The Minimal Dominant set is a Non-Empty Core-Extension
 László Á. Kóczy and Luc Lauwers
 NOTA DI LAVORO 50.2003

JUNE 2003
CTN - Coalition Theory Network

László Á. Kóczy, Centre for Economic Studies
Faculty of Economics and Applied Economics Catholic University Leuven
Luc Lauwers, Centre for Economic Studies
Faculty of Economics and Applied Economics
Catholic University Leuven

This paper can be downloaded without charge at:
The Fondazione Eni Enrico Mattei Note di Lavoro Series Index: http://www.feem.it/Feem/Pub/Publications/WPapers/default.html Social Science Research Network Electronic Paper Collection: http://papers.ssrn.com/abstract_id=XXXXXX

The opinions expressed in this paper do not necessarily reflect the position of Fondazione Eni Enrico Mattei

The Minimal Dominant Set is a Non-Empty Core-Extension

Summary

A set of outcomes for a TU-game in characteristic function form is dominant if it is, with respect to an outsider-independent dominance relation, accessible (or admissible) and closed. This outsider-independent dominance relation is restrictive in the sense that a deviating coalition cannot determine the payoffs of those coalitions that are not involved in the deviation. The minimal (for inclusion) dominant set is non-empty and for a game with a non-empty coalition structure core, the minimal dominant set returns this core.

Keywords: Core, Non-emptiness, Indirect dominance, Outsider-independence

Abstract

JEL: C71

This paper has been produced within the framework of the research activity sponsored and supported by the Coalition Theory Network managed by the Center of Operation Research and Economics, Louvain-la-Neuve, the Fondazione Eni Enrico Mattei, Venice, the GREQAM, Université de la Méditerannée, Marseille, the CODE, University of Barcelona and the University of Warwick, Great Britain. It has been presented at the Eighth Meeting of the Coalition Theory Network organised by GREQAM in Aix-enProvence, France, 24th-25th January 2003. The first author thanks the joint support (SOR-H/99/23, SOR-H/00/01 and COE/01/02) of the Catholic University Leuven and the Soros Foundation.

Address for correspondence:
László Á. Kóczy and Luc Lauwers
Centre for Economic Studies
Faculty of Economics and Applied Economics
Catholic University Leuven
Naamsestraat 69
B-3000 Leuven
Belgium
E-mails: laszlo.koczy@econ.kuleuven.ac.be, luc.lauwers@econ.kuleuven.ac.be

Contents

1 Introduction 1
2 Preliminaries 4
3 Dominating chains 7
4 The minimal dominant set 15
5 Properties 17

1 Introduction

For a TU-game in coalitional form, there are two fundamental and strongly linked problems: (i) what coalitions will form, and (ii) how will the members of these coalitions distribute their total coalitional worth. We attempt to answer these questions. Following Harsányi (1974), we presuppose some bargaining process among the players. At first, one of the players proposes some outcome (a payoff vector augmented with a coalition structure). In case some coalition could gain by acting for themselves, it can reject this initial outcome and propose a second outcome. Of course, in order to be able to make a counterproposal, the deviating coalition is a member of the new coalition structure and none of the players in the deviating coalition looses and some win when moving towards the new outcome. We impose an additional condition that we call outsider-independence: a coalition C that belongs to the initial coalition structure and that does not contain a deviating player survives the deviation; the players in C stay together and keep their pre-deviation payoffs. This contrasts with, for example, the approach by Sengupta and Sengupta (1994) and Shenoy (1980, Section 5). They also study coalition formation in a TU-framework, but their domination relation does not incorporate such an outsider-independence condition: the deviating coalition is allowed to determine the payoffs and the structure of all players. This seems unrealistic to us. In contrast, our approach is based on the observation that outsiders' payoffs are unaffected by the formation of the deviating coalition and hence outsiders do not necessarily notice the deviation until the new coalition structure is announced.

Once such a counter-proposal has popped up, another coalition may reject this counterproposal in favor of a third outcome, and so forth. This bargaining process generates a dominating chain of outcomes. In case the game has a non-empty coalition structure core (Greenberg, 1994, Section 6), the bargaining process enters this core after a finite number of steps (this is shown in Kóczy and Lauwers, 2001). Conclusion: the coalition structure core, if non-empty, is accessible.

Similarly to the core, the coalition structure core has an important shortcoming: non-
emptiness is far from being guaranteed. The present paper tackles games with an empty set of undominated outcomes.

We impose three conditions upon a solution concept. First, we insist on accessibility: from each outcome there is a dominating chain that enters the solution. Second, the solution is closed for domination: each outcome that dominates an outcome in the solution also belongs to the solution. The intuition behind this axiom is straightforward. In case there are no "undominated outcomes", there might exist "undominated sets" of outcomes. Such a set must be closed for outsider-independent domination. A collection of outcomes that combines accessibility and closedness is said to be a dominant set. And, third, from all the dominant sets, we only retain the minimal (with respect to inclusion) ones.

The following observation provides a further argument in favor of these three conditions: in case the game generates undominated outcomes, then the accessibility of the coalition structure core implies that this core is the unique minimal dominant set. Uniqueness and non-emptiness extends to arbitrary games:

Theorem A. Let (N, v) be a TU-game. Then, there is exactly one minimal dominant set. Moreover, this minimal dominant set is non-empty.

In other words, the minimal dominant set is a non-empty coalition structure core extension. On the one hand, the three conditions we impose upon a solution concept are strong enough to filter out the coalition structure core (in case it is non-empty), and on the other hand these conditions are weak enough to return a non-empty set of outcomes in case the game has an empty coalition structure core. As a matter of fact, the minimal dominant set meets Zhou's (1994) minimal qualifications for a solution concept: non-imposition with respect to the coalition structure ${ }^{1}$ and non-emptiness.

We close the discussion on Theorem A with an example. Consider a three player game with an empty core: singletons have a zero value, pairs have a value equal to 8 , and the grand

[^0]coalition has a value 9 . The payoff vector $(4,4,0)$ supported by the coalition structure $(\{1,2\},\{3\})$ belongs to the minimal dominant set. However, this outcome is not efficient: the total payoff in this vector amounts to 8 , where the value 9 is obtainable. On the other hand, the efficient outcome $(3,3,3 ;\{1,2,3\})$ does not belong to the minimal dominant set. Hence, the minimal dominant set might contain inefficient outcomes and at the same time there might be efficient outcomes outside the minimal dominant set. While the core selects those outcomes that satisfy efficiency and stability, these two properties are not so well linked as soon the core is empty (Section 5 returns to this issue).

Along the proof of Theorem A we come across the following properties of the outsiderindependent domination relation. First, the set of outcomes that indirectly dominate an (initial) outcome is closed in the Euclidean topology. And, second:

Theorem B. Let (N, v) be a game. Then there exists a natural number $\tau=\tau(N, v)$ such that for all outcomes a and b we have that a indirectly dominates b if and only if there exists a dominating chain from b to a of length at most τ.

As a consequence, the accessibility axiom can be sharpened: for each game (N, v) the minimal dominant set can be reached via $\tau=\tau(N, v)$ subsequent counter-proposals. This number τ can be imposed as a time-limit for the completion of the bargaining process.

Theorem B dramatically improves previous results on the accessibility of the core. We mention two of them. First, Wu (1977) showed the existence of a bargaining scheme that converges to the core and rephrased this result as "the core is globally stable". Second, Sengupta and Sengupta (1996) construct for each imputation a sequence of dominating imputations that enters the core in finitely many steps. We extend these results to the coalition structure core (and to the minimal dominant set); in addition, here we provide an upper bound for the length of the dominating chains.

The next section collects notation and definitions. Section 3 considers dominating chains, the length of such chains, and proves Theorem B. Section 4 defines the minimal dominant
set and proves Theorem A. Section 5 lists some deficiencies and some properties of the minimal dominant set. An example indicates that the outsider-independency-condition rightly prevents some outcomes (that belong to the solution of Sengupta and Sengupta, 1994) from entering the minimal dominant set.

2 Preliminaries

Let $N=\{1,2, \ldots, n\}$ be a set of n players. Non-empty subsets of N are called coalitions. A coalition structure is a set of pairwise disjoint coalitions so that their union is N and represents the breaking up of the grand coalition N. Let \mathcal{P} and \mathcal{Q} be two coalition structures such that for each coalition C in \mathcal{Q} we have that either C belongs to \mathcal{P} or there exists a coalition in \mathcal{P} that includes C, then \mathcal{Q} is finer than \mathcal{P} (and \mathcal{P} is coarser than \mathcal{Q}). For a coalition structure $\mathcal{P}=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$ and a coalition C, the partners' set $P(C, \mathcal{P})$ of C in \mathcal{P} is defined as the union of those coalitions in \mathcal{P} that have a non-empty intersection with C :

$$
P(C, \mathcal{P})=\left\{i \mid i \in C_{j} \text { with } j \text { such that } C_{j} \cap C \neq \varnothing\right\}=\bigcup_{C_{j} \cap C \neq \emptyset} C_{j} .
$$

Its complement $O(C, \mathcal{P})=N \backslash P(C, \mathcal{P})$ is said to be the set of outsiders.
A characteristic function $v: 2^{N} \backslash\{\varnothing\} \rightarrow \mathbb{R}$ assigns a real value to each coalition. The pair (N, v) is said to be a transferable utility game in characteristic function form, in short, a game.

An outcome of a game (N, v) is a pair (x, \mathcal{P}) with x in \mathbb{R}^{n} and \mathcal{P} a coalition structure of N. The vector $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ lists the payoffs of each player and satisfies

$$
\forall i \in N: x_{i} \geq v(\{i\}) \quad \text { and } \quad \forall C \in \mathcal{P}: x(C)=v(C),
$$

with $x(C)=\sum_{j \in C} x_{j}$. The first condition is known as individual rationality: player i will cooperate to form a coalition only if his payoff x_{i} exceeds the amount he obtains on his own. The second condition combines feasibility and the myopic behavior of the players, it states
that each coalition in the coalition structure \mathcal{P} allocates its value among its members. Outcomes with the same payoff vector are said to be payoff equivalent.

The set of all outcomes is denoted by $\Omega(N, v)$. The set $\Omega(N, v)$ is non-empty: it contains the outcome in which the grand coalition is split up in singletons.

In case the grand coalition forms, then an outcome is a pair (x, \mathcal{P}) with $\mathcal{P}=\{N\}, x_{i} \geq$ $v(\{i\})$, and $x(N)=\sum_{i \in N} x_{i}=v(N)$. As such, outcomes generalize imputations.

Now, we define the outsider-independent dominance relation. An interpretation and a discussion follows. Later on, we use the shorthand o-i-domination. We keep domination as a reference to the concept of Sengupta and Sengupta (1994). ${ }^{2}$

Definition 1 Let $x, y \in \mathbb{R}^{n}$ and let C be a coalition. Then $x \geq_{C} y$ if $x_{i} \geq y_{i}$ for each player i in C. And, $x>_{C} y$ (vector x dominates y by C) if $x \geq_{C} y$ and $x(C)>y(C)$.

Let (N, v) be a game and let $a=(x, \mathcal{P})$ and $b=(y, \mathcal{Q})$ be two outcomes. Then, outcome a outsider-independent dominates b by C, denoted by $b \xrightarrow{C} a$, if

- \mathcal{P} contains C,
- \mathcal{P} contains all coalitions in \mathcal{Q} that do not intersect C,
- in \mathcal{P} the players in $P(C, \mathcal{Q}) \backslash C$ form singletons, ${ }^{3}$
$-x>_{C} y$, and
- the restrictions of x and y to $O(C, \mathcal{Q})$ coincide.

Furthermore, we hold on the next terminology:

- C is called the deviating coalition, its members are deviators.

Finally, outcome a outsider-independent dominates b, denoted by $b \longrightarrow a$, if \mathcal{P} contains a coalition C such that $b \xrightarrow{C} a$.

[^1]This o-i-domination relation can be interpreted in a dynamic way. Let $(y, \mathcal{Q}) \xrightarrow{C}(x, \mathcal{P})$ and consider (y, \mathcal{Q}) as the initial outcome. Note that the initial partition \mathcal{Q} and the deviating coalition C completely determine the new partition \mathcal{P}. Also, the deviating coalition C enforces the new outcome (x, \mathcal{P}). Indeed, in order to obtain a higher total payoff, coalition C separates from its partners (and at least one member of C is strictly better off). The players in $P(C, \mathcal{Q}) \backslash C$ become ex-partners of C and fall apart in singletons. Finally, the outsiders, i.e. the players not in $P(C, \mathcal{Q})$, are left untouched.

The new outcome is achieved independently of the outsiders. This is in strong contrast to the "classical" domination relation where the deviating coalition dictates the payoffs and the coalition structure for the whole set of players. Hence, in employing this classical domination relation one implicitly assumes the cooperation of the outsiders even in case the proposed outcome is less favorable for them.

Definition 1 also models a merger: the deviating coalition is the union of some of the coalitions in the initial coalition structure.

In case one is concerned with coalition formation processes, o-i-dominance seems to be a natural and a straightforward extension of the domination relation at the level of payoff vectors. On the other hand, if outcome b is dominated by a at the level of payoff vectors, then there exists an outcome a^{\prime} that o-i-dominates b. Therefore, the set of o-i-undominated outcomes coincides with the set of undominated outcomes.

Definition 2 Let (N, v) be a game. The coalition structure core $C(N, v)$ is the set of outcomes that are not o-i-dominated.

Equivalently, the pair (x, \mathcal{P}) is in the coalition structure core if and only if it satisfies feasibility and coalitional rationality:

- for each coalition C in \mathcal{P} we have $x(C) \leq v(C)$, and
- for each coalition S we have $x(S) \geq v(S)$.

The coalition structure core might contain payoff equivalent outcomes; and in case "the" core is non-empty (i.e. in case the grand coalition forms), then the coalition structure core
includes the core.

3 Dominating chains

We introduce sequential o-i-domination and we show that in order to check for this, one can concentrate on chains the length of which does not exceed some upper bound.

Definition 3 Let $a, b \in \Omega$. Outcome a is said to be accessible from b (denoted by $b \vec{\rightarrow} a$ or $a \leftarrow b$), if one of the following conditions holds

- a and b are payoff equivalent, or
- a sequentially o-i-dominates b, i.e. there exists a natural number T and a sequence of outcomes

$$
a_{0}=b, a_{1}, \ldots, a_{T-1}, a_{T}=a
$$

such that a_{t} o-i-dominates a_{t-1} for $t=1,2, \ldots, T$. The sequence

$$
a_{0}=b \longrightarrow a_{1} \longrightarrow \ldots \longrightarrow a_{T-1} \longrightarrow a_{T}=a
$$

is called an o-i-dominating chain of length T.

This accessibility relation $\hat{\longrightarrow}$ is the transitive and reflexive closure of the o-i-domination relation \longrightarrow.

Two different outcomes might be accessible from each other. E.g. payoff equivalent outcomes are accessible from each other; this boils down to the implicit assumption that repartitioning involves no costs in case the payoff vector does not change.

The accessibility relation describes a possible succession of transitions from one outcome to another. An initial outcome is proposed and the players are allowed to deviate from it. We are interested in the outcomes that will appear at the end of a sequence of transitions. Some of the outcomes will definitely disappear, while others show up again and again. As such, the game is absorbed in (hopefully) a small set of outcomes. The following result gives a precise content to the expression "end of an o-i-dominating chain".

Theorem 1 Let (N, v) be a game. Then there exists a natural number τ such that for all outcomes a and b in $\Omega(N, v)$ we have that a is accessible from b if and only if there exists an o-i-dominating chain from a to b of length at most τ.

The if-part in the above statement (accessibility if there is a chain) is immediate. In order to prove the only-if-part, we need some additional preparations.

- First, the set $\Omega(N, v)$ of outcomes is partitioned such that two outcomes of the same class induce similar deviations,
- Second, the set N is partitioned according to the behavior of the players in an o-idominating chain.

The finiteness of these operations is crucial in the proof of Theorem 1. We start the discussion with the partitioning of the set of outcomes.

Definition 4 Let (N, v) be a game. Two outcomes (x, \mathcal{P}) and (y, \mathcal{Q}) are similar if they satisfy the following list of conditions:

- $\mathcal{P}=\mathcal{Q}$,
- for each coalition C we have, $x(C) \geq v(C)$ if and only if $y(C) \geq v(C)$, and
- for each coalition C, for each coalition structure \mathcal{C} of C, and for each D in \mathcal{C}, we have

$$
\begin{equation*}
x(D)-v(D) \geq v(C)-v(\mathcal{C}) \quad \text { iff } \quad y(D)-v(D) \geq v(C)-v(\mathcal{C}) \tag{*}
\end{equation*}
$$

where $v(\mathcal{C})=\Sigma_{E \in \mathcal{C}} v(E)$.

In this way the set $\Omega(N, v)$ of outcomes is partitioned into a finite number of classes. The number of classes in this partition depends upon the cardinality of N.

Definition 5 Let (N, v) be a game and let

$$
b=\left(x_{0}, \mathcal{P}_{0}\right) \xrightarrow{D_{1}}\left(x_{1}, \mathcal{P}_{1}\right) \xrightarrow{D_{2}} \ldots \xrightarrow{D_{t}}\left(x_{t}, \mathcal{P}_{t}\right) \xrightarrow{D_{t+1}} \ldots \xrightarrow{D_{T}}\left(x_{T}, \mathcal{P}_{T}\right)=a,
$$

be a o-i-dominating chain from b to a. We interpret t as a time index. For each $t=0,1, \ldots, T-1$ we divide the set of players into two subsets:

- The set W_{t} of winning players collects those players who, from t onwards, are either outsiders or deviators. Formally: i belongs to W_{t} if

$$
i \in O\left(D_{s}, \mathcal{P}_{s-1}\right) \cup D_{s}, \text { for all } s=t+1, \ldots, T
$$

From t onwards the payoff of a winning player cannot decrease.

- The set L_{t} of losing players collects those players who, at a certain point in time, are left behind as singletons. Formally: i belongs to L_{t} if

$$
\text { there exists } s \geq t+1 \text { such that } i \in P\left(D_{s}, \mathcal{P}_{s-1}\right) \backslash D_{s} .
$$

Let $\ell(t, i) \geq t+1$ denote the first time (after t) that player i is standing alone, i.e. $\{i\} \in \mathcal{Q}_{\ell(t, i)}$.

Obviously, along the o-i-dominating chain we have

$$
W_{0} \subseteq W_{1} \subseteq \ldots \subseteq W_{T-1}=O\left(D_{T}, \mathcal{P}_{T-1}\right) \cup D_{T}
$$

Indeed, once a player is winning, his status cannot change. As a consequence we obtain

$$
L_{0} \supseteq L_{1} \supseteq \ldots \supseteq L_{T-1}=P\left(D_{T}, \mathcal{P}_{T-1}\right) \backslash D_{T}
$$

Furthermore, at each moment t a losing player i with $\ell(t-1, i)=t$ might move up to the class W_{t} of winning players.

Since winners and losers are completely determined by the coalition structures and the deviating coalitions, this division of N into winning and losing players does not depend upon the individual payoffs.

Proof of Theorem 1 (Only-if part).
The key idea is that any chain from b to a longer than τ can be made shorter. We construct
such a shorter chain. First, we locate two compatible outcomes c and c^{\prime}. Next, we trisect the chain $\left(b \hat{\rightarrow} c, c \stackrel{\wedge}{\rightarrow} c^{\prime}, c^{\prime} \hat{\rightarrow} a\right)$, we remove the middle part, and we reattach the head and the tail. Since the outcomes c and c^{\prime} are not likely to be identical the tail of the chain must be modified; we keep the deviating coalitions and we adjust the outcomes along the tail.

We proceed in four steps. The first step is the surgical one: we locate two compatible outcomes and we make the cuts; here we implicitly define the value of τ. In Step 2 we show that the first deviation in the tail of the original chain can be attached to the head. Then, the second deviation is attached (Step 3) and so forth (Step 4).

Step 1. Starting up the proof.
If the length of the o-i-dominating chain from b to a is large enough (larger than τ), then there exist two outcomes $c=\left(y_{0}, \mathcal{Q}_{0}\right)$ and $c^{\prime}=\left(z_{0}, \mathcal{Q}\right)$ in the o-i-dominating chain that (i) are similar and (ii) partition the players (winning versus losing) in the same way. Indeed, there are only a finite number of different classes of similar outcomes and there are only a finite number of ways to split up the finite set N of players into two subsets. We write \mathcal{Q}_{0} instead of \mathcal{Q} and we assume that $\left(y_{0}, \mathcal{Q}_{0}\right)$ comes later than $\left(z_{0}, \mathcal{Q}_{0}\right)$. Denote the sets of winning and losing players for the outcomes $\left(y_{0}, \mathcal{Q}_{0}\right)$ and $\left(z_{0}, \mathcal{Q}_{0}\right)$ by W_{0} and L_{0}. In sum, we have the following o-i-dominating chain

$$
b=\left(x_{0}, \mathcal{P}_{0}\right) \longrightarrow \ldots \longrightarrow \overbrace{\left(z_{0}, \mathcal{Q}_{0}\right)}^{W_{0}, L_{0}} \longrightarrow \ldots \longrightarrow \overbrace{\left(y_{0}, \mathcal{Q}_{0}\right)}^{W_{0}, L_{0}} \longrightarrow \ldots \longrightarrow\left(x_{m}, \mathcal{P}_{m}\right)=a .
$$

We rename the last part in this original o-i-dominating chain and we indicate the deviating coalitions:

$$
\left(x_{0}, \mathcal{P}_{0}\right) \longrightarrow \ldots \longrightarrow \overbrace{\left(z_{0}, \mathcal{Q}_{0}\right)}^{W_{0}, L_{0}} \underbrace{\longrightarrow \ldots \longrightarrow \overbrace{\left(y_{0}, \mathcal{Q}_{0}\right)}^{W_{0}, L_{0}}}_{\text {middle part }} \underbrace{C_{1}}_{y \text {-chain }}\left(y_{1}, \mathcal{Q}_{1}\right) \xrightarrow{C_{2}} \ldots \frac{C_{T}}{\longrightarrow}\left(y_{T}, \mathcal{Q}_{T}\right),
$$

We show the existence of payoff vectors $z_{1}, z_{2}, \ldots, z_{T}$ such that this initial chain from b to a (of length m) can be shortened to

$$
\left(x_{0}, \mathcal{P}_{0}\right) \longrightarrow \ldots \longrightarrow \overbrace{\left(z_{0}, \mathcal{Q}_{0}\right)}^{W_{0}, L_{0}} \underbrace{\stackrel{C}{1}^{\longrightarrow}\left(z_{1}, \mathcal{Q}_{1}\right) \xrightarrow{C_{2}} \ldots{ }^{C_{T}}\left(z_{T}, \mathcal{Q}_{T}\right)=a}_{z-\text { chain }} .
$$

Since the coalition structure \mathcal{Q}_{0} and the deviating coalitions $C_{1}, C_{2}, \ldots, C_{T}$ coincide along the initial y-chain and the new z-chain, both chains generate the same sets W_{s} and L_{s} of winning and of losing players, $s=1,2, \ldots, T-1$.

Along the z-chain, the payoffs of certain players are straightforward. Indeed, in the step $\mathcal{Q}_{s} \xrightarrow{C_{s+1}} \mathcal{Q}_{s+1}$, each player i in $P\left(C_{s+1}, \mathcal{Q}_{s}\right) \backslash C_{s+1}$ drops off as a singleton and obtains his stand alone value. Furthermore, the post-deviation payoff of an outsider (i.e. a player in $\left.O\left(C_{s+1}, \mathcal{Q}_{s}\right)\right)$ is equal to his pre-deviation payoff. Hence, it is sufficient to concentrate on the payoffs of the deviators.

Step 2. The first deviation: $\mathcal{Q}_{0} \xrightarrow{C_{1}} \mathcal{Q}_{1}$.
The similarity of $\left(z_{0}, \mathcal{Q}_{0}\right)$ and $\left(y_{0}, \mathcal{Q}_{0}\right)$ implies that $z_{0}\left(C_{1}\right)<v\left(C_{1}\right)$. Hence coalition C_{1} has an incentive to deviate. The payoff of a deviator depends upon the status of the deviating coalition:

1. C_{1} is a subset of W_{0}.

Then we define $z_{1, k}=y_{1, k}$ for each k in C_{1}. This can be done because (i) player k in C_{1} is winning (from $\left(z_{0}, \mathcal{Q}_{0}\right)$ onwards) such that $z_{0, k} \leq y_{1, k}$ and (ii) coalition C_{1} is deviating such that $y_{1}\left(C_{1}\right)=v\left(C_{1}\right)$.

Also, the inclusion $C_{1} \subset W_{0}$ implies that the players in C_{1} glue together and will not be separated in subsequent steps.
2. C_{1} intersects L_{0}.

Then we allocate the surplus $v\left(C_{1}\right)-z_{0}\left(C_{1}\right)$ to those players who are the first to drop off as singletons in subsequent deviations (i.e. losing players k in C_{1} with the smallest $\ell(1, k)$-value $)$. In other words, the payoff of such a player is temporarily increased and will fall back on his stand alone value later on.

The payoffs of the remaining players in C_{1} stay at the pre-deviation level.
We close this step with the following observations. If player i moves up from L_{0} to W_{1}, then the singleton coalition $\{i\}$ belongs to \mathcal{Q}_{1} and $z_{1, i}=y_{1, i}=v(\{i\})$. Players in W_{0} either have their initial z_{0}-payoff or obtained a y_{1}-payoff.

Step 3. The second deviation: $\mathcal{Q}_{1} \xrightarrow{C_{2}} \mathcal{Q}_{2}$.
Let us investigate the composition of the deviating coalition C_{2}. We regard this deviation as a merger of a set \mathcal{C} of (possibly singleton) coalitions in \mathcal{Q}_{1} that pick up further players from other coalitions. Let D denote the set of these picked-up players.

We have to check whether coalition C_{2} can improve upon $\left(z_{1}, \mathcal{Q}_{1}\right)$ by standing alone, i.e. $v\left(C_{2}\right)>z_{1}\left(C_{2}\right)$. In the above notation we have $\mathcal{C} \subset \mathcal{Q}_{1}$, and hence

$$
z_{1}\left(C_{2}\right)=\Sigma_{\mathcal{C}} v(C)+z_{1}(D) .
$$

We investigate the nature of a player in D. Such a player in D cannot have a temporarily high payoff. We show this by contradiction and we assume that a player j in D has a temporarily high payoff. Player j is, by construction, a future loser that belonged to C_{1}. Since the surplus $v\left(C_{1}\right)-z_{0}\left(C_{1}\right)$ of the previous deviation was allocated to those losers that are the first to drop off, coalition C_{2} can only contain player i in case C_{2} includes C_{1}. Therefore, $j \in C_{1} \in \mathcal{C}$ and j is not in D. A contradiction.
Conclude that each player in D was, in the previous step, either an outsider or a deviator. Now, we are able to specify the pre-deviation payoff $z_{1, i}$ of a player i in D :

- The payoff $z_{1, i}$ of an outsider is still at the z_{0}-level.
- The payoff $z_{1, i}$ of a deviator also is at the z_{0}-level. Indeed, in this case the deviating coalition C_{1} is not included in C_{2}. Only the payoffs of those players that are the first to left behind as singletons were temporarily increased. Obviously, player i belongs to $C_{1} \cap C_{2}$ and his payoff is equal to $z_{0, i}$.

Therefore, we can rewrite the previous equality:

$$
z_{1}\left(C_{2}\right)=\Sigma_{\mathcal{C}} v(C)+z_{0}(D)
$$

Next, we look at the y-chain. In the step $\mathcal{Q}_{1} \xrightarrow{C_{2}} \mathcal{Q}_{2}$ the same decomposition of C_{2} appears. Because C_{2} improves upon y_{1} and because players in D are either outsiders or deviators when moving from y_{0} to y_{1} we have

$$
v\left(C_{2}\right)=y_{2}\left(C_{2}\right)>y_{1}\left(C_{2}\right)=\Sigma_{\mathcal{C}} v(C)+y_{1}(D) \geq \Sigma_{\mathcal{C}} v(C)+y_{0}(D)
$$

Now use the similarity of the outcomes $\left(y_{0}, \mathcal{Q}_{0}\right)$ and $\left(z_{0}, \mathcal{Q}_{0}\right)$ (Condition $(*)$ in Def 4$)$ and conclude that C_{2} indeed has an incentive to deviate:

$$
v\left(C_{2}\right)>z_{1}\left(C_{2}\right)=\Sigma_{\mathcal{C}} v(C)+z_{0}(D)
$$

The payoff vector z_{2} is defined in the same way as z_{1}. The payoff of a deviator depends upon the status of C_{2}.

1. C_{2} is a subset of W_{1}.

Then a deviator either already belonged to W_{0} or obtained in the previous step his stand alone value; in both cases the payoff of the deviator can be lifted to the y_{2}-level.
2. C_{2} intersects L_{1}.

Then the payoff of a deviator is either equal to his pre-deviation payoff or is temporarily increased.

Step 4. The t-th deviation: $\mathcal{Q}_{t-1} \xrightarrow{C_{t}} \mathcal{Q}_{t}$.
The subsequent deviations by the coalitions $C_{1}, C_{2}, \ldots, C_{t-1}$ are all executed and the payoff vectors $z_{1}, z_{2}, \ldots, z_{t-1}$ are all defined. Again, we start with the decomposition of the deviating coalition C_{t}. Since players now have a longer history, the decomposition of C_{t} is more complicated.

In the outcome $\left(z_{t-1}, \mathcal{Q}_{t-1}\right)$ we distinguish four types of players: players with a temporarily high payoff, players (that do not form a singleton coalition) with a payoff at the y_{k}-level with $k \leq t-1$, players having their stand alone payoff, and untouched players with a payoff still at the z_{0}-level. By construction, these four types exhaust the set N of players. Indeed, when a player leaves his z_{0}-level, he either enters the y-level, or obtains a temporarily high payoff, or obtains his stand alone value.

Consider a player in C_{t} with a payoff at the y_{k}-level with $k \leq t-1$. By construction, a player can move up to the y_{t-1}-level only after joining a deviating coalition C_{j} that enters the set W_{j} of winners. Such a coalition C_{j} never breaks up. However, the coalition C_{j} can be picked up as a whole by a later deviating coalition. Let C_{k} be the latest deviating
coalition that includes C_{j} and that is a subset of C_{t} (i.e. $C_{j} \subset C_{k} \subset C_{t}$). Let \mathcal{C}_{1} collect these coalitions C_{k}. Note that two different coalitions in \mathcal{C}_{1} must be disjoint.
Hence each player in C_{t} with a payoff at the y-level is sheltered in some coalition in \mathcal{C}_{1}.
Now, consider a player in C_{t}, not yet sheltered by \mathcal{C}_{1}, with a temporarily high payoff. Then C_{t} must include the entire deviating coalition C_{j} (with $j<t$) which was at the basis of this temporarily high payoff. Indeed, the surplus of a deviation was (in case C_{j} contains future losers) allocated to those players that are the first to drop off. Hence, if such a future loser is present in C_{t}, then the drop off has not yet happened. The coalition C_{j} is still together and is included in some deviating coalition C_{k} which is a subset of C_{t} (again let k be as large as possible, $j \leq k<t-1)$). Let \mathcal{C}_{2} collect these coalitions C_{k}. Different coalitions in $\mathcal{C}_{1} \cup \mathcal{C}_{2}$ are disjoint.

Now, each player with a payoff at the y-level or with a temporarily high payoff is sheltered in some coalition in $\mathcal{C}_{1} \cup \mathcal{C}_{2}$.

Let S collect the remaining players in C_{t} with a payoff equal to their stand alone value. Such a player is been dropped off as a singleton coalition; later on such a player might become a winner in a deviating coalition that also contained losers.

Finally, let the coalition D collect the remaining players in C_{t}. They have a payoff at the z_{0}-level.

In contrast to Step 3, the coalitions in $\mathcal{C}_{1}, \mathcal{C}_{2}$ need not be present as coalitions in \mathcal{Q}_{t-1}, they are included in one of the coalitions in \mathcal{Q}_{t-1}.

In conclusion:

$$
z_{t-1}\left(C_{t}\right)=\Sigma_{\mathcal{C}_{1}} v(C)+\Sigma_{\mathcal{C}_{2}} v(C)+\Sigma_{S} v(\{i\})+z_{0}(D)
$$

We have to check whether $v\left(C_{t}\right)>z_{t-1}\left(C_{t}\right)$.
Consider the same decomposition in the step $\left(y_{t-1}, \mathcal{Q}_{t-1}\right) \xrightarrow{C_{t}}\left(y_{t}, \mathcal{Q}_{t}\right)$. Since coalition C_{t} can improve upon y_{t-1}, we know

$$
v\left(C_{t}\right)>\Sigma_{\mathcal{C}_{1}} v(C)+\Sigma_{\mathcal{C}_{2}} v(C)+y_{t-1}(S)+y_{t-1}(D)
$$

For each player k in D we have $y_{t-1, k} \geq y_{0, k}$. For each player k in S we have $y_{t-1, k} \geq v(\{k\})$. Hence,

$$
v\left(C_{t}\right)>\Sigma_{\mathcal{C}_{1}} v(C)+\Sigma_{\mathcal{C}_{2}} v(C)+\Sigma_{S} v(\{k\})+y_{0}(D)
$$

Use the similarity of the outcomes $\left(y_{0}, \mathcal{Q}_{0}\right)$ and $\left(z_{0}, \mathcal{Q}_{0}\right)$ (Condition (*) in Def 4) and conclude that C_{t} indeed has an incentive to deviate.

The payoff $z_{t, k}$ with k in C_{t} depends upon the status of C_{t} and is lifted to the y_{t}-level $\left(C_{t} \subseteq W_{t-1}\right)$, or is either equal to the pre-deviation payoff or is temporarily increased $\left(C_{t} \cap L_{t-1} \neq \varnothing\right)$.

4 The minimal dominant set

Here we introduce dominant sets and show that the minimal dominant set is non-empty. Let (N, v) be a game and let $\Omega=\Omega(N, v)$ be the set of all outcomes.

Definition $6 A$ set $\Delta \subseteq \Omega$ of outcomes is said to be dominant if it satisfies
accessibility the set Δ is accessible from Ω, i.e. for each b in Ω there exists an a in Δ such that $b \rightarrow a$, and
closure the set Δ is closed for o-i-domination, i.e. for each a in Ω and each b in Δ, if $b \xrightarrow[\rightarrow]{ } a$ then $a \in \Delta$.

For example, the set Ω of all outcomes is dominant. Furthermore, the complement $\Omega \backslash \Delta$ of a dominant set Δ is not dominant. The non-emptiness of the minimal dominant set will follow from the existence of outcomes that are maximal for the sequential o-i-dominance relation $\widehat{\longrightarrow}$.

Definition 7 Outcome a is maximal for $\hat{\rightarrow}$ if for each outcome b in Ω that sequentially $o-i$-dominates a, we have that a sequentially o-i-dominates b.

In order to show the existence of a maximal outcome, we follow Kalai and Schmeidler (1977, Theorem 3) and use some standard arguments from topology. We embed the set Ω in the Euclidean space \mathbb{R}^{n} by neglecting the coalition structures behind the outcomes. Formally, we study outcome vectors x, y, \ldots instead of outcomes $(x, \mathcal{P}),(y, \mathcal{Q}), \ldots$ Observe that the set of all outcome vectors (i.e. the set Ω after neglecting the coalition structures) is compact. Furthermore, within the universe Ω we consider the relativization of the Euclidean topology to Ω. Theorem 1 implies the next continuity property.

Lemma 2 Let $a, b \in \Omega$. The set $\hat{a}=\{c \in \Omega: a \hat{\rightarrow} c\}$ of outcomes that sequentially o - i-dominate a is closed (in the Euclidean topology). In addition, if $a \hat{\rightarrow} b$, then $\hat{a} \supset \hat{b}$.

Proof: First, let $A \subset \Omega$ be a closed set of outcomes. Observe that the set A_{1} of outcomes that outsider-independent o-i-dominate A (in one step) also is a closed set. According to Theorem 1 there exists a natural number τ such that

$$
\hat{a}=\{c \in \Omega: \text { there is a chain from } a \text { to } c \text { of length smaller than } \tau\} .
$$

Hence, \hat{a} is the union of τ closed sets, and is therefore closed. The second statement (the finite intersection property along a chain) is obvious.

Lemma 3 The set Ω, equipped with the sequential o-i-dominance relation, has at least one maximal outcome.

Proof: By Zorn's lemma it is sufficient to show that each chain in $(\Omega, \hat{\rightarrow})$ has an upper bound. Hence, let A be a chain in Ω. In case the chain contains an outcome a such that $\hat{a}=\{a\}$, then a is a maximal element. Otherwise, the intersection $\cap_{a \in A} \hat{a}$ of closed sets is non-empty (use the finite intersection property of closed sets in the compact set Ω). Each outcome in this intersection is an upper bound for the chain A.

Now, we identify the minimal dominant set with the set of maximal outcomes.

Theorem 4 Let (N, v) be a game and let Ω be the set of outcomes. Then, the minimal dominant set coincides with the set of maximal outcomes and is therefore non-empty.

Proof: Let Δ be a minimal dominant set and let M collect the maximal outcomes. First, let a be a maximal outcome. Because Δ satisfies accessibility, it contains an outcome b such that $a \xrightarrow[\rightarrow]{ }$. The maximality of a implies that $b \hat{\rightarrow} a$. Since Δ satisfies closure, a belongs to Δ. Conclusion: $M \subseteq \Delta$ and Δ is non-empty.

Next, suppose that a belongs to Δ and that b sequentially o-i-dominates a. Then, either a sequentially o-i-dominates b, or Δ is not a minimal o-i-dominant set: outcome a and each outcome that is sequentially o-i-dominated by a can be left out. Since Δ is assumed to be minimal, the outcome a must be maximal. Hence, $\Delta \subseteq M$.

Finally, consider a game (N, v) with a non-empty coalition structure core $C(N, v)$. As the coalition structure core collects the o-i-undominated outcomes, it follows that the minimal dominant set Δ includes $C(N, v)$. As a matter of fact the equality $C(N, v)=\Delta$ holds:

Corollary 5 Let (N, v) be a game. Then, the minimal dominant set is a non-empty coalition structure core extension.

Proof: First, the minimal dominant set is non-empty (Theorem 4). Second, consider a game with a non-empty coalition structure core. The accessibility of the coalition structure core is proven in Kóczy and Lauwers (2001). Hence, the minimal dominant set coincides with the coalition structure core.

5 Properties

We discuss some deficiencies and we list some properties of the minimal dominant set. Consider a game (N, v). Let Ω be the set of outcomes and let Δ be the minimal dominant set.
5.1. We start with the observation that an outcome in Δ might assign a positive payoff to a dummy player, i.e. a player i for which $v(\{i\})=0$ and $v(C \cup\{i\})=v(C)$ for each coalition C. Indeed, consider a three player majority game augmented with two dummy players: $N=\{1,2,3,4,5\}, v(C)=2$ if the intersection $C \cap\{1,2,3\}$ contains at least two
players, all other coalitions have a value equal to 0 .
The outcome $(1,1,0,0,0 ;\{1,2\},\{3\},\{4\},\{5\})$ belongs to Δ and is o-i-dominated by the outcome $a=(0,1.2,0.4,0.4,0 ;\{1\},\{2,3,4\},\{5\})$ which allocates a positive amount to player 4. Since Δ is closed for o-i-domination, outcome a belongs to Δ.

Sengupta and Sengupta (1994, Section 3.2) observe that this affliction is common to many solution concepts: the Aumann-Maschler set, the Mas-Collel bargaining set, the consistent bargaining set of Dutta et al., and the set of viable proposals by Sengupta and Sengupta all generate solutions for this game with a positive payoff for the dummy players.

An artificial way to circumvent this problem is to impose a stability condition upon the deviating coalitions. Call a coalition S stable against splitting up in case each proper partitioning \mathcal{D} of S has a value that is strictly smaller than the worth of S, i.e. $v(\mathcal{D})<v(S)$. In other words, a coalition will split up in case it can be partitioned without lowering its total worth. As such, a deviating coalition will never contain a dummy player and dummy players will end up in their stand alone position.
5.2. Next, we observe that the shortsightedness or myopia of the players may lead to inefficient coalition structures.

Definition 8 Let (N, v) be a game and let S be some coalition. A coalition structure \mathcal{C} of S is said to be efficient if the total payoff $v(\mathcal{C})=\Sigma_{E \in \mathcal{C}} v(E)$ decreases when the coalition structure \mathcal{C} is made finer or coarser.

Efficiency combines stability against splitting up with stability against mergers, i.e. \mathcal{C} does not contain coalitions A and B such that $v(A \cup B)>v(A)+v(B)$. The next example indicates that inefficient coalition structures might enter the minimal dominant set.

Example 1 Repeat the three player game (N, v) with $v(\{i\})=0, v(\{i, j\})=8$, and $v(N)=$ 9. The minimal dominant set is the union of two sets. The first one is the boundary of a triangle spanned by $(8,0,0),(0,8,0),(0,0,8)$:

$$
\Delta_{1}=\left\{\left(x_{1}, x_{2}, x_{3} ;\{i, j\},\{k\}\right) \mid\{i, j, k\}=\{1,2,3\} \text { and } x_{i}+x_{j}=8, x_{k}=0\right\} .
$$

The second one is a part of a triangle spanned by $(9,0,0),(0,9,0),(0,0,9)$:

$$
\Delta_{2}=\left\{\left(x_{1}, x_{2}, x_{3} ; N\right) \mid x_{1}+x_{2}+x_{3}=9 \text { and } \exists k \in N: x_{k} \leq 1\right\} .
$$

The outcomes in Δ_{1} are inefficient. Coarsening the coalition structure $(\{i, j\},\{k\})$ to N improves the value from 8 to 9 . Furthermore, the efficient outcome $(3,3,3 ; N)$ does not belong to the minimal dominant set.

These observations raise a rather fundamental issue: the conflict between efficiency and undomination. Here we insisted on undomination. As a consequence, inefficient outcomes might enter and some efficient outcomes might leave the solution.

We do not regard this as a serious conceptual problem: we view the minimal dominant set as a first solution concept. In other words, outcomes outside the minimal dominant set certainly will not survive. ${ }^{4}$ Hence, if one insists on efficiency, then one can select the efficient outcomes out of the minimal dominant set. Since (i) each inefficient outcome is o-i-dominated by an efficient outcome and (ii) the minimal dominant set is closed for o-i-domination, this restriction is non-empty. In addition, this restricted set of efficient outcomes still satisfies accessibility. In the example, Δ_{2} collects the efficient outcomes.

Analogously, if one insists on the dummy player axiom (i.e. dummy players obtain a zero payoff), then one can impose the above mentioned stability axiom on the deviating coalition.
5.3. Finally, we study the behavior of the minimal dominant set in composed games. Let $\left(N_{1}, v_{1}\right)$ and $\left(N_{2}, v_{2}\right)$ be two games, with N_{1} and N_{2} disjoint. The juxtaposition of these games is the game (N, v), with $N=N_{1} \cup N_{2}$ and

$$
v: 2^{N} \backslash\{\varnothing\} \longrightarrow \mathcal{R}: S \longmapsto v(S)=\left\{\begin{array}{cl}
v_{1}(S) & \text { if } S \subseteq N_{1} \\
v_{2}(S) & \text { if } S \subseteq N_{2} \\
0 & \text { otherwise }
\end{array}\right.
$$

[^2]In such a juxtaposition the restriction to one of the initial sets of players coincides with the corresponding initial game. On the other hand, cross-coalitions have a zero worth. Furthermore, in case $a_{i}=\left(x_{i}, \mathcal{P}_{i}\right)$ is an outcome of the game $\left(N_{i}, v_{i}\right), i=1,2$, then the juxtaposition $a_{1} \times a_{2}=\left(x_{1}, x_{2} ; \mathcal{P}_{1} \cup \mathcal{P}_{2}\right)$ is an outcome of the game (N, v).

The next proposition indicates that the minimal dominant set behaves well with respect to such composed games.

Proposition 6 The minimal dominant set of the juxtaposition of two games coincides with the juxtaposition of the two minimal dominant sets.

Proof: Let (N, v) be the juxtaposition of the games $\left(N_{1}, v_{1}\right)$ and $\left(N_{2}, v_{2}\right)$. Let $\left(x_{i}, \mathcal{P}_{i}\right)$ be an outcome of the game $\left(N_{i}, v_{i}\right)$ that is maximal for the sequential o-i-domination relation, $i=1,2$. In other words, let $\left(x_{i}, \mathcal{P}_{i}\right)$ belong to $\Delta\left(N_{i}, v_{i}\right)$.

Obviously, the juxtaposition $\left(x_{1}, x_{2} ; \mathcal{P}_{1} \cup \mathcal{P}_{2}\right)$ is maximal. Hence, $\Delta(N, v)$ includes the juxtaposition of $\Delta\left(N_{1}, v_{1}\right)$ and $\Delta\left(N_{2}, v_{2}\right)$.
The inclusion $\Delta(N, v) \subseteq \Delta\left(N_{1}, v_{1}\right) \times \Delta\left(N_{2}, v_{2}\right)$ also is immediate.
Although this property seems natural, it illuminates some advantages of the minimal dominant set above other solution concepts. Consider the juxtaposition of a small game with an empty and a large game with a non-empty core. As each outcome of this game is dominated, the coalition structure core is empty. Nevertheless, the composed game contains almost stable outcomes. The minimal dominant set is able to trace this locally stable behavior.

Furthermore, this property illustrates the implications of the outsider-independence assumption in the o-i-dominance relation. Consider the following juxtaposition.

Let $N=\{1,2,3,4,5\}$ and let

$$
v(\{1,2\})=v(\{1,3\})=v(\{2,3\})=v(\{4,5\})=2
$$

all other coalitions have a zero value. The minimal dominant set of this game is equal to

$$
\Delta=\left\{(x ;\{i, j\},\{k\},\{4,5\}) \mid\{i, j, k\}=\{1,2,3\}, x_{i}+x_{j}=x_{4}+x_{5}=2, x_{k}=0\right\}
$$

When the deviating coalition is allowed to intervene in the structure of the outsiders, the set of maximal elements does contain outcomes that are not plausible. For example, the outcome $a=(1,1,0,0,0 ;\{1,2\},\{3\},\{4\},\{5\})$ dominates in the sense of Sengupta and Sengupta (1994) the outcome $b=(1,1,0,1,1 ;\{1,2\},\{3\},\{4,5\})$. Indeed, start from b and consider a deviation by $\{2,3\}$ that separates players 4 and 5 , next consider a deviation by $\{1,2\}$. This example shows that the set of viable proposals (i.e. the solution of Sengupta and Sengupta, 1994) does not satisfy the juxtaposition property.

References

Greenberg J (1994), Coalition structures. In: Aumann RJ, Hart S (eds.) Handbook of game theory II. Elsevier Science Publications.

Harsányi JC (1974), An equilibrium point interpretation of stable sets. Management Science 20, 14721495.

Kalai E, Schmeidler D (1977), An admissible set occurring in various bargaining situations. Journal of Economic Theory 14, 402-411.

Kóczy LA, Lauwers L (2001), The coalition structure core is accessible. Centre for Economic Studies, Catholic University Leuven, Discussion Paper DPS 02.19.

Laslier JF (1997), Tournament solutions and majority voting. Springer-Verlag, Berlin.
Sengupta A, Sengupta K (1994), Viable proposals. International Economic Review 35, 347-359.
Sengupta A, Sengupta K (1996), A property of the core. Games and Economic Behavior 12, 266-273.
Shenoy PP (1979), On coalition formation: a game-theoretical approach. International Journal of Game Theory 8, 133-164.

Wu LSY (1977), A dynamic theory for the class of games with nonempty cores. SIAM Journal of Applied Mathematics 32, 328-338.

Zhou L (1994), A new bargaining set of an n-person game and endogenous coalition formation. Games and Economic Behavior 6, 512-526.

NOTE DI LAVORO DELLA FONDAZIONE ENI ENRICO MATTEI
 Fondazione Eni Enrico Mattei Working Paper Series

Our working papers are available on the Internet at the following addresses:
http://www.feem.it/Feem/Pub/Publications/WPapers/default.html http://papers.ssrn.com

SUST	1.2002	K. TANO, M.D. FAMINOW, M. KAMUANGA and B. SWALLOW: Using Conjoint Analysis to Estimate Farmers Preferences for Cattle Traits in West Africa
ETA	2.2002	Efrem CASTELNUOVO and Paolo SURICO: What Does Monetary Policy Reveal about Central Bank's Preferences?
WAT	3.2002	Duncan KNOWLER and Edward BARBIER: The Economics of a "Mixed Blessing" Effect: A Case Study of the Black Sea
CLIM	4.2002	Andreas LÖSCHEL: Technological Change in Economic Models of Environmental Policy: A Survey
VOL	5.2002	Carlo CARRARO and Carmen MARCHIORI: Stable Coalitions
CLIM	6.2002	Marzio GALEOTTI, Alessandro LANZA and Matteo MANERA: Rockets and Feathers Revisited: An International Comparison on European Gasoline Markets
ETA	7.2002	Effrosyni DIAMANTOUDI and Eftichios S. SARTZETAKIS: Stable International Environmental Agreements: An Analytical Approach
KNOW	8.2002	Alain DESDOIGTS: Neoclassical Convergence Versus Technological Catch-up: A Contribution for Reaching Consensus
NRM	9.2002	Giuseppe DI VITA: Renewable Resources and Waste Recycling
KNOW	10.2002	Giorgio BRUNELLO: Is Training More Frequent when Wage Compression is Higher? Evidence from 11 European Countries
ETA	11.2002	Mordecai KURZ, Hehui JIN and Maurizio MOTOLESE: Endogenous Fluctuations and the Role of Monetary Policy
KNOW	12.2002	Reyer GERLAGH and Marjan W. HOFKES: Escaping Lock-in: The Scope for a Transition towards Sustainable Growth?
NR	13.2002	Michele MORETTO and Paolo ROSATO: The Use of Common Property Resources: A Dynamic Model
CLIM	14.2002	Philippe QUIRION: Macroeconomic Effects of an Energy Saving Policy in the Public Sector
CLIM	15.2002	Roberto ROSON: Dynamic and Distributional Effects of Environmental Revenue Recycling Schemes:
CLIM	16.2002	Simulations with a General Equilibrium Model of the Italian Economy
ETA	17.2002	Alberto PETRUCCI: Devaluation (Levels versus Rates) and Balance of Payments in a Cash-in-Advance Economy
Coalition Theory Network	18.2002	László A. KÓCZY (liv): The Core in the Presence of Externalities
Coalition Theory Network	19.2002	Steven J. BRAMS, Michael A. JONES and D. Marc KILGOUR (liv): Single-Peakedness and Disconnected Coalitions
Coalition Theory Network	20.2002	Guillaume HAERINGER (liv): On the Stability of Cooperation Structures
NRM	21.2002	Fausto CAVALLARO and Luigi CIRAOLO: Economic and Environmental Sustainability: A Dynamic Approach in Insular Systems
CLIM	22.2002	Barbara BUCHNER, Carlo CARRARO, Igor CERSOSIMO and Carmen MARCHIORI: Back to Kyoto? US Participation and the Linkage between R\&D and Climate Cooperation
CLIM	23.2002	Andreas LÖSCHEL and ZhongXIANG ZHANG: The Economic and Environmental Implications of the US Repudiation of the Kyoto Protocol and the Subsequent Deals in Bonn and Marrakech
ETA	24.2002	Marzio GALEOTTI, Louis J. MACCINI and Fabio SCHIANTARELLI: Inventories, Employment and Hours
CLIM	25.2002	Hannes EGLI: Are Cross-Country Studies of the Environmental Kuznets Curve Misleading? New Evidence from Time Series Data for Germany
ETA	26.2002	Adam B. JAFFE, Richard G. NEWELL and Robert N. STAVINS: Environmental Policy and Technological Change
SUST	27.2002	Joseph C. COOPER and Giovanni SIGNORELLO: Farmer Premiums for the Voluntary Adoption of Conservation Plans
SUST	28.2002	The ANSEA Network: Towards An Analytical Strategic Environmental Assessment
KNOW	29.2002	Paolo SURICO: Geographic Concentration and Increasing Returns: a Survey of Evidence
ETA	30.2002	Robert N. STAVINS: Lessons from the American Experiment with Market-Based Environmental Policies

NRM	31.2002	Carlo GIUPPONI and Paolo ROSATO: Multi-Criteria Analysis and Decision-Support for Water Management at the Catchment Scale: An Application to Diffuse Pollution Control in the Venice Lagoon
NRM	32.2002	Robert N. STAVINS: National Environmental Policy During the Clinton Years
KNOW	33.2002	A. SOUBEYRAN and H. STAHN : Do Investments in Specialized Knowledge Lead to Composite Good Industries?
KNOW	34.2002	G. BRUNELLO, M.L. PARISI and Daniela SONEDDA: Labor Taxes, Wage Setting and the Relative Wage Effect
CLIM	35.2002	C. BOEMARE and P. QUIRION (lv): Implementing Greenhouse Gas Trading in Europe: Lessons from Economic Theory and International Experiences
CLIM	36.2002	T.TIETENBERG (lv): The Tradable Permits Approach to Protecting the Commons: What Have We Learned?
CLIM	37.2002	K. REHDANZ and R.J.S. TOL (lv): On National and International Trade in Greenhouse Gas Emission Permits
CLIM	38.2002	C. FISCHER (lv): Multinational Taxation and International Emissions Trading
SUST	39.2002	G. SIGNORELLO and G. PAPPALARDO: Farm Animal Biodiversity Conservation Activities in Europe under the Framework of Agenda 2000
NRM	40.2002	S.M. CAVANAGH, W. M. HANEMANN and R. N. STAVINS: Muffled Price Signals: Household Water Demand under Increasing-Block Prices
NRM	41.2002	A. J. PLANTINGA, R. N. LUBOWSKI and R. N. STAVINS: The Effects of Potential Land Development on Agricultural Land Prices
CLIM	42.2002	C. OHL (lvi): Inducing Environmental Co-operation by the Design of Emission Permits
CLIM	43.2002	J. EYCKMANS, D. VAN REGEMORTER and V. VAN STEENBERGHE (lvi): Is Kyoto Fatally Flawed? An Analysis with MacGEM
CLIM	44.2002	A. ANTOCI and S. BORGHESI (lvi): Working Too Much in a Polluted World: A North-South Evolutionary Model
ETA	45.2002	P. G. FREDRIKSSON, Johan A. LIST and Daniel MILLIMET (lvi): Chasing the Smokestack: Strategic Policymaking with Multiple Instruments
ETA	46.2002	Z. YU (lvi): A Theory of Strategic Vertical DFI and the Missing Pollution-Haven Effect
SUST	47.2002	Y. H. FARZIN: Can an Exhaustible Resource Economy Be Sustainable?
SUST	48.2002	Y. H. FARZIN: Sustainability and Hamiltonian Value
KNOW	49.2002	C. PIGA and M. VIVARELLI: Cooperation in R\&D and Sample Selection
Coalition	50.2002	M. SERTEL and A. SLINKO (liv): Ranking Committees, Words or Multisets
Theory Network		
Coalition	51.2002	Sergio CURRARINI (liv): Stable Organizations with Externalities
Theory		
Network		
ETA	52.2002	Robert N. STAVINS: Experience with Market-Based Policy Instruments
ETA	53.2002	C.C. JAEGER, M. LEIMBACH, C. CARRARO, K. HASSELMANN, J.C. HOURCADE, A. KEELER and R. KLEIN (liii): Integrated Assessment Modeling: Modules for Cooperation
CLIM	54.2002	Scott BARRETT (liii): Towards a Better Climate Treaty
ETA	55.2002	Richard G. NEWELL and Robert N. STAVINS: Cost Heterogeneity and the Potential Savings from MarketBased Policies
SUST	56.2002	Paolo ROSATO and Edi DEFRANCESCO: Individual Travel Cost Method and Flow Fixed Costs
SUST	57.2002	Vladimir KOTOV and Elena NIKITINA (lvii): Reorganisation of Environmental Policy in Russia: The Decade of Success and Failures in Implementation of Perspective Quests
SUST	58.2002	Vladimir KOTOV (lvii): Policy in Transition: New Framework for Russia's Climate Policy
SUST	59.2002	Fanny MISSFELDT and Arturo VILLAVICENCO (lvii): How Can Economies in Transition Pursue Emissions Trading or Joint Implementation?
VOL	60.2002	Giovanni DI BARTOLOMEO, Jacob ENGWERDA, Joseph PLASMANS and Bas VAN AARLE: Staying Together or Breaking Apart: Policy-Makers' Endogenous Coalitions Formation in the European Economic and Monetary
ETA	61.2002	Union Robert N. STAVINS, Alexander F.WAGNER and Gernot WAGNER: Interpreting Sustainability in Economic Terms: Dynamic Efficiency Plus Intergenerational Equity
PRIV	62.2002	Carlo CAPUANO: Demand Growth, Entry and Collusion Sustainability
PRIV	63.2002	Federico MUNARI and Raffaele ORIANI: Privatization and R\&D Performance: An Empirical Analysis Based on Tobin's Q
PRIV	64.2002	Federico MUNARI and Maurizio SOBRERO: The Effects of Privatization on R\&D Investments and Patent Productivity
SUST	65.2002	Orley ASHENFELTER and Michael GREENSTONE: Using Mandated Speed Limits to Measure the Value of a Statistical Life
ETA	66.2002	Paolo SURICO: US Monetary Policy Rules: the Case for Asymmetric Preferences
PRIV	67.2002	Rinaldo BRAU and Massimo FLORIO: Privatisations as Price Reforms: Evaluating Consumers' Welfare Changes in the U.K.
CLIM	68.2002	Barbara K. BUCHNER and Roberto ROSON: Conflicting Perspectives in Trade and Environmental Negotiations
CLIM	69.2002	Philippe QUIRION: Complying with the Kyoto Protocol under Uncertainty: Taxes or Tradable Permits?
SUST	70.2002	Anna ALBERINI, Patrizia RIGANTI and Alberto LONGO: Can People Value the Aesthetic and Use Services of Urban Sites? Evidence from a Survey of Belfast Residents
SUST	71.2002	Marco PERCOCO: Discounting Environmental Effects in Project Appraisal

NRM	72.2002	Philippe BONTEMS and Pascal FAVARD: Input Use and Capacity Constraint under Uncertainty: The Case of Irrigation
PRIV	73.2002	Mohammed OMRAN: The Performance of State-Owned Enterprises and Newly Privatized Firms: Empirical Evidence from Egypt
PRIV	74.2002	Mike BURKART, Fausto PANUNZI and Andrei SHLEIFER: Family Firms
PRIV	75.2002	Emmanuelle AURIOL, Pierre M. PICARD: Privatizations in Developing Countries and the Government Budget Constraint
PRIV	76.2002	Nichole M. CASTATER: Privatization as a Means to Societal Transformation: An Empirical Study of Privatization in Central and Eastern Europe and the Former Soviet Union
PRIV	77.2002	Christoph LÜLSFESMANN: Benevolent Government, Managerial Incentives, and the Virtues of Privatization
PRIV	78.2002	Kate BISHOP, Igor FILATOTCHEV and Tomasz MICKIEWICZ: Endogenous Ownership Structure: Factors Affecting the Post-Privatisation Equity in Largest Hungarian Firms
PRIV	79.2002	Theodora WELCH and Rick MOLZ: How Does Trade Sale Privatization Work? Evidence from the Fixed-Line Telecommunications Sector in Developing Economies
PRIV	80.2002	Alberto R. PETRUCCI: Government Debt, Agent Heterogeneity and Wealth Displacement in a Small Open Economy
CLIM	81.2002	Timothy SWANSON and Robin MASON (lvi): The Impact of International Environmental Agreements: The Case of the Montreal Protocol
PRIV	82.2002	George R.G. CLARKE and Lixin Colin XU: Privatization, Competition and Corruption: How Characteristics of Bribe Takers and Payers Affect Bribe Payments to Utilities
PRIV	83.2002	Massimo FLORIO and Katiuscia MANZONI: The Abnormal Returns of UK Privatisations: From Underpricing to Outperformance
NRM	84.2002	Nelson LOURENÇO, Carlos RUSSO MACHADO, Maria do ROSÁRIO JORGE and Luís RODRIGUES: An Integrated Approach to Understand Territory Dynamics. The Coastal Alentejo (Portugal)
CLIM	85.2002	Peter ZAPFEL and Matti VAINIO (1v): Pathways to European Greenhouse Gas Emissions Trading History and Misconceptions
LM	86.2002	Pierre COURTOIS: Influence Processes in Climate Change Negotiations: Modelling the Rounds
ETA	87.2002	Vito FRAGNELLI and Maria Erminia MARINA (lviii): Environmental Pollution Risk and Insurance
ETA	88.2002	Laurent FRANCKX (lviii): Environmental Enforcement with Endogenous Ambient Monitoring
ETA	89.2002	Timo GOESCHL and Timothy M. SWANSON (lviii): Lost Horizons. The noncooperative management of an evolutionary biological system.
ETA	90.2002	Hans KEIDING (lviii): Environmental Effects of Consumption: An Approach Using DEA and Cost Sharing
TA	91.2002	Wietze LISE (lviii): A Game Model of People's Participation in Forest Management in Northern India
CLIM	92.2002	Jens HORBACH: Structural Change and Environmental Kuznets Curves
ETA	93.2002	Martin P. GROSSKOPF: Towards a More Appropriate Method for Determining the Optimal Scale of Production Units
VOL	94.2002	Scott BARRETT and Robert STAVINS: Increasing Participation and Compliance in International Climate Change Agreements
CLIM	95.2002	Banu BAYRAMOGLU LISE and Wietze LISE: Climate Change, Environmental NGOs and Public Awareness in the Netherlands: Perceptions and Reality
CL	96.2002	Matthieu GLACHANT: The Political Economy of Emission Tax Design in Environmental Policy
KNOW	97.2002	Kenn ARIGA and Giorgio BRUNELLO: Are the More Educated Receiving More Training? Evidence from Thailand
ETA	98.2002	Gianfranco FORTE and Matteo MANERA: Forecasting Volatility in European Stock Markets with Non-linear GARCH Models
ETA	99.2002	Geoffrey HEAL: Bundling Biodiversity
ETA	100.2002	Geoffrey HEAL, Brian WALKER, Simon LEVIN, Kenneth ARROW, Partha DASGUPTA, Gretchen DAILY, Paul EHRLICH, Karl-Goran MALER, Nils KAUTSKY, Jane LUBCHENCO, Steve SCHNEIDER and David STARRETT: Genetic Diversity and Interdependent Crop Choices in Agriculture
ETA	101.2002	Geoffrey HEAL: Biodiversity and Globalization
VOL	102.2002	Andreas LANGE: Heterogeneous International Agreements - If per capita emission levels matter
ETA	103.2002	Pierre-André JOUVET and Walid OUESLATI: Tax Reform and Public Spending Trade-offs in an Endogenous Growth Model with Environmental Externality
ETA	104.2002	Anna BOTTASSO and Alessandro SEMBENELLI: Does Ownership Affect Firms' Efficiency? Panel Data Evidence on Italy
PRIV	105.2002	Bernardo BORTOLOTTI, Frank DE JONG, Giovanna NICODANO and Ibolya SCHINDELE: Privatization and Stock Market Liquidity
ETA	106.2002	Haruo IMAI and Mayumi HORIE (1viii): Pre-Negotiation for an International Emission Reduction Game
PRIV	107.2002	Sudeshna GHOSH BANERJEE and Michael C. MUNGER: Move to Markets? An Empirical Analysis of Privatisation in Developing Countries
PRIV	108.2002	Guillaume GIRMENS and Michel GUILLARD: Privatization and Investment: Crowding-Out Effect vs Financial Diversification
PRIV	109.2002	Alberto CHONG and Florencio LÓPEZ-DE-SILANES: Privatization and Labor Force Restructuring Around the World
PRIV	110.2002	Nandini GUPTA: Partial Privatization and Firm Performance
PRIV	111.2002	François DEGEORGE, Dirk JENTER, Alberto MOEL and Peter TUFANO: Selling Company Shares to Reluctant Employees: France Telecom's Experience

PRIV	112.2002	Isaac OTCHERE: Intra-Industry Effects of Privatization Announcements: Evidence from Developed and Developing Countries
PRIV	113.2002	Yannis KATSOULAKOS and Elissavet LIKOYANNI: Fiscal and Other Macroeconomic Effects of Privatization
PRIV	114.2002	Guillaume GIRMENS: Privatization, International Asset Trade and Financial Markets
PRIV	115.2002	D. Teja FLOTHO: A Note on Consumption Correlations and European Financial Integration
PRIV	116.2002	Ibolya SCHINDELE and Enrico C. PEROTTI: Pricing Initial Public Offerings in Premature Capital Markets: The Case of Hungary
PRIV	1.2003	Gabriella CHIESA and Giovanna NICODANO: Privatization and Financial Market Development: Theoretical Issues
PRIV	2.2003	Ibolya SCHINDELE: Theory of Privatization in Eastern Europe: Literature Review
PRIV	3.2003	Wietze LISE, Claudia KEMFERT and Richard S.J. TOL: Strategic Action in the Liberalised German Electricity Market
CLIM	4.2003	Laura MARSILIANI and Thomas I. RENSTRÖM: Environmental Policy and Capital Movements: The Role of Government Commitment
KNOW	5.2003	Reyer GERLAGH: Induced Technological Change under Technological Competition
ETA	6.2003	Efrem CASTELNUOVO: Squeezing the Interest Rate Smoothing Weight with a Hybrid Expectations Model
SIEV	7.2003	Anna ALBERINI, Alberto LONGO, Stefania TONIN, Francesco TROMBETTA and Margherita TURVANI: The Role of Liability, Regulation and Economic Incentives in Brownfield Remediation and Redevelopment:
		Evidence from Surveys of Developers
NRM	. 2003	Elissaios PAPYRAKIS and Reyer GERLAGH: Natural Resources: A Blessing or a Curse?
CLIM	9.200	A. CAPARRÓS, J.-C. PEREAU and T. TAZDAÏT: North-South Climate Change Negotiations: a Sequential Game with Asymmetric Information
KNOW	10.2003	Giorgio BRUNELLO and Daniele CHECCHI: School Quality and Family Background in Italy
CLIM	11.2003	Efrem CASTELNUOVO and Marzio GALEOTTI: Learning By Doing vs Learning By Researching in a Model of Climate Change Policy Analysis
KNOW	12.200	Carole MAIGNAN, Gianmarco OTTAVIANO and Dino PINELLI (eds.): Economic Growth, Innovation, Cultural
		Diversity: What are we all talking about? A critical survey of the state-of-the-art
KNOW	13.2003	Carole MAIGNAN, Gianmarco OTTAVIANO, Dino PINELLI and Francesco RULLANI (lix): Bio-Ecological Diversity vs. Socio-Economic Diversity. A Comparison of Existing Measures
KNOW	14.2003	Maddy JANSSENS and Chris STEYAERT (lix): Theories of Diversity within Organisation Studies: Debates and Future Trajectories
KNOW	15.2003	Tuzin BAYCAN LEVENT, Enno MASUREL and Peter NIJKAMP (lix): Diversity in Entrepreneurship: Ethnic and Female Roles in Urban Economic Life
KNOW	16.2003	Alexandra BITUSIKOVA (lix): Post-Communist City on its Way from Grey to Colourful: The Case Study from Slovakia
KNOW	17.2003	Billy E. VAUGHN and Katarina MLEKOV (lix): A Stage Model of Developing an Inclusive Community
KNOW	18.2003	Selma van LONDEN and Arie de RUIJTER (lix): Managing Diversity in a Glocalizing World
Coalition Theory	19.2003	Sergio CURRARINI: On the Stability of Hierarchies in Games with Externalities
Network		
IV	20.2003	Giacomo CALZOLARI and Alessandro PAVAN (1x): Monopoly with Re
PRIV	21.2003	Claudio MEZZETTI (lx): Auction Design with Interdependent Valuations: The Generalized Revelation Principle, Efficiency, Full Surplus Extraction and Information Acquisition
PRIV	22.2003	Marco LiCalzi and Alessandro PAVAN (1x): Tilting the Supply Schedule to Enhance Competition in UniformPrice Auctions
PRIV	2003	David ETTINGER (1x): Bidding among Friends and Enemies
PRIV	24.2003	Hannu VARTIAINEN (1x): Auction Design without Commitment
PRIV	25.2003	Matti KELOHARJU, Kjell G. NYBORG and Kristian RYDQVIST (1x): Strategic Behavior and Underpricing in Uniform Price Auctions: Evidence from Finnish Treasury Auctions
PRIV	26.2003	Christine A. PARLOUR and Uday RAJAN (1x): Rationing in IPOs
PR	27.2	Kjell G. NYBORG and Ilya A. STREBULAEV (1x): Multiple Unit Auctions and Short Squeezes
PRIV	28.2003	Anders LUNANDER and Jan-Eric NILSSON (lx): Taking the Lab to the Field: Experimental Tests of Alternative Mechanisms to Procure Multiple Contracts
PRIV	29.2003	TangaMcDANIEL and Karsten NEUHOFF (1x): Use of Long-term Auctions for Network Investment
PRIV	30.2003	Emiel MAASLAND and Sander ONDERSTAL (1x): Auctions with Financial Externalities
ETA	31.2003	Michael FINUS and Bianca RUNDSHAGEN: A Non-cooperative Foundation of Core-Stability in Positive Externality NTU-Coalition Games
KNOW	32.2003	Michele MORETTO: Competition and Irreversible Investments under Uncertainty
PRIV	33.200	Philippe QUIRION: Relative Quotas: Correct Answer to Uncertainty or Case of Regulatory Capture?
KNOW	34.2003	Giuseppe MEDA, Claudio PIGA and Donald SIEGEL: On the Relationship between R\&D and Productivity: A Treatment Effect Analysis
ETA	35.2003	Alessandra DEL BOCA, Marzio GALEOTTI and Paola ROTA: Non-convexities in the Adjustment of Different Capital Inputs: A Firm-level Investigation

	36.2003	
PRIV	37.2003	Narjess BOUBAKRI, Jean-Claude COSSET and Omrane GUEDHAMI: Postprivatization Corporate Governance: the Role of Ownership Structure and Investor Protection
CLIM	38.2003	Rolf GOLOMBEK and Michael HOEL: Climate Policy under Technology Spillovers
KNOW	39.2003	Slim BEN YOUSSEF: Transboundary Pollution, R\&D Spillovers and International Trade
CTN	40.2003	Carlo CARRARO and Carmen MARCHIORI: Endogenous Strategic Issue Linkage in International Negotiations
KNOW	41.2003	Sonia OREFFICE: Abortion and Female Power in the Household: Evidence from Labor Supur
KNOW	42.2003	Timo GOESCHL and Timothy SWANSON: On Biology and Technology: The Economics of Managing Biotechnologies
ETA	43.2003	Giorgio BUSETTI and Matteo MANERA: STAR-GARCH Models for Stock Market Interactions in the Pacific Basin Region, Japan and US
CLIM	44.2003	Katrin MILLOCK and Céline NAUGES: The French Tax on Air Pollution: Some Preliminary Results on its Effectiveness
PRIV	45.2003	Bernardo BORTOLOTTI and Paolo PINOTTI: The Political Economy of Privatization
SIEV	46.2003	Elbert DIJKGRAAF and Herman R.J. VOLLEBERGH: Burn or Bury? A Social Cost Comparison of Final Waste Disposal Methods
ETA	47.2003	Jens HORBACH: Employment and Innovations in the Environmental Sector: Determinants and Econometrical Results for Germany
CLIM	48.2003	Lori SNYDER, Nolan MILLER and Robert STAVINS: The Effects of Environmental Regulation on Technology Diffusion: The Case of Chlorine Manufacturing
CLIM	49.2003	Lori SNYDER, Robert STAVINS and Alexander F. WAGNER: Private Options to Use Public Goods. Exploiting Revealed Preferences to Estimate Environmental Benefits
CTN	50.2003	László Á. KÓCZY and Luc LAUWERS (1xi) The Minimal Dominant Set is a Non-Empty Core-Extension

(1) This paper was presented at the Workshop "Growth, Environmental Policies and Sustainability" organised by the Fondazione Eni Enrico Mattei, Venice, June 1, 2001
(li) This paper was presented at the Fourth Toulouse Conference on Environment and Resource Economics on "Property Rights, Institutions and Management of Environmental and Natural Resources", organised by Fondazione Eni Enrico Mattei, IDEI and INRA and sponsored by MATE, Toulouse, May 3-4, 2001
(lii) This paper was presented at the International Conference on "Economic Valuation of Environmental Goods", organised by Fondazione Eni Enrico Mattei in cooperation with CORILA, Venice, May 11, 2001
(liii) This paper was circulated at the International Conference on "Climate Policy - Do We Need a New Approach?", jointly organised by Fondazione Eni Enrico Mattei, Stanford University and Venice International University, Isola di San Servolo, Venice, September 6-8, 2001
(liv) This paper was presented at the Seventh Meeting of the Coalition Theory Network organised by the Fondazione Eni Enrico Mattei and the CORE, Université Catholique de Louvain, Venice, Italy, January 11-12, 2002
(lv) This paper was presented at the First Workshop of the Concerted Action on Tradable Emission Permits (CATEP) organised by the Fondazione Eni Enrico Mattei, Venice, Italy, December 3-4, 2001 (lvi) This paper was presented at the ESF EURESCO Conference on Environmental Policy in a Global Economy "The International Dimension of Environmental Policy", organised with the collaboration of the Fondazione Eni Enrico Mattei, Acquafredda di Maratea, October 6-11, 2001
(lvii) This paper was presented at the First Workshop of "CFEWE - Carbon Flows between Eastern and Western Europe", organised by the Fondazione Eni Enrico Mattei and Zentrum fur Europaische Integrationsforschung (ZEI), Milan, July 5-6, 2001
(lviii) This paper was presented at the Workshop on "Game Practice and the Environment", jointly organised by Università del Piemonte Orientale and Fondazione Eni Enrico Mattei, Alessandria, April 12-13, 2002
(lix) This paper was presented at the ENGIME Workshop on "Mapping Diversity", Leuven, May 1617, 2002
(lx) This paper was presented at the EuroConference on "Auctions and Market Design: Theory, Evidence and Applications", organised by the Fondazione Eni Enrico Mattei, Milan, September 2628, 2002
(lxi) This paper was presented at the Eighth Meeting of the Coalition Theory Network organised by the GREQAM, Aix-en-Provence, France, January 24-25, 2003

2002 SERIES

CLIM Climate Change Modelling and Policy (Editor: Marzio Galeotti)
VOL Voluntary and International Agreements (Editor: Carlo Carraro)
SUST Sustainability Indicators and Environmental Valuation (Editor: Carlo Carraro)

NRM Natural Resources Management (Editor: Carlo Giupponi)
KNOW Knowledge, Technology, Human Capital (Editor: Dino Pinelli)
MGMT Corporate Sustainable Management (Editor: Andrea Marsanich)
PRIV Privatisation, Regulation, Antitrust (Editor: Bernardo Bortolotti)
ETA Economic Theory and Applications (Editor: Carlo Carraro)

2003 SERIES

CLIM Climate Change Modelling and Policy (Editor: Marzio Galeotti)
GG Global Governance (Editor: Carlo Carraro)
SIEV Sustainability Indicators and Environmental Valuation (Editor: Anna Alberini)

NRM Natural Resources Management (Editor: Carlo Giupponi)
KNOW Knowledge, Technology, Human Capital (Editor: Gianmarco Ottaviano)
IEM International Energy Markets (Editor: Anil Markandya)
CSRM Corporate Social Responsibility and Management (Editor: Sabina Ratti)
PRIV Privatisation, Regulation, Antitrust (Editor: Bernardo Bortolotti)
ETA Economic Theory and Applications (Editor: Carlo Carraro)
CTN Coalition Theory Network

[^0]: ${ }^{1}$ In the framework of endogenous coalition formation, a solution concept "is not a priori defined for payoff vectors of a particular coalition structure, and it does not always contain payoff vectors of every coalition structure," (Zhou, 1994, p513).

[^1]: ${ }^{2}$ Outcome (x, \mathcal{P}) dominates outcome (y, \mathcal{Q}), if \mathcal{P} contains a coalition C such that $x(C)=v(C)>y(C)$ and for each j in C one has $x_{j} \geq y_{j}$ (Sengupta and Sengupta, 1994, p349).
 ${ }^{3}$ This condition can be relaxed.

[^2]: ${ }^{4}$ The literature on tournaments provides an analogue (Laslier, 1997). The top-cycle gathers the maximal elements of a tournament, and the top-cycle is considered as a starting point for further investigations: most tournament solutions are top-cycle selections.

