Appraising Diversity with an Ordinal Notion of Similarity:
 An Axiomatic Approach
 Sebastian Bervoets and Nicolas Gravel

NOTA DI LAVORO 45.2004

MARCH 2004

NRM - Natural Resources Management

Sebastian Bervoets and Nicolas Gravel, IDEP-GREQAM and Université de la Méditerranée

This paper can be downloaded without charge at:
The Fondazione Eni Enrico Mattei Note di Lavoro Series Index: http://www.feem.it/Feem/Pub/Publications/WPapers/default.htm

Social Science Research Network Electronic Paper Collection:
http://ssrn.com/abstract=XXXXXXX

The opinions expressed in this paper do not necessarily reflect the position of Fondazione Eni Enrico Mattei

Appraising Diversity with an Ordinal Notion of Similarity: An Axiomatic Approach

Abstract

Summary This paper provides an axiomatic characterization of two rules for comparing alternative sets of objects on the basis of the diversity that they offer. The framework considered assumes a finite universe of objects and an a priori given ordinal quadernary relation that compares alternative pairs of objects on the basis of their ordinal dissimilarity. Very few properties of this quadernary relation are assumed (beside completeness, transitivity and a very natural form of symmetry). The two rules that we characterize are the maxi-max criterion and the lexi-max criterion. The maxi-max criterion considers that a set is more diverse than another if and only if the two objects that are the most dissimilar in the former are weakly as dissimilar as the two most dissimilar objects in the later. The lexi-max criterion is defined as usual as the lexicographic extension of the maxi-max criterion. Some connections with the broader issue of measuring freedom of choice are also provided.

Keywords: Diversity, Measurement, Axioms, Freedom of choice
JEL Classification: D63, D69, Q20

This paper has been presented at the $4^{\text {th }}$ BioEcon Workshop on "Economic Analysis of Policies for Biodiversity Conservation", Venice, Italy, August 28-29, 2003, organised on behalf of the BIOECON Network by Fondazione Eni Enrico Mattei, Venice International University (VIU) and University College London (UCL).

We thank, without implying them for any remaining deficiencies, Jean-François Laslier, Alan Kirman and Yongshen Xu for their helpful comments.

Address for correspondence:
Nicolas Gravel
Université de la Méditerranée
Centre de la Vieille Charité
2 , rue de la Charité
13002 Marseille
France
Phone: +33 (0) 491140770
Fax: +33 (0) 491140770
E-mail: Gravel@ehess.univ-mrs.fr

Appraising diversity with an ordinal notion of similarity: [anlAxiomaticlapproach

Sebastian BERVOETS ${ }^{\dagger}$

and Nicolas GRAVEL ${ }^{\ddagger}$

1 Introduction

Would the killing of 50000 thousand flies of a specific species have the same impact on the reduction of biological diversity than that of 200 white rhinoceros? Is the diversity of opinions expressed in the written press larger in France than in the US ? Is the choice of models of cars offered by a particular retailer more diverse than that of another ? These are examples of questions whose answers require a precise notion of diversity.

[^0]Biologists have probably been the first scientists interested in developing and implementing numerical indices that aim at measuring the biological diversity offered by alternative ecosystems. One of the most widely used of these indices is Shannon (1948) weighted entropy measure proposed in biology by Good (1953) (see e.g. Baczkowski, Joanes and Shamia (1997), Baczkowski, Joanes and Shamia (1998) and Magurran (1998) for other refinements and discussions of this class of indices). The generalized Good index evaluates the diversity of any ecosystem by counting, for each species, the frequency of living individuals within the species relative to the total number of living individuals and calculates a weighted entropy over these relative frequencies. Yet, and despite its wide use and computational convenience for applications, this index lacks sound justifications. Why after all should one use the specific entropy formula for appraising the impact of major changes on biodiversity? Answering questions like this is important in these days where many countries who have ratified the UN 1992 convention on biological diversity have adopted economically costly environmental regulations in order to prevent a deterioration of biological diversity caused by human activities. It is all the most important as the generalized entropy measure suffers from the drawback of paying no attention whatsoever to either inter-species dissimilarities, or to the possibility for two individuals of the same species to be more dissimilar than two individuals coming from different species. For instance, according to the generalized entropy formula, a world in which all living individuals are equally split between two species of fly is just as diverse as one in which the living individuals are split equally between chimpanzees and hippocampi.

Recent efforts, actually due to economists (Weitzman (1992),Weitzman (1993), Weitzman (1998)), have been made to provide axiomatic foundations to the measurement of biodiversity. Weitzman approach is based on the primitive notion of a cardinal numerical measure of distance between living creatures. Such a numerical distance enables one to say things such as "the biological distance between a chimpanzee and a bee is twice as large as the biological distance between a rainbow trout and a kokanee salmon". Using such a numerical distance, Weitzman (1992) axiomatically characterizes a sophisticated iterative lexicographic method for appraising the diversity offered by a set of living individuals. Using a somewhat different setting, Bossert, Pattanaik and Xu (2002) also provide an axiomatic characterization of the Weitzman's method by taking as given a cardinal numerical measure of distances between the objects. Weitzman's procedure has been substantially generalized in a recent paper by Nehring and Puppe (2002) who propose to derive the basic numerical distance function assumed by Weitzman from an a priori grouping of the objects into collections of "attributes" (for instance being a mammal), each attributed being weighted by a (cardinally meaningful) numerical function.

Weitzman or Nehring and Puppe procedure, by taking due account of
the (possibly) different distances that may exist between alternative pairs of living creatures, is clearly sensitive to inter-species dissimilarities. It also allows for the possibility of two individuals of a particular species (chimpanzee for instance) to be more diverse than two individuals coming from different species. On the other hand, it is not at all clear that the current state of knowledge in biology leads to such a precise cardinal measure of distance between living creatures as what is required by these approaches. Much biologists would probably agree that a chimpanzee and a bee are more dissimilar than a rainbow trout and a kokanee salmon. But would they agree to say that the dissimilarity between a chimpanzee and a bee is twice that between a rainbow trout and a kokanee salmon ? Does the discriminating power of current biology enable one to perform such precise cardinal statements ?

In the last 15 years or so, interest in diversity measurement has also arisen in non-welfarist normative economics, in connection with the issue of comparing alternative opportunity sets on the basis of their freedom of choice (see e.g. Arrow (1995), Bossert (1997), Bossert (2000), Bossert, Pattanaik and Xu (1994), Dutta and Sen (1996), Foster (1993), Gravel (1994), Gravel (1998), Gravel, Laslier and Trannoy (1998), Jones and Sugden (1982), Klemisch-Ahlert (1993), Kreps (1979), Nehring and Puppe (1999), Pattanaik and Xu. (1990), Pattanaik and Xu (1998), Pattanaik and Xu (2000b), Puppe (1995), Puppe (1996), Puppe (1998), Puppe and Xu (1996), Sen (1988), Sen (1991), Sugden (1985), Suppes (1987), Suppes (1996) and VanHees (1997) for representative pieces of this literature and Barberà, Bossert and Pattanaik (n.d.), Foster (2001) and Sugden (1998) for surveys). A major weakness of many rankings of opportunity sets examined in this literature is their insensitivity to the diversity of the options contained in opportunity sets. Even if the fact of being forced (by lack of available alternative) to drive a blue car to go to some destination can be considered freedom-wise equivalent to being forced to make the same trip by train, this does not imply that the possibility of getting to destination by driving either a blue or a red car offers the same freedom of choice as having the possibility of making the trip either by train or by a red car. Yet many rankings of opportunity sets examined in the literature fail to make the distinction.

While the present paper is primarily concerned with the issue of measuring diversity, it does provide some indication as to how the measurement of diversity may interfere with that of freedom of choice. Specifically, the object of this paper is to provide an axiomatic characterization of two rankings of sets on the sole basis of the diversity that they offer. As in Weitzman (1992), Weitzman (1993), Weitzman (1998), Bossert et al. (2002) and, to some extent, Nehring and Puppe (2002), the two rankings characterized in this paper are based on an a priori notion of "proximity", or "dissimilarity", between the objects that is taken as given. However, the notion of similarity on which our axioms are based requires less information than what is necessary to define a cardinally meaningful numerical distance function such as
that used in these contributions. Rather, the primitive notion of similarity on which we base our axiomatic construction is ordinal. That is, it requires the ability to perform statements like "the biological distance between a chimpanzee and a bee is larger than the biological distance between a rainbow trout and a kokanee salmon" but does not suppose the capacity of quantifying further these statements. In particular, it does not require the ability to make statements like "the biological distance between a chimpanzee and a bee is twice the distance between a rainbow trout and a kokanee salmon" that are required by a cardinal notion and which, in our view, exceed the current discriminating power of humans, even in disciplines as developed and sophisticated as biology.

To the best of our knowledge, Pattanaik and Xu (2000a) contribution, also discussed in Bossert et al. (2002), is the only one that examines a diversity-based ranking of sets of objects that refers explicitly to an a priori ordinal notion of similarity. However, the ordinal notion of similarity assumed in these papers is rather crude. For it only allows objects to be either pairwise dissimilar or pairwise similar. No intermediate categories of similarities are allowed. With this "zero-one" notion of similarity, Pattanaik and Xu (2000a) characterizes a ranking of sets based on the number of elements contained in the smallest (with respect to the number of elements) partition of the sets in subsets of similar objects. According to their ranking, set A offers at least as much diversity as set B if, and only if, the smallest partition of A into subsets of similar objects contains at least as many elements as the corresponding partition in B. While very interesting as a first step in the process of building a diversity ranking of sets based on an ordinal notion of similarity, this result suffers obviously from the paucity of the information conveyed by the "zero-one" notion of similarity used.

In this paper we characterize axiomatically two diversity rankings of sets based on an ordinal primitive notion of similarity that is not assumed to be "zero-one". Rather, the primitive notion of similarity used in this paper is an abstract quadernary relation (or a binary relation on the set of all pairs of objects) that is only restricted to be reflexive, transitive and complete as well as to satisfy a weak form of symmetry. Using this notion, the first ranking that we characterize is the maxi-max criterion that compares sets on the basis of the dissimilarity of their two most dissimilar objects. The other ranking characterized in this paper is the lexi-max criterion that is defined, as usual, as the lexicographic extension of the maxi-max one. It therefore compares any two sets by first comparing their two most dissimilar objects in terms of dissimilarity and, in case of a tie between these two most dissimilar objects, by looking at their two second most dissimilar objects and, if a tie is also obtained there, at their third most dissimilar pair and so on.

While these two rankings, and especially the second one, are of intrinsic interest for the problem at hand, we believe that the general methodology employed for obtaining a consistent method for assessing diversity on the
basis of a primitive ordinal notion of similarity is more important than the rankings themselves. We further illustrate this by showing how our approach to diversity measurement can shed light on some aspects of the problem of ranking opportunity sets on the basis of their freedom of choice. For this sake, we adopt Pattanaik and Xu (1998) framework in which the freedom of choice offered by alternative opportunity sets is appraised by referring to a set of possible preference orderings that a reasonable person can have (see also Foster (1993), Nehring and Puppe (1999) or Puppe (1998) for other use and/or interpretation of this multiple preferences approach to freedom of choice). In this framework, the options of an opportunity set that are maximal with respect to some of the possible preference orderings is typically considered to be a sufficient information for appraising the freedom of choice offered by that opportunity set. Following this tradition, we provide in this paper an axiomatic characterization of a ranking of opportunity sets that compares their sets of maximal options with respect to some of the possible preference orderings by means of the maxi-max criterion alluded to above.

The rest of this paper is organized as follows. The next section presents the notation and the formal definitions of the axioms and the rankings characterized for the purpose of diversity measurement. Section 3 presents and briefly discusses the main characterization results that concern diversity measurement. Section 4 explores some of the connections between diversity and freedom of choice measurement and section 5 concludes.

2 Notations and definitions ${ }^{1}$

Let X be a finite set of options (living individuals, type of means of transportations, opinions expressed in newspapers, etc.) and $\mathfrak{P}(X)$ be the set of all non empty subsets of X with generic elements A, B, \ldots.

At the basis of our approach is a quadernary relation Q on X (alternatively, a binary relation on $X \times X$) (with asymmetric and symmetric factors Q_{A} and Q_{S} respectively) which reflects an ordinal a priori knowledge that one can have about the dissimilarity that exists between options. In this light, the statement $(w, z) Q(x, y)$ is interpreted as meaning " w is at least as dissimilar from z than x is from y ". To motivate this interpretation, we assume throughout that, for every distinct objects x and $y \in X$, both (x, y) $Q(x, x)$ and $(x, x) Q_{S}(y, y)$ hold (that is, two distinct objects are always

[^1]weakly more dissimilar than any of the two objects in isolation, and pairs of identical objects are just equally similar (or dissimilar)). These two properties would clearly hold true if, as Weitzman (1992) or Bossert et al. (2002), we would accept to go as far as measuring the dissimilarity by a (cardinally measurable) distance function $d: X \times X \rightarrow \mathbb{R}$. We assume also that Q is symmetric in the sense that $(x, y) Q(y, x)$ holds for every objects x and y and, as a binary relation on $X \times X$, is complete and transitive. The reader can verify that these properties would also be satisfied by the ranking of pairs of objects induced by a conventional distance function d (in particular d is conventionally assumed to be symmetric). In order to simplify some of the proofs and formal statements, we further assume that Q is such that $(x, y) Q_{A}(x, x)$ for every two distinct x and y (two distinct options are always strictly more dissimilar than one of the two options and itself). Although there exists distance functions that violates this property, we believe it to be fairly natural in the current context. After all, if two objects x and y are considered to be distinct for the sake of the analysis performed, they should be considered to have some degree of "dissimilarity".

We let \mathfrak{Q} denote the set of all ordinal diversity quadernary relations that satisfy all these properties. We record the obvious following fact (whose proof is omitted).

Fact 1 If Q is a dissimilar quadernary relation in \mathfrak{Q}, then, for all distinct x and $y \in X$, and for all $z \in X,(x, y) Q_{A}(z, z)$

Given a diversity quadernary relation Q and a set $P \subseteq X \times X$ of pairs of objects of X, we denote by $O^{Q}(P)$ the arrangement of the pairs in P in decreasing order of dissimilarity. That is $O^{Q}(P)=\left\{a_{(1)}, \ldots, a_{(|P|)}\right\}$ where, for every $i=1, \ldots,|P|-1, a_{(i)} \in P, a_{(i+1)} \in P$ and $a_{(i)} Q a_{(i+1)}$. As Q is symmetric, there is some arbitrariness in numbering the elements of $O^{Q}(P)$ as the order of appearance of any two symmetric pairs (x, y) and (y, x) is irrelevant.

Let now \succeq (with asymmetric and symmetric factors \succ and \sim respectively) be a transitive binary relation on $\mathfrak{P}(X)$ that aims at reflecting the evaluation of the diversity offered by alternatives sets of objects in $\mathfrak{P}(X)$. We interpret the statement $A \succeq B$ as meaning "the set A offers at least as much diversity as the set B ".

We wish to propose plausible properties (axioms) that \succeq could satisfy in order to serve as a sensible method for appraising diversity, taking as given the ordinal notion of dissimilarity embodied in Q. In order to formulate these, we define as follows, for every set $A \in \mathfrak{P}(X)$, and any pair of objects $x, y \in X$, the sets $W D_{A}(x, y)$ and $D_{A}(x, y)$ of pairs of elements of A that are, respectively, weakly more diverse and strictly more diverse than x and y.

Definition $1 W D_{A}(x, y)=\left\{\left(a, a^{\prime}\right) \in A \times A: \quad\left(a, a^{\prime}\right) Q(x, y)\right\}$

Definition $2 D_{A}(x, y)=\left\{\left(a, a^{\prime}\right) \in A \times A: \quad\left(a, a^{\prime}\right) Q_{A}(x, y)\right\}$
We now present the axioms used in the characterizations by what seems, in our view, to be their decreasing order of intuitive plausibility.

Axiom $1 \forall w, x, y, z \in X, \quad(w, z) Q(x, y) \Longleftrightarrow\{w, z\} \succeq\{x, y\}$.
Axiom $2 \forall A, B \in P(X)$, if $A \supseteq B$, then $A \succeq B$.
Axiom $3 \forall A, B, C$ and $D \in \mathfrak{P}(X)$ such that $B \cap C=B \cap D=C \cap D=\emptyset$, $(A \succeq B \cup C, A \succeq B \cup D$ and $A \succeq C \cup D) \Longrightarrow A \succeq B \cup C \cup D$ and $(A \succ(B \cup C)$, $A \succ(B \cup D)$ and $A \succ(C \cup D)) \Longrightarrow A \succ(B \cup C \cup D)$.

Axiom $4 \forall A, B \in \mathfrak{P}(X)$ such that $|A|=|B| a_{(i)} Q b_{(i)} \forall i$ with $a(i) \in$ $O^{Q}(A \times A)$ and $b(i) \in O^{Q}(B \times B) \Longrightarrow A \succeq B$.

Axiom $5 \forall w, x, y, z \in X$, if $\{w, z\} \succsim\{x, y\}$ and $A, B \in \mathfrak{P}(X)$ are such that $\left|W D_{C \cup\{w, z\}}(w, z)\right|=\left|W D_{D \cup\{x, y\}}(x, y)\right|$ and $a_{(i)} Q b_{(i)}$ for $a_{(i)} \in O^{Q}\left(W D_{A \cup\{w, z\}}(w, z)\right), b(i) \in O^{Q}\left(W D_{B \cup\{x, y\}}(x, y)\right)$ and $i=1, \ldots$, $\left|W D_{A \cup\{w, z\}}(w, z)\right|$, then $A \cup\{w, z\} \succeq B \cup\{x, y\}$.

Axiom $6 \forall w, x, y, z \in X$, if $\{w, z\} \succ\{x, y\}$ and $A, B \in \mathfrak{P}(X)$ are such that $\left|D_{A \cup\{w, z\}}(w, z)\right|=\left|D_{B \cup\{x, y\}}(x, y)\right|$ and $a_{(i)} Q_{A} b_{(i)}$ for $a_{(i)} \in O^{Q}\left(D_{A \cup\{w, z\}}(w, z)\right), b(i) \in O^{Q}\left(D_{B \cup\{x, y\}}(x, y)\right) \quad$ and $i \in 1, \ldots$, $\left|D_{A \cup\{w, z\}}(w, z)\right|$ then $A \cup\{w, z\} \succ B \cup\{x, y\}$.

Axiom $7 \forall w, x, y, z \in X$, if $\{w, z\} \succ\{x, y\}$ and $A, B \in \mathfrak{P}(X)$ are such that $\left|W D_{C \cup\{w, z\}}(w, z)\right|=\left|W D_{D \cup\{x, y\}}(x, y)\right|$ and $a_{(i)} Q b_{(i)} \quad$ for $a_{(i)} \in O^{Q}\left(W D_{A \cup\{w, z\}}(w, z)\right), b(i) \in O^{Q}\left(W D_{B \cup\{x, y\}}(x, y)\right)$ and $i \in 1, \ldots$, $\left|W D_{A \cup\{w, z\}}(w, z)\right|$ then $A \cup\{w, z\} \succ B \cup\{x, y\}$.

Axiom 1 just says that the ranking of sets made of two elements in terms of diversity must coincide with the ranking of the pairs in terms of dissimilarity as per the quadernary relation Q. It is difficult to imagine a diversity-ranking of sets based on an a priori notion of dissimilarity between options that would violate this axiom. Notice carefully that the formal statement of axiom 1 does not require the options w, x, y and z to be distinct. ${ }^{2}$ Hence, when employed with a quadernary relation belonging to \mathfrak{Q}, axiom 1 implies the widely discussed (at least in the freedom of choice literature) Pattanaik and Xu. (1990)'s axiom of indifference to no choice situation saying that singleton sets should be considered equivalent. It also implies that any pair made of two distinct elements is strictly more diverse than any singleton.

[^2]Axiom 2 is also well-known in the freedom of choice literature and is very natural in that context. It seems also plausible in the context of diversity measurement although perhaps not as much. At first sight, it seems indeed difficult to imagine a plausible conception of diversity that would consider that adding an object to a set could reduce its diversity. After all, if the added object is considered different, as an object, from those already contained in the set, how could its addition reduce the diversity of the world ? Yet the weighted enthropy indices used by biologists violate this axiom and, at second sight, one can see how a plausible "relativist" conception of diversity could, in some circumstances, contradict the partial ranking of sets provided by inclusion. Suppose a world in which the population of living individuals is equally split between two species 1 and 2 . Consider now adding to this population a large number of living individuals of species 1 in such a way that the ratio of individuals from species 2 over those of species 1 becomes negligible. A "relativist" conception of biological diversity according to which diversity is maximized when all living individuals are equally splitup among the different categories could plausibly consider such a change as a reduction in diversity. To that extent, the rankings characterized in this paper are not relativist as they both satisfy axiom 2 .

Axiom 3 is, perhaps, more disputable than the two preceding ones but is not unreasonable. Consider two sets A and B such that A is considered more diverse (weakly or strictly) than B. Consider then two processes of adding a bunch of options to B. One process consists in adding to B options collected into a set C while the other process consists in adding to B options gathered into some other set D (disjoint from C). Assume that the enlargement of diversity offered by B as a result of either of these two process is insufficient to reverse the relative ranking of the enlarged set with respect to A. In a situation like this, the axiom requires that, if A offers weakly or strictly more diversity than that provided by all options added to B by the two processes, then A should also be considered (weakly or strictly) more diverse than B enlarged by all objects in the two sets C and D. To give a somewhat more intuitive example, assume that A consists in all currently living creatures categorized as mammals, B contains all cartilaginous fishes, C contains all osseous fishes and D consists in all batracians. Axiom 3 would then require that if the diversity offered by mammals is larger than that offered by all fishes (cartilaginous and osseous), is larger than that offered by cartilaginous fishes and batracians and is also larger than that offered by all batracians and osseous fish, then the set of all mammals should also be considered more diverse than the set of all fishes and batracians.

Axiom 4 connects, for sets that contain the same number of options, the judgements made with respect to the dissimilarity of their options and those with respect to their relative standing in terms of diversity. As sets with the same number of options have the same number of pairs, they also have the same number of positions occupied by the pairs in terms of dissimilarity.

Suppose that a set A dominates a set B in the sense that, for any position occupied by a pair in the scale of dissimilarity, the pair that occupies that position in A is weakly more dissimilar than the corresponding pair in B. Axiom 4 would then require set A to offer weakly more diversity than B.

Axioms 5 to 7 are slight variant of the same principle and are probably the more difficult to accept (and to understand). They say that if a pair of objects is considered more diverse (strictly for axioms 6 and 7 or weakly for axiom 5) than another, then the ranking of the pair in terms of diversity should be robust to certain form of addition of options to both sets. The restriction imposed on the addition of options is that all the new pairs of options that they create that are (weakly for axioms 5 and 7 or strictly for axiom 6) more dissimilar, in each set, than the initial pair should be in same number in both sets and should be related, pair by pair, by a dominance relation with respect to dissimilarity. Here again, an example may help. Assume that the diversity ranking of sets considers the pair \{bee,chimpanzee\} to be strictly more diverse than the pair \{kokanee salmon, rainbow trout $\}$. Suppose we add a fly to the first set and a brown trout to the second set and assume that the following (plausible) dissimilarity statements hold with respect to the living individuals:

1) a chimpanzee is weakly more similar to a bee than to a fly,
2) a bee is weakly more similar to a fly than to a chimpanzee,
3) a kokanee salmon is closer to a rainbow trout than to a brown trout,
4) brown and rainbow trouts are more similar than a rainbow trout and a kokanee salmon,
5) kokanee salmon and brown trout are more similar than chimpanzee and fly.

We note that, in this example, the addition of the fly to the first set and of the brown trout to the second set creates only, in each set, one pair of objects that are (strictly in this example) more dissimilar than the original pairs. These pairs are (chimpanzee, fly) for the first set and (brown trout, kokanee salmon) for the second. We note also that the first of these pairs is strictly more diverse than the second one. Axioms 6 and 7 would then require in this example the set $\{b e e$, chimpanzee, fly\} to be strictly more diverse than the set \{brown trout, kokanee salmon, rainbow trout $\}$ while axiom 5 would only require $\{b e e$, chimpanzee, fly\} to be weakly more diverse than \{brown trout, kokanee salmon, rainbow trout $\}$.

It should be noticed that, despite their similar looking aspect, axioms 5 to 7 are pairwise independent. Only axiom 7 plays a crucial role in the characterization of the lexi-max criterion. Axioms 5 and 6 are only brought in to illustrate, in an alternative characterization of the maxi-max criterion presented below, the formal differences that distinguish the maxi-max and the lexi-max criteria as methods for comparing sets on the basis of their diversity.

We now turn formally to the definitions of these rankings. The first of
these rankings is the maxi-max criterion that ranks sets according to the relative dissimilarities of their most dissimilar pairs. This ranking $\succeq_{\max }$ is defined as follows.

Definition 3 For all $A, B \in \mathfrak{P}(X), A \succeq_{\max } B \Longleftrightarrow a_{(1)} Q b_{(1)}$ for $a_{(1)} \in$ $O^{Q}(A \times A)$ and $b_{(1)} \in O^{Q}(B \times B)$.

To illustrate, suppose that X is the set of all means of transportation available to perform a certain trip between two cities defined specifically as $X=\{$ train, car,bike, foot $\}$. Assume also that the ordinal notion of dissimilarities between these means of transportations is given by the quadernary relation Q defined by (train, foot) $Q_{A}\left(\right.$ car, foot) $Q_{A}\left(\right.$ train,bike) $Q_{A}($ car,bike $)$ $Q_{A}($ train, car $) Q_{A}$ (bike,foot). Then the maxi-max criterion would consider that the set $\{$ train, foot $\}$ offers just as much diversity as the set $\{$ train, car, bike, foot $\}$, a judgement which may sounds at odd with one's intuition of what is diversity. Its biggest weakness is obviously to focus only on the two most dissimilar objects in the sets and to ignore completely the contribution to diversity made by the presence of less dissimilar objects.

The lexi-max criterion $\succsim_{l e x}$ that will now be defined avoids to some extent this weakness. The formal statement of the definition exploits the obvious fact that, for every set $A,|A \times A|=|A|^{2}$ as well as the property stated in fact 1.

Definition 4 For all $A, B \in \mathfrak{P}(X), A \succ_{\text {lex }} B \Longleftrightarrow \exists k \in\{1, \ldots,|A|(|A|-$ $1)\}$ such that $a_{(k)} Q_{A} b_{(k)}$ and $a_{(i)} Q_{S} b_{(i)}$ for $i=1, \ldots k-1$ and $A \sim_{l e x}$ $B \Longleftrightarrow|A|=|B|$ and $a_{(i)} Q_{S} b_{(i)}$ for $i=1, \ldots,|B|^{2}$ where, for every j, $a_{(j)} \in O^{Q}(A \times A)$ and $b_{(j)} \in O^{Q}(B \times B)$

Albeit this ranking expresses some sensitivity with respect to the contributions of options that are not maximally dissimilar to diversity (for instance by considering that the set $\{$ train, car, bike, foot $\}$ is strictly more diverse than the pair $\{\operatorname{train}, f o o t\}$), this sensitivity is not as great as one would like. For it nonetheless gives a "veto power" to the most dissimilar two objects in the sets with respect to the appraisal of their diversity. In the example above, the set $\{$ train, foot $\}$ would be considered strictly more diverse than the sets $\{$ train, car, bike $\}$ and the sets $\{$ car, bike, foot $\}$ as per the criterion $\succsim_{l e x}$ even though this judgement may hurt the intuition of someone who nonetheless accepts the notion of dissimilarity Q assumed in this example.

It would therefore be nice to have a diversity ranking that enables more trade-off between the contributions of alternative pairs of options to diversity than what is allowed by the two diversity orderings characterized in this paper.

We now turn to the characterization.

3 Characterization results for diversity measurement

We first provide the characterization of $\succeq_{\text {max }}$ by means of axioms 1-3.
Theorem 1 Let \succeq be transitive binary relation defined on $\mathfrak{P}(X)$ and let Q be an ordinal notion of similarity belonging to \mathfrak{Q}. Then \succeq satisfies Axioms 1 to 3 if and only if $\succeq=\succeq_{\max }$

Proof. Necessity. It is immediate to see that the transitive binary relation $\succeq_{\text {max }}$ satisfies axioms 1 and 2 . As for axiom 3 , suppose that $A \succeq_{\max }$ $B \cup C=E, A \succeq_{\max } B \cup D=F$ and $A \succeq_{\max } C \cup D=G$ and let $H=B \cup C \cup$ D. Then $a_{(1)} Q e_{(1)}, a_{(1)} Q f_{(1)}$ and $a_{(1)} Q g_{(1)}$ for $a_{(1)}, e_{(1)}, f_{(1)}$ and $g_{(1)}$ denoting, respectively, the first element of the sets $O^{Q}(A \times A), O^{Q}(E \times E)$, $O^{Q}(F \times F)$ and $O^{Q}(G \times G)$. We therefore have $a_{(1)} Q \max _{Q}\left(e_{(1)}, f_{(1)}, g_{(1)}\right)=$ $\max _{Q} H \times H$ and, therefore, $A \succeq \max H$.

Sufficiency. We first show that if \succeq is transitive and satisfies axioms 1 to 3, then we have, for every A and $B \in \mathfrak{P}(X), A \succeq B \Longrightarrow A \succeq_{\max } B$. Suppose $A \succeq B$ and let $a_{(1)}=\left(a_{1}, a_{2}\right)$ and $b_{(1)}=\left(b_{1}, b_{2}\right)$ denote the most dissimilar pairs of objects in A and B respectively. By axiom 2, we have $B \succeq\left\{b_{1}, b_{2}\right\}$ and by transitivity, $A \succeq\left\{b_{1}, b_{2}\right\}$. In the trivial case where $|B|=|A|=1$, we can write that $A=\{x\}$ and $B=\{y\}$ for some options x and y so that $a_{(1)}=(x, x)$ and $b_{(1)}=(y, y)$. Since $(x, x) Q_{S}(y, y)$ for every $x, y \in X$, we therefore have $a_{(1)} Q b_{(1)}$ and $A \succeq_{\max } B$ in this case. We can rule out the case where $|A|=1$ and $|B| \geq 2$ which would imply that $\{x\} \succeq\left\{b_{1}, b_{2}\right\}$ for some distinct b_{1} and $b_{2} \in B$, in contradiction with axiom 1 and fact 1 . Assume now that $|A|=2$ and, therefore, that $A=\left\{a_{1}, a_{2}\right\}$. Then $\left\{a_{1}, a_{2}\right\} \succeq\left\{b_{1}, b_{2}\right\}$ and by axiom 1, $a_{(1)} Q b_{(1)}$, which implies $A \succeq_{\max } B$. As the last case, assume that $|A|>2$, write $A=\left\{a_{1}, \ldots, a_{|A|}\right\}$ and assume by contradiction that $a_{(1)} Q b_{(1)}$ is false. Since Q is complete, this amounts to assuming that $b_{(1)} Q_{A} a_{(1)}$ and, therefore, that $b_{(1)} Q_{A}\left(a_{i}, a_{j}\right)$ for all $i, j \in\{1, \ldots,|A|\}$. Pick any option a_{1} in A. One has by axiom 1 that $\left\{b_{1}, b_{2}\right\} \succ\left\{a_{1}, a_{i}\right\},\left\{b_{1}, b_{2}\right\} \succ$ $\left\{a_{1}, a_{j}\right\}$ and $\left\{b_{1}, b_{2}\right\} \succ\left\{a_{i}, a_{j}\right\}$ for all $i, j \in\{1, \ldots,|A|\}$. By axiom 3, we must have $\left\{b_{1}, b_{2}\right\} \succ\left\{a_{1}, a_{i}, a_{j}\right\}$. Redoing the same procedure while replacing the option a_{j} by some option $a_{h} \in A$, one obtains that $\left\{b_{1}, b_{2}\right\} \succ\left\{a_{1}, a_{i}, a_{h}\right\}$. Using axiom 3 again and the fact that $\left\{b_{1}, b_{2}\right\} \succ\left\{a_{j}, a_{h}\right\}$, one is led to the conclusion that $\left\{b_{1}, b_{2}\right\} \succ\left\{a_{1}, a_{h}, a_{i}, a_{j}\right\}$. Redoing the last procedure if necessary while replacing a_{h} by $a_{g} \in A$, one can analogously obtain the statement $\left\{b_{1}, b_{2}\right\} \succ\left\{a_{1}, a_{g}, a_{i}, a_{j}\right\}$ and combining the last two statements and the fact that $\left\{b_{1}, b_{2}\right\} \succ\left\{a_{g}, a_{h}\right\}$, one obtains again by axiom 3 that $\left\{b_{1}, b_{2}\right\} \succ\left\{a_{1}, a_{g}, a_{h}, a_{i}, a_{j}\right\}$. This procedure can clearly be repeated with as many options in A as needed to finally obtain, using transitivity of \succeq and axiom 2 , the required contradictory conclusion that $B \succeq\left\{b_{1}, b_{2}\right\} \succ A$.

We now show that for every sets A and B in $\mathfrak{P}(X), A \succeq \max B$ implies $A \succeq B$ for every transitive binary relation \succeq on $\mathfrak{P}(X)$ satisfying axioms 1 to 3 . Suppose $A \succeq_{\max } B$. Then $a_{(1)} Q b_{(1)}$ where again $a_{(1)}=\left(a_{1}, a_{2}\right)$ and $b_{(1)}=\left(b_{1}, b_{2}\right)$ denote the most dissimilar pairs of objects in A and B respectively. Let $|B|=m$ and write $B=\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}$. For the same reason as above, we can rule out from the start the case $m=1$. If $m=2$, then, by axiom $1,\left\{a_{1}, a_{2}\right\} \succeq\left\{b_{1}, b_{2}\right\}$ and, by axiom $2, A \succeq\left\{a_{(1)}\right\}$, so that, by transitivity, $A \succeq B$. For the other cases, we show the result by induction. For that purpose, we start with the case $m=3$ and we write $B=\left\{b_{1}, b_{2}, b_{3}\right\}$. Because $a_{(1)} Q b_{(1)}$, we have $a_{(1)} Q\left(b_{1}, b_{2}\right), a_{(1)} Q\left(b_{1}, b_{3}\right)$ and $a_{(1)} Q\left(b_{2}, b_{3}\right)$. Using axiom 1 , we can write $\left\{a_{1}, a_{2}\right\} \succeq\left\{b_{1}\right\} \cup\left\{b_{2}\right\},\left\{a_{1}, a_{2}\right\} \succeq\left\{b_{1}\right\} \cup\left\{b_{3}\right\}$ and $\left\{a_{1}, a_{2}\right\} \succeq\left\{b_{2}\right\} \cup\left\{b_{3}\right\}$. By axiom 3, it follows that $\left\{a_{1}, a_{2}\right\} \succeq\left\{b_{1}\right\} \cup\left\{b_{2}\right\} \cup$ $\left\{b_{3}\right\}=B$ and, by axiom 2 and transitivity, that $A \succeq B$. The case $m=3$ is then proved. Now suppose the result is true for any $m \in\{3, \ldots,|X|-1\}$. That is, suppose that if A is a set in $\mathfrak{P}(X)$ and B is another set in $\mathfrak{P}(X)$ such that $|B|=m$, then $A \succeq_{\max } B \Longrightarrow A \succeq B \quad$ and suppose $A \succeq_{\max } B^{\prime}$ where $B^{\prime}=B \cup\left\{b_{m+1}\right\}$ for some $b_{m+1} \in X \backslash B$. We wish to show that $A \succeq B^{\prime}$ Let $b_{(1)}^{\prime}$ denote the pair of two most dissimilar objects in B^{\prime} and write $\bar{B}=\left\{b_{1}, b_{2}, \ldots, b_{m-1}\right\}, C=\left\{b_{m}\right\}$ and $D=\left\{b_{m+1}\right\}$. As $\succeq_{\max }$ is transitive and satisfies axiom 2, we have that $A \succeq_{\max } \bar{B} \cup C$ and, since $|\bar{B} \cup C|=m$, we have by the induction hypothesis that $A \succeq \bar{B} \cup C$. Because $a_{(1)} Q b_{(1)}^{\prime}$, we have, by the transitivity of the quadernary relation $Q, a_{(1)} Q\left(b_{m}, b_{m+1}\right)$ and, by virtue of axioms 1 and 2 and the transitivity of $\succeq, A \succeq C \cup D$. Finally, let $B^{\prime \prime}=\bar{B} \cup D$. Then $b_{(1)}^{\prime} Q b_{(i)}^{\prime \prime}$ and, by transitivity of $Q, a_{(1)} Q$ $b_{(i)}^{\prime \prime}$ for all $b_{(i)}^{\prime \prime} \in O^{Q}\left(B^{\prime \prime} \times B^{\prime \prime}\right)$. We therefore have $A \succeq_{\max } B^{\prime \prime}$. Yet $\left|B^{\prime \prime}\right|=m$ so that, by the induction hypothesis, we have $A \succeq B^{\prime \prime}$. By axiom 3 , we have $A \succeq \bar{B} \cup C, A \succeq \bar{B} \cup D$ and $A \succeq C \cup D$, so that $A \succeq \bar{B} \cup C \cup D$, and this concludes the proof.

We first remark that, albeit this was not required, we obtain the completeness of the ranking as a by-product of the axioms 1 to 3 . It is also worth noticing that this first characterization of $\succeq_{\max }$ is obtained from the (reasonably) intuitive axioms 1 to 3 that only uses properties of sets. Only axiom 1 makes the connection between the ranking of pairs in terms of dissimilarity and the ranking of sets. Unfortunately the characterization of the more interesting $\succeq_{l e x}$ criterion is not as "nice" since it is obtained from the axioms 1,4 and 7 , all of which are explicitly formulated in terms of the relationship between the diversity ranking of sets and the dissimilarity rankings of the pairs that these sets contain.

Before turning to this characterization, we show that axioms 1, 2 and 3 used to characterize $\succeq_{\max }$ are independent.

Proposition 1 For any $Q \in \mathfrak{Q}$, Axioms 1 to 3 are independent.

Proof. Let \succeq_{*} be defined by: $A \succeq_{*} B \Longleftrightarrow b_{(|B|(|B|-1))} Q a_{(|A|(|A|-1))}$ where $b_{(|B|| | B \mid-1))} \in O^{Q}(B \times B)$ and $a_{(|A|| | A \mid-1))} \in O^{Q}(A \times A)$. This transitive and complete binary relation on $\mathfrak{P}(X)$ considers that set A offers at least as much diversity as B if and only if the two most similar distinct objects in B are weakly more dissimilar than the most similar distinct objects in A. It is certainly a peculiar criterion for comparing sets on the basis of their diversity. It is immediate to see that \succeq_{*} violates axiom 1 . To see that it satisfies axiom 2, consider A and B in $\mathfrak{P}(X)$ such that $A \supseteq B$. As the two most similar objects in B are also in A, we must have the two most similar objects in A are weakly more similar than the two most similar objects in B. Hence the two most similar objects in B are weakly more dissimilar than the two most similar objects in A and, for this reason, one has $A \succeq_{*} B$. To see that \succeq_{*} satisfies axiom 3 , assume that $A \succeq_{*} B \cup C, A \succeq_{*} B \cup D$ and $A \succeq_{*}$ $C \cup D$. Write $E=B \cup C, F=B \cup D$ and $G=C \cup D$. One has by definition of \succeq_{*} that $e_{(|B \cup C|(|B \cup C|-1))} Q a_{(|A|| | A \mid-1))}, f_{(|B \cup D|(|B \cup D|-1))} Q a_{(|A|(|A|-1))}$ and $g_{(|C \cup D|| | C \cup D \mid-1))} Q a_{(|A|(|A|-1))}$ where $e_{(|B \cup C|(|B \cup C|-1))} \in O^{Q}(E \times E)$, $f_{(|B \cup D|(|B \cup D|-1))} \in O^{Q}(F \times F)$ and $g_{(|C \cup D|(|C \cup D|-1))} \in O^{Q}(G \times G)$. Let now $H=B \cup C \cup D$ and consider $h_{(|B \cup C \cup D|(|B \cup C \cup D|-1))} \in O^{Q}(H \times H)$. Clearly, since either

$$
\begin{aligned}
& h_{(|B \cup C \cup D|(|B \cup C \cup D|-1))}=e_{(|B \cup C|| | B \cup C \mid-1))}, \\
& h_{(|B \cup C \cup D|| | B \cup C \cup D \mid-1))}=f_{(|B \cup D|| | B \cup D \mid-1))}, \text { or } \\
& h_{(|B \cup C \cup D|(|B \cup C \cup D|-1))}=g_{(|C \cup D|(|C \cup D|-1))}
\end{aligned}
$$

one has

$$
h_{(|B \cup C \cup D|(|B \cup C \cup D|-1))} Q a_{(|A|(|A|-1))}
$$

and, therefore, $A \succeq_{*} B \cup C \cup D$. Now let \succeq_{D} be defined by $A \succeq_{D} B \Longleftrightarrow$ $a_{(|A|(|A|-1))} Q b_{(1)}$ where $a_{(|A|| | A \mid-1))} \in O^{Q}(A \times A)$ and $b_{(1)} \in O^{Q}(A \times A)$. This rule says that set A offers at least as much diversity as B if and only if the two most similar distinct objects in A are at least as dissimilar as the two most dissimilar distinct objects in B. It is immediate to see that \succeq_{D} satisfies axioms 1 and is transitive. To see that it verifies axiom 3, assume that $A \succeq_{D}(B \cup C)=E, A \succeq_{D}(B \cup D)=F$ and $A \succeq_{D} C \cup D=G$. Then $a_{(|A|(|A|-1))} Q e_{(1)}, a_{(|A|(|A|-1))} Q \quad f_{(1)}$ and $a_{(|A|(|A|-1))} Q \quad g_{(1)}$ and, therefore, $a_{(|A|| | A \mid-1))} Q h_{(1)}$ where $H=B \cup C \cup D$ and $e_{(1)}, \quad f_{(1)} \quad g_{(1)}$ and $h_{(1)}$ denote, respectively, the first elements of the sets $O^{Q}(E \times E)$, $O^{Q}(F \times F), O^{Q}(G \times G)$ and $O^{Q}(H \times H)$. To see that \succeq_{D} violates axiom 2, let $B=\left\{b_{1}, b_{2}\right\}$ and $A=\left\{b_{1}, b_{2}, b_{3}\right\}$ and assume that Q is such that $\left(b_{1}, b_{2}\right) Q_{A}\left(b_{1}, b_{3}\right) Q\left(b_{2}, b_{3}\right)$. Clearly, $b_{(1)}=\left(b_{1}, b_{2}\right), b_{(6)}=\left(b_{2}, b_{3}\right)$ and, since $\left(b_{2}, b_{3}\right) Q\left(b_{1}, b_{2}\right)$ does not hold, $A \succeq_{D} B$ does not hold either. Finally, let $\succeq_{\text {add }}$ be defined by: $A \succeq_{\text {add }} B \Longleftrightarrow \sum_{i=1}^{|A|^{2}} v\left(a_{(i)}\right) \geq \sum_{i=1}^{|B|^{2}} v\left(b_{(i)}\right)$ for
some function $v \in X \times X \rightarrow \mathbb{R}_{+}$such that, for all $(w, z),(x, y) \in X \times X$, $v(w, z) \geq v(x, y) \Leftrightarrow(w, z) Q(x, y)$. The existence of such a (distance) real valued function does not pose any difficulty. The binary relation $\succeq_{\text {add }}$ is reflexive, transitive and complete and satisfies axioms 1 and 2. Yet, it may violates axiom 3 if, for instance, $X=\{w, x, y, z\}$ and v is such that $v(w, z)=7, v(w, y)=5, v(w, x)=3=v(x, y)$. In such a case, defining $A=\{w, z\}, B=\{w\}, C=\{y\}$ and $D=\{x\}$, one has $A \succeq$ add $B \cup C \Leftrightarrow 7 \geq 5$, $A \succeq{ }_{\text {add }} B \cup D \Leftrightarrow 7 \geq 3$ and $A \succeq{ }_{\text {add }} C \cup D \Leftrightarrow 7 \geq 3$. Yet $A \prec_{\text {add }} B \cup C \cup D$ as $v(w, z)=7<v(w, y)+v(w, x)+v(x, y)=11$.

We now turn to the axiomatic characterization of $\succeq_{l e x}$.
Theorem 2 Let \succeq be a transitive binary relation on $\mathfrak{P}(X)$ and let Q be an ordinal notion of similarity belonging to \mathfrak{Q}. Then \succeq satisfies Axioms 1,4 and 7 if and only if $\succeq=\succeq_{l e x}$

Proof. It is immediate to verify that $\succeq_{l e x}$ is a reflexive, transitive and complete binary relation on $\mathfrak{P}(X)$ that satisfies axioms 1,4 and 7. Assume now that $A \succ_{\text {lex }} B$. Then, by definition, there exists a $k \in\{1, \ldots,(|A|(|A|-$ $1)\}$ such that $a_{(k)} Q_{A} b_{(k)}$ and $a_{(i)} I b_{(i)}$ for $i=1, \ldots k-1$ where, for all $j=1, \ldots, k a_{(j)} \in O^{Q}(A \times A)$ and $b_{(j)} \in O^{Q}(B \times B)$. Writing $a_{(j)}=\left(a_{0}^{j}, a_{1}^{j}\right)$ and $b_{(j)}=\left(b_{0}^{j}, b_{1}^{j}\right)$ for $a_{i}^{j} \in A$ and $b_{i}^{j} \in B$ for every $j \in\{1, \ldots, k\}, i=0,1$ we have by axiom 1 that $\left\{a_{0}^{k}, a_{1}^{k}\right\} \succ\left\{b_{0}^{k}, b_{1}^{k}\right\}$. Let $C=A \backslash\left\{a_{0}^{k}, a_{1}^{k}\right\}$ and $D=B \backslash\left\{b_{0}^{k}, b_{1}^{k}\right\}$. Sets C and D are clearly like sets A and B of axiom 7. In particular, one has $\left|W D_{\left\{a_{0}^{k}, a_{1}^{k}\right\} \cup C}\left(a_{(k)}\right)\right|=\left|W D_{\left\{b_{0}^{k}, b_{1}^{k}\right\} \cup D}\left(b_{(k)}\right)\right|=k$ and $a_{(i)} Q b_{(i)}$ for $a_{(i)} \in W D_{\left\{a_{0}^{k}, a_{1}^{k}\right\} \cup C}\left(a_{(k)}\right)$ and $b_{(i)} \in W D_{\left\{b_{0}^{k}, b_{1}^{k}\right\} \cup D}\left(b_{(k)}\right)$. By axiom 7, we therefore have $A \succ B$. Suppose now $A \sim_{\text {lex }} B$. Then $a_{(i)} Q b_{(i)} \forall i$ and $b_{(i)} Q a_{(i)} \forall i$ and $|A|=|B|$ for $a_{(i)} \in O^{Q}(A \times A)$ and $b_{(i)} \in O^{Q}(B \times B)$.By axiom 4, we then have $A \succeq B$ and $B \succeq A$ which entails $A \sim B$. Now, we have to show that if \succeq is transitive and satisfies axioms 1 , 4 and 7 , then we have, for every A and $B \in P(X), A \succeq B \Longrightarrow A \succeq l e x B$. Assume by contradiction that the implication is false. Then, since $\succeq_{l e x}$ is complete, this amounts to say that $B \succ_{\text {lex }} A$ holds which, by virtue of what we just established, implies that $B \succ A$, a contradiction.

Although a characterization of $\succeq_{l e x}$ which would, like that of $\succeq_{\text {max }}$ provided by theorem 1, only use axioms that refer to elements of the sets rather than to pairs of elements would be more elegant, such an axiomatization is not easy to obtain. The lexi-max criterion is a ranking of sets for which the precise positions occupied by the pairs in the dissimilarity scale matters a great deal. Yet, it is difficult to axiomatically control these positions by using properties of elements in the set that could be retired or added in the spirit of axiom 3 for instance. The maxi-max criterion possesses the property that, when it compares sets with more than two elements, the ranking of the sets that it provides is robust to the deletion, in both sets, of specific
elements one by one (clearly, taking away in two sets containing more than two elements an element that is not part of the most dissimilar pair does not affect the ranking of the two sets). The lexi-max criterion does not possess this robustness with respect to the deletion of its elements. Suppose for instance that $A=\{t, u, v\}, B=\{w, x, y, z\}$ with the dissimilarity ranking of the relevant pairs as follows:
$(t, u) Q_{S}(t, v) Q_{S}(w, x) Q_{S}(y, z) Q_{A}(u, v) Q_{A}(w, y) Q_{S}(x, z) Q_{S}$ $(w, z) Q_{S}(x, y)$.

Here, $A \succ_{\text {lex }} B$ but there is no way to withdraw options from both A and B (or from A only) that would preserve the ranking. This difficulty of decomposing the properties of the ranking of sets $\succeq_{\text {lex }}$ into more basic properties involving only the sets and their elements - as in standard set theory - is, we believe, a significant one.

It is to a large extent our ability to escape from such a difficulty in the case of the $\succeq_{\text {max }}$ criterion, but not in the case of $\succeq_{l e x}$, that explains the rather different axiomatic routes used to characterize, in theorem 1 and 2 , the two similar looking rankings. It is however possible to provide an alternative - but admittedly uglier - characterization of $\succeq_{\text {max }}$ that emphasizes the similarity that exists between this ranking and $\succeq_{l e x}$. This alternative characterization is provided in the next theorem.

Theorem 3 Let \succeq be a transitive binary relation defined on $\mathfrak{P}(X)$ and let Q be an ordinal notion of similarity belonging to \mathfrak{Q}. Then \succeq satisfies Axioms 1,5 and 6 if and only if $\succeq=\succeq_{\text {max }}$.

Proof. We know that $\succeq_{\max }$ is transitive and satisfies axiom 1. It is immediate to see that it satisfies axioms 5 and 6 (notice that it does not satisfy axiom 7). Suppose that $A \succ_{\max } B$. Then $a_{(1)} Q_{A} b_{(1)}$ where $a_{(1)}=$ $\left(a_{1}, a_{2}\right)$ and $b_{(1)}=\left(b_{1}, b_{2}\right)$ denote the most dissimilar pairs of objects in A and B respectively. By axiom 1, we have that $\left\{a_{1}, a_{2}\right\} \succ\left\{b_{1}, b_{2}\right\}$. Now, let $C=A \backslash\left\{a_{1}, a_{2}\right\}$ and $D=B \backslash\left\{b_{1}, b_{2}\right\}$. Trivially, C and D are just like the sets A and B in axiom 6 with, in particular $\left|D_{C \cup\left\{a_{1}, a_{2}\right\}}\left(a_{1}, a_{2}\right)\right|=$ $\left|D_{D \cup\left\{b_{1}, b_{2}\right\}}\left(b_{1}, b_{2}\right)\right|=0$. Hence we can apply axiom 6 trivially to obtain $A=C \cup\left\{a_{1}, a_{2}\right\} \succ D \cup\left\{b_{1}, b_{2}\right\}=B$. Suppose now $A \sim_{\max } B$. Then, using the same notation, we have $a_{(1)} Q_{S} b_{(1)}$ which entails by axiom 1 that $\left\{a_{1}, a_{2}\right\} \succeq\left\{b_{1}, b_{2}\right\}$ and also $\left\{b_{1}, b_{2}\right\} \succeq\left\{a_{1}, a_{2}\right\}$. Using the same (trivial) reasoning than for the preceding case but with axiom 5 instead, we obtain $A \succeq B$ as well as $B \succeq A$ and, therefore, $A \sim B$. We now wish to prove that if $A \succeq B$ for all transitive binary relations on $\mathfrak{P}(X)$ that satisfy axioms 1, 5 and 6 , then $A \succeq_{\max } B$. Suppose not. Since $\succeq_{\max }$ is complete, this amounts to assuming that $B \succ_{\max } A$. Yet by what has just been established above, this implies $B \succ A$ for all transitive binary relations on $\mathfrak{P}(X)$ that satisfy axioms 1, 5 and 6, a contradiction.

We conclude this section by proving that axioms 1,4 and 7 used in the characterization of $\succeq_{l e x}$ are independent.

Proposition 2 For any $Q \in \mathfrak{Q}$, axioms 1, 4 and 7 are independent.
Proof. Consider first $\succeq_{\text {add }}$ as defined in the proof of proposition 1. It satisfies as we have seen axiom 1 and it is not hard to see that it also satisfies axiom 4 . To see that it violates axiom 7 , consider $X=\{w, x, y, z\}$ and assume that the function v which defines $\succeq_{\text {add }}$ is such that $v(w, z)=7$, $v(w, y)=5, v(w, x)=3,2=v(x, y)=v(x, z)$ and $v(y, z)=0$. In such a case, we have that $\{w, y\} \succ\{w, x\}$ and the sets $A=\{z\}=B$ are just as in the antecedent of axiom 7 (with $W D_{\{w, y, z\}}(w, y)=\{(w, z),(w, y)\}$ and $W D_{\{w, x, z\}}(w, x)=\{(w, z),(w, x\})$ (neglecting the duplication of symmetric pairs). Yet $\{w, y, z\} \preceq\{w, x, z\}$ since $7+5+0 \leq 7+3+2$, which contradicts the requirement of axiom 7. Consider now the widely discussed Pattanaik and Xu. (1990) cardinality ordering $\succsim_{C A R D}$ defined by $A \succsim_{C A R D} B \Leftrightarrow|A| \geq$ $|B|$. This ordering obviously violates axiom 1 for any dissimilarity notion contained in \mathfrak{Q}. It satisfies however axiom 4 and, trivially, axiom 7 (whose antecedent never applies when there is universal indifference between all pairs of objects). Consider finally the incomplete transitive binary relation $\widehat{\coprod}_{l e x}$ defined by $A \grave{\succeq}_{l e x} B \Longleftrightarrow A \succ_{l e x} B$. As can be seen in the proof of theorem 2 , this binary relation satisfies axioms 1 and 7 . Yet it fails to satisfy axiom 4 (since $\widehat{\coprod}_{l e x}$ considers as non comparable any two sets, such as those mentioned in axiom 4 , that would be considered indifferent by $\succeq_{l e x}$).

4 Diversity and freedom of choice

The diversity of options available for choice to a decision maker can arguably be seen as an essential element of the freedom of choice of this decision maker. Yet most rankings of opportunity sets examined in the freedom of choice literature mentioned in introduction have not exhibited a great sensitivity to diversity. In this section, we briefly explore the extent to which the methodology used in this paper can serve to bridge the gap between concerns for diversity and concerns for freedom.

There are roughly two approaches to the issue of defining and measuring freedom of choice in the literature. In the first approach, freedom of choice is conceived as an intrinsic criterion for comparing opportunity sets, roughly related to the "size" of the opportunity sets, and whose importance is, using the words of Sen (1988) (p. 290), "beyond that of providing the means of choosing the particular alternative that happens to be chosen". Hence, in this approach, the freedom of choice offered by a particular opportunity set is conceived as being completely independent from the preferences that the decision maker will use for choosing from that set. The widely discussed cardinality rankings of sets (characterized differently by Jones and Sugden (1982), Pattanaik and Xu. (1990) and Suppes (1987)) as well as their additive generalization (see e.g. Klemisch-Ahlert (1993) or Gravel et al. (1998)) belong clearly to this approach, as do the definition of freedom
as enthropy in Suppes (1996) or the examination, made by VanHees (1997), of the distinction between negative and positive freedom. In the second approach, freedom of choice is defined with respect to a set of possible preferences that the decision maker could have when making its choice. In this approach, freedom of choice is important only in so far as it enables the decision maker to make better choice from the view point of some of the possible preference that he may use when making the choice. For this reason, when evaluating the freedom of choice offered by some opportunity set, this approach attaches a particular attention to the set of options which would be considered best in this set from the view point of some of the possible preference of the decision maker. We refer the reader to Arrow (1995), Barberà et al. (n.d.), Dutta and Sen (1996), Foster (1993), Jones and Sugden (1982), Nehring and Puppe (1999), Pattanaik and Xu (1998), Puppe (1998), Romero-Medina (2001) and Sugden (1998) for further justification of this multi-preferences approach to freedom of choice.

The methodology presented in this paper is directly relevant for this first approach if one accepts the view that the diversity of options contained in a particular opportunity set is a natural measure of the freedom of choice offered by that opportunity set. As there is, after all, some rationale for this view. After all someone who has only the choice between two slightly different cars for commuting from home to work can arguably be considered to have less freedom of choice - in terms of means of transportation - than an individual who can go to work either by one car or by a suburban train. Hence it is quite possible to interpret the maxi-max and the lexi-max criteria characterized in the preceding section as freedom of choice rankings rather than diversity ones. Of course the acceptability of the rankings, both from a diversity or a freedom of choice perspective, rides upon the acceptability of the underlying dissimilarity quadernary relation that is taken a given.

But diversity can also contribute to defining freedom of choice in the context of the multi-preference approach. To see how, adopt Pattanaik and Xu (1998) framework and let $\mathfrak{R}=\left\{R_{1}, \ldots, R_{n}\right\}$ be the set of all possible preference orderings over X that a "reasonable person" may have. For all $i=1, \ldots, n$, let P_{i} and I_{i} denote, respectively, the asymmetric factor and the symmetric factor of R_{i}. In this setting, the binary relation \succeq on $\mathfrak{P}(X)$ is explicitly interpreted in terms of freedom of choice rather than of diversity.

For all $A \in \mathfrak{P}(X)$, let $\operatorname{Max}_{\mathfrak{R}} A=\left\{a \in A: \exists R_{i} \in \mathfrak{R}\right.$ for which $a R_{i} a^{\prime}$ $\left.\forall a^{\prime} \in A\right\}$ be the set of all options in A that are maximal for some of the possible preferences in \mathfrak{R}.

Taking as given the set \mathfrak{R}, Pattanaik and Xu (1998) characterizes the ranking of all sets in $\mathfrak{P}(X)$ defined by the comparison of the cardinality of their sets of elements which are maximal from the view point of at least one of the possible preferences in \mathfrak{R}. Formally, this ranking $\succeq_{\text {card }}^{\mathfrak{R}}$ is defined by $A \succeq_{\text {card }}^{\mathfrak{R}} B \Longleftrightarrow \mid$ Max $_{\mathfrak{R}} A\left|\geq\left|\operatorname{Max}_{\mathfrak{R}} B\right|\right.$. In this paper, taking as given both the set of possible preferences and the primitive notion of dissimilarity
between options Q, we provide a characterization of the ranking $\succeq_{\max }^{\mathfrak{R}}$ defined as follows.

Definition $5 A \succeq_{\max }^{\mathfrak{R}} B \Longleftrightarrow \operatorname{Max}_{\mathfrak{R}} A \succeq_{\max } \operatorname{Max}_{\mathfrak{R}} B$
Hence the ranking $\succeq_{\max }^{\mathfrak{m a x}}$ considers that opportunity set A offers at least as much freedom of choice as opportunity set B if and only if the set of elements in A that any reasonable person would choose is at least as diverse, in the sense of the ordering $\succeq_{\text {max }}$ of definition 3 , than the set of options in B that any reasonable person would choose. This ranking provides therefore an alternative to the ranking $\succeq_{\text {card }}^{\mathfrak{R}}$ of Pattanaik and Xu (1998) which attaches intrinsic importance to the diversity of the options that a reasonable person could choose.

The characterization that we provide of $\succeq_{\max }^{\mathfrak{R}}$ uses the following axioms.
Axiom $8 \forall A, B \in \mathfrak{P}(X), \forall x \in X$, if $x \notin \operatorname{Max}_{\mathfrak{R}} A \cup\{x\}$, then $[A \succeq B \Longleftrightarrow A \cup\{x\} \succeq B]$ and $[B \succeq A \Longleftrightarrow B \succeq A \cup\{x\}]$

Axiom $9 \forall w, x, y, w, z \in X$, if and $\{w, z\}=\operatorname{Max}_{\mathfrak{R}}\{w, z\}$ and $\{x, y\}=$ $\operatorname{Max}_{\mathfrak{R}}\{x, y\}$ then $(w, s) Q(x, y) \Longleftrightarrow\{w, z\} \succeq\{x, y\}$

Axiom $10 \forall A, B \in Y$ if $B \subseteq \operatorname{Max}_{\mathfrak{R}} A$, then $A \succeq B$
Axiom 8 has been introduced in Pattanaik and Xu (1998). It requires that if x is an option that no reasonable preference would consider strictly better than all options in a set A, then the ranking of A with respect to B should not be affected by the addition of x to A. Axioms 9 is a weakening of axioms 1. Like axiom 1, axiom 3 requires the ranking of sets that are made of two elements, each of which being a best choice over the other by some of the possible preferences, to coincide with the dissimilarity ranking of the pair made of these two elements as per the quardernary relation Q. On the other hand, and contrary to axiom 1, axiom 9 does not require the coincidence of dissimilarity comparisons and sets comparisons for pairs in which one element - say the fact of being beheaded at dawn - is considered worse than the other by all preferences in $\mathfrak{R}=R$. It should be noticed that, as for axiom 1 , the formal statement of axiom 9 does not require the options to be distinct. Hence, since $\operatorname{Max}_{\mathfrak{R}}\{x\}=\{x\}$ for all $x \in X$, axiom 9 implies also Pattanaik and Xu. (1990)'s axiom of indifference to no-choice situations. Axiom 10 is a weakening of axiom 2 which considers that a set A offers weakly more freedom of choice than any subset of the sets of options which, in A, could be considered best by some of the preferences in \mathfrak{R}.

These axioms, along with axiom 3 , characterize the ordering $\succeq_{\max }^{\mathfrak{R}}$, as established in the following theorem.

Theorem 4 Let \succeq be a transitive binary relation on $\mathfrak{P}(X)$. Then \succeq satisfies axioms 3, 8, 9 and 10 for a given dissimilarity quadernary relation $Q \in \mathfrak{Q}$ and a given set \mathfrak{R} of possible preference orderings if and only if $\succeq=\succeq_{\max }^{\mathfrak{R}}$

Proof. We leave to the reader the task of verifying that $\succeq_{\max }^{\mathfrak{R}}$ is transitive and satisfies axioms $3,8,9$ and 10 . We now establish that, for all transitive binary relations \succeq on $\mathfrak{P}(X), A \sim_{\max }^{\mathfrak{R}} B \Longrightarrow A \sim B$ and $A \succ_{\max }^{\mathfrak{R}} B$ $\Longrightarrow A \succ B$. By a reasoning analogous to that conducted in the proof of Theorem 2, using the completeness of $\succeq_{\max }^{\mathfrak{R}}$, this suffices to prove the result. For every sets A and $B \in \mathfrak{P}(X)$, let us write $A=C \cup \operatorname{Max}_{\mathfrak{R}} A$ and $B=D \cup \operatorname{Max}_{\mathfrak{R}} B$ where $C=\left\{c_{1}, c_{2}, \ldots c_{l}\right\}=A \backslash \operatorname{Max}_{\mathfrak{R}} A$ and $D=$ $\left\{d_{1}, d_{2}, \ldots, d_{m}\right\}=B \backslash M a x_{\mathfrak{R}} B$. We also write $\operatorname{Max}_{\mathfrak{R}} A=\left\{a_{1}, a_{2}, \ldots a_{g}\right\}$ and $\operatorname{Max}_{\mathfrak{R}} B=\left\{b_{1}, b_{2}, \ldots, b_{h}\right\}$. We recall that, as the elements of \mathfrak{R} are orderings, neither $\operatorname{Max}_{\mathfrak{R}} A$ nor $\operatorname{Max}_{\mathfrak{R}} B$ is empty while either C or D can be empty. Assume $A \sim_{\max }^{\mathfrak{R}} B$ i. e. $\operatorname{Max}_{\mathfrak{R}} A \sim_{\max } \operatorname{Max}_{\mathfrak{R}} B$. Assume first that $\left|\operatorname{Max}_{\mathfrak{R}} A\right|=\left|M a x_{\mathfrak{R}} B\right|=1$. By axiom 9, we must then have $\operatorname{Max}_{\mathfrak{R}} A \sim \operatorname{Max}_{\mathfrak{R}} B$. By axiom $8,\left(\operatorname{Max}_{\mathfrak{R}} A\right) \cup c_{1} \sim \operatorname{Max}_{\mathfrak{R}} A$. Using axiom 8 repeatedly with as many elements in C as necessary, we obtain $A \sim \operatorname{Max}_{\mathfrak{R}} A$. Analogously, using axiom 8 with set B, we obtain $B \sim \operatorname{Max}_{\mathfrak{R}} B$ and, by the transitivity of $\succeq, A \sim B$. For trivial reasons, we can not have $\left|\operatorname{Max}_{\mathfrak{R}} A\right|>1$ and $\left|M a x_{\mathfrak{R}} B\right|=1$ or $\left|\operatorname{Max}_{\mathfrak{R}} A\right|=1$ and $\left|M a x_{\mathfrak{R}} B\right|>1$ when $A \sim \sim_{\max }^{\mathfrak{R}} B$ because of the fact that $(x, y) Q_{A}(z, z)$ for every x, y and z with x and y distinct. Consider therefore the last case, where $\left|M a x_{\mathfrak{R}} A\right|>1$ and $\left|\operatorname{Max}_{\mathfrak{R}} B\right|>1$. Since $\operatorname{Max}_{\mathfrak{R}} A \sim_{\max } \operatorname{Max}_{\mathfrak{R}} B$, we have $a_{(1)} Q_{S} b_{(1)}$ where $a_{(1)}=\left(a_{1}, a_{2}\right)$ and $b_{(1)}=\left(b_{1}, b_{2}\right)$ are the most dissimilar pair in $\operatorname{Max}_{\mathfrak{R}} A$ and $\operatorname{Max}_{\mathfrak{R}} B$ respectively. By axiom $9,\left\{a_{1}, a_{2}\right\} \sim\left\{b_{1}, b_{1}\right\}$. For every $a_{i} \in \operatorname{Max}_{\mathfrak{R}} A$, we have $\left\{a_{1}, a_{2}\right\} \succeq\left\{a_{1}, a_{i}\right\}$ and $\left\{a_{1}, a_{2}\right\} \succeq\left\{a_{2}, a_{i}\right\}$. Furthermore, $\left\{a_{1}, a_{2}\right\} \succeq\left\{a_{1}, a_{2}\right\}$ so that we can use axiom 3 to obtain $\left\{a_{1}, a_{2}\right\} \succeq\left\{a_{1}, a_{2}, a_{i}\right\}$. We can use the same procedure to add all the remaining elements from $\operatorname{Max}_{\mathfrak{R}} A$, until we have $\left\{a_{1}, a_{2}\right\} \succeq M a x_{\mathfrak{R}} A$. Now $\left\{a_{1}, a_{2}\right\} \subseteq \operatorname{Max}_{\mathfrak{R}} A$ so that, by axiom 10, $\operatorname{Max}_{\mathfrak{R}} A \succeq\left\{a_{1}, a_{2}\right\}$ and, therefore, $\left\{a_{1}, a_{2}\right\} \sim \operatorname{Max}_{\mathfrak{R}} A$. Applying the same treatment to B gives us $\left\{b_{1}, b_{2}\right\} \sim \operatorname{Max}_{\mathfrak{R}} B$. By transitivity, we have $\operatorname{Max}_{\mathfrak{R}} A \sim \operatorname{Max}_{\mathfrak{R}} B$. Repeated use of axiom 8 guarantees, as in the first case, that $A \sim \operatorname{Max}_{\mathfrak{R}} A$ and $B \sim \operatorname{Max}_{\mathfrak{R}} B$, which in turn, by transitivity, gives the result. Assume now that $A \succ_{\max }^{\mathfrak{m}} B$ and, therefore, that $\operatorname{Max}_{\mathfrak{R}} A \succ_{\max } \operatorname{Max} x_{\mathfrak{R}} B$. Using the same notation as above for $a_{(1)}=\left(a_{1}, a_{2}\right)$ and $b_{(1)}=\left(b_{1}, b_{2}\right)$, this means that $a_{(1)} Q_{A} b_{(1)}$ which implies, by axiom 9 , that $\left\{a_{1}, a_{2}\right\} \succ$ $\left\{b_{1}, b_{2}\right\}$. As before, for every $a_{i} \in \operatorname{Max}_{\mathfrak{R}} A$, we have $\left\{a_{1}, a_{2}\right\} \succeq\left\{a_{1}, a_{i}\right\}$, $\left\{a_{1}, a_{2}\right\} \succeq\left\{a_{2}, a_{i}\right\}$ and $\left\{a_{1}, a_{2}\right\} \succeq\left\{a_{1}, a_{2}\right\}$ so that, by axiom 3 , we obtain $\left\{a_{1}, a_{2}\right\} \succeq\left\{a_{1}, a_{2}, a_{i}\right\}$. Repeating the argument with all elements of $\operatorname{Max} x_{\mathfrak{R}} A$, we obtain $\left\{a_{1}, a_{2}\right\} \succeq M a x_{\mathfrak{R}} A$ and, using axiom $10,\left\{a_{1}, a_{2}\right\} \sim M a x_{\mathfrak{R}} A$. As the same treatment can be applied to B, we are led by transitivity to the
statement $\operatorname{Max}_{\mathfrak{R}} A \succ \operatorname{Max}_{\mathfrak{R}} B$. Finally, and just in the same way as before, a repeated use of axiom 8 will give us $A \succ B$, as needed

While $\succeq_{\max }^{\mathfrak{m}}$ provides a method for evaluating freedom of choice in the multi-preference approach that incorporate a concern for diversity, it is worth mentioning that, as its cousin $\succeq_{\text {card }}^{\Re}$, it does not satisfy the fullfledged weak monotonocity with respect to set inclusion as expressed in axiom 2. As this property appears to be a very minimal requirement to impose on a ranking of opportunity sets based on freedom of choice (which conception of freedom could say that making available for choice an option may reduce freedom of choice ?), we believe that the violation of this axiom by both $\succeq_{\text {card }}^{\mathfrak{R}}$ and $\succeq_{\text {max }}^{\mathfrak{R}}$ limits somehow the usefulness of these rankings as appropriate measures of freedom of choice.

5 Conclusion

The purpose of this paper was to investigate the possibility of deriving axiomatic ranking of sets of objects on the basis of their diversity by using only an ordinal primitive information about the similarities of the objects. This approach is to be contrasted with the most recent sophisticated ones such as those proposed by Weitzman (1992), Weitzman (1993), Weitzman (1998), Nehring and Puppe (2002) or Bossert et al. (2002) which assume a cardinally measurable primitive notion of similarities. While this investigation has been proved successful, we are aware that the specific rankings which we have characterize in this paper are not perfect. As mentioned earlier, a basic flaw with these two rankings is that they do not allow smooth trade off between the contributions of alternative pairs of objects to diversity. Both rankings give a very large "veto power" to the two most dissimilar options in the sets to compare the relative diversity that they offer. It would be nice to obtain "smoother" rankings of sets than the two characterized in this paper. An interesting class of these rankings would be an additive one, a typical member of which would view the diversity of as set as the sum of values assigned to each of its pairs by a function that numerically represent, in the sense of Debreu (1954), the binary relation R defined on $X \times X$. An example of such a ranking is the ordering $\succeq_{a d d}$ considered in the proof of propositions 1 and 2 . Finding an axiomatic characterization of such a family of diversity rankings is a worthwhile objective for further research.

Another one is to explore further the connections between measurement of diversity and measurement of freedom of choice. While some comments and results have been presented in the last section, we believe that much more could be done. An interesting thing to do in that context would be to dig further behind the "black box" of the primitive quadernary relation of dissimilarity used to define diversity. This appears particularly important in the context of the multiple preference approach to freedom of choice. If
diversity is conceived in the context of a decision theoretic model, it may well be relevant to connect the primitive notion of dissimilarity to the possible preference of the decision maker for the options that she will choose in the various opportunity sets. Why for example do a car and a bicycle look intuitively more different - or dissimilar - than two cars with slightly different characteristics? It is, probably, because we think that most users of the modes of transportation are likely to experiment less difference in satisfaction in changing from one type of car to the other than in changing from one type of car to the bike. These differences in satisfaction could, it seems to us, be expressed in terms of a family of utility functions that a "reasonable" decision maker could use when choosing between modes of transportation, in just the same fashion as the notion of freedom of choice has been expressed in terms of a family of possible preferences for the decision maker. The resort to cardinally meaningful utility functions, rather than mere ordinal preference orderings, to explain a notion of dissimilarity represented by a quadernary relation seems unavoidable. For it seems very difficult a priori to produce rankings of pairs of objects in terms of dissimilarity from a mere knowledge of a set of rankings of the objects themselves. We think that the exploration of this area is very promising for future research.

References

Arrow, K. J., "A Note on Freedom and Flexibility," in K. Basu, P. Pattanaik, and K. Suzumura, eds., Choice, Welfare and Development: A Festschrift in Honour of Amartya K. Sen, Oxford: Oxford University Press, 1995, chapter 1, pp. 7-15.

Baczkowski, A.J., D. N. Joanes, and G.M. Shamia, "Properties of a Generalized Diversity Index," Journal of Theoretical Biology, 1997, 188, 207-213.
\qquad , and \qquad , "Range of Validity of alpha and beta for a Generalized Diversity Index due to Good," Mathematical Bioscience, 1998, 148, 115-128.

Barberà, S., W. Bossert, and P. K. Pattanaik, "Ranking Sets of Objects," in S. Barberà, P. Hammond, and C. Seidl, eds., Handbook of Utility Theory, vol. 2: Extensions, Kluwer, Dordrecht. forthcoming.

Bossert, W., "Opportunity Sets and Individual Well-Being," Social Choice and Welfare, 1997, 14, 97-112.
, "Opportunity Sets and Uncertain Consequences," Journal of Mathematical Economics, 2000, 33, 475-496.
__ P.K. Pattanaik, and Y. Xu, "Ranking Opportunity Sets: An Axiomatic Approach," Journal of Economic Theory, 1994, 63, 326-345.
___ , and ___ "Similarity of Options and the Measurement of Diversity," Technical Report, CRDE, Université de Montréal 2002. working paper no 11-2002.

Debreu, G., "Representation of a Preference Ordering by a Numerical Function," in R. L. Davis R. M. Thrall, C. H. Coombs, ed., Decision Processes, New York: Wiley, 1954, pp. 159-165.

Dutta, B. and A. Sen, "Ranking Opportunity Sets and Arrow Impossibility Theorem: Correspondance Results," Journal of Economic Theory, 1996, 71, 90-101.

Foster, J., "Notes on Effective Freedom," 1993. Mimeo, Vanderbilt University.
__ , "Freedom, Opportunity and Well-Being," in K. Arrow, A. Sen, and K. Suzumura, eds., Handbook of Social Choice and Welfare, Amsterdam: Elsevier, 2001. forthcoming.

Good, I. J., "The Population Frequencies of Species and the Estimation of Population Parameters," Biometrika, 1953, 40, 237-264.

Gravel, N., "Can a Ranking of Opportunity Sets Attach Intrinsic Importance to Freedom of Choice?," American Economic Review: Papers and Proceedings, 1994, 84, 454-458.
__, "Ranking Opportunity Sets on the Basis of their Freedom of Choice and their Ability to Satisfy Preferences: A Difficulty," Social Choice and Welfare, 1998, 15, 371-382.
__ J.F. Laslier, and A. Trannoy, "Individual Freedom of Choice in a Social Setting," in J. F. Laslier, M. Fleurbaey, N. Gravel, and A. Trannoy, eds., Freedom in Economics: New Perspectives in Normative Analysis, London: Routledge, 1998, chapter 3.

Jones, P. and R. Sugden, "Evaluating Choices," International Journal of Law and Economics, 1982, 2, 47-65.

Klemisch-Ahlert, M., "Freedom of Choice: A comparison of Different Rankings of Opportunity Sets," Social Choice and Welfare, 1993, 10, 189-207.

Kreps, D. M., "A Representation Theorem for 'Preference for Flexibility'"," Econometrica, 1979, 47, 565-577.

Magurran, A. E., Ecological Diversity and its Measurement, Princeton, NJ: Princeton University Press, 1998.

Nehring, K. and C. Puppe, "On the Multi-Preferences approach to Evaluating Opportunities," Social Choice and Welfare, 1999, 16, 41-63.
__ and __, "A Theory of Diversity," Econometrica, 2002, 70, 11551190.

Pattanaik, P. K. and Y. Xu., "On Ranking Opportunity Sets in Terms of Freedom of Choice," Recherches Economiques de Louvain, 1990, 56, 383-390.
_ and Y. Xu, "On Freedom and Preferences," Theory and Decision, 1998, 44, 173-198.
__ and __ , "On Diversity and Freedom of Choice," Mathematical Social Sciences, 2000, 40, 123-130.
__ and ___ , "On Ranking Opportunity Sets in Economic Environments," Journal of Economic Theory, 2000, 93, 48-71.

Puppe, C., "Freedom of Choice and Rational Decisions," Social Choice and Welfare, 1995, 12, 137-154.
__ , "An Axiomatic Approach for 'Preferences for Freedom of Choice'," Journal of Economic Theory, 1996, 68, 174-199.
__ , "Individual Freedom and Social Choice," in J.F. Laslier, M. Fleurbaey, N. Gravel, and A. Trannoy, eds., Freedom in Economics: New Perspectives in Normative Analysis, Routlege, 1998, chapter 2.
__ and Y. Xu, "Assessing Freedom of Choice in terms of essential alternatives," 1996. Mimeo, University of Vienna.

Romero-Medina, A., "More on Preference and Freedom," Social Choice and Welfare, 2001, 18, 179-191.

Sen, A. K., "Freedom of Choice: Concept and Content," European Economic Review, 1988, 32, 269-294.
__ , "Welfare, Preferences and Freedom," Journal of Econometrics, 1991, 50, 15-29.

Shannon, C. E., "A Mathematical Theory of Communication," The Bell System Technical Journal, 1948, 27, 379-423.

Sugden, R., "Liberty, Preferences and Choice," Economics and Philosophy, 1985, 1, 213-229.
_ , "The Metric of Opportunity," Economics and Philosophy, 1998, 14, 307-337.

Suppes, P., "Maximizing Freedom of Decision: An Axiomatic Approach," in G. Feiwel, ed., Arrow and the Foundations of the Theory of Economic Policy, New York University Press, 1987, pp. 243-254.
__ , "The Nature and Measurement of Freedom," Social Choice and Welfare, 1996, 13, 183-200.

VanHees, M., "On the Analysis of Negative Freedom," Theory and Decision, 1997, 45, 175-197.

Weitzman, M. L., "On Diversity," Quarterly Journal of Economics, 1992, 107, 363-406.
__, "What to Preserve ? An Application of Diversity Theory to Crane Conservation," Quarterly Journal of Economics, 1993, 108, 157-183.
__ , "The Noah's Ark Problem," Econometrica, 1998, 66, 1279-1298.

NOTE DI LAVORO DELLA FONDAZIONE ENI ENRICO MATTEI
 Fondazione Eni Enrico Mattei Working Paper Series
 Our Note di Lavoro are available on the Internet at the following addresses:
 http://www.feem.it/Feem/Pub/Publications/WPapers/default.html
 http://www.ssrn.com/link/feem.html

NOTE DI LAVORO PUBLISHED IN 2003

PRIV	1.2003	Gabriella CHIESA and Giovanna NICODANO: Privatization and Financial Market Development: Theoretical Issues
PRIV	2.2003	Ibolya SCHINDELE: Theory of Privatization in Eastern Europe: Literature Review
PRIV	3.2003	Wietze LISE, Claudia KEMFERT and Richard S.J. TOL: Strategic Action in the Liberalised German Electricity Market
CLIM	4.2003	Laura MARSILIANI and Thomas I. RENSTRÖM: Environmental Policy and Capital Movements: The Role of Government Commitment
KNOW	5.2003	Reyer GERLAGH: Induced Technological Change under Technological Competition
ETA	6.2003	Efrem CASTELNUOVO: Squeezing the Interest Rate Smoothing Weight with a Hybrid Expectations Model
SIEV	7.2003	Anna ALBERINI, Alberto LONGO, Stefania TONIN, Francesco TROMBETTA and Margherita TURVANI: The Role of Liability, Regulation and Economic Incentives in Brownfield Remediation and Redevelopment: Evidence from Surveys of Developers
NRM	8.2003	Elissaios PAPYRAKIS and Reyer GERLAGH: Natural Resources: A Blessing or a Curse?
CLIM	9.2003	A. CAPARRÓS, J.-C. PEREAU and T. TAZDAÏT: North-South Climate Change Negotiations: a Sequential Game with Asymmetric Information
KNOW	10.2003	Giorgio BRUNELLO and Daniele CHECCHI: School Quality and Family Background in Italy
CLIM	11.2003	Efrem CASTELNUOVO and Marzio GALEOTTI: Learning By Doing vs Learning By Researching in a Model of Climate Change Policy Analysis
KNOW	12.2003	Carole MAIGNAN, Gianmarco OTTAVIANO and Dino PINELLI (eds.): Economic Growth, Innovation, Cultural
		Diversity: What are we all talking about? A critical survey of the state-of-the-art
KNOW	13.2003	Carole MAIGNAN, Gianmarco OTTAVIANO, Dino PINELLI and Francesco RULLANI (lix): Bio-Ecological Diversity vs. Socio-Economic Diversity. A Comparison of Existing Measures
KNOW	14.2003	Maddy JANSSENS and Chris STEYAERT (lix): Theories of Diversity within Organisation Studies: Debates and Future Trajectories
KNOW	15.2003	Tuzin BAYCAN LEVENT, Enno MASUREL and Peter NIJKAMP (lix): Diversity in Entrepreneurship: Ethnic and Female Roles in Urban Economic Life
KNOW	16.2003	Alexandra BITUSIKOVA (lix): Post-Communist City on its Way from Grey to Colourful: The Case Study from Slovakia
KNOW	17.2003	Billy E. VAUGHN and Katarina MLEKOV (lix): A Stage Model of Developing an Inclusive Community
KNOW	18.2003	Selma van LONDEN and Arie de RUIJTER (lix): Managing Diversity in a Glocalizing World
Coalition		
Theory	19.2003	Sergio CURRARINI: On the Stability of Hierarchies in Games with Externalities
Network		
PRIV	20.2003	Giacomo CALZOLARI and Alessandro PAVAN (1x): Monopoly with Resale
PRIV	21.2003	Claudio MEZZETTI (1x): Auction Design with Interdependent Valuations: The Generalized Revelation Principle, Efficiency, Full Surplus Extraction and Information Acquisition
PRIV	22.2003	Marco LiCalzi and Alessandro PAVAN (1x): Tilting the Supply Schedule to Enhance Competition in UniformPrice Auctions
PRIV	23.2003	David ETTINGER (1x): Bidding among Friends and Enemies
PRIV	24.2003	Hannu VARTIAINEN (lx): Auction Design without Commitment
PRIV	25.2003	Matti KELOHARJU, Kjell G. NYBORG and Kristian RYDQVIST (1x): Strategic Behavior and Underpricing in Uniform Price Auctions: Evidence from Finnish Treasury Auctions
PRIV	26.2003	Christine A. PARLOUR and Uday RAJAN (1x): Rationing in IPOs
PRIV	27.2003	Kjell G. NYBORG and Ilya A. STREBULAEV (lx): Multiple Unit Auctions and Short Squeezes
PRIV	28.2003	Anders LUNANDER and Jan-Eric NILSSON (lx): Taking the Lab to the Field: Experimental Tests of Alternative Mechanisms to Procure Multiple Contracts
PRIV	29.2003	TangaMcDANIEL and Karsten NEUHOFF (lx): Use of Long-term Auctions for Network Investment
PRIV	30.2003	Emiel MAASLAND and Sander ONDERSTAL (lx): Auctions with Financial Externalities
ETA	31.2003	Michael FINUS and Bianca RUNDSHAGEN: A Non-cooperative Foundation of Core-Stability in Positive Externality NTU-Coalition Games
KNOW	32.2003	Michele MORETTO: Competition and Irreversible Investments under Uncertainty
PRIV	33.2003	Philippe QUIRION: Relative Quotas: Correct Answer to Uncertainty or Case of Regulatory Capture?
KNOW	34.2003	Giuseppe MEDA, Claudio PIGA and Donald SIEGEL: On the Relationship between R\&D and Productivity: A Treatment Effect Analysis
ETA	35.2003	Alessandra DEL BOCA, Marzio GALEOTTI and Paola ROTA: Non-convexities in the Adjustment of Different Capital Inputs: A Firm-level Investigation

GG	36.2003	Matthieu GLACHANT: Voluntary Agreements under Endogenous Legislative Threats
PRIV	37.2003	Narjess BOUBAKRI, Jean-Claude COSSET and Omrane GUEDHAMI: Postprivatization Corporate Governance: the Role of Ownership Structure and Investor Protection
CLIM	38.2003	Rolf GOLOMBEK and Michael HOEL: Climate Policy under Technology Spillovers
KNOW	39.2003	Slim BEN YOUSSEF: Transboundary Pollution, R\&D Spillovers and International Trade
CTN	40.2003	Carlo CARRARO and Carmen MARCHIORI: Endogenous Strategic Issue Linkage in International Negotiations
KNOW	41.2003	Sonia OREFFICE: Abortion and Female Power in the Household: Evidence from Labor Supply
KNOW	42.2003	Timo GOESCHL and Timothy SWANSON: On Biology and Technology: The Economics of Managing Biotechnologies
ETA	43.2003	Giorgio BUSETTI and Matteo MANERA: STAR-GARCH Models for Stock Market Interactions in the Pacific Basin Region, Japan and US
CLIM	44.2003	Katrin MILLOCK and Céline NAUGES: The French Tax on Air Pollution: Some Preliminary Results on its Effectiveness
PRIV	45.2003	Bernardo BORTOLOTTI and Paolo PINOTTI: The Political Economy of Privatization
SIEV	46.2003	Elbert DIJKGRAAF and Herman R.J. VOLLEBERGH: Burn or Bury? A Social Cost Comparison of Final Waste Disposal Methods
ETA	47.2003	Jens HORBACH: Employment and Innovations in the Environmental Sector: Determinants and Econometrical Results for Germany
CLIM	48.2003	Lori SNYDER, Nolan MILLER and Robert STAVINS: The Effects of Environmental Regulation on Technology Diffusion: The Case of Chlorine Manufacturing
CLIM	49.2003	Lori SNYDER, Robert STAVINS and Alexander F. WAGNER: Private Options to Use Public Goods. Exploiting Revealed Preferences to Estimate Environmental Benefits
CTN	50.2003	László Á. KÓCZY and Luc LAUWERS (1xi): The Minimal Dominant Set is a Non-Empty Core-Extension
CTN	51.2003	Matthew O. JACKSON (1xi):Allocation Rules for Network Games
CTN	52.2003	Ana MAULEON and Vincent VANNETELBOSCH (lxi): Farsightedness and Cautiousness in Coalition Formation
CTN	53.2003	Fernando VEGA-REDONDO (lxi): Building Up Social Capital in a Changing World: a network approach
CTN	54.2003	Matthew HAAG and Roger LAGUNOFF (lxi): On the Size and Structure of Group Cooperation
CTN	55.2003	Taiji FURUSAWA and Hideo KONISHI (lxi): Free Trade Networks
CTN	56.2003	Halis Murat YILDIZ (1xi): National Versus International Mergers and Trade Liberalization
CTN	57.2003	Santiago RUBIO and Alistair ULPH (lxi): An Infinite-Horizon Model of Dynamic Membership of International Environmental Agreements
KNOW	58.2003	Carole MAIGNAN, Dino PINELLI and Gianmarco I.P. OTTAVIANO: ICT, Clusters and Regional Cohesion: A Summary of Theoretical and Empirical Research
KNOW	59.2003	Giorgio BELLETTINI and Gianmarco I.P. OTTAVIANO: Special Interests and Technological Change
ETA	60.2003	Ronnie SCHÖB: The Double Dividend Hypothesis of Environmental Taxes: A Survey
CLIM	61.2003	Michael FINUS, Ekko van IERLAND and Robert DELLINK: Stability of Climate Coalitions in a Cartel Formation Game
GG	62.2003	Michael FINUS and Bianca RUNDSHAGEN: How the Rules of Coalition Formation Affect Stability of International Environmental Agreements
SIEV	63.2003	Alberto PETRUCCI: Taxing Land Rent in an Open Economy
CLIM	64.2003	Joseph E. ALDY, Scott BARRETT and Robert N. STAVINS: Thirteen Plus One: A Comparison of Global Climate Policy Architectures
SIEV	65.2003	Edi DEFRANCESCO: The Beginning of Organic Fish Farming in Italy
SIEV	66.2003	Klaus CONRAD: Price Competition and Product Differentiation when Consumers Care for the Environment
SIEV	67.2003	Paulo A.L.D. NUNES, Luca ROSSETTO, Arianne DE BLAEIJ: Monetary Value Assessment of Clam Fishing Management Practices in the Venice Lagoon: Results from a Stated Choice Exercise
CLIM	68.2003	ZhongXiang ZHANG: Open Trade with the U.S. Without Compromising Canada's Ability to Comply with its Kyoto Target
KNOW	69.2003	David FRANTZ (lix): Lorenzo Market between Diversity and Mutation
KNOW	70.2003	Ercole SORI (lix): Mapping Diversity in Social History
KNOW	71.2003	Ljiljana DERU SIMIC (lxii): What is Specific about Art/Cultural Projects?
KNOW	72.2003	Natalya V. TARANOVA (lxii):The Role of the City in Fostering Intergroup Communication in a Multicultural Environment: Saint-Petersburg's Case
KNOW	73.2003	Kristine CRANE (lxii): The City as an Arena for the Expression of Multiple Identities in the Age of Globalisation and Migration
KNOW	74.2003	Kazuma MATOBA (lxii): Glocal Dialogue- Transformation through Transcultural Communication
KNOW	75.2003	Catarina REIS OLIVEIRA (1xii): Immigrants' Entrepreneurial Opportunities: The Case of the Chinese in Portugal
KNOW	76.2003	Sandra WALLMAN (1xii): The Diversity of Diversity - towards a typology of urban systems
KNOW	77.2003	Richard PEARCE (lxii): A Biologist's View of Individual Cultural Identity for the Study of Cities
KNOW	78.2003	Vincent MERK (lxii): Communication Across Cultures: from Cultural Awareness to Reconciliation of the Dilemmas
KNOW	79.2003	Giorgio BELLETTINI, Carlotta BERTI CERONI and Gianmarco I.P.OTTAVIANO: Child Labor and Resistance to Change
ETA	80.2003	Michele MORETTO, Paolo M. PANTEGHINI and Carlo SCARPA: Investment Size and Firm's Value under Profit Sharing Regulation

IEM	81.2003	Alessandro LANZA, Matteo MANERA and Massimo GIOVANNINI: Oil and Product Dynamics in International Petroleum Markets
CLIM	82.2003	Y. Hossein FARZIN and Jinhua ZHAO: Pollution Abatement Investment When Firms Lobby Against Environmental Regulation
CLIM	83.2003	Giuseppe DI VITA: Is the Discount Rate Relevant in Explaining the Environmental Kuznets Curve?
CLIM	84.2003	Reyer GERLAGH and Wietze LISE: Induced Technological Change Under Carbon Taxes
NRM	85.2003	Rinaldo BRAU, Alessandro LANZA and Francesco PIGLIARU: How Fast are the Tourism Countries Growing? The cross-country evidence
KNOW	86.2003	Elena BELLINI, Gianmarco I.P. OTTAVIANO and Dino PINELLI: The ICT Revolution: opportunities and risks for the Mezzogiorno
SIEV	87.2003	Lucas BRETSCGHER and Sjak SMULDERS: Sustainability and Substitution of Exhaustible Natural Resources. How resource prices affect long-term R\&D investments
CLIM	88.2003	Johan EYCKMANS and Michael FINUS: New Roads to International Environmental Agreements: The Case of Global Warming
CLIM	89.2003	Marzio GALEOTTI: Economic Development and Environmental Protection
CLIM	90.2003	Marzio GALEOTTI: Environment and Economic Growth: Is Technical Change the Key to Decoupling?
CLIM	91.2003	Marzio GALEOTTI and Barbara BUCHNER: Climate Policy and Economic Growth in Developing Countries
IEM	92.2003	A. MARKANDYA, A. GOLUB and E. STRUKOVA: The Influence of Climate Change Considerations on Energy Policy: The Case of Russia
ETA	93.2003	Andrea BELTRATTI: Socially Responsible Investment in General Equilibrium
CTN	94.2003	Parkash CHANDER: The γ-Core and Coalition Formation
IEM	95.2003	Matteo MANERA and Angelo MARZULLO: Modelling the Load Curve of Aggregate Electricity Consumption Using Principal Components
IEM	96.2003	Alessandro LANZA, Matteo MANERA, Margherita GRASSO and Massimo GIOVANNINI: Long-run Models of Oil Stock Prices
CTN	97.2003	Steven J. BRAMS, Michael A. JONES, and D. Marc KILGOUR: Forming Stable Coalitions: The Process Matters
KNOW	98.2003	John CROWLEY, Marie-Cecile NAVES (lxiii): Anti-Racist Policies in France. From Ideological and Historical Schemes to Socio-Political Realities
KNOW	99.2003	Richard THOMPSON FORD (lxiii): Cultural Rights and Civic Virtue
KNOW	100.2003	Alaknanda PATEL (lxiii): Cultural Diversity and Conflict in Multicultural Cities
KNOW	101.2003	David MAY (lxiii): The Struggle of Becoming Established in a Deprived Inner-City Neighbourhood
KNOW	102.2003	Sébastien ARCAND, Danielle JUTEAU, Sirma BILGE, and Francine LEMIRE (lxiii) : Municipal Reform on the Island of Montreal: Tensions Between Two Majority Groups in a Multicultural City
CLIM	103.2003	Barbara BUCHNER and Carlo CARRARO: China and the Evolution of the Present Climate Regime
CLIM	104.2003	Barbara BUCHNER and Carlo CARRARO: Emissions Trading Regimes and Incentives to Participate in International Climate Agreements
CLIM	105.2003	Anil MARKANDYA and Dirk T.G. RÜBBELKE: Ancillary Benefits of Climate Policy
NRM	106.2003	Anne Sophie CRÉPIN (1xiv): Management Challenges for Multiple-Species Boreal Forests
NRM	107.2003	Anne Sophie CRÉPIN (lxiv): Threshold Effects in Coral Reef Fisheries
SIEV	108.2003	Sara ANIYAR (lxiv): Estimating the Value of Oil Capital in a Small Open Economy: The Venezuela's Example
SIEV	109.2003	Kenneth ARROW, Partha DASGUPTA and Karl-Göran MÄLER(lxiv): Evaluating Projects and Assessing Sustainable Development in Imperfect Economies
NRM	110.2003	Anastasios XEPAPADEAS and Catarina ROSETA-PALMA(xiviv): Instabilities and Robust Control in Fisheries
NRM	111.2003	Charles PERRINGS and Brian WALKER (lxiv): Conservation and Optimal Use of Rangelands
ETA	112.2003	Jack GOODY (lxiv): Globalisation, Population and Ecology
CTN	113.2003	Carlo CARRARO, Carmen MARCHIORI and Sonia OREFFICE: Endogenous Minimum Participation in International Environmental Treaties
CTN	114.2003	Guillaume HAERINGER and Myrna WOODERS: Decentralized Job Matching
CTN	115.2003	Hideo KONISHI and M. Utku UNVER: Credible Group Stability in Multi-Partner Matching Problems
CTN	116.2003	Somdeb LAHIRI: Stable Matchings for the Room-Mates Problem
TN	117.2003	Somdeb LAHIRI: Stable Matchings for a Generalized Marriage Problem
CTN	118.2003	Marita LAUKKANEN: Transboundary Fisheries Management under Implementation Uncertainty
CTN	119.2003	Edward CARTWRIGHT and Myrna WOODERS: Social Conformity and Bounded Rationality in Arbitrary Games with Incomplete Information: Some First Results
CTN	120.2003	Gianluigi VERNASCA: Dynamic Price Competition with Price Adjustment Costs and Product Differentiation
CTN	121.2003	Myrna WOODERS, Edward CARTWRIGHT and Reinhard SELTEN: Social Conformity in Games with Many Players
CTN	122.2003	Edward CARTWRIGHT and Myrna WOODERS: On Equilibrium in Pure Strategies in Games with Many Players
CTN	123.2003	Edward CARTWRIGHT and Myrna WOODERS: Conformity and Bounded Rationality in Games with Many Players
	1000	Carlo CARRARO, Alessandro LANZA and Valeria PAPPONETTI: One Thousand Working Papers

NOTE DI LAVORO PUBLISHED IN 2004

IEM	1.2004	Anil MARKANDYA, Suzette PEDROSO and Alexander GOLUB: Empirical Analysis of National Income and So_{2} Emissions in Selected European Countries
ETA	2.2004	Masahisa FUJITA and Shlomo WEBER: Strategic Immigration Policies and Welfare in Heterogeneous Countries
PRA	3.2004	Adolfo DI CARLUCCIO, Giovanni FERRI, Cecilia FRALE and Ottavio RICCHI: Do Privatizations Boost Household Shareholding? Evidence from Italy
ETA	4.2004	Victor GINSBURGH and Shlomo WEBER: Languages Disenfranchisement in the European Union
ETA	5.2004	Romano PIRAS: Growth, Congestion of Public Goods, and Second-Best Optimal Policy
CCMP	6.2004	Herman R.J. VOLLEBERGH: Lessons from the Polder: Is Dutch CO_{2}-Taxation Optimal
PRA	7.2004	Sandro BRUSCO, Giuseppe LOPOMO and S. VISWANATHAN (lxv): Merger Mechanisms
PRA	8.2004	Wolfgang AUSSENEGG, Pegaret PICHLER and Alex STOMPER (lxv): IPO Pricing with Bookbuilding, and a When-Issued Market
PRA	9.2004	Pegaret PICHLER and Alex STOMPER (lxv): Primary Market Design: Direct Mechanisms and Markets
PRA	10.2004	Florian ENGLMAIER, Pablo GUILLEN, Loreto LLORENTE, Sander ONDERSTAL and Rupert SAUSGRUBER (lxv): The Chopstick Auction: A Study of the Exposure Problem in Multi-Unit Auctions
PRA	11.2004	Bjarne BRENDSTRUP and Harry J. PAARSCH (lxv): Nonparametric Identification and Estimation of MultiUnit, Sequential, Oral, Ascending-Price Auctions With Asymmetric Bidders
PRA	12.2004	Ohad KADAN (1xv): Equilibrium in the Two Player, k-Double Auction with Affiliated Private Values
PRA	13.2004	Maarten C.W. JANSSEN (lxv): Auctions as Coordination Devices
PRA	14.2004	Gadi FIBICH, Arieh GAVIOUS and Aner SELA (lxv): All-Pay Auctions with Weakly Risk-Averse Buyers
PRA	15.2004	Orly SADE, Charles SCHNITZLEIN and Jaime F. ZENDER (lxv): Competition and Cooperation in Divisible Good Auctions: An Experimental Examination
PRA	16.2004	Marta STR YSZOWSKA (lxv): Late and Multiple Bidding in Competing Second Price Internet Auctions
CCMP	17.2004	Slim Ben YOUSSEF: \& D in Cleaner Technology and International Trade
NRM	18.2004	Angelo ANTOCI, Simone BORGHESI and Paolo RUSSU (lxvi): Biodiversity and Economic Growth: Stabilization Versus Preservation of the Ecological Dynamics
SIEV	19.2004	Anna ALBERINI, Paolo ROSATO, Alberto LONGO and Valentina ZANATTA: Information and Willingness to Pay in a Contingent Valuation Study: The Value of S. Erasmo in the Lagoon of Venice
NRM	20.2004	Guido CANDELA and Roberto CELLINI (lxvii): Investment in Tourism Market: A Dynamic Model of Differentiated Oligopoly
NRM	21.2004	Jacqueline M. HAMILTON (lxvii): Climate and the Destination Choice of German Tourists
NRM	22.2004	Javier Rey-MAQUIEIRA PALMER, Javier LOZANO IBÁÑEZ and Carlos Mario GÓMEZ GÓMEZ (lxvii): Land, Environmental Externalities and Tourism Development
NRM	23.2004	Pius ODUNGA and Henk FOLMER (lxvii): Profiling Tourists for Balanced Utilization of Tourism-Based Resources in Kenya
NRM	24.2004	Jean-Jacques NOWAK, Mondher SAHLI and Pasquale M. SGRO (lxvii):Tourism, Trade and Domestic Welfare
NRM	25.2004	Riaz SHAREEF (lxvii): Country Risk Ratings of Small Island Tourism Economies
NRM	26.2004	Juan Luis Eugenio-MARTÍN, Noelia MARTÍN MORALES and Riccardo SCARPA (lxvii): Tourism and Economic Growth in Latin American Countries: A Panel Data Approach
NRM	27.2004	Raúl Hernández MARTÍN (lxvii): Impact of Tourism Consumption on GDP. The Role of Imports
CSRM	28.2004	Nicoletta FERRO: Cross-Country Ethical Dilemmas in Business, a Descriptive Framework
NRM	29.2004	Marian WEBER (lxvi): Assessing the Effectiveness of Tradable Landuse Rights for Biodiversity Conservation: an Application to Canada's Boreal Mixedwood Forest
NRM	30.2004	Trond BJORNDAL, Phoebe KOUNDOURI and Sean PASCOE (lxvi): Output Substitution in Multi-Species Trawl Fisheries: Implications for Quota Setting
CCMP	31.2004	Marzio GALEOTTI, Alessandra GORIA, Paolo MOMBRINI and Evi SPANTIDAKI: Weather Impacts on Natural, Social and Economic System (WISE) Part I: Sectoral Analysis of Climate Impacts in Italy
CCMP	32.2004	Marzio GALEOTTI, Alessandra GORIA ,Paolo MOMBRINI and Evi SPANTIDAKI: Weather Impacts on Natural, Social and Economic System (WISE) Part II: Individual Perception of Climate Extremes in Italy
CTN	33.2004	Wilson PEREZ: Divide and Conquer: Noisy Communication in Networks, Power, and Wealth Distribution
KTHC	34.2004	Gianmarco I.P. OTTAVIANO and Giovanni PERI (lxviii): The Economic Value of Cultural Diversity: Evidence from US Cities
KTHC	35.2004	Linda CHAIB (lxviii): Immigration and Local Urban Participatory Democracy: A Boston-Paris Comparison
KTHC	36.2004	Franca ECKERT COEN and Claudio ROSSI (Ixviii): Foreigners, Immigrants, Host Cities: The Policies of Multi-Ethnicity in Rome. Reading Governance in a Local Context
KTHC	37.2004	Kristine CRANE (lxviii): Governing Migration: Immigrant Groups' Strategies in Three Italian Cities - Rome, Naples and Bari
KTHC	38.2004	Kiflemariam HAMDE (lxviii): Mind in Africa, Body in Europe: The Struggle for Maintaining and Transforming Cultural Identity - A Note from the Experience of Eritrean Immigrants in Stockholm
ETA	39.2004	Alberto CAVALIERE: Price Competition with Information Disparities in a Vertically Differentiated Duopoly
PRA	40.2004	Andrea BIGANO and Stef PROOST: The Opening of the European Electricity Market and Environmental Policy: Does the Degree of Competition Matter?

CCMP	41.2004	Micheal FINUS (lxix): International Cooperation to Resolve International Pollution Problems
KTHC	42.2004	Francesco CRESPI: Notes on the Determinants of Innovation: A Multi-Perspective Analysis
CTN	43.2004	Sergio CURRARINI and Marco MARINI: Coalition Formation in Games without Synergies
CTN	44.2004	Marc ESCRIHUELA-VILLAR: Cartel Sustainability and Cartel Stability
NRM	45.2004	Sebastian BERVOETS and Nicolas GRAVEL (lxvi): Appraising Diversity with an Ordinal Notion of Similarity:

(lix) This paper was presented at the ENGIME Workshop on "Mapping Diversity", Leuven, May 1617, 2002
(lx) This paper was presented at the EuroConference on "Auctions and Market Design: Theory, Evidence and Applications", organised by the Fondazione Eni Enrico Mattei, Milan, September 2628, 2002
(lxi) This paper was presented at the Eighth Meeting of the Coalition Theory Network organised by the GREQAM, Aix-en-Provence, France, January 24-25, 2003
(lxii) This paper was presented at the ENGIME Workshop on "Communication across Cultures in Multicultural Cities", The Hague, November 7-8, 2002
(lxiii) This paper was presented at the ENGIME Workshop on "Social dynamics and conflicts in multicultural cities", Milan, March 20-21, 2003
(lxiv) This paper was presented at the International Conference on "Theoretical Topics in Ecological Economics", organised by the Abdus Salam International Centre for Theoretical Physics - ICTP, the Beijer International Institute of Ecological Economics, and Fondazione Eni Enrico Mattei - FEEM Trieste, February 10-21, 2003
(lxv) This paper was presented at the EuroConference on "Auctions and Market Design: Theory, Evidence and Applications" organised by Fondazione Eni Enrico Mattei and sponsored by the EU, Milan, September 25-27, 2003
(lxvi) This paper has been presented at the 4th BioEcon Workshop on "Economic Analysis of Policies for Biodiversity Conservation" organised on behalf of the BIOECON Network by Fondazione Eni Enrico Mattei, Venice International University (VIU) and University College London (UCL), Venice, August 28-29, 2003
(lxvii) This paper has been presented at the international conference on "Tourism and Sustainable Economic Development - Macro and Micro Economic Issues" jointly organised by CRENoS (Università di Cagliari e Sassari, Italy) and Fondazione Eni Enrico Mattei, and supported by the World Bank, Sardinia, September 19-20, 2003
(lxviii) This paper was presented at the ENGIME Workshop on "Governance and Policies in Multicultural Cities", Rome, June 5-6, 2003
(lxix) This paper was presented at the Fourth EEP Plenary Workshop and EEP Conference "The Future of Climate Policy", Cagliari, Italy, 27-28 March 2003

	2003 SERIES
CLIM	Climate Change Modelling and Policy (Editor: Marzio Galeotti)
GIEV	Global Governance (Editor: Carlo Carraro)
NRM	Sustainability Indicators and Environmental Valuation (Editor: Anna Alberini)
KNOW	Knowledge, Technology, Human Capital (Editor: Gianmarco Ottaviano)
IEM	International Energy Markets (Editor: Anil Markandya)
CSRM	Corporate Social Responsibility and Management (Editor: Sabina Ratti)
PRIV	Privatisation, Regulation, Antitrust (Editor: Bernardo Bortolotti)
ETA	Economic Theory and Applications (Editor: Carlo Carraro)
CTN	Coalition Theory Network

2004 SERIES

CCMP Climate Change Modelling and Policy (Editor: Marzio Galeotti)
GG Global Governance (Editor: Carlo Carraro)
SIEV Sustainability Indicators and Environmental Valuation (Editor: Anna Alberini)
NRM Natural Resources Management (Editor: Carlo Giupponi)
KTHC Knowledge, Technology, Human Capital (Editor: Gianmarco Ottaviano)
IEM International Energy Markets (Editor: Anil Markandya)
CSRM Corporate Social Responsibility and Management (Editor: Sabina Ratti)
PRA Privatisation, Regulation, Antitrust (Editor: Bernardo Bortolotti)
ETA Economic Theory and Applications (Editor: Carlo Carraro)
CTN Coalition Theory Network

[^0]: ${ }^{\dagger}$ IDEP-GREQAM and Université de la Méditerranée, Centre de la Vieille Charité, 2, rue de la Charité, 13002 Marseille, Cedex, France
 ${ }^{\ddagger}$ IDEP-GREQAM and Université de la Méditerranée, Centre de la Vieille Charité, 2, rue de la Charité, 13002 Marseille Cedex, France Gravel@ehess.cnrs-mrs.fr

[^1]: ${ }^{1}$ The possibly non-standard notation of this paper is as follows. Given any set A, we denote by $|A|$ its cardinality. By a binary relation B on a set Ω, it is meant a subset of $\Omega \times \Omega$. Following common use we write $x B y$ instead of $(x, y) \in B$. For a binary relation B, its asymmetric factor B_{A} is defined by $x B_{A} y \Longleftrightarrow x B y \wedge \neg(y B x)$ and its symmetric factor B_{S} by $x B_{S} y \Longleftrightarrow(x B y) \wedge(y B x)$. A binary relation B on Ω is reflexive if $x B x$ for all $x \in \Omega$, is complete if $(x B y)$ or $(y B x)$ holds for every x and $y \in \Omega$, is transitive if $x B z$ follows from $x B y$ and $y B z$ for any x, y and z. A reflexive, complete and transitive binary relation is called an ordering.

[^2]: ${ }^{2}$ Hence, axiom 1 is formulated with a slight abuse of notation since, for $x=y$, the set $\{x, y\}$ is, in fact, the singleton $\{x\}$ (or $\{y\}$).

