilateral triangle.

For the comparison example, the minimum potential design with 20 points

in a 5-dimensional space appears in Table 2.3. These points lie on a sphere

of a radius of one around [0, 0, 0, 0, 0]′. The minimum distance for each point

to the nearest point is 1.171. If this interpoint distance seems too large, then

it can be reduced by increasing the number of points.
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Figure 2.5: Three equally spaced points on the circumference of a circle.

Table 2.3: Minimum potential design of 20 points in 5 continuous factors for the
comparison example.

Design Minimum Nearest

point
z1 z2 z3 z4 z5

distance point
Radius

1 −0.17642 −0.57290 −0.19875 0.74536 −0.19600 1.17076 15 0.99281

2 −0.21775 0.81588 0.32619 −0.30104 −0.28759 1.17075 19 0.99281

3 −0.54891 −0.28739 −0.29445 0.17376 0.70655 1.17076 8 1.00000

4 −0.57116 0.06703 −0.27064 −0.77093 0.04122 1.17074 8 1.00000

5 −0.20011 −0.19572 −0.17339 −0.25973 −0.90384 1.17074 20 0.99281

6 0.00117 0.10528 0.59690 0.49371 −0.62360 1.17075 5 1.00000

7 −0.01228 0.13614 0.39319 −0.47950 0.76785 1.17076 13 0.99280

8 0.00528 −0.87552 −0.10638 −0.43810 0.15165 1.17074 4 0.99281

9 0.75353 −0.47946 −0.01214 0.10921 −0.43617 1.17076 16 1.00000

10 0.58274 0.19380 −0.32178 −0.71016 −0.08827 1.17075 20 0.99281

11 0.73699 0.47141 0.45742 0.07033 0.14296 1.17075 10 1.00000

12 −0.79511 −0.25333 0.54158 −0.02905 −0.04767 1.17077 13 0.99281

13 0.19427 −0.53359 0.65989 0.32602 0.36850 1.17075 17 1.00000

14 −0.00619 0.71761 −0.49688 −0.08192 0.48104 1.17075 2 1.00000

15 0.01039 −0.23327 −0.96643 −0.04302 −0.09815 1.17075 16 1.00000

16 0.60646 −0.18338 −0.34715 0.29484 0.61963 1.17075 15 0.99281

17 −0.19392 0.43870 0.30072 0.70409 0.42020 1.17075 13 0.99281

18 0.40102 0.49636 −0.41417 0.47335 −0.43591 1.17075 15 0.99281

19 −0.74200 0.35148 −0.35744 0.34145 −0.28555 1.17075 2 1.00000

20 0.17200 −0.17915 0.68369 −0.61868 −0.29685 1.17074 5 1.00000

To properly approximate the prior distribution with a 20-point sample from

the points of a minimum potential design, it is necessary to rescale these

points for the prior variance-covariance matrix and the prior mean. If there

is no correlation between the prior coefficients or Σ0 = σ2
0Ik, then the 20-point

sample lies on a sphere with a radius that is proportional to the standard

deviation σ0. Now, the effectiveness of the 20-point sample in the adaptive
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algorithm depends on the radius specified, or the number of standard devia-

tions away from the prior mean. That is to say, a well-chosen radius requires

fewer random starts to reach the global optimum. To find the best radius for

a spherical 20-point sample for any choice design problem, one could proceed

as follows:

1. Do a number of random starts of the adaptive algorithm for each of

three radii,

2. Fit a quadratic function to the minimum criterion value found at each

radius,

3. Choose the radius that is the minimum of the quadratic function.

For the comparison example, we performed 10 random starts for a radius of 1,

2 and 3. Recall that σ0 = 1 for this example. The result for the VB-optimality

criterion connected with two-alternative designs appears in Figure 2.6. Fit-

ting a quadratic model to the minima results in a radius slightly larger than

2. We chose however a radius of 2 for simplicity. To illustrate the value of

selecting a good radius, we compared the estimated expected efficiencies per

number of tries of the two-alternative VB-optimal designs using the 20-point

samples for the radii 1 and 2, respectively. The plots based on 250 tries

appear in Figure 2.7. We clearly observe the higher expected efficiencies in

case a radius of 2 is utilized as opposed to a radius of 1. We obtained similar

results for any other optimality criterion in combination with any choice set

size.

However, computing the ”best” radius is not absolutely necessary. The heu-

ristic of choosing a sphere radius that is twice the prior standard deviation

worked well in all the examples we tried. The critical part of the adaptive

algorithm is that for each random start using the 20-point sample, one checks

the resulting design with the larger Monte Carlo sample. So, no matter what

radius one chooses, one will have a monotonically improving set of designs as

the number of random starts increases. Still, choosing a good radius increases

the speed of the improvement over the random starts.
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Figure 2.6: VB-criterion values of two-alternative designs from 10 random starts
of the adaptive algorithm using the 20-point samples for the radii 1,
2 and 3.
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Figure 2.7: Estimated expected efficiencies per number of tries of the two-
alternative VB-optimal designs computed using the adaptive algo-
rithm with the 20-point samples for the radii 1 and 2.
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2.5 Computation of large choice designs

The speed of the adaptive algorithm makes the computation of Bayesian

optimal designs feasible for more challenging problems of larger dimensions

than the rather small comparison example 32× 2/24. We illustrate this with

the construction of designs of two classes: 5×3×23/2/15 and 5×3×23/3/10,

jointly referred to as 5×3×23/30. The designs consist of 30 profiles, grouped

in 15 choice sets of size two for the first class and 10 choice sets of size three

for the second class. The profiles are configured from five attributes, one of

which has five levels, another of which has three levels and the three others

of which have two levels. So in total, there are 5 × 3 × 23 = 120 candidate

profiles. This candidate set is much larger than the candidate set of 18 pro-

files employed in the comparison example.

For the two classes, we constructed designs using the DB- and VB-optimality

criteria. The DB-optimality criterion is the most popular criterion of the

estimation-based design criteria. For the prediction-based design criteria, we

prefer the VB-optimality criterion since it seeks to minimize the average pre-

diction variance over the design region χ and, as we showed in Section 2.4.2,

its criterion value can be computed more efficiently than the GB-criterion

value. For the two-alternative design class, χ consists of Q =
(
120
2

)
= 7, 140

choice sets, or 14, 280 profiles, whereas for the three-alternative design class,

it comprises Q =
(
120
3

)
= 280, 840 choice sets, or 842, 520 profiles. Compare

these numbers with the 306 profiles and 2, 448 profiles for the two- and three-

alternative designs of the comparison example.

The number of parameter values, k, using effects-type coding is nine. As

prior parameter distribution, we implemented the multivariate normal distri-

bution π(β) = N (β|β0,Σ0), with β0 = [−1,−0.5, 0, 0.5,−1, 0,−1,−1,−1]′

and Σ0 = I9. To obtain the designs for the DB- and VB-optimality criteria,

we performed 1, 000 tries of the adaptive algorithm for each criterion. We

therefore utilized a constructed 20-point sample for the design generation and

a random 1, 000-point sample for the design evaluation. Again, we carried

out all computations in MATLAB 7 by means of a Dell personal computer

with a 1.60 GHz Intel Processor and 2 GB RAM.
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The DB- and VB-optimal designs for the 5 × 3 × 23/30 example appear

in Tables A4 and A5 of the Appendix. Their criterion values appear in

Table 2.4. For both optimality criteria, we notice a decrease or an improve-

ment in the values as the choice set size goes from two to three. The result

that the performance in terms of prediction improves with the choice set

size was also noted by Sándor and Wedel (2002) and Kessels, Goos and

Vandebroek (2006). The VB-criterion values for the comparison example in

Table 2.1 further confirm this. However, we remain undecided as to the effi-

ciency of the DB-optimal designs with respect to the choice set size. In con-

trast to Table 2.4 where the DB-criterion values decrease with larger choice

sets, the DB-criterion values in Table 2.1 for the comparison example increase

with larger choice sets.

Table 2.4: DB- and VB-criterion values of the two- and three-alternative DB- and
VB-optimal designs for the 5× 3× 23/30 design example.

Optimal # Alternatives
design 2 3
DB 1.18591 1.13639
VB 0.23901 0.21065

The computing times for one try of the adaptive algorithm to generate the

two- and three-alternative DB- and VB-optimal designs for the 5× 3× 23/30

example appear in Table 2.5. The huge design region for the three-alternative

designs results in a running time of several minutes per try for the VB-

optimality criterion. The computation of the VB-optimal designs for this

large example would have taken months using MCMF.
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Table 2.5: Computing times for one try of the adaptive algorithm to gener-
ate the two- and three-alternative DB- and VB-optimal designs for
the 5 × 3 × 23/30 design example. The times are expressed in
hours:minutes:seconds.

Design # Alternatives

criterion 2 3

DB 00:00:08 00:00:14

VB 00:00:15 00:04:05

2.6 Conclusion

In this chapter, we propose an adaptive algorithm for producing DB-, AB-,

GB- and VB-optimal choice designs as an alternative to the Monte Carlo mod-

ified Fedorov algorithm (MCMF) employed by Kessels, Goos and Vandebroek

(2006). Kessels, Goos and Vandebroek (2006) had shown that GB- and VB-

optimal designs outperform DB- and AB-optimal designs for response pre-

diction, which is central in choice experiments. However, using MCMF com-

puting GB- and VB-optimal designs is even more cumbersome than searching

for DB- and AB-optimal designs so that they suggested implementing the

DB-optimality criterion in practice.

Unlike MCMF, the new adaptive algorithm makes the construction of GB-

and VB-optimal designs practical and it allows the DB-, AB-, GB- and VB-

optimal designs to be embedded in web-based conjoint choice studies with

individualized designs for the respondents. We prefer using VB-optimal de-

signs since they minimize the average prediction variance and can be com-

puted faster than GB-optimal designs. In general, the main improvement of

the adaptive algorithm over MCMF is the approximation of the normal prior

distribution by a designed sample of 20 parameter vectors instead of a Monte

Carlo sample of 1, 000 random draws. This saves up to 98% of the compu-

tational work within each try of the algorithm. Nevertheless, we re-evaluate

the designs produced by each try using the Monte Carlo sample and adapt

the design selection accordingly. This led us to call our method the adaptive

algorithm.
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To further speed up the design generation, the adaptive algorithm also uses a

coordinate-exchange algorithm rather than a modified Fedorov algorithm. A

coordinate-exchange approach saves time by avoiding the creation and use of

a candidate set that grows exponentially with the number of attributes and

attribute levels studied. Thus, the time savings of the coordinate-exchange

algorithm increase with the number of profiles, attributes and attribute lev-

els. As a last way to accelerate the computations for any optimality criterion,

the adaptive algorithm incorporates an update formula to economically cal-

culate the optimality criterion values of designs.

The computational speed of the adaptive algorithm makes the use of individ-

ualized Bayesian optimal designs in web-based surveys possible. To examine

what is the best way to do this, is beyond the scope of this chapter. We

expect, however, that such an approach would allow an efficient estimation

of mixed logit (Sándor and Wedel 2002) and latent class models (Andrews,

Ainslie and Currim 2002; Train 2003) that aim at modelling consumer het-

erogeneity. Another topic for further research is the construction of designs

for choice experiments in which one suspects correlation between parameter

coefficients. In that case, the multivariate normal prior distribution is el-

liptically symmetric around the prior mean. The small designed sample of

parameters from a minimum potential design should then be rescaled to lie

on a k-dimensional ellipsoid. Lastly, the efficiency of optimal designs with

respect to the choice set size might be further investigated.
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Appendix. Choice design tables

Table A1: Two-alternative Bayesian optimal designs for the 32 × 2/24 example.

DB AB GB VB

Choice Alt Attr Attr Attr Attr

set 1 2 3 1 2 3 1 2 3 1 2 3

1 I 1 2 2 2 1 2 1 2 2 1 3 2

II 2 1 1 1 2 1 3 1 2 2 1 2

2 I 3 1 1 1 2 2 1 2 1 1 2 2

II 2 3 2 2 1 1 2 3 1 2 3 2

3 I 2 3 2 2 2 2 2 1 1 2 2 2

II 1 2 2 1 1 1 3 2 2 1 1 2

4 I 3 3 2 2 2 1 2 2 1 2 2 1

II 2 2 1 3 1 1 1 3 1 1 3 2

5 I 2 2 2 2 1 1 1 2 1 1 1 1

II 1 3 2 1 2 1 2 1 2 2 2 2

6 I 1 2 2 2 3 2 3 3 1 2 1 1

II 3 1 2 3 2 1 2 1 1 3 1 2

7 I 3 1 2 1 2 2 2 3 2 1 2 2

II 1 3 1 2 3 2 3 1 1 3 1 2

8 I 1 2 1 1 3 1 3 2 1 1 1 1

II 2 1 2 3 1 2 1 1 1 3 3 2

9 I 2 2 2 1 1 1 3 1 2 1 2 1

II 1 1 1 3 1 1 1 3 1 2 1 2

10 I 2 2 1 3 3 2 2 2 1 2 3 2

II 1 1 1 2 1 1 3 3 2 3 1 1

11 I 3 2 1 2 2 2 2 2 2 3 2 2

II 2 1 1 1 3 2 1 1 1 2 1 2

12 I 2 1 1 2 2 1 1 1 2 1 2 2

II 3 2 2 1 1 1 2 1 1 1 3 1
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Table A2: Three-alternative Bayesian optimal designs for the 32×2/24 example.

DB AB GB VB

Choice Alt Attr Attr Attr Attr

set 1 2 3 1 2 3 1 2 3 1 2 3

1 I 2 1 1 1 2 1 2 1 1 3 1 1

II 1 3 1 2 1 2 1 2 2 1 3 2

III 1 2 2 1 3 2 1 3 1 2 2 1

2 I 2 3 2 1 1 1 2 2 1 3 1 1

II 1 2 1 1 2 2 1 3 2 2 2 2

III 3 1 2 2 2 1 3 2 2 3 2 2

3 I 1 2 1 2 2 2 2 3 1 3 1 2

II 2 3 1 1 2 2 2 1 2 2 3 2

III 1 3 2 1 1 1 3 3 1 2 2 1

4 I 3 2 2 1 2 1 1 1 1 1 3 1

II 2 1 1 1 1 1 3 1 2 2 1 1

III 1 3 2 2 1 1 2 3 2 1 2 2

5 I 2 1 2 2 2 1 3 2 1 1 1 1

II 2 2 2 3 1 1 3 3 1 2 3 2

III 1 1 1 1 3 1 1 3 1 3 2 2

6 I 3 3 2 1 2 1 1 2 1 3 3 2

II 2 2 1 2 3 1 2 3 2 1 3 1

III 1 1 1 3 3 2 2 3 1 2 1 2

7 I 3 1 2 2 3 2 1 1 1 1 3 2

II 2 1 1 3 1 1 1 2 2 2 3 2

III 3 2 1 3 3 1 2 1 2 1 2 2

8 I 1 2 1 2 1 1 2 1 1 3 2 1

II 3 1 1 3 2 1 1 1 2 3 1 2

III 2 2 2 1 2 1 2 2 1 1 1 1
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Table A3: Four-alternative Bayesian optimal designs for the 32 × 2/24 example.

DB AB GB VB

Choice Alt Attr Attr Attr Attr

set 1 2 3 1 2 3 1 2 3 1 2 3

1 I 2 2 2 2 3 2 2 3 1 3 1 1

II 2 1 1 3 2 2 2 2 1 1 2 1

III 3 1 2 2 2 2 1 3 1 2 1 1

IV 3 2 1 1 1 1 1 2 2 3 2 2

2 I 2 1 2 1 3 1 3 2 1 3 2 2

II 3 1 1 2 3 2 2 1 2 1 1 1

III 3 2 2 1 3 2 1 1 1 2 3 2

IV 1 2 1 2 1 1 3 1 1 2 2 2

3 I 2 2 1 3 1 1 1 3 2 2 3 1

II 1 1 1 3 2 1 1 1 2 1 3 2

III 1 3 2 1 2 2 1 2 1 2 1 2

IV 3 1 2 2 1 1 2 2 2 1 2 1

4 I 1 2 1 2 2 1 2 1 1 3 3 1

II 2 1 1 1 1 1 3 1 2 3 1 1

III 1 3 1 3 1 2 1 2 2 1 3 1

IV 2 3 2 1 3 2 2 3 2 2 2 2

5 I 3 2 2 3 2 2 2 3 1 2 2 1

II 2 2 2 1 2 1 3 3 1 2 1 1

III 2 3 2 3 1 1 3 1 1 1 3 2

IV 1 1 1 1 1 1 3 3 2 3 1 2

6 I 1 2 2 1 3 1 3 1 2 2 3 2

II 2 3 1 2 1 2 1 2 2 2 2 1

III 1 3 1 2 3 1 2 1 2 1 2 2

IV 2 1 1 1 2 1 1 1 1 1 3 1
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Table A4: Two-alternative DB- and VB-optimal designs for the 5 × 3 × 23/30
example.

DB VB

Choice Alt Attr Attr

set 1 2 3 4 5 1 2 3 4 5

1 I 5 2 1 2 2 4 1 1 2 2

II 4 3 2 1 2 5 1 2 2 1

2 I 3 2 2 1 1 2 1 1 1 2

II 2 3 1 2 1 4 2 2 1 2

3 I 5 1 2 1 1 3 3 1 2 1

II 1 2 1 2 1 5 2 1 2 1

4 I 4 1 1 1 1 4 3 1 1 2

II 2 2 1 1 1 3 2 1 1 2

5 I 3 1 1 2 1 5 3 2 2 1

II 4 2 2 1 2 2 2 2 1 1

6 I 1 2 2 1 1 2 1 2 2 1

II 2 1 2 1 1 3 2 2 2 2

7 I 2 2 2 2 1 3 1 2 2 1

II 3 1 1 2 2 2 3 2 1 2

8 I 1 1 1 1 1 1 3 1 2 2

II 4 3 1 2 2 3 3 1 2 2

9 I 2 1 1 1 2 2 3 2 2 1

II 5 2 2 2 1 1 1 2 1 1

10 I 5 3 1 1 2 4 3 2 2 2

II 4 2 2 1 1 3 3 2 1 2

11 I 1 1 2 2 2 2 2 2 1 1

II 3 2 2 2 2 5 1 1 1 2

12 I 3 1 2 1 1 1 2 2 1 1

II 5 1 2 1 2 2 2 2 1 2

13 I 1 3 2 1 1 4 1 2 2 1

II 3 2 1 2 1 1 2 1 2 1

14 I 4 1 2 2 1 4 1 2 1 1

II 3 3 2 2 2 1 3 2 2 1

15 I 3 3 2 2 1 5 3 2 1 2

II 4 2 1 1 2 4 2 1 2 1
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Table A5: Three-alternative DB- and VB-optimal designs for the 5 × 3 × 23/30
example.

DB VB

Choice Alt Attr Attr

set 1 2 3 4 5 1 2 3 4 5

1 I 4 3 1 2 2 5 1 2 1 1

II 1 1 1 1 1 4 3 2 1 2

III 2 2 2 1 1 3 2 2 1 2

2 I 2 3 2 1 2 1 1 1 2 1

II 1 3 1 2 1 5 2 2 1 2

III 5 2 2 1 2 3 3 2 1 2

3 I 4 3 2 1 1 1 2 2 1 2

II 3 3 1 1 2 3 2 2 2 1

III 2 2 1 1 1 4 1 2 2 1

4 I 2 3 1 1 1 4 2 1 1 1

II 1 2 1 1 1 2 3 1 2 1

III 5 3 1 2 2 1 1 1 1 1

5 I 3 1 2 2 1 5 3 2 1 2

II 1 2 2 2 1 1 3 1 1 1

III 2 2 2 2 2 4 2 1 2 1

6 I 2 1 2 2 1 3 3 2 1 1

II 3 2 2 1 2 2 2 1 1 2

III 4 1 2 1 2 5 3 1 1 2

7 I 4 2 1 2 2 2 2 1 1 2

II 3 1 2 1 1 5 3 2 2 1

III 5 3 2 2 1 4 2 2 1 2

8 I 4 1 1 2 1 1 2 1 2 1

II 2 3 1 1 2 3 1 1 1 2

III 3 3 2 2 1 2 1 2 1 1

9 I 4 2 2 2 1 5 1 2 2 1

II 1 3 2 2 1 2 3 2 1 1

III 5 1 1 2 2 3 3 1 2 2

10 I 3 2 1 2 1 1 3 2 1 2

II 5 1 2 1 1 2 3 1 2 2

III 1 3 1 1 2 3 1 1 1 2



Chapter 3

Recommendations on the use of

Bayesian choice designs

This chapter has been submitted as

1 Kessels, R., Jones, B., Goos, P. and Vandebroek M. (2006). Recommenda-

tions on the use of Bayesian optimal designs for choice experiments.

Abstract

In this chapter, we argue that some of the prior parameter distributions

used in the literature for the construction of Bayesian optimal designs are

internally inconsistent. We rectify this error and provide practical advice on

how to properly specify the prior parameter distribution. Also, we present

two pertinent examples to illustrate that Bayesian optimal designs generally

outperform utility-neutral optimal designs that are based on linear design

principles.

67
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3.1 Introduction

Choice experiments have become an increasingly popular method to under-

stand consumers’ preference structures for the attributes of a product or

service. In such experiments respondents make a sequence of choices. In

each case they indicate their preferred product or service among a choice

set of alternatives or profiles. A profile is thereby characterized by a com-

bination of attribute levels. The design of a choice experiment comprises a

select number of choice sets administered to each respondent. The aim of a

choice experiment is to estimate the importance of each attribute and their

levels based on the respondents’ preferences. The estimates are then used

to mimic real marketplace choices by making predictions about consumers’

future purchases.

The question of how to design efficient choice experiments has received a great

deal of attention recently. Designing an efficient choice experiment involves

selecting those choice sets that result in a precisely estimated model provid-

ing accurate predictions. At present, two design approaches are prevalent:

the Bayesian design approach and the linear design approach. We review

these current practices for setting up choice experiments.

Bayesian choice designs have so far been constructed for the multinomial

logit model (McFadden 1974). This discrete choice model predicts for profile

j, j = 1, ..., J , in choice set s, s = 1, ..., S, the probability that people prefer

it: pjs = ex′jsβ/
∑J

t=1 ex′tsβ. Here, xjs is a k × 1 vector of the attribute levels

of profile j in choice set s and β is a k × 1 vector of parameter values. The

multinomial logit probability is derived from people’s latent utility for profile

j in choice set s: Ujs = x′jsβ + εjs where εjs is an i.i.d. extreme value error

term. Since the multinomial logit model is nonlinear in the parameters, like

all other choice models, the quality of a given design depends on the unknown

parameter vector. The Bayesian design approach deals with this problem by

assuming a prior distribution of likely parameters. It thereby takes into

account the uncertainty on the proposed parameters. To date, most of the

Bayesian research focus has been on designs for main-effects models.
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Sándor and Wedel (2001) were the first to introduce the Bayesian design

procedure in the choice design literature. They generated Bayesian designs

using the D-optimality criterion for the multinomial logit model. This design

criterion seeks to minimize the determinant of the variance-covariance matrix

of the parameter estimators. In the Bayesian framework, it is referred to as

the DB-optimality criterion. Sándor and Wedel (2001) showed that the DB-

optimal designs generally outperform the locally DP -optimal designs which

are based on a point estimate for the unknown parameter vector (Huber and

Zwerina 1996). Sándor and Wedel (2005) continued the Bayesian approach

to construct so-called heterogeneous DB-optimal designs that include several

different designs that are each offered to different respondents.

Kessels, Goos and Vandebroek (2006) expanded the work on Bayesian choice

designs by also considering other design criteria than the commonly used

DB-optimality criterion. They compared the DB- and AB-optimality crite-

ria with the GB- and VB-optimality criteria for the multinomial logit model.

The DB- and AB-optimality criteria concentrate on producing precise esti-

mates, whereas the GB- and VB-optimality criteria focus on providing precise

predictions, which is key in choice experiments. Using a simulation study,

Kessels, Goos and Vandebroek (2006) demonstrated that the DB- and AB-

optimal designs actually produce more precise estimates and that the GB-

and VB-optimal designs produce better predictions. Also, they showed that

the DB-optimal designs perform reasonably well in terms of prediction.

To quickly generate the Bayesian designs, Kessels et al. (2006) developed

an adaptive algorithm. The high speed of this algorithm stems from the

use of a small designed sample of prior parameters to approximate the prior

distribution, Meyer and Nachtsheim’s (1995) coordinate-exchange algorithm,

and an update approach to economically calculate the criterion values of

designs that differ only in one profile from another design. Kessels et al.

(2006) recommended using VB-optimal designs primarily because they are

faster to compute. Also, Kessels et al. (2006) preferred minimizing the

average prediction variance to minimizing the maximum prediction variance

over the design region, as the VB- and GB-optimal designs do, respectively.
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Currently, however, linear design principles are still used to construct designs

for choice experiments. Such designs are based on an implicit assumption

that the respondents are indifferent to all attribute levels, and thus to all

alternatives. Moreover, there is no uncertainty associated with the indiffer-

ence. This is equivalent to adopting a zero prior parameter vector with zero

prior variance for the multinomial logit model. The designs are therefore

referred to as utility-neutral designs and they are utility balanced by as-

sumption (Huber and Zwerina 1996). Utility-neutral designs for main effects

as well as main effects plus interactions have been discussed at length. To

generate them, Kuhfeld and Tobias (2005) proposed a D-efficient factorial

design algorithm implemented in the SAS %MktEx macro. This algorithm

combines Cook and Nachtsheim’s (1980) modification of Fedorov’s (1972)

exchange algorithm, the coordinate-exchange algorithm with simulated an-

nealing, and a very large catalog of orthogonal arrays.

Street, Bunch and Moore (2001) and Street and Burgess (2004) followed a

more theoretical approach providing generators to construct utility-neutral

paired comparison designs for two-level attributes. In paired comparison de-

signs profiles are arranged in choice sets of size two. The authors used the

nonlinear Bradley-Terry model, that is the logit model for paired evaluations,

for which they assumed zero prior parameter values. In most of this work, the

focus was on the D-optimality criterion, but Street, Bunch and Moore (2001)

also computed A-optimal pairs, which minimize the sum or the average of

the variances of the parameter estimators. Furthermore, Burgess and Street

(2003) derived D-optimal utility-neutral designs for two-level attributes of

any choice set size. Even more flexible designs allowing for attributes with

any number of levels are elaborated in Burgess and Street (2005). Finally,

Street, Burgess and Louviere (2005) showed that the theoretical strategies

proposed in their aforementioned papers produce utility-neutral designs that

are better than those based on common strategies.

The assumption of complete indifference among all alternatives underlying

the utility-neutral designs is surely unrealistic. The Bayesian design approach

is more practical since it incorporates all available prior information in the de-

signs. Moreover, Bayesian optimal designs are on average more efficient than
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utility-neutral optimal designs. In this chapter we show that this is indeed

true using two design examples. Before doing so, we first rectify a misunder-

standing with respect to the specification of the prior parameter distribution.

In a number of Bayesian design examples studied by Sándor and Wedel

(2001), Kessels, Goos and Vandebroek (2006) and Kessels et al. (2006) where

prior information on the parameter vector β from previous experiments is

lacking, the specification of the prior distribution is impractical. In these

examples Bayesian optimal designs are constructed for a multivariate nor-

mal distribution π(β) = N (β|β0,Σ0), where the elements in the prior mean

β0 are equally spaced between −1 and 1 for each attribute and the prior

variance-covariance matrix Σ0 is the identity matrix. In the next section, we

show that these specifications of β0 and Σ0 conflict. Also, we provide some

general recommendations on how to properly specify the prior parameter

distribution π(β) = N (β|β0,Σ0) for any design case.

3.2 Guidance on correctly specifying the prior

parameter distribution

We illustrate for the 32 × 2/24 design example, initiated in Kessels, Goos

and Vandebroek (2006) and extended in Kessels et al. (2006), that the prior

parameter distribution used to construct the Bayesian designs is unrealistic.

In this example, the profiles are composed of two attributes at three levels

and one attribute at two levels. The total number of design profiles is 24 and

they have been arranged in choice sets of size two, three and four. Through

effects-type coding, the number of elements, k, in the parameter vector β

is 5. The prior parameter distribution exploited was the multivariate nor-

mal distribution π(β) = N (β|β0,Σ0). The parameter values of the prior

mean β0 were evenly spaced between −1 and 1 for each attribute so that

β0 = [−1, 0,−1, 0,−1]′, and the prior variance-covariance matrix Σ0 was the

identity matrix I5. We explain why these specifications of β0 and Σ0 are

contradictory.
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First, however, a note should be made about the effects-type coding we adopt

in this chapter. For a two-level attribute, Sándor and Wedel (2001), Kessels,

Goos and Vandebroek (2006) and Kessels et al. (2006) coded the first level as

−1 and the second level as 1 while specifying a prior mean parameter value

of −1. In this way, a utility of 1 is attached to the first level and a utility of

−1 to the second level so that the utilities decrease with the attribute levels.

On the other hand, for attributes with more than two levels, the authors

coded the levels such that the utilities increase with the levels given prior

mean values that are equally spaced between −1 and 1. For example, for an

attribute with three levels, the first level is coded as [1 0], the second level

as [0 1] and the third level as [−1 − 1]. Given prior mean values of [−1, 0]′

the utilities associated with the three levels are −1, 0 and 1, respectively.

In order to have the utilities increase with the levels for all attributes, we

change the coding for a two-level attribute to 1 for the first level and to −1

for the second level.

Consider now the two-alternative choice set in Table 3.1 for the 32 × 2/24

design example. This choice set is special in the sense that Alternative I

consists of the worst possible levels for each attribute given the prior mean

β0 = [−1, 0,−1, 0,−1]′ and Alternative II consists of the best possible at-

tribute levels. As a result, Alternative II dominates the choice set. This

can also be seen from the logit probabilities given β0. The probability that

Alternative I is chosen is 0.00247 and the probability that Alternative II is

chosen is 0.99753. These probabilities are most extreme meaning that there

is no other two-alternative choice set for the 32 × 2/24 example with more

extreme logit probabilities given β0. So, these probabilities imply very strong

prior information. In other words, the prior mean is very informative about

the overall attractiveness of the two alternatives in the choice set of Table 3.1.

Now, given the prior variance Σ0 = I5, the parameters β1 = [0, 0, 0, 0, 0]′

and β2 = [−2, 0,−2, 0,−2]′ are equally likely under the prior mean β0 and

neither is improbable when drawn from a Monte Carlo sample. Using β1

the probabilities of choosing Alternatives I and II are 0.5 each. Using β2

the probabilities of choosing Alternatives I and II are 0.00001 and 0.99999,

respectively. The differences in probabilities from using β1 and β2 seem to
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Table 3.1: A two-alternative choice set for the 32 × 2/24 design example.

Alt Attr

1 2 3

I 1 1 1

II 3 3 2

imply that not much prior information is assumed when Σ0 = I5 is used as

the variance-covariance matrix of the prior distribution.

To illustrate a more extreme case where prior information is completely lack-

ing, we ponder the parameters β3 = [1, 0, 1, 0, 1]′ and β4 = [−3, 0,−3, 0,−3]′.
Similar to β1 and β2, these parameters are equally likely when β0 and I5

are used as prior mean and variance, and neither is improbable in a Monte

Carlo sample. However, since they are further away from the prior mean,

they are less plausible than β1 and β2. Using β3 the probabilities of choos-

ing Alternatives I and II are 0.99753 and 0.00247, respectively. Using β4 the

probabilities are reversed, essentially equaling 0 and 1.

Based on the above observations, the prior mean indicates that one has a

substantial amount of prior knowledge about people’s preferences for the

alternatives in the choice set of Table 3.1. In fact, one has so much prior

information that the choice set should not be included in the design. This

is indeed the case when examining the optimal designs with choice sets of

size two generated by Kessels et al. (2006). On the other hand, the prior

variance implies that one has very little prior knowledge because the range

of expected probabilities for the two alternatives in the choice set essentially

goes from zero to one.

Hence, the prior parameter distribution π(β) = N (β|β0,Σ0), with β0 =

[−1, 0,−1, 0, −1]′ and Σ0 = I5 is internally inconsistent. If one knows as

much as the mean implies, then the variance should be smaller. If one knows

as little as the variance implies, then the mean should be closer to the zero

vector. Consequently, to specify a proper prior parameter distribution, one
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has to choose between

1. an informative mean with a small variance and

2. a less informative mean with a larger variance.

The first option makes sense if you are augmenting a previous study, or ver-

ifying its results. In that case, the posterior mean and variance from the

previous work can be used as the prior mean and variance for the new study.

The second strategy is appropriate in a case where no previous work has been

done. Most often, one has some prior beliefs about the relative preferences

for the attributes and its levels. It is sensible to incorporate these notions in

the prior mean. However, if one is completely without intuition about what

choices will be made by the market segment one is targeting, then the zero

vector should be used as prior mean.

When dealing with ordinal attributes like for example the price of an apart-

ment, the speed of a computer, the size of a house, and so forth, one has

generally a clear idea about the overall predilection for the attribute levels.

Utilities usually either increase or decrease when going from the low to the

high setting of an ordinal attribute. It is wise to reflect this information in

the prior mean.

To ensure that one uses an appropriate prior mean β0 for the prior param-

eter distribution π(β) = N (β|β0,Σ0) when no previous studies have been

performed, we propose the following sanity check for β0:

1. List all possible choice sets of size two and compute the multinomial

logit probabilities for each profile in these choice sets given β0.

2. Check whether the probabilities for all alternatives are reasonable. Do

they match one’s subjective probabilities or beliefs? Does one feel as

confident about the alternatives as the logit probabilities imply?

3. (a) If yes, then β0 is a good choice.

(b) If no, then choose a new prior mean in accordance with your

understanding:
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i. If the probabilities of the alternatives tend to overestimate

one’s beliefs, or one knows less than the probabilities indicate,

then β0 should be taken closer to the zero vector. This draws

the probabilities nearer to each other.

ii. If the probabilities underestimate one’s understanding, or one

knows more than the probabilities reveal, then β0 should be

taken somewhat further from the zero vector. This pulls the

probabilities more apart.

Note that overstating one’s beliefs occurs more frequently than

understating one’s beliefs. Subsequently, verify whether the new

prior mean is suitable by repeating the procedure.

Instead of going through all possible choice sets of size two, a more instant

check on the suitability of the prior mean β0 is to examine only the choice

set with the least attractive alternative and the most attractive alternative

given β0. Assuming main-effects models, the least attractive alternative is

composed by selecting the worst possible level for each attribute and the

most attractive alternative is composed by selecting the best possible level

for each attribute. As already mentioned, the choice set of Table 3.1 groups

these alternatives for the 32 × 2/24 design example given the prior mean

β0 = [−1, 0,−1, 0,−1]′. Once the choice set with the most extreme alterna-

tives is constructed, the logit probabilities should be computed and studied

in order to evaluate β0 using steps 2 and 3 of the sanity check proposed

above. The probabilities of this single choice set supply a reasonable quick

test of the appropriateness of β0.

From the above discussion on the sanity check for the prior mean β0, it is

clear that the number of attributes plays a role in the specification of β0.

The more attributes are involved, the more extreme the logit probabilities

for any choice set might be. In particular, the probabilities for the choice

set with the most extreme alternatives might be close to zero and one. The

more extreme the probabilities, the more confident one is supposed to be

about the preferences for the alternatives. Consequently, the probabilities

may readily overstate one’s beliefs. In case of a large number of attributes,

we therefore advise against taking a prior mean far away from the zero vector
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and recommend using smaller absolute prior parameter values.

We illustrate this argument by comparing the prior means β01 = [−1,−1]′

and β02 = [−1,−1,−1,−1,−1,−1]′ associated with two and six two-level

attributes, respectively. Both prior means assume equally spaced elements

between −1 and 1 for the levels of each attribute. The choice sets with the

most extreme alternatives given each of these priors are shown in Tables 3.2a

and 3.2b. Using β01 the probabilities that Alternatives I and II in Table 3.2a

are chosen are 0.01799 and 0.98201, respectively. Using β02 the probabilities

that Alternatives I and II in Table 3.2b are chosen equal 0.00001 and 0.99999.

Table 3.2: Two choice sets with the most extreme alternatives given a) β01 =
[−1,−1]′ and b) β02 = [−1,−1,−1,−1,−1,−1]′.

Alt Attr

a) 1 2

I 1 1

II 2 2

Alt Attributes

b) 1 2 3 4 5 6

I 1 1 1 1 1 1

II 2 2 2 2 2 2

It is obvious that the probabilities for the choice set with two attributes in

Table 3.2a are less extreme than those for the choice set with six attributes

in Table 3.2b. For the choice set in Table 3.2b, one has to be virtually cer-

tain about the alternative that people prefer, whereas for the choice set in

Table 3.2a, there is still room for a little hesitation. We believe that, without

any data from a previous study, it is very rare to be completely confident

about people’s preference evaluations for the choice set in Table 3.2b.

In fact, already in the case of three attributes, the most extreme logit prob-

abilities, being 0.00247 and 0.99753, most probably overvalue one’s notions.

Note that these probabilities are independent of the number of levels for each

attribute if the parameter values in β0 are evenly spaced between −1 and 1

per attribute. Only the value of −1 for the first level is important for each

attribute then since the values for the other levels cancel each other out (for

an example see Section 3.3.2). So we do not advocate the use of a prior mean
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β0 with equally spaced elements between −1 and 1 for each attribute in the

case of more than two attributes either.

Concerning the specification of the prior variance-covariance matrix Σ0, we

argue that the variances should not be larger than 1. This is because a prior

variance of 1 already indicates a great amount of uncertainty.

3.3 Bayesian designs outperforming utility-

neutral designs

We now show with two design cases how Bayesian optimal designs outper-

form utility-neutral optimal designs on average. We focus on Bayesian de-

signs computed by means of the DB- and VB-optimality criteria since these

are the most appealing criteria from an estimation and prediction viewpoint,

respectively (Kessels et al. 2006). Moreover, Kessels, Goos and Vande-

broek (2006) demonstrated that the DB-optimality criterion also scores well

in terms of prediction. In both design cases, we assume main-effects models

for which no prior information is available from previous studies.

3.3.1 The 26/2/8 case: DB- and VB-optimal choice de-

signs versus an orthogonally blocked fractional

factorial design

For a first design case, we computed DB- and VB-optimal designs and a

utility-neutral optimal design of class 26/2/8. The design profiles are thereby

described by six two-level attributes and are grouped two by two in each of

eight choice sets. So in total, the designs consist of 16 profiles each. Using

effects-type coding, the number of elements, k, in the parameter vector is 6.

We constructed the Bayesian designs by assuming some prior beliefs about

people’s preferences for the attribute levels. In accordance with the guide-

lines presented in Section 3.2, we incorporated these beliefs in the prior pa-

rameter distribution π(β) = N (β|β0,Σ0) by specifying the prior mean as
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β0 = [−0.5,−0.5,−0.5,−0.5,−0.5,−0.5]′ and the prior variance-covariance

matrix as Σ0 = 0.72 × I6. We created the DB- and VB-optimal designs us-

ing the adaptive algorithm of Kessels et al. (2006) provided in MATLAB 7.

We performed 1, 000 tries or random starts of this algorithm for each of the

criteria. As input to the algorithm, we constructed a systematic 20-point

sample for generating the tries and drew a random 1, 000-point sample for

evaluating the resulting designs.

As a utility-neutral optimal design, we used an orthogonally blocked 26−2

fractional factorial design with blocks of size two. This fractional factorial

design is locally D-, A-, G- and V-optimal for βP = [0, 0, 0, 0, 0, 0]′ given the

present choice design configuration. We produced it in JMP 6. The orthog-

onally blocked 26−2 fractional factorial design and the DB- and VB-optimal

designs appear in Table 3.3. As can be seen, the choice sets of the fractional

factorial design are completely level balanced, whereas those of the Bayesian

optimal designs exhibit some level overlap.

Figure 3.1 contains two plots comparing the utility-neutral optimal design

or the orthogonally blocked 26−2 fractional factorial design to the DB- and

VB-optimal designs. Figure 3.1a shows the relative DP -efficiencies of the frac-

tional factorial design to the DB-optimal design for various true parameter

vectors and Figure 3.1b shows the relative VP -efficiencies of the fractional fac-

torial design to the VB-optimal design. The plusses in the graphs correspond

to true parameter vectors going from [−1.5,−1.5,−1.5,−1.5,−1.5,−1.5]′

through the prior mean of the Bayesian designs, β0 = [−0.5,−0.5,−0.5,−0.5,

−0.5,−0.5, ]′, and finally to the implied prior mean of the utility-neutral de-

sign, βP = [0, 0, 0, 0, 0, 0]′. Thus each plus sign represents a true parameter

of the form [c, c, c, c, c, c]′ where c is on the interval [−1.5 0].

At the far left hand side of Figure 3.1a comparing DP -efficiencies, the DB-

optimal design is about 40% more efficient than the utility-neutral design.

The relative DP -efficiency of the utility-neutral design increases until c =

−0.64 where the two designs are equally efficient. For less negative values

of c, the utility-neutral design is more efficient than the DB-optimal design.

Consequently, at the prior mean of the Bayesian designs, where c = −0.5, the
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Table 3.3: An orthogonally blocked 26−2 fractional factorial design used as
utility-neutral optimal design and the DB- and VB-optimal designs
for the 26/2/8 example.

26−2 FracF DB VB

Choice Alt Attr Attr Attr
set 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
1 I 2 2 2 1 1 1 1 1 2 1 2 1 2 1 1 1 1 2

II 1 1 1 2 2 2 1 1 1 2 1 2 1 1 1 1 2 2
2 I 2 1 1 2 2 1 2 2 2 1 2 2 1 1 2 2 1 2

II 1 2 2 1 1 2 1 1 2 2 2 2 2 1 1 1 2 2
3 I 1 2 1 1 2 1 2 1 1 1 1 2 2 1 1 2 1 2

II 2 1 2 2 1 2 1 2 1 2 2 1 2 2 1 1 1 1
4 I 2 2 1 1 2 2 2 1 1 1 2 2 2 1 2 1 2 1

II 1 1 2 2 1 1 1 2 2 1 1 1 1 2 1 1 2 2
5 I 2 2 1 2 1 1 2 1 2 2 1 1 2 2 2 1 1 2

II 1 1 2 1 2 2 1 2 1 1 2 2 2 1 1 2 2 1
6 I 2 1 2 1 2 1 2 2 1 2 1 1 1 1 2 1 2 1

II 1 2 1 2 1 2 1 1 2 1 1 2 2 2 1 2 2 2
7 I 2 1 1 1 1 2 2 1 1 2 2 1 2 1 1 1 1 2

II 1 2 2 2 2 1 2 2 2 2 1 2 2 1 2 1 2 2
8 I 2 2 2 2 2 2 2 1 2 2 2 2 2 1 2 1 1 2

II 1 1 1 1 1 1 2 2 1 1 1 2 2 2 2 2 1 1

utility-neutral design outperforms the DB-optimal design, but only slightly

by less than 10%. For the zero parameter vector the utility-neutral design is

about 45% more efficient than the DB-optimal design.

Figure 3.1b shows a similar trend for the relative VP -efficiencies. There, the

crossover point for the VB-optimal design and the utility-neutral design to

be equally efficient is found at c = −0.73. At the prior mean of the Bayesian

designs, at c = −0.5, the utility-neutral design is about 35% more efficient

than the VB-optimal design. Note, however, that at the far left hand side of

this plot, the relative VP -efficiency of the utility-neutral design is less than

20%. Alternatively, one could say that the VB-optimal design is roughly five
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Figure 3.1: Relative local efficiencies of the orthogonally blocked 26−2 fractional
factorial design to the Bayesian optimal designs for various true
parameter vectors starting from [−1.5,−1.5,−1.5, −1.5,−1.5,−1.5]′

and moving toward [0, 0, 0, 0, 0, 0]′ with equal values for each param-
eter element.

times more efficient than the utility-neutral design for the parameter vectors

in this corner. By contrast, at the zero parameter vector the utility-neutral

design is only twice as efficient.

In summary, we can conclude the following from Figure 3.1. While the

utility-neutral optimal design is more efficient with respect to the DP - and

VP -optimality criteria than the Bayesian optimal designs for true parameter

vectors that are small in magnitude, the Bayesian designs are far more robust

to true parameter values that are some distance away from the prior mean.

Since the prior mean of the Bayesian designs has its parameter values of −0.5

fairly close to zero, the utility-neutral design is slightly more efficient there

than the Bayesian designs.

To further illustrate this, we plotted similar graphs as in Figure 3.1 but for a

different range of true parameter vectors. The relative DP -efficiencies of the

fractional factorial design to the DB-optimal design appear in Figure 3.2a
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and the relative VP -efficiencies of the fractional factorial design to the VB-

optimal design appear in Figure 3.2b. Here, the true parameter vectors go

from [−2,−0.5, 0, 0, 0, 0]′ to the implied prior mean of the utility-neutral de-

sign, βP = [0, 0, 0, 0, 0, 0]′. Each plus sign now corresponds to a true param-

eter of the form [c, c/4, 0, 0, 0, 0]′ where c is on the interval [−2 0].
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Figure 3.2: Relative local efficiencies of the orthogonally blocked 26−2 fractional
factorial design to the Bayesian optimal designs for various true pa-
rameter vectors starting from [−2,−0.5, 0, 0, 0, 0]′ and proportionally
moving toward [0, 0, 0, 0, 0, 0]′.

At the far left hand side of Figure 3.2a, the DB-optimal design is more

than twice as efficient as the utility-neutral design. The same can be ob-

served for the VB-optimal design in terms of VP -efficiency at the far left

hand side of Figure 3.2b. This happens despite the fact that the parameter

vector [−2,−0.5, 0, 0, 0, 0]′ is almost equally far from βP = [0, 0, 0, 0, 0, 0]′ as

from β0 = [−0.5,−0.5,−0.5,−0.5,−0.5,−0.5, ]′. More specifically, if we de-

note [−2,−0.5, 0, 0, 0, 0]′ by βt, then the Euclidean distances d(βt,βP ) and

d(βt,β0) approximately equal two.

In Figure 3.2a theDB-optimal design and the utility-neutral design are equally

efficient at c = −0.99. The crossover point for the VB-optimal design and
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the utility-neutral design to be equally efficient occurs at c = −1.17 in

Figure 3.2b. These values of c are more negative than in Figures 3.1a and

3.1b because four of the six parameter elements are remaining at zero which

is advantageous to the utility-neutral design. Furthermore, it should be

noted that many of the parameter vectors to the left of the vertical lines

in Figures 3.2a and 3.2b are actually closer to the zero vector than to the

prior mean of the Bayesian designs. Yet in spite of this, the DB- and VB-

optimal designs are more efficient than the utility-neutral design in the left

panels of these figures.

We now examine more closely the estimation and prediction capabilities

of the utility-neutral and Bayesian optimal designs at the true parameter

βt = [−2,−0.5, 0, 0, 0, 0]′. In this way, we show how poorly the utility-

neutral design performs when the true parameter vector consists of values

at a distance away from zero. The relative DP - and VP -efficiencies of the

utility-neutral and Bayesian optimal designs at the true parameter βt are in-

cluded in Table 3.4. The DB-optimal design turns out to be fairly efficient in

terms of the VP -optimality criterion compared with the VB-optimal design.

Also, the VB-optimal design is fairly efficient in terms of the DP -optimality

criterion relatively to the DB-optimal design. So in terms of relative DP - and

VP -efficiency at βt, the Bayesian designs behave similarly and contrast with

the utility-neutral design.

Table 3.4: Relative DP - and VP -efficiencies of the orthogonally blocked 26−2 frac-
tional factorial design and the Bayesian optimal designs to the DB-
and VB-optimal designs, respectively. The efficiencies are obtained at
the true parameter vector βt = [−2,−0.5, 0, 0, 0, 0]′.

Rel. eff. 26−2 DB VB

DP 44% 100% 92%

VP 40% 95% 100%

We further compare the estimation and prediction performance of the utility-

neutral and Bayesian designs at the true parameter βt with a simulation
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study. Based on βt we simulated 100 datasets with choices of 200 respon-

dents for each of the fractional factorial and DB- and VB-optimal designs.

We subsequently estimated the parameter values for each dataset.

In Figures 3.3a, 3.3b and 3.3c we plotted the 100 estimates for β1t = −2

against the 100 estimates for β2t = −0.5 for the fractional factorial design

and the DB- and VB-optimal designs, respectively. In this way, we obtain

additional information on the correlation between the estimates for β1t and

β2t. From Figure 3.3a, we clearly observe that a substantial number of the

estimates from the fractional factorial design are far away from their true

values. Moreover, the estimates for β1t and β2t are strongly correlated. This

means that if β1t is poorly estimated, β2t is poorly estimated as well. Not

surprisingly, the estimates from the DB-optimal design in Figure 3.3b are all

very precise, but some from the VB-optimal design in Figure 3.3c are less

precise. For these two designs, the estimates are almost uncorrelated.

(a) Orthogonally
blocked 26−2 frac-
tional factorial design

(b) DB-optimal design (c) VB-optimal design

Figure 3.3: Scatter plots showing the correlation between 100 estimates for β1t =
−2 and β2t = −0.5.

Figure 3.4 shows the box plots with 100 predicted probabilities based on the

100 estimates for β3t, β4t, β5t and β6t for each of the three designs. Since

these four coefficients have a true value of zero, the predicted probabilities

should ideally be 0.5. We thus only consider the last four attributes to study
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the variability around the predicted probability of 0.5. Profiles described by

these four attributes are referred to as partial profiles as they only include a

subset of the attributes. Because of the zero parameter values the predicted

probabilities can be calculated for any partial profile in any choice set with

two partial profiles composed of the last four attributes. In the choice set we

used, one partial alternative has all four attributes at the first level and the

other alternative has all four attributes at the second level. We computed

the predicted probabilities for the latter alternative.

Figure 3.4: Box plots of 100 predicted probabilities based on 100 estimates for
β3t = β4t = β5t = β6t = 0. They are shown for the orthogonally
blocked 26−2 fractional factorial design and the DB- and VB-optimal
designs.

Clearly, the box plot for the orthogonally blocked 26−2 fractional factorial

design is substantially wider than the box plots for the DB- and VB-optimal

designs. Also, there are outlying predicted probabilities near 0 and 1 for

the fractional factorial design. Using Levene’s test for equality of variances,

the significance probability is 5 × 10−13. As a result, there is no doubt that

the predictions from the fractional factorial design have a substantially higher

variance than the predictions from the DB- and VB-optimal designs. Further,

there is no significant difference between the quality of the predictions from

the DB- and VB-optimal designs.
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So for a true parameter vector with one or more values reasonably large

in magnitude, the relative DP - and VP -efficiencies, the scatter plots uncov-

ering the correlation between the estimates and the box plots showing the

prediction variances have all illustrated that the utility-neutral design has

noticeably worse properties than the Bayesian designs. On the other hand,

at the zero parameter vector, the utility-neutral design is the best design

option. However, the utility-neutral design’s implied prior mean of all zero

values indicates that none of the attributes has much impact on consumer

preferences. If this assumption were true, then it would make no sense to

run the experiment. Hence, the Bayesian designs should generally be fa-

vored. They provide the best estimates and predictions on average for a

whole range of true parameter vectors including true parameter values that

are fairly large in magnitude.

Our conclusions so far are all based on this 26/2/8 design example. In a sec-

ond design example, we compare the Bayesian designs with a classical design

with a completely different choice design structure. We do this to show that

the characteristics we noted in the current example are not unique.

3.3.2 The 42/4/4 case: DB- and VB-optimal choice de-

signs versus an orthogonally blocked full factorial

design

In this second design case, we produced DB- and VB-optimal designs and a

utility-neutral optimal design of class 42/4/4. Here, the profiles are config-

ured from two attributes with 4 levels each and are arranged in 4 choice sets

of size 4. As in the previous design case, the designs comprise 16 profiles.

Also similar to the first case is that the number of elements, k, in the param-

eter vector is 6.

We generated the Bayesian designs under the assumption that one’s beliefs

about people’s predilections are well represented by the prior parameter dis-

tribution π(β) = N (β|β0,Σ0) with β0 = [−1,−1/3, 1/3,−1,−1/3, 1/3]′ and

Σ0 = 0.42× I6. As explained in Section 3.2, it is reasonable to equally space
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the parameter values in β0 between −1 and 1 for each attribute if only two

attributes are assumed. An accompanying prior variance of 0.16 thereby ex-

presses a small amount of uncertainty. We again produced each of the DB-

and VB-optimal designs using 1, 000 tries of the adaptive algorithm of Kessels

et al. (2006). We used a systematic sample of 20 parameters for the design

generation and a Monte Carlo sample of 1, 000 parameters for the design

evaluation.

For the realization of the utility-neutral optimal design, we generated an

orthogonally blocked full 42 factorial design in JMP 6. Given the current

choice design structure, this design is locally D-, A-, G- and V-optimal for

βP = [0, 0, 0, 0, 0, 0]′. Table 3.5 shows the orthogonally blocked full 42 facto-

rial design and the DB- and VB-optimal designs. Like in the preceding design

case, there is no level overlap in the full factorial design, but some is present

in the Bayesian designs.

To demonstrate that the Bayesian optimal designs should generally be pre-

ferred to the utility-neutral optimal design or the orthogonally blocked full 42

factorial design, we plotted again two graphs with relative efficiencies for var-

ious true parameter vectors. They appear in Figure 3.5. Figure 3.5a shows

the DP -efficiencies of the full factorial design relative to the DB-optimal de-

sign and Figure 3.5b shows the VP -efficiencies of the full factorial design

relative to the VB-optimal design. The true parameter vectors go from

[−1.5,−0.5, 0.5,−1.5,−0.5, 0.5]′ through the prior mean of the Bayesian de-

signs, β0 = [−1,−1/3, 1/3,−1,−1/3, 1/3]′, to end up again at the implied

prior mean of the utility-neutral design, βP = [0, 0, 0, 0, 0, 0]′. So each plus

sign corresponds to a true parameter of the form [c, c/3,−c/3, c, c/3,−c/3]′

where c is on the interval [−1.5 0].

Figures 3.5a and 3.5b clearly confirm our finding that the Bayesian designs

substantially outperform the utility-neutral design for parameter values rea-

sonably large in magnitude, whereas the utility-neutral design is more effi-

cient for parameter vectors close to the zero vector. As far as DP -efficiency

is concerned, the far left hand side of Figure 3.5a shows that the DB-optimal

design outperforms the utility-neutral design by approximately 35%. The
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Table 3.5: An orthogonally blocked full 42 factorial design used as utility-neutral
optimal design and the DB- and VB-optimal designs for the 42/4/4
example.

FullF DB VB

Choice Alt Attr Attr Attr

set 1 2 1 2 1 2

1 I 2 2 4 1 3 3

II 4 4 3 2 2 1

III 3 3 1 3 4 2

IV 1 1 2 1 4 1

2 I 2 3 1 4 4 3

II 3 4 3 1 1 4

III 1 2 1 2 3 1

IV 4 1 2 3 2 2

3 I 1 4 3 3 1 2

II 2 1 2 1 1 4

III 3 2 1 2 3 4

IV 4 3 2 2 2 3

4 I 2 4 3 1 4 1

II 1 3 2 4 1 3

III 4 2 4 2 3 2

IV 3 1 1 3 2 4

efficiency gap steadily decreases until c = −0.66, where the two designs are

equally efficient, after which it increases in favor of the utility-neutral de-

sign. At the zero parameter vector the utility-neutral design is 25% more

efficient than the DB-optimal design. A similar course can be observed for

the relative VP -efficiency in Figure 3.5b. Here, however, the efficiency gaps

at the outer sides of the plot are smaller and the VB-optimal design and the

utility-neutral design are equally efficient at c = −0.84.

The crossover points for each of the Bayesian designs and the utility-neutral

design to be equally efficient are clearly larger than c = −1. This is because
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(a) Relative DP -efficiencies of the 42

design to the DB-optimal design
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(b) Relative VP -efficiencies of the 42

design to the VB-optimal design

Figure 3.5: Relative local efficiencies of the orthogonally blocked full 42 factorial
design to the Bayesian optimal designs for various true parameter
vectors starting from [−1.5,−0.5, 0.5,−1.5,−0.5, 0.5]′ and propor-
tionally moving toward [0, 0, 0, 0, 0, 0]′.

the starting true parameter vector at c = −1.5 does not include any zero

values and thereby lies relatively far from the zero vector. We could also ob-

serve this in Figures 3.1a and 3.1b. Consequently, at the prior mean of the

Bayesian designs, where c = −1, the Bayesian designs are more efficient than

the utility-neutral design. We expected this result because the prior mean

lies rather far from the zero vector. Recall that in Figures 3.1a and 3.1b on

the other hand, the utility-neutral design is more efficient at the prior mean

of the Bayesian designs since the parameter values of −0.5 are fairly close to

zero.

3.4 Conclusion

In this chapter, we had two goals. First, we wanted to provide some practical

recommendations on how to properly specify the prior parameter distribution

for constructing Bayesian choice designs. We did this because some of the

prior distributions used in the literature are internally inconsistent. Second,



Chapter 3. Recommendations on the use of Bayesian choice designs 89

we wished to illustrate that Bayesian designs have generally better properties

than utility-neutral designs. We therefore used two separate examples.

In the Bayesian choice design literature, we noticed that in the absence of

prior information from a previous enquiry, the specifications of the prior mean

and variance conflict. One has to be careful not to take a prior mean that

is too informative compared with a specific prior variance. Therefore, we

established a sanity check for the prior mean. It is built around the principle

that one’s expectations about the preferences for alternatives in choice sets

of size two should be in line with the logit probabilities for those alternatives

given the prior mean. A quick look at the choice set with the most extreme

alternatives already provides some profound insights about the prior mean’s

suitability. Furthermore, we advise to take a prior variance of one as upper

limit for the specification of the variances as this indicates already a lot of

uncertainty.

In the choice design literature, the Bayesian design approach competes with

the linear design approach for the production of choice designs. The Bayesian

approach should however be favored because Bayesian designs are constructed

for a prior parameter distribution incorporating all prior knowledge, whereas

linear or utility-neutral designs are generated under the assumption that all

alternatives are equally preferred by the respondents. Utility-neutral designs

can thus be seen as Bayesian designs with zero prior mean and prior vari-

ance. Note that even if the prior variance is very small around zero, Bayesian

designs are utility-neutral designs. However, if one believes in these speci-

fications behind utility-neutral designs, then it would make no sense to run

the experiment. A zero prior mean is only justified if it is accompanied by a

large prior variance to identify the situation where one is completely without

intuition about people’s preferences. In that case, Bayesian designs differ

from utility-neutral designs.

Not surprisingly therefore, our study of two design examples showed that

Bayesian designs substantially outperform utility-neutral designs whenever

some true parameter values are reasonably large in magnitude, whereas

utility-neutral designs are more efficient for true parameter vectors close to
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the zero vector. As one generally conducts an experiment when one antic-

ipates a number of important attribute levels, and thus a number of fairly

large parameter values, Bayesian designs should clearly be preferred.
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Chapter 4

Rating-based conjoint designs

This chapter has been submitted as

1 Kessels, R., Goos, P. and Vandebroek M. (2006). Optimal designs for conjoint

experiments.

A shorter version has been published as

1 Kessels, R., Goos, P. and Vandebroek M. (2005). Estimating people’s values,

Scientific Computing World – ENBIS Magazine 84: 40–41.

Abstract

The scope of conjoint experiments on which we focus embraces those exper-

iments in which each of the respondents receives a different set of profiles

to rate. These profiles are expensive prototypes that respondents must test

in advance. Carefully designing these experiments involves determining how

many and which profiles each respondent has to rate and how many respon-

dents are needed. To that end, the set of profiles offered to a respondent

is viewed as a separate block in the design and a respondent effect is in-

corporated in the model, representing the fact that profile ratings from the

same respondent are correlated. Optimal conjoint designs are then obtained

by means of an adapted version of the algorithm of Goos and Vandebroek

(2004). For various instances, we compute the optimal conjoint designs and

provide some practical recommendations.
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4.1 Introduction

In marketing, conjoint experiments have frequently been carried out to mea-

sure consumer preferences for the attributes of various products or services,

jointly referred to as goods (Green, Krieger and Wind 2001). They have

been conducted for issues of new product development, pricing, advertising,

and other areas across many different industrial sectors around the world

(Wittink and Cattin 1989; Wittink, Vriens and Burhenne 1994; Gustafsson,

Herrmann and Huber 2003). In a traditional conjoint experiment, respon-

dents are usually asked to rate a set of goods on a scale. These goods are

presented as profiles or alternatives of combinations of different attribute

levels. Besides rating on a scale, rating may also occur by directly asking

reservation prices for the profiles. A reservation price for a good is the high-

est price a consumer is willing to pay for the good.

In conjoint experiments with prototypes as profiles, budgetary constraints

usually force the researcher to administer only a small number of profiles to

a restricted number of respondents. Also, the researcher is limited in the

number of prototypes to assign to each respondent because each respondent

must test these prototypes in advance. Given this experimental situation

the researcher wants to elicit as much information as possible on the utilities

the respondents derive from the attribute levels of the good. The utilities

are also called part-worths and correspond to the parameters of a statistical

model. Following an accurate estimation of these parameters, the researcher

uses the model to learn about consumers’ trade-offs as well as to make precise

predictions about their future purchasing behavior.

Now, the quality of these inferences highly depends on the profiles and the

number of test persons used in the conjoint study. This is even more so if only

a small number of profiles can be used. Also the assignment of the profiles to

the subjects plays a key role. As a consequence, an efficient experimental de-

sign is required. The experimental design literature on conjoint experiments

is however silent about how to carefully select sets of alternative prototypes

to be evaluated by the respondents. For example, if 30 prototypes can be

developed from a set of many possible ones, then the literature does neither

provide a tailor-made answer about how to select those 30 prototypes, nor
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about the ideal number of test persons or the assignment of the 30 selected

alternatives to these respondents. To provide answers to these questions is

the goal of this paper.

The method we adopt to solve the conjoint design problem is based on the

optimal design approach for blocked and split-plot experiments advocated by

Goos and Vandebroek (2001a; 2001b; 2004) and Goos (2002; 2006a). Block

designs are heavily used in industry and agriculture when not all the obser-

vations can be carried out under homogeneous circumstances, for example

when more than one batch of material is required or when the experiment

takes up more than one day. Split-plot designs are special cases of block

designs where some of the experimental factors stay constant within each

block. In all of the work on block and split-plot designs, the assumed model

is the linear random block effects model. Like Brazier, Roberts and Deverill

(2002) we adopt this model in the conjoint setting and refer to it as the linear

random respondent effects model.

The motivation for this model is as follows. It is reasonable to assume that

respondents are randomly selected from a population and that they are het-

erogeneous. Respondent heterogeneity is due to variations in terms of age,

experience with the good under study, physical characteristics, cognitive abil-

ities, and so forth. The consequence of this heterogeneity is that profile rat-

ings from different respondents are more dissimilar than profile ratings from

the same respondent. The likeness of the ratings from a single respondent is

nothing but a positive correlation. To capture the heterogeneity between re-

spondents, or the correlation within respondents, a random effect is included

in the model.

Drawing on the random respondent effects model, a conjoint design consists

of blocks or sets of profiles that are each offered to a different respondent

and the number of respondents is equal to the number of blocks in the de-

sign. Note that we focus on main-effects conjoint designs only. To evaluate

different conjoint designs, we apply the D-optimality criterion that aims at

designs that minimize the determinant of the variance-covariance matrix of

the parameter estimators. To search for efficient conjoint designs, we use
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an adapted version of the split-plot design construction algorithm of Goos

and Vandebroek (2004). The adapted algorithm finds the D-optimal number

of respondents and the D-optimal number of profiles for each respondent in

addition to the D-optimal design profiles. It is possible that the algorithm

assigns sets of different sizes to the respondents since Atkinson and Donev

(1992) and Goos (2002; 2006a) all provided examples of D-optimal block or

split-plot designs with heterogeneous block sizes.

Other approaches to deal with respondent heterogeneity for design construc-

tion can be found in Liski et al. (2002) and Entholzner et al. (2005). For

repeated measurement situations, they mathematically derived efficient de-

signs using the linear random coefficient regression model, which allows for

individual-specific regression parameters. Furthermore, to design and esti-

mate conjoint experiments, Lenk et al. (1996) applied the hierarchical Bayes

random effects model with subject-level covariates.

Finally, Cochran and Cox (1957) recommended balanced incomplete block

designs for preference rating as most of the design plans contain blocks with

six or fewer units. Regrettably, these designs are only built for one qualita-

tive factor, the levels of which are called treatments. Typical for balanced

incomplete block designs is that they are universally optimal for the estima-

tion of the treatment and the block effect. Another disadvantage of balanced

incomplete block designs is that they can only be used for specific numbers

of observations, treatments and blocks. Consequently, for design situations

in which no balanced incomplete block design is available, a.o. situations

with more than one factor, optimal conjoint designs need to be computed.

This chapter is organized as follows. First, we embark on the random re-

spondent effects model in Section 4.2. Section 4.3 explains how to analyze a

conjoint experiment assuming this model and Section 4.4 discusses the design

criterion. Next, Section 4.5 presents the design construction algorithm and

Section 4.6 describes the computational results. Finally, Section 4.7 summa-

rizes the chapter and proposes future research directions.
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4.2 The model

The model used to design and analyze rating-based conjoint experiments is

a random respondent effects model. Suppose a conjoint experiment is set up

for n profiles. In total, b respondents are appointed who each rate a different

set or block of profiles so as to be able to estimate all parameters. The sizes

of these profile sets may be unequal. The n profiles are accordingly arranged

in b sets of sizes m1, ...,mb, where n =
∑b

i=1 mi. If we assume that the

respondents are heterogeneous and randomly selected from a prespecified

population, then the rating Uij for profile j provided by respondent i is

modelled as

Uij = x′ijβ + γi + εij. (4.1)

In this model, xij is a (k + 1) × 1 vector having a one as first element and

the attribute levels describing profile j that is rated by respondent i as the

remaining k elements. The attributes are quantitative or categorical factors

that can have any number of levels. β = [β0, ..., βk]
′ is the (k+1)×1 unknown

fixed parameter vector with β0 the intercept and β1, ..., βk the part-worths or

weights associated with the attribute levels. They reflect the importance of

the levels as viewed by the average respondent and involve main effects only.

γi represents the random effect of respondent i and εij is a random error term.

Note that we coded the levels of the attributes by means of effects-type cod-

ing. For example, for a two-level attribute one level is coded as 1 and the

other level as −1. For a three-level attribute the codings are [1 0], [0 1] and

[−1 − 1]. For a four-level attribute they are [1 0 0], [0 1 0], [0 0 1] and

[−1 − 1 − 1], and so forth for higher-level attributes. Also other types of

coding may be used as the choice of coding does not affect the relative design

efficiency in case the D-optimality criterion is used (see Section 4.4).

In matrix notation, model (4.1) becomes

U = Xβ + Zγ + ε, (4.2)

where U is a vector of n profile ratings, the vector γ = [γ1, ..., γb]
′ contains

the b random respondent effects and ε is a random error vector. The matrices
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X and Z have dimensions n× (k + 1) and n× b, respectively. X is given by

X = [X′
1, ...,X

′
b]
′, (4.3)

where Xi = [xi1, ...,ximi
]′ collects the profiles rated by respondent i and Z is

defined as

Z = diag[1m1 , ...,1mb
], (4.4)

where 1mi
is a mi × 1 vector of ones. It is assumed that

E(ε) = 0n and Cov(ε) = σ2
εIn, (4.5)

E(γ) = 0b and Cov(γ) = σ2
γIb, (4.6)

and Cov(γ, ε) = 0b×n, (4.7)

where σ2
ε is the within-respondents variance and σ2

γ is the between-respon-

dents variance. Under these assumptions, the variance-covariance matrix V

of the profile ratings U can be written as

V = Cov(Xβ + Zγ + ε),

= Cov(Zγ) + Cov(ε),

= σ2
γZZ′ + σ2

εIn,

= σ2
γdiag[1m11

′
m1

, ...,1mb
1′mb

] + σ2
εdiag[Im1 , ..., Imb

],

= diag[σ2
εIm1 + σ2

γ1m11
′
m1

, ..., σ2
εImb

+ σ2
γ1mb

1′mb
].

(4.8)

Substituting

Vi = σ2
εImi

+ σ2
γ1mi

1′mi
, (4.9)

leads to the variance-covariance matrix

V = diag[V1, ...,Vb]. (4.10)

Note that the matrices Vi are compound symmetric: the main diagonals of

these matrices contain the constant variances of the profile ratings, while the

off-diagonal elements are constant covariances. For example, the variance-

covariance matrix of five profile ratings from two respondents, one of whom
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rated a block of two profiles and the other a block of three profiles, is

V =




σ2
ε + σ2

γ σ2
γ 0 0 0

σ2
γ σ2

ε + σ2
γ 0 0 0

0 0 σ2
ε + σ2

γ σ2
γ σ2

γ

0 0 σ2
γ σ2

ε + σ2
γ σ2

γ

0 0 σ2
γ σ2

γ σ2
ε + σ2

γ




. (4.11)

The zero entries show that profile ratings from different respondents are

assumed to be uncorrelated. The coefficient of correlation between two profile

ratings from the same respondent is equal to

ρ =
σ2

γ

σ2
ε + σ2

γ

. (4.12)

This ratio ρ ∈ [0, 1] measures the proportion of the total variability that is

accounted for by the differences between respondents. If ρ → 0, or equiv-

alently σ2
γ → 0, the profile ratings from the same respondent are no longer

correlated. In that case, γ1 = ... = γb = 0 and as a result, the random

respondent effects model (4.2) degenerates to the uncorrelated model

U = Xβ + ε. (4.13)

4.3 Analysis

If the error terms and the respondent effects are normally distributed, the

maximum likelihood estimator of the unknown fixed parameter vector β in

(4.1) and (4.2) is the generalized least squares (GLS) estimator. The GLS

estimator is the best linear unbiased estimator (BLUE) and is given by

β̂ = (X′V−1X)−1X′V−1U, (4.14)

with variance-covariance matrix

Cov(β̂) = (X′V−1X)−1. (4.15)
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Sometimes, the variance components σ2
γ and σ2

ε are known from previous ex-

perimentation so that the estimator β̂ and its variance-covariance matrix can

be immediately obtained. Most often, however, the variances σ2
γ and σ2

ε are

unknown and therefore, (4.14) and (4.15) cannot be applied directly. Instead,

the variance components σ2
γ and σ2

ε have to be estimated, for example via

restricted maximum likelihood (REML) (Gilmour and Trinca 2000). The es-

timates σ̂2
γ and σ̂2

ε are then substituted in the GLS estimator (4.14), yielding

the feasible GLS estimator

β̂ = (X′V̂−1X)−1X′V̂−1U, (4.16)

where

V̂ = σ̂2
εIn + σ̂2

γZZ′.

In that case, the variance-covariance matrix (4.15) can be approximated by

Cov(β̂) = (X′V̂−1X)−1. (4.17)

4.4 Design criterion

In this chapter, we evaluate alternative conjoint design options by means

of the D-optimality criterion. The D-optimality criterion seeks designs that

minimize the determinant of the variance-covariance matrix (4.15), or equiv-

alently, that maximize the determinant of the information matrix X′V−1X.

D-optimal conjoint designs therefore minimize the generalized variance of the

parameter estimators (Atkinson and Donev 1992). Goos and Vandebroek

(2001b) showed that, because of the compound symmetric error structure of

model (4.2), the information matrix is equal to

X′V−1X =
1

σ2
ε

{
X′X−

b∑
i=1

σ2
γ/σ2

ε

1 + mi(σ2
γ/σ2

ε)
(X′

i1mi
)(X′

i1mi
)′
}

. (4.18)

In terms of the coefficient of correlation (4.12), (4.18) can be rewritten as

X′V−1X =
1

σ2
ε

{
X′X−

b∑
i=1

ρ

1 + ρ(mi − 1)
(X′

i1mi
)(X′

i1mi
)′
}

. (4.19)
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If ρ → 0, the information matrix (4.19) reduces to

1

σ2
ε

X′X, (4.20)

which is the information matrix for the uncorrelated model (4.13) that is

used for analyzing data from a completely randomized experiment. Because

the respondents are homogeneous in that case, the grouping of profiles in

sets is irrelevant. We therefore label a design that maximizes the D-criterion

value |σ−2
ε X′X| as a D-optimal completely randomized design (CRD). On the

other hand, we call a design that maximizes the D-criterion value |X′V−1X|
for ρ differing from zero a D-optimal conjoint design. It follows from the

determinant expressions in these definitions that the relative statistical ef-

ficiency of a CRD is not affected by σ2
ε whereas that of a conjoint design

depends on ρ through V. Note that a CRD can be seen as a conjoint design

in which each of the profiles is assigned to a different respondent so that as

many respondents as design profiles are needed. In that case, V is a diagonal

matrix and the variability within respondents, σ2
ε, cannot be distinguished

from the variability between respondents, σ2
γ .

If ρ → 1, the information matrix (4.19) is the information matrix for the

model with fixed respondent effects. When respondent effects are fixed, or

non-stochastic, interest lies in the effects of the individual respondents and

not in the possible effects of the population where the respondents belong to.

In practice, this finding implies that the D-optimal design in the presence

of random respondent effects is equivalent to the D-optimal design in the

presence of fixed respondent effects.

In our study in Section 4.6, we show that D-optimal conjoint designs are

statistically more efficient than D-optimal CRDs. To that end, we compare

the D-criterion values of the designs. A necessary condition to compare

these values is that the variability assumed in the designs is the same. For

that purpose, we assume without loss of generality a total variance of one

in the designs. Hence, setting the only variance component σ2
ε to one in

the information matrix (4.20), the D-criterion value of a D-optimal CRD

becomes

|X′X|. (4.21)
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However, to compute the corresponding D-criterion value of a D-optimal

conjoint design, we have to take into account two variance components, σ2
ε

and σ2
γ . These components have to sum to one so that σ2

ε = 1 − ρ and the

D-criterion value of a D-optimal conjoint design comes down to

(1− ρ)−(k+1)|X′V−1X|, (4.22)

with k + 1 the number of parameters. Usually, D-criterion values are ex-

pressed per parameter so that the D-criterion values of a D-optimal CRD

and a D-optimal conjoint design amount to

|X′X|1/(k+1) and (1− ρ)−1|X′V−1X|1/(k+1). (4.23)

4.5 Conjoint design algorithm

The algorithm to construct D-optimal designs for conjoint experiments is an

adaptation from that of Goos and Vandebroek (2004) for the production of

D-optimal split-plot designs allowing for variable block sizes. Given the sam-

ple size n and the degree of correlation ρ the conjoint design algorithm finds

the D-optimal number of respondents, the D-optimal number of profiles for

each respondent as well as the D-optimal design profiles.

The algorithm starts with the composition of the set of candidate profiles.

For example, for one type of designs studied in Section 4.6, we used four

attributes, each acting at three levels so that the candidate set consists of

34 = 81 profiles in that case. Next, a starting design is computed by first

randomly selecting a number of profiles from the candidate set. The first

selected profile constitutes the first block after which each of the other profiles

is randomly assigned to an existing block or to a new block. The starting

design is completed by using a greedy heuristic that sequentially adds the

candidate profile with the largest prediction variance. Also in that case, the

profiles are randomly assigned to an existing or to a new block.
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To improve the starting design, two procedures are applied consecutively,

namely interchanging design profiles from different blocks and exchanging

design profiles with candidate profiles. The main procedure is the exchange

procedure adjusted from the algorithm of Goos and Vandebroek (2004). The

additional interchange procedure is meant to strengthen the conjoint design

algorithm. The reason is that the construction of conjoint designs is more

involved than the construction of split-plot designs because the levels of all

attributes are allowed to vary in the blocks of conjoint designs. The inter-

change procedure is similar to the one in the algorithm of Goos and Van-

debroek (2001a) for the construction of D-optimal designs with given block

sizes in the presence of random block effects.

In the interchange procedure of the conjoint design algorithm, all possible in-

terchanges of design profiles from different blocks are evaluated, but only the

best one is carried out. This process is repeated until no further improvement

can be made. In the exchange procedure, three alternative strategies are con-

sidered for each combination of a design profile and a candidate profile. In

each of the strategies, the design profile is removed from the design and the

candidate profile is added to the design. First, the candidate profile entering

the design can be assigned to the same block as the profile removed from the

design. Second, the entering profile can be assigned to another block than

that of the removed profile. Finally, the entering profile can also be assigned

to a new block. When all possible exchanges have been evaluated, the best

one is performed. This procedure is repeated until improvement stops.

The conjoint design algorithm subsequently returns to the interchange pro-

cedure and continues with evaluating interchanges and exchanges until no

better design can be obtained. To avoid being stuck in a locally optimal

design, more than one starting design is generated and the design search is

repeated. Each repetition is called a try and the most efficient design from

all tries is referred to as the D-optimal conjoint design. Obviously, the more

observations, attributes and attribute levels are involved, the more designs

are possible and the higher the chance the algorithm yields local optima that

are far from the global optimum. Therefore, for large problem situations, a

great number of tries is needed. For example, we used 6, 000 tries to com-
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pute D-optimal conjoint designs consisting of 60 profiles in the case of four

attributes, each acting at three levels.

To benchmark the results of our algorithm, we used the algorithm of Goos

and Vandebroek (2001a) to which we refer as the fixed block size algorithm

because it restricts its searches to conjoint designs with predetermined block

sizes. Whereas the conjoint design algorithm generates the D-optimal num-

ber of respondents, b, and the D-optimal number of profiles for each re-

spondent, m1, ..., mb, the fixed block size algorithm requires the values b and

m1, ..., mb as an input. The fact that the fixed block size algorithm con-

strains the design structure by requiring the specification of b and m1, ..., mb

means that the resulting designs do not necessarily have the optimal blocking

structure and therefore may not be as efficient as possible. The conjoint de-

sign algorithm relaxes this restriction so that it does find the optimal design

structure.

Like the conjoint design algorithm, the fixed block size algorithm consists of

an interchange and exchange procedure. The exchange procedure is natu-

rally limited to replacing a design profile by a candidate profile in the same

block. Moreover, the design space the fixed block algorithm has to explore

is much more constrained than that of the conjoint design algorithm. As a

result, the fixed block size algorithm requires fewer tries and less computing

time.

In the next section, we show that the D-optimal conjoint designs are not very

sensitive to ρ so that a rough estimate usually suffices. Often, a reasonable

value for ρ is 0.5. For example, a dataset collected in a health economics study

by Brazier, Roberts and Deverill (2002) yielded an estimate for ρ of 0.62.

Also, four datasets from sensory experiments performed by the multinational

brewer InBev yielded estimates for ρ of 0.48, 0.46, 0.36 and 0.41.



Chapter 4. Rating-based conjoint designs 105

4.6 Results

We now present a selection of computational results from which we derive

recommendations to produce D-optimal conjoint designs when the profile

construction is expensive. We first show that it is statistically justified to

apply these designs instead of D-optimal CRDs. We then proceed with a

discussion of the D-optimal blocking structures and the computing times

needed. Also, we deal with some practical issues and seek ways to save

computing time.

4.6.1 Designs under investigation

For our study we computed D-optimal conjoint designs for four scenarios

each involving four attributes. The first scenario has all four attributes at

three levels. We denote this scenario as (3, 3, 3, 3). The next three scenarios

possess increasing amounts of heterogeneity in the numbers of attribute lev-

els. The second scenario has the first attribute at two levels, the next two

attributes at three levels and the fourth attribute at four levels. We refer to

it as (2, 3, 3, 4). The third scenario is similar to the second one except for

the fourth attribute which has five levels: (2, 3, 3, 5). The fourth scenario is

entirely heterogeneous with all four attributes at a different level: (2, 3, 4, 5).

Table 4.1 contains further information about the setup of our conjoint design

study. For each scenario we indicated the number of candidate profiles and

the number of elements, k +1, in β after coding the levels. We also specified

the sample sizes, n, of the conjoint designs together with the degrees of

correlation, ρ. Note that we included ρ = 0 to compute the D-optimal

CRDs. Also note that we considered more sample sizes in the (3, 3, 3, 3) and

(2, 3, 3, 4) scenarios to perform some additional studies on these cases. These

are described in Sections 4.6.5, 4.6.6 and 4.6.7.
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Table 4.1: Setup of the conjoint design study.

Scenario # cand. k + 1 n ρ

(3, 3, 3, 3) 81
(2, 3, 3, 4) 72

9 20, 24, 30, 36, 40, 50, 60, 70, 72, 81

(2, 3, 3, 5) 90 10 20, 30, 40, 50, 60, 70
0, 0.1, ..., 0.9

(2, 3, 4, 5) 120 11 20, 30, 40, 50, 60, 70

4.6.2 D-criterion values of the D-optimal conjoint de-

signs and D-optimal CRDs

The D-criterion values of the D-optimal conjoint designs and D-optimal

CRDs for the four scenarios appear in Table A1 of Appendix A. As we dis-

cussed in Section 4.3, we calculated these values using the expressions (4.23)

to compare the D-optimal conjoint designs with the D-optimal CRDs for the

same sample size and scenario. To gain better insight in the D-criterion val-

ues associated with each scenario, we plotted them against the sample size

for the different degrees of correlation. Figure 4.1 contains the graph for the

(3, 3, 3, 3) scenario. The plots for the other scenarios show a similar trend

and have therefore been left out.

It turns out that the D-optimal CRDs are outperformed by each of the

corresponding D-optimal conjoint designs. We expected this result as Goos

(2002, page 133) proved that D-optimal block designs are more efficient than

D-optimal CRDs provided the experimental situation exhibits a block format.

Hence, since profile ratings from the same respondent are correlated (ρ 6= 0),

it is statistically justified to take into account the compound symmetric error

structure when designing conjoint experiments. Moreover, Figure 4.1 clearly

shows that the higher the correlation, the larger the efficiency gain of using

a D-optimal conjoint design instead of a D-optimal CRD. Also this result is

not a surprise as Goos (2002, page 133) noted a similar finding for D-optimal

block designs. Figure 4.1 further reveals that the D-criterion values increase

linearly with the sample size and do not saturate after a certain number of

observations.
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Figure 4.1: D-criterion values of the D-optimal conjoint designs (ρ 6= 0) and
D-optimal CRDs (ρ = 0) for the (3, 3, 3, 3) scenario.

4.6.3 D-optimal blocking structures

Because the D-optimal conjoint designs are statistically more efficient than

the D-optimal CRDs, it is better to have a select number of respondents eval-

uate several profiles. In that case, the random respondent effects model (4.2)

is appropriate. We now examine the D-optimal conjoint designs to derive

more precisely what the optimal number of respondents is for a specific con-

joint setting, what the optimal number of profiles is for each of them to rate,

and what the optimal profiles are. Table 4.2 contains the blocking structures

of the D-optimal conjoint designs for the (3, 3, 3, 3) and (2, 3, 3, 4) scenarios.

The blocking structures pertaining to the (2, 3, 3, 5) and (2, 3, 4, 5) scenarios

appear in Tables 4.3 and 4.4, respectively. The designs themselves are not

shown, but can be obtained from the authors.
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Table 4.2: Blocking structures of the D-optimal conjoint designs for the (3, 3, 3, 3)
and (2, 3, 3, 4) scenarios.

Design n Scenario ρ Blocking structure b

1 20 (3, 3, 3, 3) m1, ...,m6 = 3 | m7 = 2 7
2 20 (2, 3, 3, 4)

{0.1; ...; 0.9}
m1, ..., m4 = 3 | m5,m6 = 4 6

3 24 (3, 3, 3, 3)
4 24 (2, 3, 3, 4)

{0.1; ...; 0.9} m1, ..., m8 = 3 8

5 30 (3, 3, 3, 3) {0.1; ...; 0.9} m1, ..., m10 = 3 10
6 30 {0.1; ...; 0.6} m1, ..., m10 = 3 10
7 30

(2, 3, 3, 4) {0.7; 0.8; 0.9} m1, ..., m6 = 3 | m7,m8,m9 = 4 9
8 36 (3, 3, 3, 3)
9 36 (2, 3, 3, 4)

{0.1; ...; 0.9} m1, ..., m12 = 3 12

10 40 {0.1; 0.2} m1, ..., m13 = 3 | m14 = 1 14
11 40

(3, 3, 3, 3) {0.3; ...; 0.9} m1, ..., m12 = 3 | m13 = 4 13
12 40 {0.1; ...; 0.4} m1, ..., m12 = 3 | m13 = 4 13
13 40

(2, 3, 3, 4) {0.5; ...; 0.9} m1, ...,m8 = 3 | m9, ...,m12 = 4 12
14 50 (3, 3, 3, 3) m1, ..., m16 = 3 | m17 = 2 17
15 50 (2, 3, 3, 4)

{0.1; ...; 0.9}
m1, ..., m14 = 3 | m15,m16 = 4 16

16 60 (3, 3, 3, 3)
17 60 (2, 3, 3, 4)

{0.1; ...; 0.9} m1, ..., m20 = 3 20

18 70 {0.1; 0.2} m1, ..., m23 = 3 | m24 = 1 24
19 70

(3, 3, 3, 3) {0.3; ...; 0.9} m1, ..., m22 = 3 | m23 = 4 23
20 70 (2, 3, 3, 4) {0.1; ...; 0.9} m1, ..., m22 = 3 | m23 = 4 23
21 72 (3, 3, 3, 3)
22 72 (2, 3, 3, 4)

{0.1; ...; 0.9} m1, ..., m24 = 3 24

23 81 (3, 3, 3, 3)
24 81 (2, 3, 3, 4)

{0.1; ...; 0.9} m1, ..., m27 = 3 27
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Table 4.3: Blocking structures of the D-optimal conjoint designs for the (2, 3, 3, 5)
scenario.

Design n ρ Blocking structure b

1 20 {0.1; 0.2} m1, ..., m4 = 3 | m5, m6 = 4 6

2 20 {0.3; 0.4; 0.5} m1,m2 = 3 | m3,m4 = 5 | m5 = 4 5

3 20 {0.6; ...; 0.9} m1, ..., m4 = 5 4

4 30 {0.1} m1, ..., m10 = 3 10

5 30 {0.2; 0.3; 0.4} m1, ..., m5 = 3 | m6,m7,m8 = 5 8

6 30 {0.5; ...; 0.9} m1, ..., m6 = 5 6

7 40 {0.1; 0.2} m1, ..., m10 = 3 | m11,m12 = 5 12

8 40 {0.3; ...; 0.8} m1, ..., m5 = 3 | m6, ..., m10 = 5 10

9 40 {0.9} m1, ..., m8 = 5 8

10 50 {0.1; 0.2; 0.3} m1, ..., m10 = 3 | m11, ..., m14 = 5 14

11 50 {0.4; ...; 0.7} m1, ..., m5 = 3 | m6, ..., m12 = 5 12

12 50 {0.8; 0.9} m1, ..., m10 = 5 10

13 60 {0.1} m1, ..., m20 = 3 20

14 60 {0.2} m1, ...,m15 = 3 | m16,m17,m18 = 5 18

15 60 {0.3; 0.4} m1, ..., m10 = 3 | m11, ..., m16 = 5 16

16 60 {0.5; ...; 0.9} m1, ..., m5 = 3 | m6, ..., m14 = 5 14

17 70 {0.1} m1, ..., m20 = 3 | m21,m22 = 5 22

18 70 {0.2} m1, ..., m15 = 3 | m16, ..., m20 = 5 20

19 70 {0.3; 0.4} m1, ..., m10 = 3 | m11, ..., m18 = 5 18

20 70 {0.5; ...; 0.9} m1, ..., m5 = 3 | m6, ..., m16 = 5 16
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Table 4.4: Blocking structures of the D-optimal conjoint designs for the (2, 3, 4, 5)
scenario.

Design n ρ Blocking structure b

1 20 {0.1; ...; 0.9} m1, ..., m5 = 4 5

2 30 {0.1} m1, ..., m6 = 4 | m7,m8 = 3 8

3 30 {0.2; ...; 0.9} m1, ..., m5 = 4 | m6,m7 = 5 7

4 40 {0.1; ...; 0.9} m1, ..., m10 = 4 10

5 50 {0.1; ...; 0.9} m1, ...,m10 = 4 | m11,m12 = 5 12

6 60 {0.1; ...; 0.9} m1, ..., m15 = 4 15

7 70 {0.1} m1, ...,m16 = 4 | m17,m18 = 3 18

8 70 {0.2; ...; 0.9} m1, ...,m15 = 4 | m16,m17 = 5 17
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Each line in Tables 4.2, 4.3 and 4.4 corresponds to a different design. This

means that most of the designs for a particular sample size and scenario

are optimal for various degrees of correlation. Consequently, the D-optimal

conjoint designs are fairly robust against misspecifications of the degree of

correlation. Also Goos (2002, page 122) observed this result while computing

D-optimal block designs for several degrees of correlation.

Table 4.2 shows that in the (3, 3, 3, 3) and (2, 3, 3, 4) scenarios, it is often

statistically most efficient to administer three profiles to respondents. How-

ever, in the (2, 3, 3, 4) scenario it is sometimes most efficient to administer

four profiles to one or more respondents, especially when the correlation is

increased. Also in the (3, 3, 3, 3) scenario blocks of size four appear for higher

correlations. The optimal number of respondents decreases in these cases.

The result that sometimes more profiles are grouped when the correlation is

increased is not unexpected as Goos and Vandebroek (2004) found a similar

blocking pattern in the series of D-optimal split-plot designs they computed.

While the optimal blocking structure of the (2, 3, 3, 4) scenario corresponds

to that of the (3, 3, 3, 3) scenario, the optimal blocking structure of the

(2, 3, 3, 5) scenario largely differs from it. Table 4.3 shows that in general

for the (2, 3, 3, 5) scenario it is most efficient to assign sets of three and/or

five profiles to the respondents. The lower the correlation, the more sets of

size three are comprised. The higher the correlation, the more sets of size

five are included. As a result, there is again a stronger grouping tendency

at higher correlations, but it is more pronounced here than in the (3, 3, 3, 3)

and (2, 3, 3, 4) scenarios. As can be seen, three or four design structures are

possible for almost each sample size in the (2, 3, 3, 5) scenario. This is more

than the one or two design structures for each sample size in the (3, 3, 3, 3)

and (2, 3, 3, 4) scenarios.

In the optimal blocking structure of the most heterogeneous level setting,

the (2, 3, 4, 5) scenario, contained in Table 4.4, the blocks of size three from

in the previous scenarios mostly disappeared and were replaced by blocks of

size four. It is thus generally most efficient to present four profiles to the

respondents. Also, the stronger grouping tendency at higher correlations is
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slightly apparent.

Note that the D-optimal conjoint design for a given scenario, sample size

and degree of correlation is not unique in its case. For each design problem

a number of equivalent designs exist. This is because the D-optimal con-

joint designs are constructed for the random respondent effects model (4.2)

embracing main effects only. As such, the D-optimal conjoint design for 81

observations in the (3, 3, 3, 3) scenario is equivalent to the 81-run D-optimal

34 block design containing 27 blocks of size three. This design including all

81 candidate profiles appears in Table B1 of Appendix B. It is created us-

ing Appendix 5A on page 253 of Wu and Hamada (2000), but an equivalent

design can also be generated using the interchange procedure with the 81

candidate profiles, block sizes of three and a value for ρ 6= 0 as an input.

As another example, the D-optimal conjoint design for 72 observations in

the (2, 3, 3, 4) scenario is equivalent to the D-optimal arrangement of all 72

candidate profiles in blocks of size three. The interchange procedure yielded

this arrangement which is shown in Table B2 of Appendix B.

4.6.4 Compromising between practical and optimal

blocking structures

In this section, we investigate whether some of the optimal blocking struc-

tures can be slightly adapted to result in more practical structures for which

the corresponding D-optimal conjoint designs are still statistically fairly effi-

cient. These D-optimal conjoint designs are computed using the fixed block

size algorithm given a more practical blocking structure as an input.

We tackle the following four cases each involving a different scenario. The

first case concerns the conjoint designs in the (3, 3, 3, 3) scenario in which

one or two profiles are administered to one of the respondents. It may be

more sensible, however, to assign four profiles instead of three to one or two

respondents so that one fewer respondent is needed. The second case covers

the designs in the (2, 3, 3, 4) scenario in which four profiles are presented to

more than two respondents. It would be very convenient if the blocking struc-

ture of three profiles per respondent could be extended to these instances.
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The third case involves all the designs in the (2, 3, 3, 5) scenario as it would

come in handy to have one fixed block size, a block size of either three or

five, applicable to all examples. The fourth case considers the designs in the

(2, 3, 4, 5) scenario with blocks of size three. It would be very useful if the

corresponding blocking structures could be replaced by the more frequent

structures with blocks of size five.

We discuss these four cases more at length and investigate how much one

loses in D-efficiency by using D-optimal conjoint designs with more practical

blocking structures than the optimal ones. If the losses in D-efficiency in-

curred are negligible, we retain the more practical structures. To determine

the efficiency losses of using a D-optimal conjoint design with a suboptimal

blocking structure, we calculate how many observations would be saved if a

D-optimal conjoint design with an optimal blocking structure were applied

whose D-criterion value equals that of the suboptimal conjoint design. In

other words, we express the losses in D-efficiency in terms of the number of

redundant observations of the D-optimal conjoint design with the suboptimal

blocking structure. In Appendix C we describe in detail how to compute the

number of redundant observations.

Cases 1 & 2: General blocking structure in the (3, 3, 3, 3) and (2, 3, 3, 4)

scenarios

In the (3, 3, 3, 3) and (2, 3, 3, 4) scenarios it is often most efficient to assign

three profiles to the respondents. In some cases in the (3, 3, 3, 3) scenario

where the sample size is not a multiple of three, it is most efficient to ad-

minister one or two profiles to one of the respondents. This is the case for

the designs with a sample size of 40 and 70 at lower correlations and for

the designs with a sample size of 20 and 50. The assignment of one or two

profiles to one respondent seems however not very attractive from a practical

standpoint. Moreover, if there are costs associated with each respondent, it

is also not very cost efficient. Therefore, we calculated how much one loses

in D-efficiency when assigning four profiles instead of three to one or two

respondents so as to save on one respondent. It turns out that the losses

in D-efficiency from applying the more practical blocking structures are so

small that there are no redundant observations. As a result, the structures
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constitute a good compromise between practical and statistical efficiency.

Note that the assignment of four profiles to one or two respondents is most

efficient for the remainder of the cases in the (3, 3, 3, 3) scenario and for most

of the cases in the (2, 3, 3, 4) scenario where the sample size is not a multi-

ple of three. An exception to the rule of administering three profiles to the

respondents and four profiles to one or two respondents in case the sample

size is not a multiple of three are the designs in the (2, 3, 3, 4) scenario with a

sample size of 30 and 40 at higher correlations. For these instances, it is most

efficient to present four profiles to more than two respondents. Hence, we

examined whether we can spread the profiles more equally over respondents

in blocks of three. In the case of 40 observations this means that one respon-

dent receives four profiles. Also here, the resulting losses in D-efficiency turn

out to be negligible as there are no redundant observations.

So in general, to construct conjoint designs for the (3, 3, 3, 3) and (2, 3, 3, 4)

scenarios, it is efficient to use blocks of three profiles and one or two blocks

of four profiles in case the sample size is not a multiple of three. This general

blocking structure can be given as an input to the fixed block size algorithm

to generate the D-optimal conjoint designs. We found that this strategy is

appropriate for the designs with a sample size larger than 10. Because the

blocking structure is provided in the fixed block size algorithm, this algorithm

takes much less computing time than the conjoint design algorithm (see also

Section 4.6.5).

Case 3: General blocking structure in the (2, 3, 3, 5) scenario

In the (2, 3, 3, 5) scenario it is generally most efficient to group profiles in

blocks of three and/or five. Instead of combining these two block sizes in

function of the degree of correlation, it would be simpler to rely on one

fixed block size, a block size of either three or five. Therefore, we examined

whether it is feasible to use blocks of size three and one or two blocks of size

five in case the sample size is not divisible by three. Also, we studied whether

five profiles can be administered to the respondents and three profiles to a

maximum of four respondents in case the sample size is not divisible by

five. This latter blocking structure turns out to be the best as there are
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no redundant observations in this case. On the other hand, the assignment

of three profiles to the respondents results in some redundant observations

at higher correlations. Consequently, since the losses in D-efficiency are

negligible from adopting a fixed block size of five, we can exploit this general

block size in the fixed block size algorithm to construct D-optimal conjoint

designs for the (2, 3, 3, 5) scenario. We found that this approach works well

for the designs with a sample size larger than 11.

Case 4: General blocking structure in the (2, 3, 4, 5) scenario

In the (2, 3, 4, 5) scenario it is most efficient to spread the profiles over respon-

dents in blocks of four. In most cases where the sample size is not a multiple

of four, five profiles are assigned to a maximum of three respondents. We

obtained this result by computing some additional D-optimal conjoint de-

signs for other sample sizes than the ones in Table 4.4. Sometimes, however,

three profiles are administered to one or two respondents. This is the case

for the designs with a sample size of 30 and 70 for a degree of correlation

of 0.1. For these instances, we found that the use of blocks of size four and

two blocks of size five yields no redundant observations. In general, the as-

signment of four profiles to the respondents and five profiles to a maximum

of three respondents in case the sample size is not a multiple of four is ef-

ficient in all instances. As a result, to generate D-optimal conjoint designs

for the (2, 3, 4, 5) scenario we can apply the fixed block size algorithm with

the general blocking structure as an input. Note that only the designs with

a sample size larger than 12 can be constructed in this way.

To conclude, for each of the four scenarios we found a general blocking struc-

ture supported by one predominant block size. As we show in the next

section, the production of D-optimal conjoint designs for fairly large sam-

ple sizes with the conjoint design algorithm takes a long time. Therefore,

to construct large designs, we recommend to first compute some smaller D-

optimal conjoint designs with the conjoint design algorithm to derive the

general blocking structure. This structure can then be provided to the fixed

block size algorithm to compute the larger designs.
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4.6.5 Computing times of D-optimal conjoint designs

We now illustrate the huge time savings from applying the fixed block size al-

gorithm with an efficient blocking structure as an input to generateD-optimal

conjoint designs for fairly large sample sizes. To do so, we compare the com-

puting times to construct the D-optimal conjoint designs in the (3, 3, 3, 3)

and (2, 3, 3, 4) scenarios with the conjoint design algorithm and the fixed

block size algorithm. We included the general blocking structure of three

blocks per respondent in the fixed block size algorithm. We implemented

both algorithms in Fortran 77 and registered the computing times using a

Dell personal computer with a 1.80 GHz Intel Processor and 256 MB RAM.

Table 4.5 shows the times per 1, 000 tries together with the numbers of tries

used to create the D-optimal conjoint designs for any degree of correlation

(ρ 6= 0). We believe these numbers are sufficient so as not to be stuck in

locally optimal designs.

Figure 4.2 contains the plot with the computing times per 1, 000 tries for the

D-optimal conjoint designs in the (3, 3, 3, 3) scenario. We omitted the plot for

the (2, 3, 3, 4) scenario because it exhibits a similar pattern. Table 4.5 reveals

that many more tries are required when the conjoint design algorithm is used

instead of the fixed block size algorithm. In addition to that, Figure 4.2

shows that the computing times per 1, 000 tries with the conjoint design

algorithm are long and grow exponentially with the sample size. In contrast,

the computing times per 1, 000 tries with the fixed block size algorithm are

much shorter and hardly increase with the sample size. As a result, it takes

much more time to generate the D-optimal conjoint designs with the conjoint

design algorithm than with the fixed block size algorithm. Inversely put,

the fixed block size algorithm dramatically speeds up the computing times.

Particularly for the designs with a sample size of 40 and more enormous time

savings are measured.

4.6.6 Replicating D-optimal conjoint designs

As an alternative way to quickly generate a relatively large D-optimal con-

joint design, a researcher can consider replicating a smaller D-optimal con-

joint design. If this design approach results in only negligible losses in D-
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Table 4.5: Computing times per 1, 000 tries and numbers of tries used to gen-
erate the D-optimal conjoint designs in the (3, 3, 3, 3) and (2, 3, 3, 4)
scenarios with the conjoint design algorithm and the fixed block size
algorithm. The times are expressed in hours:minutes.

Conjoint design algorithm Fixed block size algorithm

n Scenario time/1, 000 tries # tries time/1, 000 tries # tries

20 (3, 3, 3, 3) 01:17 2, 000 00:02 1, 000

20 (2, 3, 3, 4) 01:05 2, 000 00:01 1, 000

24 (3, 3, 3, 3) 02:04 3, 000 00:02 2, 000

24 (2, 3, 3, 4) 01:24 3, 000 00:02 2, 000

30 (3, 3, 3, 3) 02:54 3, 000 00:03 2, 000

30 (2, 3, 3, 4) 02:02 3, 000 00:03 2, 000

36 (3, 3, 3, 3) 03:58 4, 000 00:04 2, 000

36 (2, 3, 3, 4) 02:47 4, 000 00:03 2, 000

40 (3, 3, 3, 3) 04:52 4, 000 00:05 2, 000

40 (2, 3, 3, 4) 03:05 4, 000 00:04 2, 000

50 (3, 3, 3, 3) 08:31 5, 000 00:08 3, 000

50 (2, 3, 3, 4) 04:36 5, 000 00:07 3, 000

60 (3, 3, 3, 3) 11:05 6, 000 00:10 3, 000

60 (2, 3, 3, 4) 07:14 6, 000 00:09 3, 000

70 (3, 3, 3, 3) 15:42 7, 000 00:15 4, 000

70 (2, 3, 3, 4) 09:18 7, 000 00:15 4, 000

72 (3, 3, 3, 3) 16:44 7, 000 00:15 4, 000

72 (2, 3, 3, 4) 10:43 7, 000 00:15 4, 000

81 (3, 3, 3, 3) 21:19 8, 000 00:21 5, 000

81 (2, 3, 3, 4) 12:51 8, 000 00:18 5, 000

efficiency, it would be quite desirable from a practical standpoint. This is

because replicating a small D-optimal conjoint design is cheaper both com-

putationally and financially. The financial benefit is due to the fact that each

distinct set of profiles can be rated by at least two respondents so that fewer

profiles need to be manufactured. To evaluate the statistical efficiency of a

design plan that contains one or more replications of a small D-optimal con-
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Figure 4.2: Minutes of computing time per 1, 000 tries to generate the D-optimal
conjoint designs in the (3, 3, 3, 3) scenario using the conjoint design
algorithm and the fixed block size algorithm.

joint design, we calculate the number of redundant observations associated

with this plan. So we determine how many observations would be saved if a

D-optimal conjoint design were applied whose D-criterion value equals that

of the replicated design plan.

To derive the number of redundant observations of a replicated design plan,

we need to compute the D-criterion value of the replicated design plan. Ev-

idently, we suspect all design plans studied in this section to be suboptimal.

The D-criterion value, Dsub
n , of a design plan of n observations consisting of

a multiple c of a small D-optimal conjoint design with sample size n∗s is given

by

Dsub
n = c×Dopt

n∗s , (4.24)

where Dopt
n∗s denotes the D-criterion value of the small D-optimal conjoint

design. Recall that the D-criterion values of the D-optimal conjoint de-

signs in the (3, 3, 3, 3), (2, 3, 3, 4), (2, 3, 3, 5) and (2, 3, 4, 5) scenarios appear
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in Table A1 of Appendix A.

Table 4.6 shows the replication schemes we set up for each of the four scenar-

ios. For the (3, 3, 3, 3) and (2, 3, 3, 4) scenarios we investigated whether we

could replicate the D-optimal conjoint designs with a sample size of 20, 24,

30 and 36 to carry out experiments with 40, 60 and 72 observations. For the

(2, 3, 3, 5) and (2, 3, 4, 5) scenarios we studied replications of the D-optimal

conjoint designs with a sample size of 20 and 30 to conduct experiments with

40 and 60 observations.

Table 4.6: Replication schemes of small D-optimal conjoint designs in the
(3, 3, 3, 3), (2, 3, 3, 4), (2, 3, 3, 5) and (2, 3, 4, 5) scenarios.

n

Scenario 40 60 72

(3, 3, 3, 3) & 3× 20 3× 24

(2, 3, 3, 4)
2× 20

2× 30 2× 36

(2, 3, 3, 5) & 3× 20

(2, 3, 4, 5)
2× 20

2× 30

For the (3, 3, 3, 3) and (2, 3, 3, 4) scenarios it turns out that there are al-

most no redundant observations when the D-optimal conjoint designs with a

sample size of 20, 24, 30 and 36 are replicated. However, caution should be

exercised in replicating these designs more than thrice as we observed one re-

dundant observation from replicating the designs with 20 and 24 observations

thrice. The more replications are made, the more one loses in D-efficiency.

We observed similar results for the replicated design plans in the (2, 3, 3, 5)

and (2, 3, 4, 5) scenarios. For most design plans consisting of a D-optimal

conjoint design with a sample size of 20 or 30 there are no redundant obser-

vations. An exception however are the design plans from the triple replica-

tion of the three D-optimal conjoint designs with a sample size of 20 in the

(2, 3, 3, 5) scenario (see Table 4.3). These design plans have two redundant

observations. This can be explained by the occurrence of blocks of size four

in the optimal blocking structures of the D-optimal conjoint designs at lower
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correlations. In addition, these designs contain at most 20 different design

profiles which is rather small.

We can conclude from these examples that it is efficient to replicate small

D-optimal conjoint designs for larger experiments if two conditions are met.

First, the blocking structure of the small D-optimal conjoint design matches

the predominant blocking structure of the given scenario. Second, the small

conjoint design contains an acceptable number of different profiles. The

better this second condition is fulfilled, or the larger the sample size of the

”small” design, the more replications can be made.

4.6.7 Randomly distributing profiles from D-optimal

CRDs

In practice, conjoint designs have often been constructed by generating a

D-optimal CRD and assigning the profiles at random to the respondents.

Although this approach is very fast, we illustrate in this section that it is

statistically inefficient. More specifically, we examine the performance of the

D-optimal CRDs in the (3, 3, 3, 3) scenario when the profiles are randomly

spread over respondents in blocks of three. In other words, we analyze each

of the D-optimal CRDs with the random respondent effects model (4.2) us-

ing blocks of three profiles and one or two blocks of four profiles in case the

sample size is not a multiple of three.

To evaluate the D-optimal CRDs, we randomly generated for each CRD

1, 000 profile arrangements according to the general blocking structure of

three profiles per respondent. We then computed the D-criterion values of

these profile arrangements for each degree of correlation (ρ 6= 0). For each

array of 1, 000 profile arrangements, we found that the D-criterion values ex-

hibit a bell-shaped pattern. Therefore, we compared the average D-criterion

values with the D-criterion values of the D-optimal conjoint designs that are

listed in Table A1 of Appendix A and that are also plotted in Figure 4.1.

The resulting average D-efficiencies for each array of 1, 000 profile arrange-

ments appear in Figure 4.3. They decrease with the degree of correlation

from about 95% to about 65%, suggesting that randomly distributing CRD-
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profiles over respondents is statistically not very efficient.
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Figure 4.3: Average D-efficiencies of 1, 000 profile arrangements of the D-optimal
CRDs in the (3, 3, 3, 3) scenario. Profiles are arranged according to
the general blocking structure of three profiles per respondent.

To express the efficiency losses for each array of 1, 000 profile arrangements,

we computed the numbers of redundant observations using the average D-

criterion values. The subsequent average numbers of redundant observations

appear in Figure 4.4. As can be seen, these numbers are substantial and

increase with the sample size and the degree of correlation.

Besides the average D-criterion values, we also calculated the minimum and

maximum D-criterion values and corresponding numbers of redundant ob-

servations. The minimum D-criterion values result in the largest numbers

of redundant observations whereas the maximum D-criterion values result in

the smallest numbers. The maxima and minima of redundant observations

for degrees of correlation of 0.1 and 0.9 appear in Figure 4.5. They serve as

bounds between which the maxima and minima of redundant observations

for the other degrees of correlation are comprised. We observe that the max-
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ima are more dispersed than the minima and that the spread between the

maxima and minima increases with the degree of correlation.
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Figure 4.4: Average numbers of redundant observations of 1, 000 profile arrange-
ments of the D-optimal CRDs in the (3, 3, 3, 3) scenario. Profiles are
arranged according to the general blocking structure of three profiles
per respondent.
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Figure 4.5: Minima and maxima of redundant observations of 1, 000 profile ar-
rangements of the D-optimal CRDs in the (3, 3, 3, 3) scenario. Pro-
files are arranged according to the general blocking structure of three
profiles per respondent for degrees of correlation of 0.1 and 0.9.
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4.7 Conclusion

In this chapter, we constructed D-optimal designs for conjoint experiments

in which each respondent rates a small set of prototypes that must be tested

in advance. Manufacturing these prototypes is expensive so that the num-

ber of design profiles is determined by the available budget. We used the

linear model with a random effect to represent the fact that profile ratings

from the same respondent are correlated. The resulting D-optimal conjoint

designs indicate how many respondents are necessary for a specific conjoint

setting and which and how many profiles to administer to each of them.

We examined D-optimal conjoint designs of various sample sizes at four level

settings or scenarios. For each scenario, we were able to find a generally

efficient blocking structure with which relatively large D-optimal conjoint

designs can be quickly constructed. Therefore, to generate large D-optimal

conjoint designs for any scenario, we recommend to first derive the general

blocking structure for that scenario by constructing some smaller D-optimal

conjoint designs. The general blocking structure can then be given as an

input to the design construction algorithm to produce the large designs. We

conjecture that good sample sizes for conjoint designs for a given scenario

are multiples of the least common multiple of the numbers of attribute levels.

This is because the blocking structures of such designs seem to correspond to

the general blocking structure of the scenario which we exploit in the design

construction algorithm. Verifying or disproving this conjecture by a rigorous

study is a potential future research topic.

Another way to compute larger D-optimal conjoint designs in a time-efficient

manner is to replicate a smaller D-optimal design that has the general block-

ing structure of the scenario and a reasonable number of different profiles.

This approach also requires fewer profiles to be manufactured because each

distinct set of profiles can be rated by at least two respondents. This makes

the experimental design cheaper financially. Finally, we demonstrated that

constructing D-optimal completely randomized designs and arbitrarily dis-

tributing the profiles to the respondents is statistically inefficient on average.
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Appendix A. D-criterion values of the D-opti-

mal conjoint designs and D-optimal CRDs

Table A1: D-criterion values of the D-optimal conjoint designs (ρ 6= 0) and D-
optimal CRDs (ρ = 0) for the four scenarios described in Section 4.6.1.

ρ

n 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

a) (3, 3, 3, 3) scenario

20 12.088 12.957 14.112 15.628 17.661 20.497 24.699 31.553 44.799 82.200

24 14.506 15.537 16.959 18.815 21.297 24.753 29.865 38.196 54.285 99.699

30 18.253 19.578 21.369 23.708 26.836 31.190 37.632 48.130 68.404 125.628

36 22.093 23.775 25.951 28.791 32.590 37.878 45.701 58.450 83.071 152.564

40 24.428 26.187 28.535 31.611 35.755 41.532 50.087 64.036 90.982 167.051

50 30.583 32.833 35.810 39.701 44.913 52.174 62.921 80.442 114.286 209.826

60 36.737 39.497 43.112 47.830 54.141 62.925 75.922 97.101 138.002 253.450

70 42.895 46.108 50.277 55.728 63.052 73.256 88.363 112.988 160.551 294.818

72 44.185 47.514 51.862 57.538 65.129 75.697 91.331 116.809 166.013 304.893

81 49.709 53.494 58.390 64.780 73.327 85.225 102.827 131.512 186.909 343.270

b) (2, 3, 3, 4) scenario

20 11.247 11.952 12.937 14.263 16.068 18.603 22.376 28.543 40.478 74.200

24 13.768 14.632 15.826 17.435 19.627 22.710 27.299 34.807 49.338 90.407

30 17.088 18.158 19.637 21.632 24.349 28.171 33.862 43.189 61.249 112.283

36 20.696 22.007 23.810 26.237 29.538 34.181 41.090 52.392 74.266 136.086

40 22.908 24.315 26.297 28.973 32.617 37.762 45.414 57.927 82.141 150.566

50 28.709 30.500 32.986 36.345 40.919 47.353 56.932 72.598 102.920 188.612

60 34.505 36.682 39.679 43.716 49.212 56.940 68.448 87.273 123.709 226.684

70 40.238 42.758 46.243 50.947 57.354 66.365 79.781 101.726 144.200 264.238

72 41.449 44.051 47.643 52.489 59.087 68.368 82.186 104.787 148.534 272.173

81 46.577 49.503 53.542 58.987 66.403 76.832 92.361 117.761 166.925 305.873

c) (2, 3, 3, 5) scenario

20 9.628 10.194 11.008 12.132 13.679 15.864 19.131 24.498 34.920 64.549

30 14.830 15.696 16.939 18.668 21.040 24.403 29.431 37.678 53.698 99.246

40 19.673 20.818 22.478 24.766 27.923 32.380 39.039 49.970 71.200 131.591

50 24.657 26.080 28.166 31.035 34.992 40.586 48.938 62.638 89.262 164.983

60 29.704 31.439 33.929 37.392 42.150 48.889 58.953 75.460 107.527 198.705

70 34.590 36.603 39.512 43.543 49.092 56.943 68.672 87.908 125.274 231.515

d) (2, 3, 4, 5) scenario

20 8.867 9.444 10.256 11.355 12.853 14.961 18.106 23.268 33.319 62.027

30 13.413 14.244 15.436 17.075 19.318 22.478 27.196 34.943 50.027 93.119

40 18.057 19.208 20.844 23.066 26.099 30.374 36.754 47.228 67.601 125.875

50 22.532 23.949 25.980 28.745 32.523 37.847 45.792 58.839 84.242 156.810

60 27.196 28.917 31.371 34.709 39.268 45.692 55.281 71.026 101.685 189.270

70 31.639 33.633 36.484 40.368 45.672 53.147 64.303 82.621 118.289 220.184
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Appendix B. D-optimal conjoint designs for all

candidate profiles

Table B1: D-optimal conjoint design for all 81 candidate profiles in the (3, 3, 3, 3)
scenario.

Attributes Attributes Attributes
Set 1 2 3 4 Set 1 2 3 4 Set 1 2 3 4
1 1 1 1 1 10 1 1 2 1 19 1 1 3 1
1 3 2 2 2 10 3 2 3 2 19 3 2 1 2
1 2 3 3 3 10 2 3 1 3 19 2 3 2 3
2 2 1 1 1 11 2 1 2 1 20 2 1 3 1
2 1 2 2 2 11 1 2 3 2 20 1 2 1 2
2 3 3 3 3 11 3 3 1 3 20 3 3 2 3
3 3 1 1 1 12 3 1 2 1 21 3 1 3 1
3 2 2 2 2 12 2 2 3 2 21 2 2 1 2
3 1 3 3 3 12 1 3 1 3 21 1 3 2 3
4 1 2 1 1 13 1 2 2 1 22 1 2 3 1
4 3 3 2 2 13 3 3 3 2 22 3 3 1 2
4 2 1 3 3 13 2 1 1 3 22 2 1 2 3
5 2 2 1 1 14 2 2 2 1 23 2 2 3 1
5 1 3 2 2 14 1 3 3 2 23 3 1 2 3
5 3 1 3 3 14 3 1 1 3 23 1 3 1 2
6 3 2 1 1 15 3 2 2 1 24 3 2 3 1
6 2 3 2 2 15 2 3 3 2 24 2 3 1 2
6 1 1 3 3 15 1 1 1 3 24 1 1 2 3
7 1 3 1 1 16 1 3 2 1 25 1 3 3 1
7 3 1 2 2 16 3 1 3 2 25 3 1 1 2
7 2 2 3 3 16 2 2 1 3 25 2 2 2 3
8 2 3 1 1 17 2 3 2 1 26 2 3 3 1
8 1 1 2 2 17 1 1 3 2 26 1 1 1 2
8 3 2 3 3 17 3 2 1 3 26 3 2 2 3
9 3 3 1 1 18 3 3 2 1 27 3 3 3 1
9 2 1 2 2 18 1 2 1 3 27 2 1 1 2
9 1 2 3 3 18 2 1 3 2 27 1 2 2 3
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Table B2: D-optimal conjoint design for all 72 candidate profiles in the (2, 3, 3, 4)
scenario.

Attributes Attributes Attributes
Set 1 2 3 4 Set 1 2 3 4 Set 1 2 3 4
1 2 1 3 1 9 2 3 3 1 17 2 1 1 3
1 1 2 2 3 9 1 1 1 2 17 2 3 2 4
1 1 3 1 2 9 1 2 2 4 17 1 2 3 1
2 2 1 3 2 10 2 3 3 2 18 2 1 1 4
2 1 2 1 4 10 1 1 2 1 18 2 3 2 3
2 1 3 2 1 10 1 2 1 3 18 1 2 3 2
3 2 1 3 3 11 2 3 3 3 19 2 1 2 1
3 1 2 1 1 11 1 1 1 4 19 2 3 1 2
3 1 3 2 4 11 1 2 2 2 19 1 2 3 3
4 2 1 3 4 12 2 3 3 4 20 2 1 1 2
4 1 2 1 2 12 1 1 1 3 20 2 3 2 1
4 1 3 2 3 12 1 2 2 1 20 1 2 3 4
5 2 2 3 1 13 2 2 1 4 21 2 1 2 2
5 1 1 2 4 13 2 3 2 2 21 2 2 1 3
5 1 3 1 3 13 1 1 3 1 21 1 3 3 1
6 2 2 3 2 14 2 2 2 3 22 2 1 1 1
6 1 1 2 3 14 2 3 1 1 22 2 2 2 4
6 1 3 1 4 14 1 1 3 2 22 1 3 3 2
7 2 2 3 3 15 2 2 2 2 23 2 1 2 4
7 1 1 2 2 15 2 3 1 4 23 2 2 1 1
7 1 3 1 1 15 1 1 3 3 23 1 3 3 3
8 2 2 3 4 16 2 2 2 1 24 2 1 2 3
8 1 1 1 1 16 2 3 1 3 24 2 2 1 2
8 1 3 2 2 16 1 1 3 4 24 1 3 3 4
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Appendix C. Number of redundant observa-

tions

The approach we propose to express losses in D-efficiency when using sub-

optimal conjoint designs is a practical one and proceeds as follows. For each

setting of the attribute levels and degree of correlation (ρ 6= 0), we perform

a regression analysis of the D-criterion values of the D-optimal conjoint de-

signs in Table A1 with respect to the sample size. We denote the sample

size by n∗ and the D-criterion values by Dopt
n∗ . Each regression analysis yields

an intercept and slope referred to as ψ and ω, respectively. Consider now a

suboptimal conjoint design with sample size n and D-criterion value Dsub
n for

a given level setting and degree of correlation. It is clear that the D-criterion

value Dsub
n is smaller than the corresponding D-criterion value Dopt

n∗ where

n∗ = n. For the D-criterion value Dsub
n we derive how many observations n∗

are required in the optimal case using the equations

Dsub
n = Dopt

n∗ (C1)

and

Dopt
n∗ = ψ + ωn∗. (C2)

To further illustrate these expressions, we have drawn a regression line in

Figure C1. Obviously, the sample size n∗ is smaller than or, due to rounding,

equal to the sample size n of the suboptimal conjoint design. The difference

in numbers of observations, n−n∗, gives a clear indication of the extent of the

efficiency losses. The larger the difference, the higher the losses. We refer to

this difference as the number of redundant observations because it specifies

how many observations would be saved if a D-optimal conjoint design were

applied to reach the same level of D-efficiency as obtained by the suboptimal

design.
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Chapter 5

Two-level variance-balanced

rating-based conjoint designs

This chapter has been submitted as

1 Kessels, R., Goos, P. and Vandebroek M. (2006). Optimal two-level conjoint

designs for large numbers of attributes.

Abstract

In this chapter, we propose a simple strategy to construct D-, A-, G- and

V-optimal two-level multi-attribute designs for rating-based conjoint studies.

Our approach combines orthogonal designs and balanced or partially bal-

anced incomplete block designs. In order not to overload respondents with

complicated tasks, the designs hold one or more attributes at a constant level.

The designs are variance-balanced meaning that they yield an equal amount

of information on each of the part-worths. Some examples are provided to

illustrate the method.
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5.1 Introduction

A conjoint experiment tries to elucidate consumer preferences for the at-

tributes of a good, that is a product or a service. This is usually done by

asking respondents to rate a set of profiles or alternatives of the good. A

profile involves a combination of levels of a set of predefined attributes of

the good. Some of the administered profiles describe existing goods, whereas

others describe hypothetical and possibly prospective goods. The objective

of a conjoint experiment is to elicit as much information as possible on the

utilities people derive from the attribute levels. These utilities are also called

part-worths and correspond to the parameters of a statistical model. By

means of accurate parameter estimates, precise predictions are aimed to de-

pict consumers’ purchasing behavior in a given market. Companies can then

develop new goods that lead to a substantial rise in clientele.

To obtain precise parameter estimates, an efficient conjoint design needs to

be constructed. The conjoint designs we set up in this chapter are intended

for screening out the vital few important attributes from a group of many

potential ones. The different attributes involved in the conjoint designs have

two levels each. In most conjoint studies, see e.g. Danaher (1997), Pullman,

Moore and Wardell (2002) and references therein, the conjoint design con-

sists of blocks or sets of an equal number of profiles. Each of these sets is

evaluated by a different respondent. To be able to estimate all part-worths,

each respondent is administered a different set of profiles.

The incorporation of large numbers of attributes in the design of conjoint

experiments requires some special attention. As Green (1974) and Schwabe

et al. (2003) have argued, respondents may get overloaded when they have

to assimilate profiles that embrace more than four different attribute levels.

Therefore, to overcome respondent fatigue, we only vary the levels of maxi-

mum four attributes in each of the profile sets assigned to the respondents.

The profiles are still combinations of levels for all attributes, but the levels

of one or more attributes do not vary between the profiles in a set. Each

respondent thus rates a set of profiles in which the levels of one or more at-

tributes are held constant. These constant attributes need not necessarily be

the same in each profile set. To keep the profile sets comprehensible for the
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respondents, we confine ourselves to a maximum of ten constant attributes

in the design.

Because each of the profile sets has a number of attributes at a constant

level, the conjoint designs addressed in this chapter show some similarities to

split-plot designs. Split-plot designs are heavily used in industry when the

levels of some of the experimental factors are difficult or costly to change or

control. These factors are called whole plot factors and are kept at a con-

stant level for several observations in the design. The other factors whose

levels may vary are called sub-plot factors. Analogous to our type of conjoint

design is that a split-plot design consists of blocks or groups of runs with the

whole plot factors acting at a constant level. These blocks are termed whole

plots. A split-plot design differs from our conjoint design in that the whole

plot factors are naturally the same in each whole plot, whereas the constant

attributes in a conjoint design may vary from set to set. We refer to the work

of Goos and Vandebroek (2001b; 2004) and Goos (2002, 2006a) for more de-

tails on split-plot designs.

Our approach to construct multi-attribute conjoint designs exploits the same

linear model that is used for generating split-plot designs. In the split-plot

setting, the model includes a random effect representing the whole plot varia-

tion. In our conjoint setting, the random effect is attributable to a respondent

who rates a set of profiles. The reason is that respondents are assumed to

be heterogeneous, meaning that profile ratings from the same respondent are

more similar than profile ratings from different respondents. A random ef-

fect for each respondent accommodates this heterogeneity. Respondents are

thereby supposed to be randomly selected from a prespecified market pop-

ulation. In the conjoint setting, we refer to the model as the linear random

respondent effects model. Also Brazier, Roberts and Deverill (2002) and

Kessels, Goos and Vandebroek (2004) adopted this model for conjoint appli-

cations. Because the conjoint designs in this chapter are set up for detecting

the significant attributes from a large number of attributes, only main-effects

models are considered.
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Our design construction approach is conceptually easy to understand and

generates designs with sets of 2, 4 and 8 profiles. In principle, our approach

can produce designs with profile sets of sizes equal to a power of two. How-

ever, we restrict ourselves to a maximum size of eight as respondents can eas-

ily become fatigued by having to evaluate more than eight profiles. Related

to conjoint designs with sets of two profiles are paired comparison designs

(Grossmann, Holling and Schwabe 2002; Grossmann et al. 2005; Grasshoff

et al. 2004; Street, Bunch and Moore 2001; Street and Burgess 2004). These

designs also comprise sets of two profiles, but in contrast to conjoint designs,

each respondent evaluates all the sets. This is done by specifying the pre-

ferred profile in each set, and possibly also the preference strength.

Street, Bunch and Moore (2001) demonstrated that holding the levels of one

or more attributes constant in two-level paired comparison designs leads to

information losses when main-effects models are considered. This result also

applies to conjoint designs. Keeping the rating tasks manageable for the re-

spondents thus comes at a loss of information on the part-worths. Since all

part-worths are assumed to be on the same footing, we look for conjoint de-

signs that spread the information losses evenly over each part-worth. In other

words, we want to set up conjoint designs that provide an equal amount of

information on each part-worth. These conjoint designs are called variance-

balanced conjoint designs.

To allow for variance balance in the conjoint designs, the constant attributes

have to differ between the profile sets in such a way that each attribute is

constant in an equal number of sets. In case of more than one constant

attribute, we obtain an appropriate pattern of constant attributes using a

balanced or partially balanced incomplete block design (BIBD or PBIBD).

The levels in these one-factor block designs, called treatments, each occur the

same number of times, which paves the way for the production of variance-

balanced conjoint designs. To ensure the optimality of the designs, meaning

that they yield maximum information on each part-worth, we choose the

design profiles so that they form an orthogonal array. These designs offer

the advantage that parameter estimates are statistically independent of each

other.
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The combination of orthogonal designs and BIBDs or PBIBDs has also been

employed by Green (1974) to develop multi-attribute choice experiments for

an equal and unequal number of levels for the attributes. Yet, the resulting

designs are not guaranteed to be optimal as Grossmann, Holling and Schwabe

(2002) have shown. In choice experiments, respondents are administered a

series of choice sets that each comprise several profiles. The respondents then

indicate their preferred profile in every choice set. The underlying model is

usually nonlinear, which requires the specification of prior parameter values

before deriving the design. However, Green (1974) assumed zero prior values,

hereby simplifying the nonlinear design problem to a linear one. Because of

this assumption, the designs generated can also be utilized for conjoint ex-

periments.

In one of his examples, Green (1974) constructed designs for partial profiles.

These profiles are described by only a subset of the attributes. The levels

of the other attributes are left unspecified. A BIBD is used to determine

which of the attributes constitute the profiles. An orthogonal design is then

assigned to each combination of attributes selected by the BIBD to form the

profiles for these attributes. This approach yields variance-balanced designs

when the attributes have two levels each. It best resembles our strategy

since the attributes provided by the BIBD are the non-constant attributes

in our conjoint setting. However, we also determine the levels of the other

attributes, the constant attributes in our setting, so as to construct conjoint

designs for full profiles. Comparing ratings from different profiles is impossi-

ble otherwise.

Based on a different approach, Street and Burgess (2004) generated optimal

two-level paired comparison designs that can also be employed as variance-

balanced conjoint designs for sets of two profiles. In this case, the paired

comparison designs are set up for full profiles in which the levels of one or

more attributes are held constant. They are referred to as constant difference

pairs. Street and Burgess (2004) propose the use of generators and orthog-

onal designs to construct the pairs. They exploited the nonlinear Bradley-

Terry model for choice experiments. Because zero prior parameter values

are assumed, the model comes down to the linear model. The construction
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of variance-balanced constant difference pairs is illustrated in an empirical

study by Severin (2000).

The outline of the remainder of the chapter is as follows. Section 5.2 reviews

the random respondent effects model used in conjoint design. In Section 5.3

we discuss the optimality conditions and in Section 5.4 we refine these con-

ditions to deal with large numbers of attributes. We explain our design

construction approach in Section 5.5 and describe the information content of

the resulting designs in Section 5.6. Section 5.7 concludes the chapter and

highlights some further research possibilities.

5.2 The random respondent effects model

The model used to set up and analyze two-level multi-attribute conjoint

experiments is the random respondent effects model. In this model, it is

assumed that respondents are heterogeneous and randomly selected from

a prespecified population. Each respondent i, i = 1, ..., b, rates a different

block or set of profiles to estimate all parameters. For convenience, the profile

sets assigned to the b respondents have the same size m. As a result, the

total number of experimental profiles amounts to n = bm. Our approach to

properly design two-level conjoint studies considers the cases where m equals

either 2, 4 or 8. Subsequently, the rating Uij for profile j, j = 1, ..., m, by

respondent i is modelled as

Uij = x′ijβ + γi + εij. (5.1)

In the model, xij is a (k + 1) × 1 vector with a one as first element and

the attribute levels describing profile j that is rated by respondent i as the

remaining k elements. The attributes are quantitative or categorical factors

that have two levels each. One level is coded as −1 and the other level as +1.

Consequently, each of the individual attribute levels occupies one entry in

the vector xij. Moreover, only main-effects models are considered so that the

number of attributes involved in the design amounts to k. β = [β0, ..., βk]
′ is

the (k+1)×1 unknown parameter vector with β0 the intercept and β1, ..., βk

the part-worths or weights attached to the attribute levels. γi represents the
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random effect of respondent i and εij is a random error term.

In matrix notation, model (5.1) becomes

U = Xβ + Zγ + ε, (5.2)

where U is a vector of n profile ratings, the vector γ = [γ1, ..., γb]
′ contains

the b random respondent effects and ε is a random error vector. The matrices

X and Z have dimensions n × (k + 1) and n × b, respectively. X is given

by [X′
1, ...,X

′
b]
′, where Xi = [xi1, ...,xim]′ collects the m profiles rated by

respondent i. Z = Ib ⊗ 1m, where ⊗ is the Kronecker product and 1m an

m× 1 vector of ones. It is assumed that

E(ε) = 0n and Cov(ε) = σ2
εIn, (5.3)

E(γ) = 0b and Cov(γ) = σ2
γIb, (5.4)

and Cov(γ, ε) = 0b×n, (5.5)

where σ2
ε is the variance within respondents and σ2

γ is the variance between

respondents. Under these assumptions, the variance-covariance matrix V of

the profile ratings U is Ib ⊗Vm, with

Vm = σ2
εIm + σ2

γ1m1′m = σ2
ε

(
Im +

ρ

1− ρ
1m1′m

)
. (5.6)

In this expression, ρ = σ2
γ/(σ2

ε + σ2
γ). This ratio measures the proportion of

the total variance that is accounted for by the differences between respon-

dents. It represents the degree of correlation between the ratings from a

single respondent.

The vector of the unknown fixed model parameters β can be estimated using

the generalized least squares estimator

β̂ = (X′V−1X)−1X′V−1U, (5.7)

with (X′V−1X)−1 the variance-covariance matrix of β̂, the inverse of which

is the information matrix on β.
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5.3 Design optimality

Our strategy to construct efficient multi-attribute conjoint designs is based

on the information matrix X′V−1X for the random respondent effects model

(5.2). Goos and Vandebroek (2001b) showed that the information matrix of

a design X with profile sets of size m can be written as

X′V−1X = σ−2
ε

{
X′X− ρ

1 + ρ(m− 1)

b∑
i=1

(X′
i1m)(X′

i1m)′
}

. (5.8)

For notational ease, we define the matrices A and B as

A = X′X and B =
b∑

i=1

(X′
i1m)(X′

i1m)′, (5.9)

so that the information matrix X′V−1X is of the form A− f(ρ)B.

The designs we derive are optimal with regard to four criteria that are func-

tions of the information matrix (5.8) irrespective of the value of ρ. These cri-

teria are the D-, A-, G- and V-optimality criteria. The D- and A-optimality

criteria both are concerned with a precise estimation of the parameters β in

model (5.2). A D-optimal design minimizes the determinant of the variance-

covariance matrix (X′V−1X)−1 or, equivalently, maximizes the determinant

of the information matrix (5.8). An A-optimal design minimizes the trace

of the variance-covariance matrix. The G- and V-optimality criteria are

concerned with making precise response predictions. Because conjoint ex-

periments particularly focus on producing precise predictions, these criteria

are vital in design construction. The G-optimality criterion seeks designs

that minimize the maximum prediction variance over the region of interest,

whereas the V-optimality criterion seeks designs that minimize the average

prediction variance over the region of interest.

To obtain conjoint designs that are D-, A-, G- and V-optimal, we construct

the profile sets in such a way that the information matrix (5.8) is diagonal

with elements that are as large as possible. The approach was motivated by

Goos (2006b) who presented conditions for designing optimal two-level main-

effect split-plot experiments. To find the conjoint design X corresponding
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to a diagonal information matrix X′V−1X with the largest possible diagonal

elements, both matrices A and B in (5.9) should be diagonal. The diagonal

elements of A should be as large as possible, whereas those of B should be

as small as possible.

In our construction method we present in Section 5.5, X will turn out to be

an orthogonal array such as a full 2k or fractional 2k−p factorial design or a

Plackett-Burman design. As a result, A = nIk+1. Ideally, the profiles in the

orthogonal design X are arranged in sets so that B is a zero matrix. However,

because we are concerned with experiments with large numbers of attributes

where some levels are held constant to simplify the respondents’ task, this

is impossible. Also, the first element of B corresponds to the intercept and

equals bm2 for every imaginable design. How best to assign these constant

attribute levels is discussed in the next section.

5.4 Large numbers of attributes

In order not to overload the respondents with a heavy rating task, we hold

one or more attributes at a fixed level in each of the profile sets. In other

words, we introduce perfect level overlap for one or more attributes in each

profile set. These attributes are the constant attributes and may differ from

set to set. We denote the number of constant attributes by kc. The remain-

ing kv = k−kc attributes, the levels of which may vary, are the non-constant

attributes. The concepts of constant and non-constant attributes are illus-

trated with the conjoint design in Table 5.1. This design consists of b = 12

sets with m = 2 profiles each. It has k = 6 attributes, two of which are

constant so that kc = 2 and kv = 4. The levels of the constant attributes are

highlighted in grey. As can be seen, the constant and non-constant attributes

may differ between the profile sets.
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Table 5.1: Optimal variance-balanced conjoint design with b = 12 sets of m = 2
profiles, kc = 2 constant attributes and kv = 4 non-constant at-
tributes.

Attributes

Set 1 2 3 4 5 6

1 −1 −1 −1 −1 −1 −1

1 −1 +1 +1 −1 +1 +1

2 −1 −1 −1 +1 +1 +1

2 −1 +1 +1 +1 −1 −1

3 +1 −1 +1 −1 −1 +1

3 +1 +1 −1 −1 +1 −1

4 +1 −1 +1 −1 +1 −1

4 +1 +1 −1 +1 −1 +1

5 −1 −1 −1 −1 −1 +1

5 +1 −1 +1 +1 −1 −1

6 −1 −1 −1 +1 +1 −1

6 +1 −1 +1 −1 +1 +1

7 −1 +1 +1 −1 −1 −1

7 +1 +1 −1 +1 −1 +1

8 −1 +1 +1 +1 +1 +1

8 +1 +1 −1 −1 +1 −1

9 −1 −1 −1 −1 −1 −1

9 +1 +1 −1 +1 +1 −1

10 −1 −1 −1 +1 +1 +1

10 +1 +1 −1 −1 −1 +1

11 −1 +1 +1 −1 +1 −1

11 +1 −1 +1 +1 −1 −1

12 −1 +1 +1 +1 −1 +1

12 +1 −1 +1 −1 +1 +1
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Keeping the levels of one or more attributes fixed in the profile sets of a con-

joint design reduces the amount of information that can be collected from

the experiment. Also Street, Bunch and Moore (2001) observed that impos-

ing perfect level overlap in two-level main-effect paired comparison designs

leads to information losses with respect to the part-worths of the constant at-

tributes in each of the profile sets. Without perfect level overlap constraints,

most information is obtained when the levels of each attribute are maximum

balanced, meaning that they occur with equal frequency in each profile set.

Note that this is the opposite of perfect level overlap.

If no constant attributes were involved, maximum level balance would im-

ply that X′
i1m = [m 01×k]

′, i = 1, ..., b, so that all elements of the matrix

B in (5.9) are zero, except for the single element corresponding to the in-

tercept in the upper left entry. This would maximize the information in

the experiment. When kc constant attributes are imposed on the design,

X′
i1m = [m s′i]

′, i = 1, ..., b, where si is a k × 1 vector containing at least kc

nonzero elements. As a result of that, B has additional nonzero elements

that cause the loss of information. To minimize the number of nonzero ele-

ments in B, the profiles in X forming an orthogonal array should be grouped

such that maximum level balance is still preserved for the non-constant at-

tributes in each profile set. In that case, si has exactly kc nonzero elements.

In the conjoint design of Table 5.1, the profiles represent a Plackett-Burman

design and their grouping is characterized by maximum level balance for the

non-constant attributes.

It is possible that the optimal designs do not spread the information losses

from perfect level overlap evenly over all part-worths. Stated differently, the

diagonal elements for the part-worths of the matrix B in (5.9), and thus of the

information matrix (5.8), may not be the same. Still, we assume that all part-

worths are equally important so that we look for optimal designs that yield

the same amount of information on each part-worth. Each attribute should

therefore be constant in an equal number of profile sets. Optimal designs that

meet this requirement are called variance-balanced. The conjoint design of

Table 5.1 is optimal and variance-balanced. As can be seen, each attribute

acts as a constant attribute in four profile sets.
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The fact that each attribute in the conjoint design of Table 5.1 is constant in

an even number of profile sets is not surprising. This is generally the case for

optimal variance-balanced conjoint designs. As we choose X to be an orthog-

onal array and arrange the profiles so that the levels of each non-constant

attribute sum to zero in each profile set, the levels of each constant attribute

necessarily sum to zero over the profile sets. This implies an even number of

profile sets for each constant attribute to offset a −1 for a constant attribute

in a profile set by a +1 for the same constant attribute in another profile set.

Now, with this framework in mind, we describe our strategy to set up optimal

two-level variance-balanced conjoint designs in which a number of attributes

are constant in each profile set. Compared with optimal designs without

constant attributes, these designs give up some statistical efficiency to keep

the rating tasks doable. Also, to show manageable profile sets, we disregard

designs with more than kc = 10 constant attributes or more than kv = 4

non-constant attributes. To develop the optimal variance-balanced conjoint

designs, we need to determine

1. the constant attributes in each profile set,

2. the levels of these constant attributes and

3. the levels of the non-constant attributes.

In the next section, we discuss our design construction approach taking into

account this sequence of steps.

5.5 Design construction approach

In our design construction approach, we distinguish between kc = 1 and

kc > 1 constant attributes. For both cases, we run through the three steps as

listed above. We explain our strategy by some example designs that appear

in Appendix A. Optimal variance-balanced conjoint designs for kc = 1 and

kc > 1 appear in Appendix A.1 and Appendix A.2, respectively.
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5.5.1 Optimal variance-balanced conjoint designs for

kc = 1

The optimal variance-balanced designs with kc = 1 constant attribute in

Appendix A.1 are the smallest ones that can be created for kv = 2, 3 or 4

non-constant attributes and m = 2, 4 or 8 profiles per set. To construct these

designs, we cover the three steps as follows.

Steps 1 & 2: Determining the constant attributes and their levels

When kc = 1, determining the constant attributes and their levels is fairly

straightforward. To allow for variance balance, each attribute should be

constant in an equal number of profile sets. Also, each attribute should be

constant in an even number of profile sets to have as many −1’s as +1’s for

their levels. In the optimal variance-balanced conjoint designs of Tables A1,

A2, A4, A5, A7 and A8 each attribute is constant in two profile sets and

in the designs of Tables A3 and A6 each attribute is constant in four profile

sets.

Step 3: Determining the levels of the non-constant attributes

To determine the levels of the non-constant attributes, we draw on orthogo-

nal subdesigns. For kv = 2, 3 or 4 non-constant attributes and m = 2, 4 or 8

profiles per set, we constructed the smallest possible orthogonal subdesigns

with an even number of profile sets. As such, we can match these subdesigns

with the constant attributes to produce the conjoint designs of Appendix A.1.

We illustrate the use of orthogonal subdesigns for each case.

The optimal variance-balanced conjoint designs in Tables A1 and A2 have

kv = 2 non-constant attributes and profile sets of sizes m = 2 and m = 4,

respectively. The design in Table A1 is built on the orthogonal subdesign in

Table 5.2a and the design in Table A2 is built on the orthogonal subdesign

in Table 5.2b. The subdesign in Table 5.2a consists of two profile sets of

size m = 2 and the subdesign in Table 5.2b consists of two profile sets of

size m = 4. The former subdesign and each of the profile sets in the latter

subdesign represent the full 22 factorial design.
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Table 5.2: Orthogonal subdesigns with the levels of kv = 2 non-constant at-
tributes. The subdesigns consist of two profile sets each.

a) m = 2

NC attr

Set 1 2

1 −1 −1

1 +1 +1

2 −1 +1

2 +1 −1

b) m = 4

NC attr

Set 1 2

1 −1 −1

1 +1 +1

1 −1 +1

1 +1 −1

2 −1 −1

2 +1 +1

2 −1 +1

2 +1 −1

The subdesigns in Tables 5.2a and 5.2b are incorporated thrice in the con-

joint designs of Tables A1 and A2, respectively. Since this is the required

minimum to have each of the k = 3 attributes act as a constant attribute, the

conjoint designs are the smallest ones that can be produced. They both in-

volve six respondents, but can be replicated to set up larger conjoint designs

in which the number of respondents is a multiple of six. The resulting designs

are still optimal and variance-balanced. Note that we have not shown an op-

timal variance-balanced conjoint design with kv = 2 non-constant attributes

and sets of m = 8 profiles. This is because the profile sets in such design

would contain only duplicated profiles which makes no sense in a conjoint

study.

The optimal variance-balanced conjoint designs with kc = 1 constant at-

tribute in Tables A3, A4 and A5 have kv = 3 non-constant attributes and

profile sets of sizes m = 2, 4 and 8, respectively. The orthogonal subde-

signs needed for their construction appear in Tables 5.3a, 5.3b and 5.3c. The

subdesign in Table 5.3a embraces four profile sets of size m = 2 and the sub-

designs in Tables 5.3b and 5.3c embrace two profile sets of sizes m = 4 and

m = 8. The full 23 factorial design was exploited to build the subdesigns. It
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is included once in the subdesigns of Tables 5.3a and 5.3b and twice in the

subdesign of Table 5.3c.

Table 5.3: Orthogonal subdesigns with the levels of kv = 3 non-constant at-
tributes. Subdesign a) consists of four profile sets and subdesigns b)
and c) consist of two profile sets.

a) m = 2
NC attr

Set 1 2 3
1 −1 −1 −1
1 +1 +1 +1
2 −1 −1 +1
2 +1 +1 −1
3 −1 +1 −1
3 +1 −1 +1
4 −1 +1 +1
4 +1 −1 −1

b) m = 4
NC attr

Set 1 2 3
1 −1 −1 −1
1 +1 +1 +1
1 −1 −1 +1
1 +1 +1 −1
2 −1 +1 −1
2 +1 −1 +1
2 −1 +1 +1
2 +1 −1 −1

c) m = 8
NC attr

Set 1 2 3
1 −1 −1 −1
1 +1 +1 +1
1 −1 −1 +1
1 +1 +1 −1
1 −1 +1 −1
1 +1 −1 +1
1 −1 +1 +1
1 +1 −1 −1
2 −1 −1 −1
2 +1 +1 +1
2 −1 −1 +1
2 +1 +1 −1
2 −1 +1 −1
2 +1 −1 +1
2 −1 +1 +1
2 +1 −1 −1

The subdesigns are incorporated four times in the conjoint designs of Tables

A3, A4 and A5 to allow each of the k = 4 attributes to act as a constant

attribute. As such, the conjoint designs are the smallest possible ones. For

the design in Table A3 sixteen respondents are needed and for the designs

in Tables A4 and A5 eight respondents are needed. To build larger optimal

variance-balanced conjoint designs with kc = 1 constant attribute and kv = 3

non-constant attributes, replications of the design tables should be made.
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The last optimal variance-balanced conjoint designs with kc = 1 constant at-

tribute are the ones in Tables A6, A7 and A8 containing kv = 4 non-constant

attributes and profile sets of sizes m = 2, 4 and 8, respectively. The designs

are constructed using the orthogonal subdesigns listed in Tables 5.4a, 5.4b

and 5.4c. Table 5.4a shows two possible subdesigns of four profile sets of size

m = 2 and Table 5.4b shows two possible subdesigns of two profile sets of size

m = 4. The subdesign in Table 5.4c has two profile sets of size m = 8. The

combinations of the two possible subdesigns in Tables 5.4a and 5.4b and the

subdesign in Table 5.4c represent the full 24 factorial design. The subdesigns

in Tables 5.4a and 5.4b each constitute an orthogonal fraction of this design.

We produced the conjoint design in Table A6 by implementing the two pos-

sible subdesigns in Table 5.4a one after the other. In the same way, we

constructed the conjoint design in Table A7 from the two subdesigns in

Table 5.4b. Other replication structures of the subdesigns are also possible

since the optimality of the designs is not affected by the choice of subdesigns

used. The three conjoint designs are the smallest possible ones since five

subdesigns are needed to allow each of the k = 5 attributes to act as a con-

stant attribute. The design in Table A6 requires twenty respondents and the

designs in Tables A7 and A8 require ten respondents. The designs can be

replicated when larger conjoint experiments with kc = 1 constant attribute

and kv = 4 non-constant attributes are desirable.

5.5.2 Optimal variance-balanced conjoint designs for

kc > 1

The optimal variance-balanced conjoint designs with kc > 1 constant at-

tributes in Appendix A.2 appear in the right panels of the tables. The other

panels are meant to clarify our design construction approach. The conjoint

design in the right panel of Table A9 is the same design as in Table 5.1 for

kc = 2 constant attributes, kv = 4 non-constant attributes and m = 2 profiles

per set. The next two designs in Tables A10 and A11 extend the starting

example to m = 4 and m = 8 profiles per set, respectively. We first explain

the main idea of our strategy using these three conjoint designs and then

discuss the other conjoint designs of Appendix A.2.
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Table 5.4: Orthogonal subdesigns with the levels of kv = 4 non-constant at-
tributes. Subdesigns i. and ii. of a) consist of four profile sets and
subdesigns i. and ii. of b) and subdesign c) consist of two profile sets.

a) m = 2
NC attr

Set 1 2 3 4
i. 1 −1 −1 −1 −1

1 +1 +1 +1 +1
2 −1 −1 +1 +1
2 +1 +1 −1 −1
3 −1 +1 −1 +1
3 +1 −1 +1 −1
4 −1 +1 +1 −1
4 +1 −1 −1 +1

ii. 1 −1 −1 −1 +1
1 +1 +1 +1 −1
2 −1 −1 +1 −1
2 +1 +1 −1 +1
3 −1 +1 −1 −1
3 +1 −1 +1 +1
4 −1 +1 +1 +1
4 +1 −1 −1 −1

b) m = 4
NC attr

Set 1 2 3 4
i. 1 −1 −1 −1 −1

1 +1 +1 +1 +1
1 −1 −1 +1 +1
1 +1 +1 −1 −1
2 −1 +1 −1 +1
2 +1 −1 +1 −1
2 −1 +1 +1 −1
2 +1 −1 −1 +1

ii. 1 −1 −1 −1 +1
1 +1 +1 +1 −1
1 −1 −1 +1 −1
1 +1 +1 −1 +1
2 −1 +1 −1 −1
2 +1 −1 +1 +1
2 −1 +1 +1 +1
2 +1 −1 −1 −1

c) m = 8
NC attr

Set 1 2 3 4
1 −1 −1 −1 −1
1 +1 +1 +1 +1
1 −1 −1 +1 +1
1 +1 +1 −1 −1
1 −1 +1 −1 +1
1 +1 −1 +1 −1
1 −1 +1 +1 −1
1 +1 −1 −1 +1
2 −1 −1 −1 +1
2 +1 +1 +1 −1
2 −1 −1 +1 −1
2 +1 +1 −1 +1
2 −1 +1 −1 −1
2 +1 −1 +1 +1
2 −1 +1 +1 +1
2 +1 −1 −1 −1
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Step 1: Determining the constant attributes

If kc > 1, it may be quite cumbersome to look for combinations of constant

attributes that lead to perfect level overlap of each attribute in an equal

number of profile sets. This is particularly true when kc is large and not

a divisor of k. Therefore, we advocate the use of balanced or partially bal-

anced incomplete block designs (BIBDs or PBIBDs) to determine patterns of

constant attributes that result in variance-balanced conjoint designs. BIBDs

and PBIBDs describe how to arrange the levels of a single qualitative fac-

tor, called treatments, in groups or blocks of a certain size. Each treatment

thereby occurs an equal number of times in the entire design. In BIBDs, the

number of times two different treatments occur together in a block is the

same for all pairs of treatments. This is not true for PBIBDs which makes

there are more and smaller PBIBDs than BIBDs for a given number of treat-

ments and block size.

We refer to the work of Cochran and Cox (1957) and Cox (1958) for a gen-

eral account of BIBDs and PBIBDs. The former authors depict some tables

of BIBDs whereas the latter author describes a simple method to set up

PBIBDs. More discussions and tables of BIBDs are provided by Abel and

Greig (1996) and Mathon and Rosa (1996). PBIBDs are fully elaborated in

the work of Shah and Sinha (1989) and Street and Street (1996), and cata-

logs of these designs can be found in the work of Clatworthy (1973) and on

a website by Sinha (see the Bibliography).

In Tables 5.5a, 5.5b, 5.5c and 5.5d, three PBIBDs and one BIBD are listed for

six treatments and block sizes of two. Each of these designs can be exploited

to construct optimal variance-balanced conjoint designs with kc = 2 constant

attributes and kv = 4 non-constant attributes. Each block in the PBIBDs

and the BIBD determines which of the six attributes should be constant in

a prespecified number of profile sets. So each block defines kc = 2 constant

attributes for a certain number of profile sets. Because each of the six treat-

ments appears the same number of times in the PBIBDs and the BIBD, each

of the k = 6 attributes is constant in an equal number of profile sets.
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Table 5.5: a) PBIBD with 3 blocks, b) PBIBD with 9 blocks, c) PBIBD with
12 blocks and d) BIBD with 15 blocks. Each design has 6 treatments
and block sizes of 2.

a) PBIBD
Block Levels

1 1 4
2 2 5
3 3 6

b) PBIBD
Block Levels

1 1 2
2 1 4
3 1 6
4 2 3
5 2 5
6 3 4
7 3 6
8 4 5
9 5 6

c) PBIBD
Block Levels

1 1 2
2 1 3
3 1 5
4 1 6
5 2 3
6 2 4
7 2 6
8 3 4
9 3 5
10 4 5
11 4 6
12 5 6

d) BIBD
Block Levels

1 1 2
2 1 3
3 1 4
4 1 5
5 1 6
6 2 3
7 2 4
8 2 5
9 2 6
10 3 4
11 3 5
12 3 6
13 4 5
14 4 6
15 5 6

The conjoint designs in Tables A9, A10 and A11 are built on the PBIBD of

Table 5.5a. This is illustrated in the left panels of the tables. The PBIBD

has three blocks of size two indicating three combinations of two constant

attributes. The first block of the PBIBD tells us that Attributes 1 and

4 should be constant in some of the profile sets. This is done in Profile

sets 1 to 4 for each of the conjoint designs. The second block determines

Attributes 2 and 5 to be constant. These constant attributes are exploited

in Profile sets 5 to 8. According to the last block, Attributes 3 and 6 should

be constant. This is accomplished in Profile sets 9 to 12. So each block of

constant attributes is embedded in four profile sets in each of the conjoint

designs. How to decide on the number of profile sets in which the same

attributes are constant is laid out in the next section.
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Steps 2 & 3: Determining the levels of the constant and non-

constant attributes

The optimal variance-balanced conjoint designs in Appendix A.2 are all de-

veloped from PBIBDs and are the smallest ones that can be produced. For

the conjoint designs in Tables A9, A10 and A11, we showed that the con-

stant attributes are dictated by the three blocks in the PBIBD of Table 5.5a.

The question now is at what levels these attributes have to be set and how

often they have to be held fixed. To answer this question, we use intermedi-

ate designs, so-called constant attribute designs that are orthogonal for the

constant attributes. These constant attribute designs appear in the middle

panel of each design table.

To construct the constant attribute designs, we exploit the full 2kc factorial

design or an orthogonal fraction of the full 2kc factorial design. The sample

size of the full 2kc factorial design or the orthogonal fraction then determines

the number of profile sets for each combination of constant attributes. The

constant attribute designs for the conjoint designs in Tables A9, A10 and A11

utilize the full 22 factorial design for each combination of constant attributes.

This means that 22 = 4 profile sets have the same attributes constant with

levels that fit the full 22 factorial design.

The last problem to solve before the design construction is complete is the

determination of the levels of the non-constant attributes. Therefore, we call

on the orthogonal subdesigns for the kv non-constant attributes given by the

tables in Section 5.5.1. In the conjoint design of Table A9, the two possible

subdesigns of Table 5.4a are implemented. Since three subdesigns can be ac-

commodated, one subdesign is implemented once and the other twice. They

nicely fit in the four profile sets from the full 22 factorial design corresponding

to a combination of constant attributes. Similarly, in the conjoint design of

Table A10 each of the subdesigns in Table 5.4b is implemented thrice and in

the conjoint design of Table A11 the subdesign in Table 5.4c is implemented

six times.

In some cases if kc = 2, the two non-orthogonal fractions of the full 22 fac-

torial design in Table 5.6 provide another way to determine the levels of the
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constant attributes. These fractions require only two profile sets for each

combination of constant attributes and thus allow for smaller conjoint de-

signs when kc = 2. They both have one attribute at a fixed level so that they

need to be jointly implemented to offset the fixed level of −1 by the fixed

level of +1. As a result, the fractions can only be employed if the number of

blocks in the BIBD or PBIBD is even and the orthogonal subdesigns for the

kv non-constant attributes enclose two profile sets. The use of the fractions is

illustrated in the conjoint designs of Tables A12 and A13 for kc = 2 constant

attributes, kv = 2 non-constant attributes and m = 2 and m = 4 profiles

per set, respectively. The PBIBD specifies four combinations of constant at-

tributes, the levels of which are determined by the non-orthogonal fractions.

The subdesigns in Tables 5.2a and 5.2b fill out the levels of the non-constant

attributes.

Table 5.6: Non-orthogonal fractions of the full 22 factorial design for constructing
constant attribute designs for kc = 2 constant attributes.

Cst attr

Set 1 2

i 1 −1 −1

2 −1 +1

ii 1 +1 −1

2 +1 +1

To further illustrate our design construction approach, we discuss the opti-

mal variance-balanced conjoint designs in Tables A14 and A15. They both

have m = 2 profiles per set. The design in Table A14 has kc = 3 constant

attributes and kv = 3 non-constant attributes and the design in Table A15

has kc = 4 constant attributes and kv = 4 non-constant attributes. To fix

the levels of the constant attributes, minimum-size orthogonal fractions of

the full 2kc factorial design are incorporated. These fractions are the smallest

possible ones that allow the estimation of all kc main effects. If 3 ≤ kc ≤ 10,

minimum-size orthogonal fractions for the kc constant attributes can be con-

structed using the generators in Table 5.7. We selected these generators from
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Appendix 4A on pages 193–194 of Wu and Hamada (2000). Other generators

that yield larger orthogonal fractions can also be retrieved in this appendix.

Table 5.7: Generators for constructing minimum-size orthogonal fractions for kc

attributes.

kc Size Generators

3 23−1 = 4 3 = 12

4 24−1 = 8 4 = 123

5 25−2 = 8 4 = 12, 5 = 13

6 26−3 = 8 4 = 12, 5 = 13, 6 = 23

7 27−4 = 8 4 = 12, 5 = 13, 6 = 23, 7 = 123

8 28−4 = 16 5 = 123, 6 = 124, 7 = 134, 8 = 234

9 29−5 = 16 5 = 123, 6 = 124, 7 = 134, 8 = 234, 9 = 1234

10 210−6 = 16 5 = 123, 6 = 124, 7 = 134, 8 = 234, 9 = 1234, 10 = 34

The orthogonal fraction has a size of 2kc−p, where 2−p refers to the fraction

of the full 2kc factorial design. The full 2kc−p factorial design is used to de-

termine the levels of the first kc − p constant attributes. The levels of the

remaining p constant attributes are specified by the generators. For example,

in case kc = 3, the generator is 3 = 12 meaning that the level of the third

constant attribute is obtained by multiplying the levels of the first and sec-

ond constant attribute. In this way, one orthogonal fraction is constructed.

Other orthogonal fractions of the full 2kc factorial design can be produced by

using one or more generators with a minus sign. For kc = 3, 3 = −12 is the

generator of the second and only remaining orthogonal fraction.

We derive from Table 5.7 that there are also two minimum-size orthogonal

fractions for kc = 4 constant attributes. In the constant attribute design of

Table A14 each of two minimum-size orthogonal fractions for kc = 3 constant

attributes is used twice and in the constant attribute design of Table A15

each of two minimum-size orthogonal fractions for kc = 4 constant attributes

is used thrice. The orthogonal fractions for kc = 3 involve 23−1 = 4 profile sets

for each combination of constant attributes and the orthogonal fractions for
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kc = 4 involve 24−1 = 8 profile sets. The levels of the non-constant attributes

in the conjoint designs are set by means of the subdesign in Table 5.3a for

kv = 3 and the two possible subdesigns in Table 5.4a for kv = 4.

5.6 Information content

In this last section, we discuss the information content of optimal variance-

balanced conjoint designs with a varying number of constant attributes. More

specifically, we are interested in how much we lose in terms of information

by having one attribute constant, two attributes constant, and so forth.

For our study, we examine the designs in Appendix A that have k = 4 at-

tributes. These are the designs in Tables A3, A4 and A5 of Appendix A.1 for

kc = 1 constant attribute and kv = 3 non-constant attributes and the designs

in Tables A12 and A13 of Appendix A.2 for kc = 2 constant attributes and

kv = 2 non-constant attributes. The designs with kc = 1 constant attribute

have profile sets of sizes m = 2, 4 and 8, respectively, and the designs with

kc = 2 constant attributes have profile sets of sizes m = 2 and m = 4. We

compare the information content of these designs with that of the optimal

conjoint designs in which no constant attributes are used. These latter con-

joint designs are nothing but orthogonally blocked two-level designs. They

can be constructed using the generators in Appendix 3A on pages 150–151

and Appendix 4B on pages 199–203 of Wu and Hamada (2000).

In general, the information matrix (5.8) for optimal variance-balanced con-

joint designs is diagonal with maximal diagonal elements that are equal for

the part-worths. In Appendix B, we computed the information matrix for the

design in Table A12. Based on these computations, we derived the amount of

information on the intercept and part-worths for the other conjoint designs.

The results for all five conjoint designs appear in Table 5.8.

For a given design setting, the optimal conjoint design without constant at-

tributes leads to the same amount of information on the intercept as provided

by the optimal conjoint design with constant attributes. However, as we men-
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tioned in Sections 5.3 and 5.4, the amount of information on each part-worth

of the optimal designs without constant attributes is larger. Because the lev-

els of each attribute are maximum balanced in each of the profile sets, the

part-worth elements of the matrix B in (5.9) are zero. As a result, the amount

of information on each part-worth of the optimal designs without constant

attributes is equal to n, the number of design profiles. For each of the five

design cases in Table 5.8, we compared the value of n with the values for

the part-worths in the table for 10 degrees of correlation ρ ∈ {0; 0.1; ...; 0.9}.
As such, we computed the percentage information losses for each part-worth

from imposing constant attributes. We plotted them in Figure 5.1.

Table 5.8: Amount of information on the intercept and part-worths of the op-
timal variance-balanced conjoint designs for a) kc = 1 and kv = 3
contained in Tables A3, A4 and A5 and for b) kc = kv = 2 contained
in Tables A12 and A13.

Conjoint design Amount of information on
Table m b n the intercept each part-worth

a) kc = 1 A3 2 16 32 32(1− ρ)/(1 + ρ) 8(1− ρ)/(1 + ρ) + 24
kv = 3 A4 4 8 32 32(1− ρ)/(1 + 3ρ) 8(1− ρ)/(1 + 3ρ) + 24

A5 8 8 64 64(1− ρ)/(1 + 7ρ) 16(1− ρ)/(1 + 7ρ) + 48
b) kc = 2 A12 2 8 16 16(1− ρ)/(1 + ρ) 8(1− ρ)/(1 + ρ) + 8

kv = 2 A13 4 8 32 32(1− ρ)/(1 + 3ρ) 16(1− ρ)/(1 + 3ρ) + 16

A close look at Figure 5.1 reveals that, given m = 2 or m = 4 and a value

of ρ, the information losses for each part-worth of the conjoint designs with

kc = 2 constant attributes are twice the information losses of the conjoint

designs with kc = 1 constant attribute. We verified with some additional

computations that in general, if the number of attributes, k, is fixed in a se-

ries of optimal two-level variance-balanced conjoint designs, the information

losses are proportional to the number of constant attributes, kc, used.

Figure 5.1 also shows that, given kc and ρ, the information losses for each

part-worth increase with m. As the profile sets of the conjoint designs get

larger or the number of respondents drops, the information losses from con-
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Figure 5.1: % Information losses for each part-worth from using kc = 1 and
kc = 2 constant attributes for degrees of correlation ranging from 0
to 0.9. The five designs of Table 5.8 are considered.

stant attributes increase. This can also be concluded from c8 < c4 < c2 < 1,

where cm = (1 − ρ)/(1 + (m − 1)ρ) (see Appendix B). It implies that for a

given number of design profiles, n, sets with m = 2 profiles are more effi-

cient than sets with m = 4 profiles, which in their turn, are more efficient

than sets with m = 8 profiles. For example, the designs in Tables A3 and A4

have equal sample sizes and equal numbers of profiles in which each attribute

is constant. However, because the former design is constructed for m = 2

and the latter for m = 4, the information losses of the latter design are larger.

A last observation from Figure 5.1 is that, given m and kc, the information

losses for each part-worth increase with ρ. The more heterogeneous respon-

dents are, the more information one loses by keeping the levels of one or more

attributes constant. The increase of the losses with ρ is fairly linear if m = 2,

but becomes quadratic for larger values of m. Note that if ρ = 0, respondents

are assumed to be homogeneous so that the grouping of the profiles in sets,

and thus also the matrix B in (5.9), does not matter anymore.
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5.7 Conclusion

In this chapter, we presented a simple approach to construct optimal two-

level conjoint designs that involve a large number of attributes. To reduce

the cognitive burden on the respondents, the designs hold the levels of one

or more attributes constant in each of the profile sets. The designs have

sets of 2, 4 or 8 profiles and are optimal with respect to the D-, A-, G- and

V-optimality criteria for estimating main-effects models.

The optimal conjoint designs have a diagonal information matrix collect-

ing maximum information. In addition, the conjoint designs are variance-

balanced meaning that they yield an equal amount of information on each

of the part-worths. Also, the conjoint designs do not depend on the ex-

tent to which respondents are heterogeneous, as expressed by the degree of

correlation. This makes them very practical to use. Prior to constructing

the conjoint designs, we advise practitioners to think carefully about the

number of constant attributes they want. Compared with optimal conjoint

designs without constant attributes, optimal conjoint designs with constant

attributes lead to information losses that are proportional to the number of

constant attributes.

If more than one constant attribute is desirable, our design construction

method draws on BIBDs and PBIBDs to provide patterns of constant at-

tributes that allow for variance balance. To ensure optimality, we choose

the levels of the kc constant attributes and the levels of the kv non-constant

attributes such that they are orthogonal for each combination of constant

attributes. We first determine the levels of the kc constant attributes by

incorporating the full 2kc factorial design or an orthogonal fraction of it. We

then set the levels of the kv non-constant attributes by using a prespecified

orthogonal subdesign for the kv non-constant attributes.

The design examples provided in Appendix A are the smallest ones supported

by our approach. There are generally three ways to obtain larger conjoint de-

signs. A first option is to choose a larger BIBD or PBIBD that defines more

combinations of constant attributes. A second possibility is to employ larger

orthogonal designs to fix the levels of the kc constant attributes. Lastly, a
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small conjoint design may be replicated.

As an additional justification of our method, it is interesting to note that

the optimal variance-balanced conjoint designs with sets of two profiles are

similar to the variance-balanced constant difference pairs constructed by

Severin (2000). For example, the optimal paired comparison design with four

attribute level differences in the work of Severin (2000, page 142) is equiva-

lent to the duplicated conjoint design of our starting example in Table 5.1.

In other words, Severin’s (2000, page 142) design has the same structure as

the conjoint design in Table 5.1 but contains twice as many profile sets.

Finally, more work is needed to extend our method for constructing optimal

two-level variance-balanced conjoint designs with sets of 3, 5, 6 or 7 profiles.

Also the production of conjoint designs using models with main effects plus

interactions might be considered.



158 Appendix A

Appendix A. Optimal variance-balanced con-

joint designs

A.1. Designs with one constant attribute: kc = 1

Table A1: Smallest optimal variance-balanced conjoint design with sets of m = 2
profiles, kc = 1 constant attribute and kv = 2 non-constant attributes.

Attributes Attributes Attributes
Set 1 2 3 Set 1 2 3 Set 1 2 3
1 −1 −1 −1 3 −1 −1 −1 5 −1 −1 −1
1 −1 +1 +1 3 +1 −1 +1 5 +1 +1 −1
2 +1 −1 +1 4 −1 +1 +1 6 −1 +1 +1
2 +1 +1 −1 4 +1 +1 −1 6 +1 −1 +1

Table A2: Smallest optimal variance-balanced conjoint design with sets of m = 4
profiles, kc = 1 constant attribute and kv = 2 non-constant attributes.

Attributes Attributes Attributes
Set 1 2 3 Set 1 2 3 Set 1 2 3
1 −1 −1 −1 3 −1 −1 −1 5 −1 −1 −1
1 −1 +1 +1 3 +1 −1 +1 5 +1 +1 −1
1 −1 −1 +1 3 −1 −1 +1 5 −1 +1 −1
1 −1 +1 −1 3 +1 −1 −1 5 +1 −1 −1
2 +1 −1 −1 4 −1 +1 −1 6 −1 −1 +1
2 +1 +1 +1 4 +1 +1 +1 6 +1 +1 +1
2 +1 −1 +1 4 −1 +1 +1 6 −1 +1 +1
2 +1 +1 −1 4 +1 +1 −1 6 +1 −1 +1
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Table A3: Smallest optimal variance-balanced conjoint design with sets of m = 2
profiles, kc = 1 constant attribute and kv = 3 non-constant attributes.

Attributes Attributes
Set 1 2 3 4 Set 1 2 3 4
1 −1 −1 −1 −1 9 −1 −1 −1 −1
1 −1 +1 +1 +1 9 +1 +1 −1 +1
2 −1 −1 −1 +1 10 −1 −1 −1 +1
2 −1 +1 +1 −1 10 +1 +1 −1 −1
3 +1 −1 +1 −1 11 −1 +1 +1 −1
3 +1 +1 −1 +1 11 +1 −1 +1 +1
4 +1 −1 +1 +1 12 −1 +1 +1 +1
4 +1 +1 −1 −1 12 +1 −1 +1 −1
5 −1 −1 −1 −1 13 −1 −1 −1 −1
5 +1 −1 +1 +1 13 +1 +1 +1 −1
6 −1 −1 −1 +1 14 −1 −1 +1 −1
6 +1 −1 +1 −1 14 +1 +1 −1 −1
7 −1 +1 +1 −1 15 −1 +1 −1 +1
7 +1 +1 −1 +1 15 +1 −1 +1 +1
8 −1 +1 +1 +1 16 −1 +1 +1 +1
8 +1 +1 −1 −1 16 +1 −1 −1 +1
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Table A4: Smallest optimal variance-balanced conjoint design with sets of m = 4
profiles, kc = 1 constant attribute and kv = 3 non-constant attributes.

Attributes Attributes
Set 1 2 3 4 Set 1 2 3 4
1 −1 −1 −1 −1 5 −1 −1 −1 −1
1 −1 +1 +1 +1 5 +1 +1 −1 +1
1 −1 −1 −1 +1 5 −1 −1 −1 +1
1 −1 +1 +1 −1 5 +1 +1 −1 −1
2 +1 −1 +1 −1 6 −1 +1 +1 −1
2 +1 +1 −1 +1 6 +1 −1 +1 +1
2 +1 −1 +1 +1 6 −1 +1 +1 +1
2 +1 +1 −1 −1 6 +1 −1 +1 −1
3 −1 −1 −1 −1 7 −1 −1 −1 −1
3 +1 −1 +1 +1 7 +1 +1 +1 −1
3 −1 −1 −1 +1 7 −1 −1 +1 −1
3 +1 −1 +1 −1 7 +1 +1 −1 −1
4 −1 +1 +1 −1 8 −1 +1 −1 +1
4 +1 +1 −1 +1 8 +1 −1 +1 +1
4 −1 +1 +1 +1 8 −1 +1 +1 +1
4 +1 +1 −1 −1 8 +1 −1 −1 +1
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Table A5: Smallest optimal variance-balanced conjoint design with sets of m = 8
profiles, kc = 1 constant attribute and kv = 3 non-constant attributes.

Attributes Attributes
Set 1 2 3 4 Set 1 2 3 4
1 −1 −1 −1 −1 5 −1 −1 −1 −1
1 −1 +1 +1 +1 5 +1 +1 −1 +1
1 −1 −1 −1 +1 5 −1 −1 −1 +1
1 −1 +1 +1 −1 5 +1 +1 −1 −1
1 −1 −1 +1 −1 5 −1 +1 −1 −1
1 −1 +1 −1 +1 5 +1 −1 −1 +1
1 −1 −1 +1 +1 5 −1 +1 −1 +1
1 −1 +1 −1 −1 5 +1 −1 −1 −1
2 +1 −1 −1 −1 6 −1 −1 +1 −1
2 +1 +1 +1 +1 6 +1 +1 +1 +1
2 +1 −1 −1 +1 6 −1 −1 +1 +1
2 +1 +1 +1 −1 6 +1 +1 +1 −1
2 +1 −1 +1 −1 6 −1 +1 +1 −1
2 +1 +1 −1 +1 6 +1 −1 +1 +1
2 +1 −1 +1 +1 6 −1 +1 +1 +1
2 +1 +1 −1 −1 6 +1 −1 +1 −1
3 −1 −1 −1 −1 7 −1 −1 −1 −1
3 +1 −1 +1 +1 7 +1 +1 +1 −1
3 −1 −1 −1 +1 7 −1 −1 +1 −1
3 +1 −1 +1 −1 7 +1 +1 −1 −1
3 −1 +1 +1 −1 7 −1 +1 −1 −1
3 +1 +1 −1 +1 7 +1 −1 +1 −1
3 −1 +1 +1 +1 7 −1 +1 +1 −1
3 +1 +1 −1 −1 7 +1 −1 −1 −1
4 −1 −1 −1 −1 8 −1 −1 −1 +1
4 +1 −1 +1 +1 8 +1 +1 +1 +1
4 −1 −1 −1 +1 8 −1 −1 +1 +1
4 +1 −1 +1 −1 8 +1 +1 −1 +1
4 −1 +1 +1 −1 8 −1 +1 −1 +1
4 +1 +1 −1 +1 8 +1 −1 +1 +1
4 −1 +1 +1 +1 8 −1 +1 +1 +1
4 +1 +1 −1 −1 8 +1 −1 −1 +1
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Table A6: Smallest optimal variance-balanced conjoint design with sets of m = 2
profiles, kc = 1 constant attribute and kv = 4 non-constant attributes.

Attributes Attributes
Set 1 2 3 4 5 Set 1 2 3 4 5
1 −1 −1 −1 −1 −1 11 −1 +1 +1 −1 +1
1 −1 +1 +1 +1 +1 11 +1 −1 +1 +1 −1
2 −1 −1 −1 +1 +1 12 −1 +1 +1 +1 −1
2 −1 +1 +1 −1 −1 12 +1 −1 +1 −1 +1
3 +1 −1 +1 −1 +1 13 −1 −1 −1 −1 +1
3 +1 +1 −1 +1 −1 13 +1 +1 +1 −1 −1
4 +1 −1 +1 +1 −1 14 −1 −1 +1 −1 −1
4 +1 +1 −1 −1 +1 14 +1 +1 −1 −1 +1
5 −1 −1 −1 −1 +1 15 −1 +1 −1 +1 −1
5 +1 −1 +1 +1 −1 15 +1 −1 +1 +1 +1
6 −1 −1 −1 +1 −1 16 −1 +1 +1 +1 +1
6 +1 −1 +1 −1 +1 16 +1 −1 −1 +1 −1
7 −1 +1 +1 −1 −1 17 −1 −1 −1 −1 −1
7 +1 +1 −1 +1 +1 17 +1 +1 +1 +1 −1
8 −1 +1 +1 +1 +1 18 −1 −1 +1 +1 −1
8 +1 +1 −1 −1 −1 18 +1 +1 −1 −1 −1
9 −1 −1 −1 −1 −1 19 −1 +1 −1 +1 +1
9 +1 +1 −1 +1 +1 19 +1 −1 +1 −1 +1
10 −1 −1 −1 +1 +1 20 −1 +1 +1 −1 +1
10 +1 +1 −1 −1 −1 20 +1 −1 −1 +1 +1
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Table A7: Smallest optimal variance-balanced conjoint design with sets of m = 4
profiles, kc = 1 constant attribute and kv = 4 non-constant attributes.

Attributes Attributes
Set 1 2 3 4 5 Set 1 2 3 4 5
1 −1 −1 −1 −1 −1 6 −1 +1 +1 −1 +1
1 −1 +1 +1 +1 +1 6 +1 −1 +1 +1 −1
1 −1 −1 −1 +1 +1 6 −1 +1 +1 +1 −1
1 −1 +1 +1 −1 −1 6 +1 −1 +1 −1 +1
2 +1 −1 +1 −1 +1 7 −1 −1 −1 −1 +1
2 +1 +1 −1 +1 −1 7 +1 +1 +1 −1 −1
2 +1 −1 +1 +1 −1 7 −1 −1 +1 −1 −1
2 +1 +1 −1 −1 +1 7 +1 +1 −1 −1 +1
3 −1 −1 −1 −1 +1 8 −1 +1 −1 +1 −1
3 +1 −1 +1 +1 −1 8 +1 −1 +1 +1 +1
3 −1 −1 −1 +1 −1 8 −1 +1 +1 +1 +1
3 +1 −1 +1 −1 +1 8 +1 −1 −1 +1 −1
4 −1 +1 +1 −1 −1 9 −1 −1 −1 −1 −1
4 +1 +1 −1 +1 +1 9 +1 +1 +1 +1 −1
4 −1 +1 +1 +1 +1 9 −1 −1 +1 +1 −1
4 +1 +1 −1 −1 −1 9 +1 +1 −1 −1 −1
5 −1 −1 −1 −1 −1 10 −1 +1 −1 +1 +1
5 +1 +1 −1 +1 +1 10 +1 −1 +1 −1 +1
5 −1 −1 −1 +1 +1 10 −1 +1 +1 −1 +1
5 +1 +1 −1 −1 −1 10 +1 −1 −1 +1 +1
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Table A8: Smallest optimal variance-balanced conjoint design with sets of m = 8
profiles, kc = 1 constant attribute and kv = 4 non-constant attributes.

Attributes Attributes
Set 1 2 3 4 5 Set 1 2 3 4 5
1 −1 −1 −1 −1 −1 6 −1 −1 +1 −1 +1
1 −1 +1 +1 +1 +1 6 +1 +1 +1 +1 −1
1 −1 −1 −1 +1 +1 6 −1 −1 +1 +1 −1
1 −1 +1 +1 −1 −1 6 +1 +1 +1 −1 +1
1 +1 −1 +1 −1 +1 6 −1 +1 +1 −1 −1
1 +1 +1 −1 +1 −1 6 +1 −1 +1 +1 +1
1 +1 −1 +1 +1 −1 6 −1 +1 +1 +1 +1
1 +1 +1 −1 −1 +1 6 +1 −1 +1 −1 −1
2 −1 −1 −1 −1 +1 7 −1 −1 −1 −1 −1
2 −1 +1 +1 +1 −1 7 +1 +1 +1 −1 +1
2 −1 −1 −1 +1 −1 7 −1 −1 +1 −1 +1
2 −1 +1 +1 −1 +1 7 +1 +1 −1 −1 −1
2 +1 −1 +1 −1 −1 7 −1 +1 −1 −1 +1
2 +1 +1 −1 +1 +1 7 +1 −1 +1 −1 −1
2 +1 −1 +1 +1 +1 7 −1 +1 +1 −1 −1
2 +1 +1 −1 −1 −1 7 +1 −1 −1 −1 +1
3 −1 −1 −1 −1 −1 8 −1 −1 −1 +1 +1
3 +1 −1 +1 +1 +1 8 +1 +1 +1 +1 −1
3 −1 −1 −1 +1 +1 8 −1 −1 +1 +1 −1
3 +1 −1 +1 −1 −1 8 +1 +1 −1 +1 +1
3 −1 +1 +1 −1 +1 8 −1 +1 −1 +1 −1
3 +1 +1 −1 +1 −1 8 +1 −1 +1 +1 +1
3 −1 +1 +1 +1 −1 8 −1 +1 +1 +1 +1
3 +1 +1 −1 −1 +1 8 +1 −1 −1 +1 −1
4 −1 −1 −1 −1 +1 9 −1 −1 −1 −1 −1
4 +1 −1 +1 +1 −1 9 +1 +1 +1 +1 −1
4 −1 −1 −1 +1 −1 9 −1 −1 +1 +1 −1
4 +1 −1 +1 −1 +1 9 +1 +1 −1 −1 −1
4 −1 +1 +1 −1 −1 9 −1 +1 −1 +1 −1
4 +1 +1 −1 +1 +1 9 +1 −1 +1 −1 −1
4 −1 +1 +1 +1 +1 9 −1 +1 +1 −1 −1
4 +1 +1 −1 −1 −1 9 +1 −1 −1 +1 −1
5 −1 −1 −1 −1 −1 10 −1 −1 −1 +1 +1
5 +1 +1 −1 +1 +1 10 +1 +1 +1 −1 +1
5 −1 −1 −1 +1 +1 10 −1 −1 +1 −1 +1
5 +1 +1 −1 −1 −1 10 +1 +1 −1 +1 +1
5 −1 +1 −1 −1 +1 10 −1 +1 −1 −1 +1
5 +1 −1 −1 +1 −1 10 +1 −1 +1 +1 +1
5 −1 +1 −1 +1 −1 10 −1 +1 +1 +1 +1
5 +1 −1 −1 −1 +1 10 +1 −1 −1 −1 +1
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A.2. Designs with more than one constant attribute:

kc > 1

Table A9: Smallest optimal variance-balanced conjoint design with sets of m = 2
profiles, kc = 2 constant attributes and kv = 4 non-constant at-
tributes.

PBIBD Constant attribute design Conjoint design
Attrs Attributes Attributes
cst Set 1 2 3 4 5 6 1 2 3 4 5 6

1 −1 −1 −1 −1 −1 −1
1

−1 — — −1 — — −1 +1 +1 −1 +1 +1
2 −1 −1 −1 +1 +1 +1
2

−1 — — +1 — — −1 +1 +1 +1 −1 −1
1 4

3 +1 −1 +1 −1 −1 +1
3

+1 — — −1 — —
+1 +1 −1 −1 +1 −1

4 +1 −1 +1 +1 +1 −1
4

+1 — — +1 — —
+1 +1 −1 +1 −1 +1

5 −1 −1 −1 −1 −1 +1
5

— −1 — — −1 —
+1 −1 +1 +1 −1 −1

6 −1 −1 −1 +1 +1 −1
6

— −1 — — +1 —
+1 −1 +1 −1 +1 +1

2 5
7 −1 +1 +1 −1 −1 −1
7

— +1 — — −1 —
+1 +1 −1 +1 −1 +1

8 −1 +1 +1 +1 +1 +1
8

— +1 — — +1 —
+1 +1 −1 −1 +1 −1

9 −1 −1 −1 −1 −1 −1
9

— — −1 — — −1
+1 +1 −1 +1 +1 −1

10 −1 −1 −1 +1 +1 +1
10

— — −1 — — +1
+1 +1 −1 −1 −1 +1

3 6
11 −1 +1 +1 −1 +1 −1
11

— — +1 — — −1
+1 −1 +1 +1 −1 −1

12 −1 +1 +1 +1 −1 +1
12

— — +1 — — +1
+1 −1 +1 −1 +1 +1
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Table A10: Smallest optimal variance-balanced conjoint design with sets of
m = 4 profiles, kc = 2 constant attributes and kv = 4 non-constant
attributes.

PBIBD Constant attribute design Conjoint design
Attrs Attributes Attributes
cst Set 1 2 3 4 5 6 1 2 3 4 5 6

1 −1 −1 −1 −1 −1 −1
1 −1 +1 +1 −1 +1 +1
1

−1 — — −1 — — −1 −1 −1 −1 +1 +1
1 −1 +1 +1 −1 −1 −1
2 −1 −1 +1 +1 −1 +1
2 −1 +1 −1 +1 +1 −1
2

−1 — — +1 — — −1 −1 +1 +1 +1 −1
2 −1 +1 −1 +1 −1 +1

1 4
3 +1 −1 −1 −1 −1 +1
3 +1 +1 +1 −1 +1 −1
3

+1 — — −1 — —
+1 −1 −1 −1 +1 −1

3 +1 +1 +1 −1 −1 +1
4 +1 −1 +1 +1 −1 −1
4 +1 +1 −1 +1 +1 +1
4

+1 — — +1 — —
+1 −1 +1 +1 +1 +1

4 +1 +1 −1 +1 −1 −1
...

...
...

...
9 −1 −1 −1 −1 −1 −1
9 +1 +1 −1 +1 +1 −1
9

— — −1 — — −1 −1 −1 −1 +1 +1 −1
9 +1 +1 −1 −1 −1 −1
10 −1 +1 −1 −1 +1 +1
10 +1 −1 −1 +1 −1 +1
10

— — −1 — — +1 −1 +1 −1 +1 −1 +1
10 +1 −1 −1 −1 +1 +1

3 6
11 −1 −1 +1 −1 +1 −1
11 +1 +1 +1 +1 −1 −1
11

— — +1 — — −1 −1 −1 +1 +1 −1 −1
11 +1 +1 +1 −1 +1 −1
12 −1 +1 +1 −1 −1 +1
12 +1 −1 +1 +1 +1 +1
12

— — +1 — — +1 −1 +1 +1 +1 +1 +1
12 +1 −1 +1 −1 −1 +1
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Table A11: Smallest optimal variance-balanced conjoint design with sets of
m = 8 profiles, kc = 2 constant attributes and kv = 4 non-constant
attributes.

PBIBD Constant attribute design Conjoint design
Attrs Attributes Attributes
cst Set 1 2 3 4 5 6 1 2 3 4 5 6

1 −1 −1 −1 −1 −1 −1
1 −1 +1 +1 −1 +1 +1
1 −1 −1 −1 −1 +1 +1
1 −1 +1 +1 −1 −1 −1
1

−1 — — −1 — — −1 −1 +1 −1 −1 +1
1 −1 +1 −1 −1 +1 −1
1 −1 −1 +1 −1 +1 −1
1 −1 +1 −1 −1 −1 +1
2 −1 −1 −1 +1 −1 +1
2 −1 +1 +1 +1 +1 −1
2 −1 −1 −1 +1 +1 −1
2 −1 +1 +1 +1 −1 +1
2

−1 — — +1 — — −1 −1 +1 +1 −1 −1
2 −1 +1 −1 +1 +1 +1
2 −1 −1 +1 +1 +1 +1
2 −1 +1 −1 +1 −1 −1

1 4
3 +1 −1 −1 −1 −1 −1
3 +1 +1 +1 −1 +1 +1
3 +1 −1 −1 −1 +1 +1
3 +1 +1 +1 −1 −1 −1
3

+1 — — −1 — —
+1 −1 +1 −1 −1 +1

3 +1 +1 −1 −1 +1 −1
3 +1 −1 +1 −1 +1 −1
3 +1 +1 −1 −1 −1 +1
4 +1 −1 −1 +1 −1 +1
4 +1 +1 +1 +1 +1 −1
4 +1 −1 −1 +1 +1 −1
4 +1 +1 +1 +1 −1 +1
4

+1 — — +1 — —
+1 −1 +1 +1 −1 −1

4 +1 +1 −1 +1 +1 +1
4 +1 −1 +1 +1 +1 +1
4 +1 +1 −1 +1 −1 −1

...
...

...
...

continued on next page
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continued from previous page
PBIBD Constant attribute design Conjoint design
Attrs Attributes Attributes
cst Set 1 2 3 4 5 6 1 2 3 4 5 6

9 −1 −1 −1 −1 −1 −1
9 +1 +1 −1 +1 +1 −1
9 −1 −1 −1 +1 +1 −1
9 +1 +1 −1 −1 −1 −1
9

— — −1 — — −1 −1 +1 −1 −1 +1 −1
9 +1 −1 −1 +1 −1 −1
9 −1 +1 −1 +1 −1 −1
9 +1 −1 −1 −1 +1 −1
10 −1 −1 −1 −1 +1 +1
10 +1 +1 −1 +1 −1 +1
10 −1 −1 −1 +1 −1 +1
10 +1 +1 −1 −1 +1 +1
10

— — −1 — — +1 −1 +1 −1 −1 −1 +1
10 +1 −1 −1 +1 +1 +1
10 −1 +1 −1 +1 +1 +1
10 +1 −1 −1 −1 −1 +1

3 6
11 −1 −1 +1 −1 −1 −1
11 +1 +1 +1 +1 +1 −1
11 −1 −1 +1 +1 +1 −1
11 +1 +1 +1 −1 −1 −1
11

— — +1 — — −1 −1 +1 +1 −1 +1 −1
11 +1 −1 +1 +1 −1 −1
11 −1 +1 +1 +1 −1 −1
11 +1 −1 +1 −1 +1 −1
12 −1 −1 +1 −1 +1 +1
12 +1 +1 +1 +1 −1 +1
12 −1 −1 +1 +1 −1 +1
12 +1 +1 +1 −1 +1 +1
12

— — +1 — — +1 −1 +1 +1 −1 −1 +1
12 +1 −1 +1 +1 +1 +1
12 −1 +1 +1 +1 +1 +1
12 +1 −1 +1 −1 −1 +1
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Table A12: Smallest optimal variance-balanced conjoint design with sets of
m = 2 profiles, kc = 2 constant attributes and kv = 2 non-constant
attributes.

PBIBD Cst attribute design Conjoint design
Attrs Attributes Attributes
cst Set 1 2 3 4 1 2 3 4

1 −1 −1 −1 −1
1

−1 −1 — — −1 −1 +1 +1
1 2

2 −1 +1 −1 +1
2

−1 +1 — — −1 +1 +1 −1
3 +1 −1 −1 −1
3

+1 — — −1
+1 +1 +1 −1

1 4
4 +1 −1 +1 +1
4

+1 — — +1
+1 +1 −1 +1

5 −1 −1 −1 −1
5

— −1 −1 —
+1 −1 −1 +1

2 3
6 −1 +1 −1 +1
6

— +1 −1 —
+1 +1 −1 −1

7 −1 −1 +1 −1
7

— — +1 −1
+1 +1 +1 −1

3 4
8 −1 +1 +1 +1
8

— — +1 +1
+1 −1 +1 +1
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Table A13: Smallest optimal variance-balanced conjoint design with sets of
m = 4 profiles, kc = 2 constant attributes and kv = 2 non-constant
attributes.

PBIBD Cst attribute design Conjoint design
Attrs Attributes Attributes
cst Set 1 2 3 4 1 2 3 4

1 −1 −1 −1 −1
1 −1 −1 — —

−1 −1 +1 +1
1 −1 −1 −1 +1
1 −1 −1 +1 −1

1 2
2 −1 +1 −1 −1
2 −1 +1 — —

−1 +1 +1 +1
2 −1 +1 −1 +1
2 −1 +1 +1 −1
3 +1 −1 −1 −1
3

+1 — — −1
+1 +1 +1 −1

3 +1 −1 +1 −1
3 +1 +1 −1 −1

1 4
4 +1 −1 −1 +1
4

+1 — — +1
+1 +1 +1 +1

4 +1 −1 +1 +1
4 +1 +1 −1 +1
5 −1 −1 −1 −1
5

— −1 −1 —
+1 −1 −1 +1

5 −1 −1 −1 +1
5 +1 −1 −1 −1

2 3
6 −1 +1 −1 −1
6

— +1 −1 —
+1 +1 −1 +1

6 −1 +1 −1 +1
6 +1 +1 +1 −1
7 −1 −1 +1 −1
7

— — +1 −1
+1 +1 +1 −1

7 −1 +1 +1 −1
7 +1 −1 +1 −1

3 4
8 −1 −1 +1 +1
8

— — +1 +1
+1 +1 +1 +1

8 −1 +1 +1 +1
8 +1 −1 +1 +1
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Table A14: Smallest optimal variance-balanced conjoint design with sets of
m = 2 profiles, kc = 3 constant attributes and kv = 3 non-constant
attributes.

PBIBD Constant attribute design Conjoint design
Attrs Attributes Attributes
cst Set 1 2 3 4 5 6 1 2 3 4 5 6

1 −1 −1 +1 −1 −1 −1
1

−1 −1 +1 — — — −1 −1 +1 +1 +1 +1
2 −1 +1 −1 −1 −1 +1
2

−1 +1 −1 — — — −1 +1 −1 +1 +1 −1
1 2 3

3 +1 −1 −1 −1 +1 −1
3

+1 −1 −1 — — —
+1 −1 −1 +1 −1 +1

4 +1 +1 +1 −1 +1 +1
4

+1 +1 +1 — — —
+1 +1 +1 +1 −1 −1

5 −1 −1 −1 −1 −1 −1
5

−1 — — — −1 −1 −1 +1 +1 +1 −1 −1
6 −1 −1 −1 +1 +1 +1
6

−1 — — — +1 +1 −1 +1 +1 −1 +1 +1
1 5 6

7 +1 −1 +1 −1 −1 +1
7

+1 — — — −1 +1
+1 +1 −1 +1 −1 +1

8 +1 −1 +1 +1 +1 −1
8

+1 — — — +1 −1
+1 +1 −1 −1 +1 −1

9 −1 −1 −1 −1 −1 +1
9

— −1 — −1 — +1
+1 −1 +1 −1 +1 +1

10 −1 −1 −1 +1 +1 −1
10

— −1 — +1 — −1
+1 −1 +1 +1 −1 −1

2 4 6
11 −1 +1 +1 −1 −1 −1
11

— +1 — −1 — −1
+1 +1 −1 −1 +1 −1

12 −1 +1 +1 +1 +1 +1
12

— +1 — +1 — +1
+1 +1 −1 +1 −1 +1

13 −1 −1 −1 −1 −1 −1
13

— — −1 −1 −1 —
+1 +1 −1 −1 −1 +1

14 −1 −1 −1 +1 +1 +1
14

— — −1 +1 +1 —
+1 +1 −1 +1 +1 −1

3 4 5
15 −1 +1 +1 −1 +1 −1
15

— — +1 −1 +1 —
+1 −1 +1 −1 +1 +1

16 −1 +1 +1 +1 −1 +1
16

— — +1 +1 −1 —
+1 −1 +1 +1 −1 −1
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Appendix B. Derivation of the information ma-

trix

In this appendix, we derive the information matrix of the optimal variance-

balanced conjoint design in Table A12 of Appendix A.2. Based on this ex-

ample, we provide a general method to compute the information matrix of

any optimal variance-balanced conjoint design.

The conjoint design in Table A12 has b = 8 sets of m = 2 profiles, kc = 2 con-

stant attributes and kv = 2 non-constant attributes. It is built on a PBIBD

that identifies four combinations of constant attributes. Each attribute is

constant in four profile sets. To compute the information matrix of the de-

sign, we go back to the work of Goos and Vandebroek (2001b) which provides

the basis for the information matrix (5.8). Under assumptions (5.3), (5.4)

and (5.5), V is block diagonal, so that

X′V−1X =
b∑

i=1

X′
iV

−1
m Xi, (B1)

where

V−1
m = σ−2

ε

(
Im − ρ

1 + ρ(m− 1)
1m1′m

)
. (B2)

According to (B1), the information matrix of the design in Table A12 is the

sum of b = 8 information matrices, one for each of the profile sets. We now

compute the information matrix for each profile set and sum the matrices to

obtain the total information matrix of the design. The design has profile sets

of size m = 2 so that

V−1
2 = σ−2

ε

(
I2 − ρ

1 + ρ
121

′
2

)
. (B3)

To derive the information matrices of the individual profile sets, we write each

profile set in terms of its constant and non-constant attributes. Therefore,

we denote the levels of the two constant attributes in profile set i by wi112

and wi212, where wi1 and wi2 equal either −1 and +1, and we denote the

levels of the two non-constant attributes by the two-dimensional vectors si1

and si2. Because Profile sets 1 and 2 have the first two attributes constant,
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we can write them as Xi = [12, wi112, wi212, si1, si2] , where i = 1, 2. The

information matrix for each of the two profile sets then is

X′
iV

−1
2 Xi

=

2666664
1′2V

−1
2 12 wi11

′
2V

−1
2 12 wi21

′
2V

−1
2 12 1′2V

−1
2 si1 1′2V

−1
2 si2

wi11
′
2V

−1
2 12 w2

i11
′
2V

−1
2 12 wi1wi21

′
2V

−1
2 12 wi11

′
2V

−1
2 si1 wi11

′
2V

−1
2 si2

wi21
′
2V

−1
2 12 wi1wi21

′
2V

−1
2 12 w2

i21
′
2V

−1
2 12 wi21

′
2V

−1
2 si1 wi21

′
2V

−1
2 si2

s′i1V
−1
2 12 wi1s

′
i1V

−1
2 12 wi2s

′
i1V

−1
2 12 s′i1V

−1
2 si1 s′i1V

−1
2 si2

s′i2V
−1
2 12 wi1s

′
i2V

−1
2 12 wi2s

′
i2V

−1
2 12 s′i2V

−1
2 si1 s′i2V

−1
2 si2

3777775 ,

= σ−2
ε

2666664
2c2 2wi1c2 2wi2c2 c21′2si1 c21′2si2

2wi1c2 2c2 2wi1wi2c2 wi1c21′2si1 wi1c21′2si2

2wi2c2 2wi1wi2c2 2c2 wi2c21′2si1 wi2c21′2si2

c2s′i112 wi1c2s′i112 wi2c2s′i112 s′i1si1 − t11 s′i1si2 − t12
c2s′i212 wi1c2s′i212 wi2c2s′i212 s′i2si1 − t21 s′i2si2 − t22

3777775 ,

(B4)

where c2 = (1−ρ)/(1+ρ), t11 = ρ
1−ρ

c2(s
′
i112)(1

′
2si1), t12 = ρ

1−ρ
c2(s

′
i112)(1

′
2si2),

and t21 and t22 are obtained similarly to t12 and t11, respectively. Because

the levels of the non-constant attributes are balanced in the profile sets,

s′i112 = 1′2si1 = s′i212 = 1′2si2 = 0. As a result, filling out the entries of the

formal information matrix (B4) for profile set i = 1 yields the information

matrix

X′
1V

−1
2 X1 = σ−2

ε




+2c2 −2c2 −2c2 0 0

−2c2 +2c2 +2c2 0 0

−2c2 +2c2 +2c2 0 0

0 0 0 +2 +2

0 0 0 +2 +2




, (B5)

and for profile set i = 2 the information matrix is

X′
2V

−1
2 X2 = σ−2

ε




+2c2 −2c2 +2c2 0 0

−2c2 +2c2 −2c2 0 0

+2c2 −2c2 +2c2 0 0

0 0 0 +2 −2

0 0 0 −2 +2




. (B6)

Summing these two matrices results in

2∑
i=1

X′
iV

−1
2 Xi = σ−2

ε




+4c2 −4c2 0 0 0

−4c2 +4c2 0 0 0

0 0 +4c2 0 0

0 0 0 +4 0

0 0 0 0 +4




. (B7)
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The diagonal elements for the part-worths in (B7) reveal that, since c2 < 1,

less information is obtained on the constant attributes than on the non-

constant attributes. If we had not included the constant attributes in the

profile sets, the diagonal elements for the part-worths would have been all

equal to four, the number of profiles in the two profile sets. Also, the two

non-diagonal elements would have vanished.

The next pairs of profile sets in the design of Table A12 have Attributes 1

and 4, 2 and 3, and 3 and 4 as constant attributes. Hence, we denote Profile

sets 3 and 4 as Xi = [12, wi112, si1, si2, wi212], where i = 3, 4. We denote

Profile sets 5 and 6 as Xi = [12, si1, wi112, wi212, si2], where i = 5, 6 and we

denote Profile sets 7 and 8 as Xi = [12, si1, si2, wi112, wi212], where i = 7, 8.

By the same procedure as described above, the information matrices for each

of these pairs are

4∑
i=3

X′
iV

−1
2 Xi = σ−2

ε




+4c2 +4c2 0 0 0

+4c2 +4c2 0 0 0

0 0 +4 0 0

0 0 0 +4 0

0 0 0 0 +4c2




, (B8)

6∑
i=5

X′
iV

−1
2 Xi = σ−2

ε




+4c2 0 0 −4c2 0

0 +4 0 0 0

0 0 +4c2 0 0

−4c2 0 0 +4c2 0

0 0 0 0 +4




and (B9)

8∑
i=7

X′
iV

−1
2 Xi = σ−2

ε




+4c2 0 0 +4c2 0

0 +4 0 0 0

0 0 +4 0 0

+4c2 0 0 +4c2 0

0 0 0 0 +4c2




. (B10)

Summing over the information matrices (B7), (B8), (B9) and (B10) for the

four pairs of profile sets yields the total information matrix of the conjoint
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design:

X′V−1X =
8∑

i=1

X′
iV

−1
2 Xi,

= σ−2
ε diag[16c2 8c2 + 8 8c2 + 8 8c2 + 8 8c2 + 8].

(B11)

The amount of information on each of the part-worths is thus the same so

that the conjoint design in Table A12 is variance-balanced. The informa-

tion component 8c2 for each part-worth refers to the information on each

attribute when it is constant. In the design each attribute is constant in 8

profiles. The other information component, 8, for each part-worth points at

the information on each attribute when it is non-constant. Each attribute is

also non-constant in 8 profiles. If there were no constant attributes in the

design, the diagonal elements for the part-worths would have been equal to

16, the number of profiles in the design. The information on the intercept

always amounts to 16c2.

An information matrix similar to the one in (B11) can be derived for any

of the optimal variance-balanced conjoint designs presented in this chap-

ter. In the cases m = 4 and m = 8, the value for c2 in the formulas is no

longer appropriate and needs to be replaced by c4 = (1 − ρ)/(1 + 3ρ) and

c8 = (1 − ρ)/(1 + 7ρ), respectively. Note that c8 < c4 < c2 < 1. In general,

to obtain the amount of information on each part-worth, two information

components must be computed because of the partitioning in constant and

non-constant attributes. The first information component contains cm mul-

tiplied by the number of profiles in which each attribute is constant. The

second information component equals the number of profiles in which each

attribute is non-constant. The amount of information on the intercept is

obtained by multiplying the sample size by cm.
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Groot-Brittannië en de Europese monetaire integratie: een onderzoek

naar de gevolgen van de Britse toetreding op de geplande Europese

monetaire unie. Leuven, Acco, 1975. XIII, 222 pp.

18. MOESEN Wim (1975)

Het beheer van de staatsschuld en de termijnstructuur van de intrest-

voeten met een toepassing voor België. Leuven, Vander, 1975. XVI,
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212 Doctoral dissertations

tor. Leuven, K. U. Leuven, Faculteit Economische en Toegepaste Eco-

nomische Wetenschappen, 1995. 257 pp.

108. WIJAYA Miryam Lilian (08/01/96)

Voluntary reciprocity as an informal social insurance mechanism: a

game theoretic approach. Leuven, K. U. Leuven, Faculteit Economi-

sche en Toegepaste Economische Wetenschappen, 1996. 124 pp.

109. VANDAELE Nico (12/02/96)

The impact of lot sizing on queueing delays: multi-product, multi-

machine models. Leuven, K. U. Leuven, Faculteit Economische en

Toegepaste Economische Wetenschappen, 1996. 243 pp.

110. GIELENS Geert (27/02/96)

Some essays on discrete time target zones and their tails. Leuven,

K. U. Leuven, Faculteit Economische en Toegepaste Economische We-

tenschappen, 1996. 131 pp.

111. GUILLAUME Dominique (20/03/96)

Chaos, randomness and order in the foreign exchange markets. Essays

on the modelling of the markets. Leuven, K. U. Leuven, Faculteit

Economische en Toegepaste Economische Wetenschappen, 1996. 171

pp.

112. DEWIT Gerda (03/06/96)

Essays on export insurance subsidization. Leuven, K. U. Leuven, Fa-

culteit Economische en Toegepaste Economische Wetenschappen, 1996.

186 pp.

113. VAN DEN ACKER Carine (08/07/96)

Belief-function theory and its application to the modeling of uncer-

tainty in financial statement auditing. Leuven, K. U. Leuven, Faculteit

Economische en Toegepaste Economische Wetenschappen, 1996. 147

pp.

114. IMAM Mahmood Osman (31/07/96)

Choice of IPO Flotation Methods in Belgium in an Asymmetric In-

formation Framework and Pricing of IPO’s in the Long-Run. Leuven,



Doctoral dissertations 213

K. U. Leuven, Faculteit Economische en Toegepaste Economische We-

tenschappen, 1996. 221 pp.

115. NICAISE Ides (06/09/96)

Poverty and Human Capital. Leuven, K. U. Leuven, Faculteit Econo-

mische en Toegepaste Economische Wetenschappen, 1996. 209 pp.

116. EYCKMANS Johan (18/09/97)

On the Incentives of Nations to Join International Environmental Agree-

ments. Leuven, K. U. Leuven, Faculteit Economische en Toegepaste

Economische Wetenschappen, 1997. XV + 348 pp.

117. CRISOLOGO-MENDOZA Lorelei (16/10/97)

Essays on Decision Making in Rural Households: a study of three vil-

lages in the Cordillera Region of the Philippines. Leuven, K. U. Leu-

ven, Faculteit Economische en Toegepaste Economische Wetenschap-

pen, 1997. 256 pp.

118. DE REYCK Bert (26/01/98)

Scheduling Projects with Generalized Precedence Relations: Exact and

Heuristic Procedures. Leuven, K. U. Leuven, Faculteit Economische en

Toegepaste Economische Wetenschappen, 1998. XXIV + 337 pp.

119. VANDEMAELE Sigrid (30/04/98)

Determinants of Issue Procedure Choice within the Context of the

French IPO Market: Analysis within an Asymmetric Information Frame-

work. Leuven, K. U. Leuven, Faculteit Economische en Toegepaste

Economische Wetenschappen, 1998. 241 pp.

120. VERGAUWEN Filip (30/04/98)

Firm Efficiency and Compensation Schemes for the Management of

Innovative Activities and Knowledge Transfers. Leuven, K. U. Leu-

ven, Faculteit Economische en Toegepaste Economische Wetenschap-

pen, 1998. VIII + 175 pp.

121. LEEMANS Herlinde (29/05/98)

The Two-Class Two-Server Queueing Model with Nonpreemptive Het-

erogeneous Priority Structures. Leuven, K. U. Leuven, Faculteit Eco-

nomische en Toegepaste Economische Wetenschappen, 1998. 211 pp.



214 Doctoral dissertations

122. GEYSKENS Inge (4/09/98)

Trust, Satisfaction, and Equity in Marketing Channel Relationships.

Leuven, K. U. Leuven, Faculteit Economische en Toegepaste Economi-

sche Wetenschappen, 1998. 202 pp.

123. SWEENEY John (19/10/98)

Why Hold a Job? The Labour Market Choice of the Low-Skilled. Leu-

ven, K. U. Leuven, Faculteit Economische en Toegepaste Economische

Wetenschappen, 1998. 278 pp.

124. GOEDHUYS Micheline (17/03/99)

Industrial Organisation in Developing Countries, Evidence from Côte
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