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Abstract

In this paper we discuss multiperiod portfolio selection problems related to a speci�c
provisioning problem. Our results are an extension of Dhaene et al. (2005), where
optimal constant mix investment strategies are obtained in a provisioning and sav-
ings context, using an analytical approach based on the concept of comonotonicity.
We derive convex bounds that can be used to estimate the provision to be set up
at a speci�ed time in the future, to ensure that, after having paid all liabilities up
to that moment, all liabilities from that moment on can be fulfilled, with a high
probability. We give some interpretations of this additional reserve, and apply our
results to optimal portfolio selection.

1 Introduction

In this paper we discuss multiperiod portfolio selection problems related to a speci�c
provisioning problem. Our results are an extension of Dhaene et al. (2005), where optimal
constant mix investment strategies are obtained in a provisioning and savings context,
using an analytical approach based on the concept of comonotonicity. In this analytical
framework, we derive convex bounds that can be used to estimate the provision to be set
up at a speci�ed time t in the future, to ensure that, after having paid all liabilities up to
time t, all liabilities from t on can be fulfilled, with a high probability.

We explain how this additional provision can be used to estimate the in�uence of
a temporary change in market parameters. We see how an insurer can get an idea how
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much a temporary �crisis�will cost him, and how this will in�uence his optimal investment
portfolio. Also, if an insurer�s investment portfolio is not optimal, the results of this paper
can be used to check whether postponing rebalancing is acceptable, and if so, for how
many years.

We apply our results to optimal portfolio selection problems, and illustrate this with
numerical examples.

In the following sections a brief introduction is given to respectively risk measures,
the theory of comonotonicity, convex bounds of random variables and the framework of
optimal portfolio selection in a lognormal setting. Next the general provisioning problem
is discussed, and applied to optimal portfolio selection.

1.1 Risk measures and Comonotonicity

A risk measure is de�ned as a mapping from a set of random variables, representing
the risks at hand, to the real numbers. In other words, a risk measure summarizes
the distribution function of a random variable in one single real number. The common
notation for a risk measure associated with a random variable X is �[X]. A risk measure
� quanti�es the riskiness of X: the larger �[X], the more �dangerous�the risk X.

Throughout this paper we assume to be working with (conditioning) random variables
such that all (conditional) expectations that are used are well-de�ned and �nite.

In this paper the main focus will be on the quantile risk measure, or Value-at-Risk
(VaR). The VaR at level p will be denoted by Qp (X) or V aRp (X), and is de�ned as:

Qp (X) = V aRp (X) = F
�1
X (p) = inf fx 2 R j FX (x) � pg ; p 2 (0; 1) ; (1)

with FX (x) = Pr (X � x) : By convention, we take inf ? = +1:
Value-at-Risk measures the worst expected loss under normal market conditions over

a speci�c time interval. It can be used to determine how much can be lost with a given
probability over a predetermined time horizon.

Other well-known risk measures are for example Tail Value-at-Risk (TVaR), Condi-
tional Tail Expectation (CTE) and Expected Shortfall (ESF). More information on risk
measures can be found e.g. in Kaas et al. (2008) or Denuit et al. (2005).

A random vector X = (X1; X2; :::; Xn) is said to be comonotonic if the individual
variables Xi are non-decreasing functions (or all are non-increasing functions) of the same
random variable:

X
d
= (g1 (Z) ; g2 (Z) ; :::; gn (Z)) (2)

for some common random variable Z and non-decreasing (or non-increasing) functions
gi. Intuitively, comonotonicity corresponds to an extreme form of positive dependency
between the individual variables: increasing the outcome of Z will lead to a simultaneous
increase in the di¤erent outcomes of gi (Z).

Comonotonicity of X can also be characterized by

X
d
=
�
F�1X1 (U) ; F

�1
X2
(U) ; :::; F�1Xn (U)

�
; (3)
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with U uniformly distributed on the unit interval.

For more characterizations and an overview of the theory of comonotonicity and its
many applications in actuarial science and �nance we refer to Dhaene et al. (2002a,b) and
Dhaene et al. (2008).

The following result of the comonotonic dependency structure will be crucial in our
setting:

Theorem 1 (Additivity of quantile risk measure for sums of comonotonic risks)
If the random vector (X0; X1; :::; Xn) is comonotonic, we have that

Qp

 
nX
i=1

Xi

!
=

nX
i=1

Qp (Xi) ; (4)

for all p 2 (0; 1).

This additivity property holds in general for all distortion risk measures, such as Tail
Value-at-Risk and Expected Shortfall. In case the variables Xi are continuous, the same
property holds for the Conditional Tail Expectation. A proof of this theorem and more
information about the relationship between risk measures and comonotonicity can be
found in Dhaene et al. (2006).

1.2 Convex Order Bounds for Sums of Random Variables

An extensive introduction to ordering of (distributions of) random variables, including
actuarial applications, can be found in Denuit et al. (2005). We recall the de�nition of
stop-loss order and convex order :

De�nition 1 (Stop-Loss Order) A random variable X is said to precede a random
variable Y in stop-loss order if X has lower stop-loss premiums than Y :

E
�
(X � d)+

�
� E

�
(Y � d)+

�
; (5)

for all d 2 (�1;+1). We denote this as X �sl Y:

De�nition 2 (Convex Order) A random variable X is said to precede a random vari-
able Y in convex order if X �sl Y and E[X] = E[Y ]. We denote this as X �cx Y:

In this paper we will encounter random variables of the form

S =

nX
i=0

�i e
Zi (6)
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where �i are deterministic constants, and Zi are linear combinations of the components
of a multivariate normal random vector (Y1; Y2; :::; Yn): suppose Zi =

Pn
j=1 �ijYj for

i = 0; :::; n:

The random variable (6) is a sum of dependent lognormal random variables. As it
is impossible to determine the distribution function of such a sum analytically, we use
approximations. Several approximation techniques have been proposed throughout the
literature, see e.g. Asmussen & Rojas (2005), Dufresne (2004), Milevsky & Posner (1998)
and Milevsky & Robinson (2000). In this paper we will use convex upper and lower
bounds based on comonotonicity, see e.g. Kaas et al. (2000) and Dhaene et al. (2002a,b).
See also Huang et al. (2004) or Vanduffel et al. (2005) for a comparison of some of the
approximation techniques.

The approximations of Kaas et al. (2000) are based on the following result:

Theorem 2 (Convex bounds for sums of random variables) For any random vec-
tor (X0; X1; :::; Xn) and any random variable �, we have that

Sl =
nX
i=0

E [Xij�] �cx S =
nX
i=0

Xi �cx
nX
i=0

F�1Xi (U) = S
c; (7)

with U a uniformly distributed random variable on the unit interval.

As can be seen from (3), the sum Sc is comonotonic. The special case (6) where S
is a sum of dependent lognormal random variables is discussed in detail in Dhaene et
al. (2002a,b). Expressions for Sc and Sl are derived in case the cash-�ows �i are positive.
The comonotonic upper bound Sc is given by

Sc =
nX
i=0

�ie
E[Zi]+�Zi�

�1(U): (8)

For the lower bound approximation, the conditioning variable � is typically chosen as a
linear combination of the variables Yi: Assume that � =

Pn
j=1 �jYj. In this case the lower

bound Sl can be written as:

Sl =
nX
i=0

�ie
E[Zi]+

1
2(1�r2i )�2Zi+ri�Zi�

�1(U); (9)

where ri is the correlation between Zi and �. If all coe¢ cients ri are positive, Sl is a
comonotonic sum, in which case we call Sl the comonotonic lower bound.

If all Yi are i.i.d., the correlation coe¢ cients are given by

ri =

Pn
j=1 �ij�jqPn

j=1 �
2
ij

qPn
j=1 �

2
j

; i = 1; :::; n: (10)
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Maximizing the variance of Sl leads, as explained in Dhaene et al. (2005), to the optimal
�, which is given by

� =

nX
i=0

�ie
E[Zi]+

1
2
�2ZiZi. (11)

In Van Weert et al. (2009) conditions are derived for the lower bound to be comonotonic
in case the cash-�ows �i have changing signs.

As can be seen from Theorem 1, a crucial advantage of the comonotonic bounds is
the additivity property, which makes it straightforward to apply risk measures such as
quantiles (VaR), TVaR and CTE to Sc and Sl, and hence to determine their distribution
function. In Dhaene et al. (2005) expressions are given for the most commonly used risk
measures associated with (8) and (9).

1.3 Optimal Portfolio Selection in a Lognormal Framework

Throughout this paper we assume the classical continuous-time framework of Merton
(1971), also known as the Black & Scholes (1973) setting. See e.g. Björk (1998) for more
details on this Black & Scholes setting. We use the same notations and terminology as in
Dhaene et al. (2005).

Assume there are m risky assets or asset classes available in which we can invest. In
our examples we assume there is no risk-free asset class available. The return of the risky
assets is modelled by a multivariate geometric Brownian motion: investing an amount of
1 at time k � 1 in risky asset i grows to eY ik at time k. For a fixed asset i, the random
variables Y ik are assumed i.i.d., normally distributed with mean �i � 1

2
�2i and variance

�2i . This means that the return of an asset is not in�uenced by its return in the past.
However, within any year, the returns of the di¤erent assets are correlated. We have that:

Cov
�
Y ik ; Y

j
l

�
=

�
0 k 6= l
�ij k = l

(12)

The drift vector and the variance-covariance matrix of the risky assets are denoted as
�T = (�1; : : : ; �m) and � respectively.

We restrict to constant mix strategies: the fractions invested in the different assets
remain constant over time, due to continuous rebalancing. A vector describing the port-
folio process is denoted as �T = (�1; : : : ; �m), where �i is the proportion invested in risky
asset i, with

Pm
i=1 �i = 1. Although our results also hold in the general case, we assume

short-selling is not allowed, which means 0 � �i � 1 for all i. The drift and volatility
corresponding to an investment portfolio � are written as �(�) and �2(�), and are given
by:

�(�) = �T� and �2(�) = �T � � � �: (13)

As both the time period and the investment horizon that we consider are typically long,
the use of a Gaussian model for the stochastic returns can be justi�ed by the Central
Limit Theorem, see e.g. Cesari & Cremonini (2003) and Levy (2004) for some empirical
evidence.
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The yearly returns Yi(�) of an investment portfolio � are independent and normally
distributed random variables, with expected value E[Yi(�)] = �(�)� 1

2
�2(�) and variance

Var[Yi(�)] = �2(�).

When no confusion is possible, we omit the dependence on the investment portfolio �
in the notations. Hence the yearly returns are modelled by the i.i.d., normally distributed
random variables Yi, with mean �� 1

2
�2 and standard deviation �.

2 Generalized Provisioning Problem

In this section we discuss the main topic of this paper. We want to determine (an estimate
of) the provision to be set up at certain time in the future, to ensure that, after having paid
the first liabilities, all liabilities from then on can be fulfilled with a high probability. First
a general description of the problem is given, followed by the derivation of a solution based
on convex order comonotonic bounds. Next the problem is applied to optimal portfolio
selection, and illustrated with numerical examples. In the �nal part of this section some
practical interpretations of this provision are described and illustrated.

2.1 Problem Description

Consider a series of deterministic liabilities �i due at time i, for i = 1; : : : ; n, with �i � 0
for all i. Suppose we have an initial capitalK0 > 0 available at time 0. Assume that during
the first m years, with 0 < m < n, an investment strategy �1 is followed where the return
in year i is described by the random variable Yi(�1), with E[Yi(�1)] = �(�1) � 1

2
�2(�1)

and V ar[Yi(�1)] = �
2(�1). The random variables Yi(�1) are iid and normally distributed,

for i = 1; :::;m. After m years, a di¤erent investment strategy is followed, with return
in year j equal to Yj(�2). The random variables Yj(�2) are iid and normally distributed,
with E[Yj(�2)] = �(�2)� 1

2
�2(�2) and Var[Yj(�2)] = �

2(�2). We assume that the random
variables Yi(�1) and Yj(�2) are independent for all i and j.

We want to determine (an estimate of) the provision to be set up at time m, with
0 < m < n, to ensure that, after having paid the firstm liabilities, all future liabilities can
be fulfilled, incorporating a certain ruin probability �. We denote this additional reserve
at time m by Km. Formally, we want to determine Km such that:

Pr

"
K0e

Pm
i=1 Yi(�1) �

mX
i=1

�ie
Pm
j=i+1 Yj(�1) +Km �

n�mX
i=1

�m+ie
�
Pi
j=1 Yj(�2)

#
� (1� �); (14)

for some small �. In other words, the reserve Km is equal to the following quantile:

Km = Q1��

"
K0e

Pm
i=1 Yi(�1) �

mX
i=1

�ie
Pm
j=i+1 Yj(�1) �

n�mX
i=1

�m+ie
�
Pi
j=1 Yj(�2)

#
: (15)

Note that Km is not necessarily positive. A negative Km means that the investor can
withdraw an amount �Km from the account at time m, and still ful�ll future liabilities,
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incorporating a ruin probability �. If Km = 0, no additional reserve is needed at time m,
but at the same time nothing can be withdrawn from the account.

Note that (14) is a long-term survival probability, over the whole investment period of
n years. For example a survival probability of 85% over a period of 30 years corresponds
to a yearly survival probability of approximately 99:46%, since 0:85 � (0:9946)30.
In the following Section expressions are derived for respectively the convex upper

bound and lower bound approximation.

2.2 Derivation of Convex Bounds

Within the quantile (15) we have sums of dependent lognormal random variables. As
explained in Section 1.2, it is impossible to determine the distribution function of these
sums exactly. Therefore we derive analytical approximations, based on the concept of
comonotonicity, which are easy to compute. The results in this Section are a generalization
of Dhaene et al. (2005).

The bounds derived in Dhaene et al. (2005) can not be applied directly to compute
(15), as the terms within the quantile have different signs. Also, Theorem 1 from Van
Weert et al. (2009) can not be applied here, since the conditions of the theorem are not
necessarily satis�ed. Therefore we have to use a di¤erent approach to determine a value
for the reserve Km.

Denote Z =
Pm

i=1 Yi(�1). Applying the law of total probability, conditioning on Z,
the left hand side of inequality (14) becomes:Z 1

�1
Pr

"
mX
i=1

�ie
Pm
j=i+1 Yj(�1)jZ=z+

n�mX
i=1

�m+ie
�
Pi
j=1 Yj(�2) � K0e

z+Km

#
1

�Z
�

�
z � �Z
�Z

�
dz;

(16)
with �Z = E[Z] = m�(�1) and �Z =

p
m�(�1).

Denoting S (z) = S1 (z) + S2, with S1 (z) =
Pm

i=1 �ie
Pm
j=i+1 Yj(�1)jZ=z, and S2 =Pn�m

i=1 �m+ie
�
Pi
j=1 Yj(�2), we can rewrite (16) asZ 1

�1
Pr [S(z) � K0e

z]
1

�Z
�

�
z � �Z
�Z

�
dz (17)

To approximate the distribution function of S (z), we can use its comonotonic upper
bound Sc (z) or lower bound Sl (z), as defined by (8) and (9). Important is that here it
is possible to apply the results from Dhaene et al. (2005), because all terms in S (z) are
of the same sign.
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2.2.1 Upper Bound Approximation

To compute the probability within integral (16), we can approximate S (z) by its comonotonic
upper bound Sc (z) as follows:

S (z) �cx Sc (z) = Sc1 (z) + Sc2 =
mX
i=1

�iF
�1
e
Pm
j=i+1

Yj(�1)jZ=z
(U) +

n�mX
i=1

�m+iF
�1
e
�
Pi
j=1

Yj(�2)
(U);

(18)
with U uniformly distributed on the unit interval.

As shown in Dhaene et al. (2002b), the random variables
Pm

j=i+1 Yj(�1)jZ = z are
normally distributed for any z. It can easily be seen that its expected value and variance
are given by:

E

"
mX

j=i+1

Yj(�1)jZ = z
#
=
m� i
m

z and Var

"
mX

j=i+1

Yj(�1)jZ = z
#
=
i(m� i)
m

�2(�1) (19)

Using (8) and (19), Sc1 (z) can be rewritten as:

Sc1 (z) =
mX
i=1

�i exp

 
m� i
m

z +

r
i(m� i)
m

�(�1)�
�1(U)

!
: (20)

We also have an expression for Sc2:

Sc2 =
n�mX
i=1

�m+i exp

�
�i
�
�(�2)�

1

2
�2(�2)

�
+
p
i�(�2)�

�1(U)

�
: (21)

Hence, using the additivity property (see Theorem 1), we can compute the quantiles of
Sc (z) as:

Q1�p[S
c (z)] =

mX
i=1

�i exp

 
m� i
m

z �
r
i(m� i)
m

�(�1)�
�1(p)

!

+

n�mX
i=1

�m+i exp

�
�i
�
�(�2)�

1

2
�2(�2)

�
�
p
i�(�2)�

�1(p)

�
: (22)

This result can be used to determine the distribution function of Sc (z), which can then
be used to approximate integral (16).

2.2.2 Lower bound approximation

We can also approximate S (z) using convex lower bounds. We have that

S1 (z) �cx Sl1 (z) = E[S1 (z) j�1 (z)]: (23)

8



Using (11) and (19) we get:

�1 (z) =

mX
i=1

�ie
m�i
m
z+ 1

2
i(m�i)
m

�2(�1)

 
mX

j=i+1

Yj(�1)jZ = z
!
: (24)

Using (9) and (19), we can write the lower bound Sl1 as:

Sl1 (z) =
mX
i=1

�i exp

 
m� i
m

z +
1

2
(1� r2i )

i(m� i)
m

�2(�1) + ri

r
i(m� i)
m

�(�1)�
�1(U1)

!
;

(25)
with U1 uniformly distributed on the unit interval. The correlation coe¢ cients ri can
be determined using (10). Using the additivity property explained in Theorem 1, the
quantiles of Sl1 (z) can be determined as:

Q1�p[S
l
1 (z)] =

mX
i=1

�i exp

 
m� i
m

z +
1

2
(1� r2i )

i(m� i)
m

�2(�1)� ri

r
i(m� i)
m

�(�1)�
�1(p)

!
:

(26)
S2 can be approximated by a convex lower bound Sl2 in a similar way:

S2 �cx Sl2 = E[S2j�2]: (27)

The conditioning variable �2 is given by

�2 =
n�mX
i=1

�m+ie
�i�(�2)+ 1

2
i�2(�2)

 
�

iX
j=1

Yj(�2)

!
. (28)

Using (9) we get the following expression for Sl2:

Sl2 =
n�mX
i=1

�m+i exp

�
�i�(�2) + (1�

1

2
r02i )i�

2(�2) + r
0
i

p
i�(�2)�

�1(U2)

�
; (29)

with U2 uniformly distributed on the unit interval. The correlation coe¢ cients r0i can
be determined using (10). Using the additivity property, the quantiles of Sl2 can be
determined using:

Q1�p[S
l
2] =

n�mX
i=1

�m+i exp

�
�i�(�2) + (1�

1

2
(r0i)

2
)i�2(�2)� r0i

p
i�(�2)�

�1(p)

�
: (30)

We approximate S (z) = S1 (z) + S2 by the sum Sl (z) = Sl1 (z) + S
l
2. The approximation

Sl (z) is a convex lower bound for S (z), since convex order is closed under convolution for
independent risks (see e.g. Denuit et al. (2005)). The quantiles of Sl (z) can be computed
by adding (26) and (30). This allows us to compute the distribution function of Sl (z),
and hence to approximate integral (16).
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2.3 Numerical Illustration

Assume n = 30, �i = 10 for i = 1; :::; 30, K0 = 200 and m = 5. Furthermore, assume as
a first example �X = �Y = 0:05 and �X = �Y = 0:1. Using this setting we can compute
the probability of shortfall

Pr

"
K0e

Pm
i=1 Yi(�1) �

mX
i=1

�ie
Pm
j=i+1 Yj(�1) +Km �

n�mX
i=1

�m+ie
�
Pi
j=1 Yj(�2)

#
(31)

for a range of reserves Km. In Figure 1 our lower and upper bound approximations are
compared to simulated results. We observe that both approximations perform very well,
especially the lower bound. The figure also illustrates the intuitive fact that increasing
the additional reserve Km decreases the probability of shortfall. As a second example,
suppose a more conservative strategy is followed after 5 years. More precisely, assume
�(�1) = 0:05, �(�1) = 0:1, �(�2) = 0:02 and �(�2) = 0:01. Computing the probability
of shortfall (31) for different reserves Km leads to Figure 2. In this second example we
see that our approximations are even closer to the simulated results, as it is almost not
possible to distinguish the lines. Detailed numerical results of these examples can be
found in Table 5 and Table 6 in Appendix A.

Figure 1: Comparison of upper bound (dashed line) and lower bound (dotted line) to
simulated results (solid line), �(�1) = �(�2) = 0:05 and �(�1) = �(�2) = 0:1.
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Figure 2: Comparison of upper bound (dashed line) and lower bound (dotted line) to
simulated results (solid line), �(�1) = 0:05, �(�1) = 0:1, �(�2) = 0:02 and �(�2) = 0:01.

2.4 Application to Optimal Portfolio Selection

We can easily use our results in an optimal portfolio selection setting. For example, sup-
pose we have an initial capital K0 available at time 0, and suppose we know that we will
add an extra capital Km at time m. Suppose also that the investment strategy followed
during the first m years is fixed, and given by �1. In this case we can optimize the invest-
ment strategy to be followed from year m on. The optimal portfolio is the one leading to
a maximal survival probability p�:

p� = max
�

Pr

"
K0e

Pm
i=1 Yi(�1) �

mX
i=1

�ie
Pm
j=i+1 Yj(�1) +Km �

n�mX
i=1

�m+ie
�
Pi
j=1 Yj(�)

#
(32)

As a second and perhaps more relevant optimization, suppose we have given an initial
capital K0 and a ruin probability �. Suppose again that the investment strategy followed
during the first m years is fixed, and given by �1. We can then optimize the investment
strategy to be followed from year m on, by looking for the portfolio leading to a minimal
additional reserve K�

mat time m:

K�
m = min

�
Q1��

"
K0e

Pm
i=1 Yi(�1) �

mX
i=1

�ie
Pm
j=i+1 Yj(�1) �

n�mX
i=1

�m+ie
�
Pi
j=1 Yj(�)

#
(33)

We illustrate this second optimization numerically in the following paragraph.

2.4.1 Numerical Illustration

Assume n = 20, and �i = 10 for i = 1; :::; 20. Suppose we have two risky asset classes
available in which we can invest, with drift vector �T = (0:06; 0:10), standard deviations
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�T = (0:10; 0:20) and correlations �1;2 = 0:50. Furthermore, take K0 = 150 and suppose
during the first 5 years a strategy �1 is followed where the return is modelled by the i.i.d.
normal random variables Yi(�1), with parameters �(�1) = 0:07 and �(�1) = 0:15. In this
paragraph, we use the lower bound approximation as defined in Section 2.2.2 to determine
the optimal investment strategy ��, leading to a minimal reserveK�

m, as described by (33).
As illustrated in Section 2.3, this lower bound approximation is in general signi�cantly
more accurate than the upper bound.

Assuming m = 5, the results of our optimization for different values of � are given in
Table 1. These results show that increasing the certainty level leads to a more conservative
optimal strategy, and a higher required additional reserve K�

5 at time 5. For example, if
from year 5 on the strategy (0:6030; 0:3970) is followed, and if an amount of 22:63 is put
on the account at time 5, there is 90% certainty that all liabilities can be paid. Following
any other investment strategy, or adding less than 22.63 at time 5, would lead to a survival
probability of less than 90%.

�
0.15 0.10 0.05 0.01

��1 52.76% 60.30% 68.34% 78.39%
��2 47.24% 39.70% 31.66% 21.61%
�(��) 7.89% 7.59% 7.27% 6.86%
�(��) 11.92% 12.14% 11.40% 10.68%
K�
5 9.30 22.63 41.47 76.70

Table 1: Minimal reserves K�
5 and optimal strategies for given certainty levels �.

2.5 Interpretations of Additional Reserve

In this section we give interpretations for the reserve Km, illustrated with numerical
examples. Throughout this section, we use the comonotonic lower bound approximations
derived in the previous sections to solve the optimization problems.

2.5.1 E¤ect of a temporary change in market parameters

Estimating the additional reserve Km can be useful to quantify the e¤ect of temporary
changes in the market parameters. Suppose an insurance company has determined its
investment portfolio using long-term estimates for the parameters describing the �nancial
market. To estimate the in�uence of a temporary change in market parameters, assume
that during the �rst m years the market behaves di¤erently, with di¤erent parameters �
and �.

If we assume a temporary improvement of market conditions (asset classes with higher
drifts and/or lower variances), the reserve Km as de�ned by (15) can be interpreted as the
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amount of money that will be available on the account at time m due to these favourable
short-term market conditions (assuming we use the same ruin probability ").

Similarly, if we would assume temporary adverse market conditions, the reserve Km is
an estimate of the amount of money the insurer will have to put on the account at time
m in order to recover for this short-term "crisis".

Also, the insurer can see how these temporary (un)favourable parameters change its
optimal investment strategy: assuming the market behaves unusually well (bad) during
the �rst years, how will the optimal investment strategy look like afterwards. For a given
reserve Km (e.g. Km = 0), the in�uence of (un)favourable temporary market conditions
on the ruin probability " can also be investigated.

Example Take K0 = 175, n = 30, and �i = 10 for i = 1; :::; 30, and assume we have
the 2 asset classes as in Section 2.4.1. Maximizing the survival probability, which is the
probability of being able to pay all the liabilities, leads to an optimal investment strategy
� = (0:5804; 0:4196); with � (�) = 0:0768, � (�) = 0:1236 and corresponding maximal
survival probability 85%. Note that this is a survival probability over the whole investment
period of 30 years, corresponding to a yearly survival probability of approximately 99:46%.
Assume the insurer invests according to this optimal strategy.

Suppose the insurer wants to check the in�uence of unusual short-term market condi-
tions. In Table 2, additional reserves Km are given for di¤erent market assumptions, and
di¤erent values of m. In all examples, the survivial probability is 85%. For example, if
every asset class has a drift 2% higher than normal for a period of 5 years, an amount
of 16.20 can be withdrawn from the account at time 5. If the standard deviations of the
asset classes is double for a period of 10 years, the insurer will have to put 96.29 on the
account at time 10 in order to keep the same survival probability of 85%.

In Table 3 the in�uence of a change in short-term market conditions on the survival
probability is illustrated. Suppose the insurer does not want to invest extra money at time
m, or Km = 0: We see from the table that the more (un-)favourable the market condi-
tions are, and the longer these conditions last, the higher (lower) the survival probability
becomes.

m 2 3 4 5 10 15
2 � � 28:68 39:53 49:17 58:02 96:29 132:04
�� 2% 7:07 11:00 14:89 18:73 37:75 57:27
�� 1% 3:66 5:99 8:31 10:61 21:96 33:66
�+ 1% �3:34 �4:45 �5:60 �6:83 �14:95 �27:30
�+ 2% �6:94 �9:89 �12:96 �16:20 �36:50 �66:41
0:5 � � �5:68 �8:06 �10:38 �12:69 �24:53 �38:58

Table 2: Reserve Km at time m in case of (un-)favourable short-term market conditions.

13



m 2 3 4 5 10 15
2 � � 0.746 0.713 0.688 0.668 0.604 0.567
�� 2% 0.821 0.805 0.789 0.774 0.715 0.676
�� 1% 0.836 0.827 0.818 0.811 0.782 0.765
�+ 1% 0.862 0.866 0.869 0.871 0.884 0.895
�+ 2% 0.874 0.882 0.889 0.896 0.920 0.935
0:5 � � 0.884 0.898 0.910 0.920 0.958 0.977

Table 3: Survival probability in case of (un-)favourable short-term market conditions
(Km = 0).

2.5.2 Postponing rebalancing of investment portfolio

Suppose an insurance company knows that its current investment portfolio is not optimal.
Assume however the insurer does not want to change to a di¤erent investment strategy
immediately, but prefers to wait for a period of m years. In this case, the reserve Km

as de�ned by (15) can serve as an estimate of the cost of postponing the rebalancing
(incorporating, of course, a certain ruin probability). Also the in�uence of postponing
rebalancing on the optimal investment strategy can be investigated.

Similarly, suppose the insurer knows how much money he will have available in m
years to put on its account (e.g. Km = 0 if he does not want to invest extra money). In
that case, the insurer can determine the in�uence of postponing the rebalancing on the
ruin probability and on the optimal investment strategy. This way the insurer can get an
idea of the maximum number of years m for which postponing changing its investment
strategy is acceptable.

Example Take K0 = 175, n = 30, and �i = 10 for i = 1; :::; 30, and assume we have
the 2 asset classes as in Section 2.4.1. Maximizing the survival probability leads to an
optimal investment strategy � = (0:5804; 0:4196); with � (�) = 0:0768, � (�) = 0:1236
and corresponding maximal survival probability 85%.

Suppose the insurer has currently an investment portfolio given by (0:25; 0:75), with
corresponding drift 0:09 and standard deviation 0:1639. In other words, the insurer�s
current portfolio is more risky than the optimal one. Suppose the insurer does not want
to rebalance immediately, but would like to keep its current strategy for m years. Using
(33) we can determine the optimal investment strategy ��, to be followed from time m on,
leading to a minimal additional reserve K�

m. For the same long-term survival probability
of 85%; the results are given in Table 4. For example, for m = 5 we �nd as a result
�� = (0:4824; 0:5176), with � (��) = 0:0807 and � (��) = 0:1343. The minimal additional
reserve at time 5 amounts to K�

5 = 8:35: In other words, if the insurer wants to postpone
rebalancing for 5 years, and if he wants to keep the same survival probability of 85%, we
estimate that he has to invest an additional amount of 8:35 at time 5, and change to the
strategy ��:
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From the results in Table 4 we can see increasing m, hence delaying the moment of
rebalancing, leads to an increase in the additional reserve K�

m. Also we see that the
optimal strategy to be followed from time m on becomes more risky for increasing m.

m
2 3 4 5 10

��1 0:5226 0:5075 0:4925 0:4824 0:4523
��2 0:4774 0:4925 0:5075 0:5176 0:5477
�(��) 0:0791 0:0797 0:0803 0:0807 0:0819
�(��) 0:1298 0:1314 0:1331 0:1343 0:1378
K�
m 3:59 5:38 6:94 8:35 13:90

Table 4: Minimal reserves K�
m and optimal strategies for di¤erent values of m.

2.6 Conclusion

In this paper we discussed a general provisioning problem. We derived approximations
that can be used to determine an estimate at time 0 of the provision to be set up at a
certain time in the future, to ensure, after having paid the first liabilities, that all future
liabilities can be fulfilled, incorporating a specified (low) ruin probability. We derived a
convex lower and upper bound based on comonotonicity to determine an accurate and
easily computable approximation for this reserve. We applied our results in an optimal
portfolio selection framework, and illustrated it with numerical examples.

We have seen that the general provisioning problem can be useful in practice. As a
�rst plausible interpretation, the additional reserve can be used to quantify the e¤ect of
temporary changes in market conditions. We have seen for example that such changes can
signi�cantly in�uence the long-term survival probability. Secondly, the setting discussed
in this paper can be used to see if and how long postponing rebalancing of the invesmtent
portfolio can be justi�ed.

Acknowledgement 1 The authors acknowledge the financial support by the Onderzoeks-
fonds K.U.Leuven (GOA/07: Risk Modeling and Valuation of Insurance and Financial
Cash Flows, with Applications to Pricing, Provisioning and Solvency).
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A Numerical Results

The tables in this Appendix contain the numerical results of the examples of Section 2.3,
comparing our lower bound and upper bound approximations to results obtained using
simulation. Table 5 contains the results of the �rst example, where �(�1) = �(�2) = 0:05
and �(�1) = �(�2) = 0:1. Table 6 contains the results of the second example, where
�(�1) = 0:05, �(�1) = 0:1, �(�2) = 0:02 and �(�2) = 0:01.

Km upper simulation lower Km upper simulation lower
bound bound bound bound

-250 0.99495 0.99644 0.99589 10 0.21083 0.18979 0.19807
-240 0.99319 0.99512 0.99443 20 0.17456 0.15064 0.15929
-230 0.99085 0.99340 0.99248 30 0.14320 0.11729 0.12636
-220 0.98776 0.99115 0.98989 40 0.11652 0.09065 0.09900
-210 0.98372 0.98803 0.98647 50 0.09413 0.06881 0.07670
-200 0.97846 0.98383 0.98199 60 0.07557 0.05187 0.05885
-190 0.97168 0.97851 0.97615 70 0.06035 0.03886 0.04476
-180 0.96301 0.97153 0.96861 80 0.04798 0.02886 0.03380
-170 0.95205 0.96245 0.95897 90 0.03801 0.02123 0.02537
-160 0.93832 0.95100 0.94676 100 0.03002 0.01563 0.01894
-150 0.92135 0.93660 0.93147 110 0.02366 0.01136 0.01409
-140 0.90063 0.91839 0.91256 120 0.01861 0.00830 0.01044
-130 0.87569 0.89626 0.88947 130 0.01462 0.00611 0.00772
-120 0.84614 0.86913 0.86168 140 0.01148 0.00440 0.00570
-110 0.81170 0.83670 0.82879 150 0.00900 0.00322 0.00420
-100 0.77227 0.79913 0.79051 160 0.00706 0.00231 0.00309
-90 0.72801 0.75489 0.74680 170 0.00554 0.00172 0.00228
-80 0.67930 0.70569 0.69788 180 0.00435 0.00126 0.00168
-70 0.62686 0.65106 0.64431 190 0.00342 0.00091 0.00124
-60 0.57165 0.59203 0.58699 200 0.00268 0.00066 0.00091
-50 0.51485 0.53085 0.52714 210 0.00211 0.00047 0.00067
-40 0.45780 0.46770 0.46621 220 0.00166 0.00037 0.00050
-30 0.40183 0.40432 0.40581 230 0.00131 0.00027 0.00037
-20 0.34822 0.34431 0.34751 240 0.00104 0.00020 0.00027
-10 0.29803 0.28737 0.29276 250 0.00082 0.00014 0.00020
0 0.25206 0.23562 0.24268

Table 5: Comparison of upper bound and lower bound to simulated results, with �(�1) =
�(�2) = 0:05 and �(�1) = �(�2) = 0:1.

16



Km upper simulation lower Km upper simulation lower
bound bound bound bound

-250 0.99943 0.99947 0.99944 -30 0.70308 0.70566 0.70414
-240 0.99922 0.99925 0.99923 -20 0.64021 0.64259 0.64112
-230 0.99892 0.99897 0.99894 -10 0.57053 0.57252 0.57120
-220 0.99851 0.99858 0.99854 0 0.49554 0.49640 0.49586
-210 0.99795 0.99807 0.99798 10 0.41748 0.41648 0.41738
-200 0.99718 0.99733 0.99723 20 0.33928 0.33760 0.33870
-190 0.99614 0.99631 0.99620 30 0.26427 0.26126 0.26321
-180 0.99472 0.99499 0.99480 40 0.19581 0.19192 0.19437
-170 0.99280 0.99312 0.99291 50 0.13681 0.13258 0.13513
-160 0.99022 0.99059 0.99037 60 0.08922 0.08476 0.08749
-150 0.98678 0.98724 0.98696 70 0.05366 0.04952 0.05208
-140 0.98219 0.98291 0.98243 80 0.02934 0.02619 0.02806
-130 0.97612 0.97684 0.97643 90 0.01434 0.01205 0.01343
-120 0.96816 0.96919 0.96854 100 0.00614 0.00477 0.00559
-110 0.95779 0.95924 0.95827 110 0.00225 0.00155 0.00196
-100 0.94441 0.94593 0.94499 120 0.00069 0.00041 0.00056
-90 0.92733 0.92900 0.92802 130 0.00017 0.00008 0.00013
-80 0.90576 0.90784 0.90657 140 0.00003 0.00001 0.00002
-70 0.87887 0.88127 0.87979 150 0.00000 0.00000 0.00000
-60 0.84581 0.84864 0.84684 160 0.00000 0.00000 0.00000
-50 0.80584 0.80854 0.80693 170 0.00000 0.00000 0.00000
-40 0.75835 0.76116 0.75946

Table 6: Comparison of upper bound and lower bound to simulated results, with �(�1) =
0:05, �(�1) = 0:1, �(�2) = 0:02 and �(�2) = 0:01.
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