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Abstract

The paper studies, in a repeated interaction setting, how the presence of cooperative
agents in a heterogeneous community organized in groups a¤ects e¢ ciency and group sta-
bility. The paper expands on existing literature by assuming that each type can pro�tably
mimic other types. It is shown that such enlargement of pro�table options prevents group
stabilization in the single group case. Stabilization can be obtained with many groups, but
its driver is not the e¢ ciency gain due to the presence of cooperative individuals. Rather,
stabilization is the result of free riding opportunities.

keywords: adverse selection, group stability, altruism
JEL codes: D64 D71 D82

1 Introduction

This paper studies how the degree of cooperativeness a¤ects e¢ ciency in a community organized

in groups, when individual type is private information and group stability is endogenous. In this

regard our interest is akin to Ghosh and Ray�s (1996). They consider a population composed

by patient and impatient individuals. Initially, individuals are randomly matched in pairs to

play a prisoner dilemma in continuous strategies. At the end of each period partners may opt

between continuing their current relationship or separating and trying another random matching.

In the case of break o¤, information about partners� types is not disclosed to the rest of the

population (local information). It is shown that the presence of the impatient type gives a value

to being matched with the patient type, which can support cooperation among patient players.

Equilibrium strategies contemplate an initial round in which patient players test their partners

by setting a moderate level of cooperation. If the partner is patient, he does the same and an
�Dipartimento di Scienze Economiche,Università di Padova, Via del Santo 33 . tel: +39 49 8274224; e-mail:

ottorino.chillemi@unipd.it
yDipartimento di Scienze Economiche,Università di Padova, Via del Santo 33 . tel: +39 49 8274225; e-mail:

benedetto.gui@unipd.it
zDipartimento di Scienze Economiche,Università di Padova, Via del Santo 33 . tel: +39 49 8274260; e-mail:

lorenzo.rocco@unipd.it

1



ever-lasting relationship starts, where cooperation is at its highest possible level. If the partner

is impatient, he does not cooperate and the relationship breaks down. Therefore, equilibrium

permanent relationships emerge with a positive e¤ect on social surplus. Similar results can be

found in Kranton (1996) � for later contributions see Rauch and Watson (2002) and Watson

(2002) �and in the reputation building literature following the seminal paper of Milgrom and

Roberts (1982).

At �rst sight, Ghosh and Ray�s results are somewhat surprising, since one might expect that

the incentive costs of exploiting information, elicited in the early phase of a relationship, exceed

the bene�t from exploitation itself, due to the �ratchet�e¤ect. However, a careful examination

shows that such exploitation costs never arise in their framework. On the one hand, �bad�

(impatient) agents do not face any temptation to mimic patient players - they always �nd it

advantageous to defect at the �rst opportunity. On the other hand, �good� agents can only

accede to the bene�ts of a stable relationship by being considered patient. So, in the absence of

any incentive to misreport, the ratchet e¤ect is excluded by de�nition.

In the model we present below, in which we stick to the assumption that information is local,

the bad type may mimic the good type in the �rst interaction and then, if stabilization occurs,

exploit their partners.

Let us brie�y describe our setting. We consider a two-period model in which members of a

large population of risk-neutral individuals interact in groups. Initially, groups are formed ran-

domly. After completing the �rst round of interaction, each group can either continue interaction

or dissolve. In the case of dissolution, former group members are randomly assigned to newly

formed �fresh�groups. In both periods group members bargain over sharing the cost of provi-

sion of an indivisible local public good. Bargaining is modelled as a direct revelation mechanism

in which a benevolent principal maximizes expected group surplus over the rest of the game1 .

Individual type is bi-dimensional. The �rst dimension is the degree of alignment of the objective

function of the agent with that of the principal (we refer to this feature as altruism towards

partner group members). This is a time-invariant characteristic, which is privately learned at

the beginning of the whole game. The second dimension, which is privately learned at the be-

ginning of each period, is the agent�s own �material�bene�t deriving from the consumption of

the public good. Types are independently and identically distributed both among individuals

and also over time. Type distribution is common knowledge. Moreover, the two components

1Group payo¤ thus obtained is to be viewed as an upper bound to the expected group surplus that can be
obtained through any bargaining procedure.
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of an individual�s type are stochastically independent. We also assume that no intertemporal

and intergroup transfers are possible and that information revealed within a group does not leak

outside.

Decisions concerning continuation/stabilization of a group are taken by the �rst-period prin-

cipal. In the case of continuation he transmits information about group composition to group

members and to his second-stage successor, whose task is reduced to operating a mechanism for

the revelation of the agents�second-period levels of material bene�t from the public good. We

analyze the adverse incentive e¤ects that prevent group members from taking full advantage of

the information about group composition that emerges in the �rst stage of the game. We show

that stable relationships can emerge in equilibrium; this has positive value for group members,

but hurts society, in the sense that social surplus is lower than in a situation in which stable

relationships are forbidden.

The rest of the paper is organized as follows. Section 2 presents the model, Section 3 con-

tains the main results, Section 4 discusses the robustness of our �ndings and suggests possible

extensions, Sections 5 concludes. Minor technical proofs are collected in two appendices.

2 The model

At date t = 1 , nature randomly forms N groups, each one composed of n members. Next in each

group a benevolent principal announces the probabilities of provision of the public good and the

payments due by each individual. Both probabilities and payments are functions of all members�

reported types. The principal also announces the probability that the group is stabilized, that

is, all members remain together, in which case he informs the second-period principal and all

members about individuals�permanent types, as a function of reported types. The principal of a

group maximizes the sum of expected surpluses, over the two periods, of the agents he currently

supervises. Observing the menu of proposed allocations and probabilities of group stabilization,

each group member con�dentially reports his type to his principal. At date t = 2, non-stabilized

groups dissolve and their members are randomly matched into fresh groups, where they play

again the direct revelation mechanism faced at date 1, under the rule of a new principal � of

course, the decision about a group�s stabilization is irrelevant in the second period since the

game ends. Rather, the members of stabilized groups play a direct mechanism for the revelation

of their material bene�t under the supervision of a new principal and common knowledge of

members�permanent types. For the sake of simplicity, in our analysis agents do not learn about
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their partners� types by observing realized payments. To this end, we assume that goods are

produced and consumed, and transfers are paid only at the end of the second period.

The sake of simplicity also motivates the assumption that the �rst-period and the second-

period principals do not coincide. This allows us to avoid consideration of intertemporal strate-

gies, and also of the tricky issue of what information the principal should communicate to the

agents2 .

Agents�preferences are modelled as follows. Type-e agents maximize their own present and

future expected material bene�ts; type-a agents are more aligned with the principal: they also

assign a positive weight to the material bene�t (present and future) of the current partners.

Furthermore, we limit the possibility of redistribution by assuming that an agent�s utility is

in�nitely negative if his ex post material bene�t is negative.

Therefore type-a agents do not take into account the bene�t that will accrue to the new

partners they will interact with in the case that the group is dissolved 3 . However, if dissolution

occurs, when taking their second period decisions, they will be concerned with the welfare of their

partners at that time. Furthermore, from the outset, they rationally anticipate the consequences

of such concern on their own future material bene�ts. This kind of concern characterizes the

attitude of an agent who, when interacting with a group of people, takes his partners�welfare

into account. However, their welfare is not for him a source of utility to be included in his own

intertemporal maximand (on this see Sen 1985).

To further limit the possibility of redistribution, we posit that individual payments cannot

be negative and the budget must balance within each group in each period.

To further simplify, we will only consider the cases in which members of a �rst-period group

meet again in fresh groups with probability one and with probability zero, respectively �so we

disregard the case in which this probability is fractional. This corresponds to N = 1 (one group

only), and to N =1 (a very large number of groups), respectively:

Given that individuals are ex-ante identical, we can limit our attention to anonymous mech-

anisms; moreover, we focus on truth-telling, symmetric, perfect Bayes-Nash equilibria.

Now, we can state a list of objects.

The individual type in period i is ti = (t1;ti2)2T = fa; eg � fh; lg where t1 is the alignment

parameter, assumed to be time invariant, and ti2 is the private bene�t from the public good, a

2The timing of production and payment can be the usual one �that is, public goods are produced and transfers
are paid at the end of each period � when the number of active groups is very large, since in such a case the
realized state in a �rst period group does not convey any additional information on the population distribution.

3 Instead, in his �rst-period decisions a type-a agent assigns a positive weight to the future welfare of his
�rst-period partners even if in the second period they will be dispersed.
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time-varying parameter.

The cost of the public good is c > 0.

At date 1, it is common knowledge that Pr(t1 = a) = � 2 (0; 1), Pr(t1 = e) = 1 � �;

Pr(ti2 = h) = p 2 (0; 1); Pr(ti2 = l) = 1� p , Pr(ti)= Pr(t1) Pr(ti2), all i.

A realization of the agents� type pro�le, i.e. a state, at date i is denoted vi. A state

is completely described by the number of agents of each type, viti , all t
i, so vi is de�ned as

vi=
�
viah; v

i
al; v

i
eh; v

i
el

�
: Henceforth we will omit the zeros and � for the reader�s comfort �we

write, for example, vi = (nah) in place of vi = (n; 0; 0; 0); vi = (kah:(n � k)eh) in place of

vi = (k; 0; n� k; 0); and so on.

When considering the possibility of agents deviating from truth-telling, we need to consider

only one deviator at a time. So we express the reported state as a function of the true state and

the deviation in the following way.

Let j 2 J = f1; 2; sk; k = 0; 1; ::; ng denote, respectively, a period-one group, a period-two

fresh group, a period-two stabilized group, with k type-a members. Let dj 2 T denote the type

reported in group j by the agent under consideration; then bv(vi; ti;dj) is the reported state in
group j when the true state is vi (recall that states and types are time-dependent), the reporter is

of type ti and declares dj while all the other individuals truthfully report their types. Hereafter,

for simplicity we omit all the arguments of bv and refer to the kind of group under examination
by adding the apex j: i.e. bvj denotes the reported state in group j. If ti= dj ; obviously bvj= vi;
if instead dj 6= ti , it is bvj = fbvj� : bvj� = vi� for � =2 fti;djg; bvj� = vi� � 1 for � = ti; bvj� = vi� + 1
for � = djg: We write dj =

�
d11; d

j
2

�
; j = sk, k = 0; 1; :::; n, to emphasize that in stabilized

groups the permanent type is common knowledge since it has already been revealed at time 1.

The payment, if any, due by an individual who reports dj in a group j when the reported state

is bvj is denoted gj(bvj ;dj): The probability of provision of the public good when the reported
state is bvj is denoted rj(bvj) 2 [0; 1] :Moreover, � �bv1ah + bv1al� is the probability that a �rst-period
principal opts for stabilization and informs the second-period principal about individual types:

it is a function of the reported number of type-a members.

We de�ne 	j =
�
gj(bvj); rj(bvj); all bvj ; k = 0; 1; :::; n	 ; all j: Now, 	j , j 6= 1; is the strategy

of a j-group principal while the strategy of the �rst-period principal is f	1; � (k) ; k = 0; 1; :::; ng.

In order to gain an overall picture of the game, we now write the problem of each principal

in a very general form. Suppose that N = 1 and the stabilization policies of �rst-period

principals are identical and denoted by �. By knowing � and in turn the proportion of type-a

agents in their groups, all second-period principals each solve a static direct revelation problem.
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Denoting �j (	j ; �) the expected surplus of a j-group, j 6= 1;4 the corresponding value function

is Vj(�) = max
	j

�j (	j ; �) where 	j satis�es the ex-post budget-balance constraint, the non-

negative payment constraint, the participation and incentive compatibility constraints for all

types.

Proceeding backwardly, the each �rst-period principal solves a more complex direct revelation

problem. Denote � = �1 (	1;�; �) +�c
��
	�j
	
; �
�
the overall expected surplus of the members

of his group, where �1 is the current expected surplus, �c is the expected surplus in the second

period, and 	�j is the optimal strategy of j-group principals. The value of his problem is V (�) =

max
	1;�

� where f	1;�g satis�es ex post budget-balance, the non-negative payment constraint,

and the intertemporal participation and incentive compatibility constraints for all types. In a

symmetric equilibrium, when there are N = 1 �rst-period principals, it is ��(�) = �; where

�� is the optimal stabilization policy of a �rst-period principal � recall that his stabilization

decision does not in�uence the composition of the fresh population in the second period. In

the case N = 1, of course, there is no strategic interaction among �rst-period principals; �

is directly determined by the unique �rst-period principal, who solves a linear programming

problem after having computed the optimal strategies of second-period principals (recall that if

a fresh group occurs, its composition will be the same as the �rst-period group). The following

pictures illustrate the structure of the game.

[FIGURE 1 AND FIGURE 2 HERE]

After this overview, let us precisely describe our game. Preliminarily, a list of more complex

objects has to be de�ned. In doing that, to simplify notation, we do not make anymore explicit

the dependence on �.

The material surplus, if any, accruing in group j to an individual of type ti who reports dj

when bvj is the reported state is sj(ti; bvj ; dj). We de�ne
sj(t

i; bvj ;dj) = dj2 � gj(bvj ;dj) (1)

The unconditional probability of state vi is Pr
�
vi
�
while Prj

�
vi
�
denotes the probability of

state vi as seen by a j-group principal. To illustrate the latter, let n = 2: Then, for instance,

Prs1 (ah:eh) = p
2; Pr1 (ah:eh) = 2�p (1� �) p; Pr2 (ah:eh) = 2�p (1��) p; where � is obtained

by applying Bayes�rule using the strategies of �rst-period principals. Moreover, Pr(k) denotes

4 Inclusion of � among the arguments of �j is redundant for j 6= 2:
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the probability a �rst-period principal assigns to the event that the number of type-a members

in his group is k.

Under truth-telling, the principal of a j-group computes current expected surplus as

�j =
X
vi2V

Prj(v
i)rj(v

i)
X

�2T :v�>0
vi� sj(� ;v

i; � ) (2)

(Notice that i = 1 when j = 1 and i = 2 otherwise.)

From the perspective of a type-t1 member who reports d1, his �rst-period expected material

surplus is

z1
�
t1;d1

�
=
X
v12V

Pr1(v
1j t1)r1(bv1)s1(t1; bv1;d1) (3)

Similarly, the expected surplus in a j-group, j 6= 1; of an agent of type t2 who reported d11
in the �rst period and reports dj in the second period is

zj
�
t2; d11;d

j
�
=
X
v22V

Prj(v
2j t2;d11)rj(bvj)sj(t2; bvj ;dj) (4)

Moreover, an individual who is of type � 2 and reports d2 in the second period after having

reported d11 in the �rst period, will compute the surplus in a fresh group to a type t
2 individual

as follows

zt
2

2

�
� 2; d11;d

2
�
=
X
v22V

Pr2(v
2j � 2;d11)r2(bv2)s2(t2; bv2; t2) (5)

In the �rst period, a type t1 individual who reports d1 expects that the total �rst period

surplus to his partners is

�1
�
t1;d1

�
=
X
v12V

Pr1(v
1j t1)r1(bv1)

24(bv1d1 � 1)s1(d1;bv1;d1)+ X
�12T;�1 6=d1

bv1�1s(� 1; bv1; � 1)
35 (6)

Similarly, for j 6= 1; in a j-group, a type t2 individual who reports dj , after having reported

d11 in the �rst period expects that the total surplus accruing to his current partners is

�j
�
t2;d11;d

j
�
=
X
v22V

Prj(v
2j t2;d11)rj(bvj)

24(bvjdj � 1)sj(dj ;bvj ;dj)+ X
�22T;�2 6=dj

bvj�2s(� 2; bvj ; � 2)
35
(7)

Let bk �k; t1; d11� denote the number of agents who report to be of type-a in a �rst-period
group, when the actual number of type-a agents is k and an agent of type t1 reports d11 while his

partners tell the truth.
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A type � 2 agent who reports d2 in the second period after having reported d11 in the �rst

period expects, conditionally on the number of reported altruists bk; that the total surplus accruing
to his former partners in fresh groups is


2(�
2; d11;d

2;bk) = �bk � 1[d11=a]�Et22z(a;t22)2

�
� 2; d11;d

2
�
+

+ (n� bk � 1 + 1[d11=a])Et22z(e;t22)2 (� 2; d11;d
2) (8)

where 1[d11=a]
is a dummy which takes 1 if d11 = a and zero otherwise. Notice that this

de�nition covers the cases N = 1 and N =1 only.

In order to de�ne the objective function of the agents, let zFj (�) = zj(�) if none of the addends

that sum up to zj(�) is negative, and zFj (�) = �1 otherwise, for all j. Then, the objective

function of an agent in group j 6= 1 is

Uj
�
t2;d11;d

j
�
= zFj

�
t2; d11;d

j
�
+ t1�j

�
t2;d11;d

j
�

(9)

i.e. the sum of an individual�s material surplus and of his partners� surplus weighted by his

alignment parameter. With this formulation there is a material surplus threshold below which

even a fully altruistic agent is not willing to sacri�ce himself for the bene�t of his partners.

Notice that, were it not so, a low bene�t agent might deviate and declare high bene�t.

For j = 1, the agent�s objective function is the sum of two components: U1
�
t1;d1

�
+

C
�
t1;d1

�
; where

U1
�
t1;d1

�
= zF1

�
t1;d1

�
+ t1�1

�
t1;d1

�
(10)

and

C
�
t1;d1

�
=

nX
k=0

Pr(k j t1)�(bk)Et22 hz�sbk(�t1; t22� ; d11;d�sbk �t2; d11�) + t1��sbk �ti;d11;d�sbk �t2; d11��i+
+

nX
k=0

Pr(k j t1)(1� �(bk))Et22 hz�2(�t1; t22� ; d11;d�2 �t2; d11�) + t1
�2(�t22; t1� ; d11;d�j �t2; d11� ;bk)i
(11)

where d�j
�
t2; d11

�
; j 6= 1; is the the optimal report of a type t2 individual who reported

d11 in the �rst period, when the j-group principal plays his equilibrium strategy 	�j � that is,

d�j
�
t2; d11

�
= argmaxdj Uj(t

2;d11;d
j ; 	�j ). The other symbols with an asterisk are similarly de-

�ned. Equation (11) de�nes the expected continuation payo¤ throughout period 2 and takes into

account both the possibility of stabilization and the uncertainty on individual future evaluation

of the public good.

Finally, we make the following additional assumptions:
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Assumption a1 h = 1; l = 0

This is an innocuous normalization.

Assumption a2 c < n� 1

Only under a2 might high bene�t individuals pro�t from reporting low bene�t.

Assumption a3 a = 1; e = 0

To simplify, we consider only the case in which type-a agents assign the same weight to their

own material bene�t and to their partners�, and type�e agents are indi¤erent to the fate of their

partners. This allows us to label type-a agents altruists and type-e ones egoists.

Assumption a4 The parameters are such that in an isolated interaction ine¢ ciency is obtained

at equilibrium.

Asymmetric information is an interesting problem to study only if e¢ ciency cannot be ob-

tained at equilibrium. Below ine¢ ciency is guaranteed at equilibrium by assumption a4�together

with assumption a7 (see p. 10 and Appendix A).

Assumption a5
�Pbvj

dj
2bvj bvjdjgj(bvj ;dj)� c� rj(bvj) = 0

As mentioned, we require ex-post budget balance.

Assumption a6 gj(vj ; tj) � 0:

This assumption excludes pure redistribution.

3 Analysis

Let us state the problem. The principal of a j-group, j 6= 1; having observed �; if j = 2, or

having learned the number of type-a individuals in his group if j = sk; k = 0; :::; n, solves the

following program, assuming that truth-telling is obtained in the �rst period.

Program j : max
	j

�j (12)
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s. t.  X
t22T

v2t2gj(v
2; t2)� c

!
rj(v

2) = 0; 8v22V (13)

0 � gj(v2; t2) 8v22V; 8t22T (14)

0 � rj(v2) � 1; 8v2 2 V (15)

Uj
�
t2; t2

�
� 0; 8t22T (16)

Uj
�
t2; t2

�
� Uj

�
t2;dj

�
; 8(t2;dj) 2 T � T (17)

Conditions (13)-(15) simply require feasibility within our framework. Inequality (16) imposes

individual rationality and inequality (17) requires that truth-telling is incentive compatible.

Consider now the principal�s problem at j = 1 (in the following an asterisk denotes an object

evaluated at the equilibrium values of program j). Let

�c
��
	�j
	
; �
�
=

=
nX
k=0

Pr(k)
n
�(k)��sk + (1� �(k))Et22

�
kz�2

��
a; t22

�
; a;
�
a; t22

��
+ (n� k)z�2(

�
e; t22

�
; e;
�
e; t22

�
)
�o
(18)

be the expected surplus in the second period.

The �rst-period principal solves the following program, assuming that the other �rst-period

principals, if any, are playing the strategy �:

Program 1 : max
	1;�

�
�1(	1;�; �) + �c

��
	�j
	
; �
��

s. t.  X
t12T

vt1g1(v
1; t1)� c

!
r1(v

1) = 0;8v12V (19)

0 � g1(v1; t1); 8v12V;8t12T (20)

0 � r1(v1) � 1; 8v12V (21)

U1
�
t1; t1

�
+ C

�
t1; t1

�
� 0; 8t1 2 T (22)

U1
�
t1; t1

�
+ C

�
t1; t1

�
� U1

�
t1;d1

�
+ C

�
t1;d1

�
; 8(t1;d1) 2 T � T (23)

Similar to program j de�nition, conditions (19)-(21) impose feasibility, inequality (22) is the

intertemporal participation constraint and inequality (23) is the intertemporal incentive compat-

ibility constraint. Of course at a symmetric Nash equilibrium it will be � = �: In appendix C

we prove that a symmetric equilibrium always exits.
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To further simplify the analysis we make the following assumption.

Assumption a7 Groups size is n = 2.

As a result, the number of possible type pro�les (states) is greatly reduced. We will comment

on the generalization to the case of groups of any size in section 4.

When n = 2, assumption a4 simpli�es to:

Assumption a4� The probability p that an agent is of type h is such that p > 2�2c
2�c(1+�) :

Now we have all the tools to develop our analysis. The �rst question we study is whether a

�rst-period principal may �nd it pro�table to stabilize the group and communicate his informa-

tion to the second-period principal. Preliminarily, let us state a simple fact.

Fact 1 In an isolated interaction, the group expected surplus is larger when the permanent type

of each member is common knowledge than when it is private information.

Proof. See Appendix, part A.

It follows from Fact 1 that if eliciting information on permanent types were not costly, then

group stabilization would certainly bene�t society, because in the second period common knowl-

edge would induce higher surplus. However, notice that from a �rst-period principal�s perspec-

tive, when a group is composed of two type-e agents, group surplus would be larger when the

group is dissolved and members go to fresh groups, but this would be detrimental for society.

Therefore the values of information for a group and for society as a whole do not coincide.

Nevertheless, knowledge of group composition would be an asset that one would like to exploit,

choosing whether to stabilize or dissolve the group. In a context of asymmetric information,

extracting private information from the agents is costly. Does this cost exceed the bene�ts of

common knowledge? We shall provide an answer in the next subsections.

3.1 Only one active group

The analysis of the whole game is rather complex, so it is illuminating to study �rst the problem

under the hypothesis that only one group exists.

We summarize our �ndings in the following.

Proposition 1 When only one group exists, the knowledge of group composition acquired through

the �rst interaction cannot be exploited to increase per-period surplus with respect to the case

of an isolated interaction. Formally, the �rst-period principal never stabilizes the group, i.e.
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�(k) = 0; k = 0; ::; 2: Such a result is due to the fact that when group stabilization is possible,

the cost of inducing truthful reporting exceeds the e¢ ciency gain.

The same holds when many groups are supervised by a unique principal who aims at maximizing

the overall surplus.

Proof. The equilibrium allocations in stabilized groups coincide with those we characterized in

proving Fact 1 under common knowledge of the individuals�permanent type (see Appendix A).

As far as fresh groups are concerned, the second-period principal computes the probability, �;

that a member is of type-a by means of the Bayes�rule, under the assumption that at date 1 all

agents reported their type truthfully; that is � = �2(1��(2))+2�(1��)(1=2)(1��(1))
�2(1��(2))+2�(1��)(1��(1))+(1��)2(1��(0)) : Now,

suppose �(k) = 0; k = 0; ::; 2 at equilibrium. Then, it follows that � = �; and hence the equilib-

rium allocation coincides with that we found in proving Fact 1 under asymmetric information.

To prove that �(k) = 0; all k is not immediate. Indeed, the stratagem used in the proof of the

ratchet e¤ect in Fudenberg and Tirole,1991, of constructing an equivalent static strategy through

an appropriate averaging of the candidate optimal dynamic strategy, does not apply in our game:

no averaging can simultaneously conserve both the surplus of the group and that of each agent.

So, we proceed in two steps. In the �rst step we consider a modi�ed mechanism in which the

above mentioned stratagem applies. In the second step we show that the optimal solution of the

modi�ed mechanism also maximizes the original mechanism.

Step 1

Consider a new mechanism, which di¤ers from the one considered above only in the tim-

ing of reporting: each agent �rstly reports his permanent type to the principal, then learns

his own bene�t from the public good and reports it without knowing the permanent type

of his partners � except, of course, in stabilized groups in which no reporting of the per-

manent type is needed and members�permanent reported types are common knowledge. Let

	e =
�
rej (bvj); gej (bvj ;dj); j = 1; 2; s0; s1; s2; all bvj ; all dj	 denote an equilibrium choice of prob-

abilities of provision and transfers in this modi�ed game, and let lotteries 
j(t
i;dj ; bvj) =�

rej (bvj); 1� rej (bvj); ti2 � gej (bvj ;dj); 0	 denote the surplus allocation for a j-group to an indi-
vidual of type ti, i = 1; 2, who declares dj ; when the reported state is bvj , j = 1; 2,s0; s1; s2:
The equilibrium surplus allocation in the whole game that a type-e individual expects before
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learning his private bene�t is

S
�
e; e;

�

j
	�
= p� [p
1(eh; eh; eh:ah) + (1� p) 
1(eh; eh; eh:al)]+

+ �p2 [�(1)
s1(eh; eh; eh:ah) + (1� �(1)) 
2(eh; eh; eh:ah)]+

+ �p(1� p) [�(1)
s1(eh; eh; eh:al) + (1� �(1)) 
2(eh; eh; eh:al)]+

+ (1� �) p [p
1(eh; eh; 2eh) + (1� p) 
1(eh; eh; eh:el)]+

+ (1� �) p2 [�(0)
s0(eh; eh; 2eh) + (1� �(0)) 
2(eh; eh; 2eh)]+

+ (1� �) p(1� p) [�(0)
s0(eh; eh; eh:el) + (1� �(1)) 
2(eh; eh; eh:el)] (24)

Now let us consider the class of strategies for the �rst-period principal such that �(k) = 0;

k = 0; ::; 2: Observe that if a strategy in this class results as being optimal, the second-period

principal will also be using it at equilibrium � we are assuming uniqueness for simplicity; of

course, choosing a value for � (k)0 s is not essential in the second period. We name a strategy

with �(k) = 0; k = 0; ::; 2; a static strategy.

We will show that, whatever the equilibrium allocation set
�

j
	
; we can always attain the

principal�s problem value by restricting attention to static strategies. This means that using

information extracted in the �rst period is worthless.

Let 
(t1;d1; bv1) be the allocation, induced by an optimal strategy in the class of static strategies,
to an individual of type t1 who reports d1 in state bv1.
Next, consider an individual who is of type t1 in the �rst period and rewrite his surplus allocation

for the whole game, let it be denoted by S (t1; t1; f
g) ; when 
() and not 
j(); for all j, is adopted.

Notice that the expected value of S (t1; t1; f
g) (expectation is computed with respect to the

probabilities of provision) equals Et12
�
U1
�
t1; t1

�
+ C

�
t1; t1

��
. As an example, the equilibrium

expected surplus of a type e individual is

S (e; e; f
g) = p� [p
(eh; eh; eh:ah) + (1� p) 
(eh; eh; eh:al)]+

+ �p2
(eh; eh; eh:ah) + �p(1� p)
(eh; eh; eh:al)+

+ (1� �) p [p
(eh; eh; 2eh) + (1� p) 
(eh; eh; eh:el)]+

+ (1� �) p2
(eh; eh; 2eh) + (1� �) p(1� p)
(eh; eh; eh:el) (25)

Notice that S (e; e; f
g) can be obtained from S
�
e; e;

�

j
	�
by writing 
() instead of 
j in all

states, and then simplifying.
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It will be S (e; e; f
g) = S
�
e; e;

�

j
	�
if the following set of elementary conditions on f
g is

satis�ed:


(eh; eh; eh:� ) =

1(eh; eh; eh:� )

2
+

+
1

2

2X
k=0

Pr(k j e:� )
�
� (k) 
sk (eh; eh; eh:� ) + (1� � (k)) 
2 (eh; eh; eh:� )

	
8� : (26)

In the same way we get:


(ah; ah; 2ah) =

1(ah; ah; 2ah)

2
+

+
1

2
[� (2) 
s2(ah; ah; 2ah) + (1� � (2)) 
2(ah; ah; 2ah)] (27)


(ah; ah; ah:eh) =

1(ah; ah; ah:eh)

2
+

+
1

2
[� (1) 
s1(ah; ah; ah:eh) + (1� � (1)) 
2(ah; ah; ah:eh)] (28)


(ah; ah; ah:el) =

1(ah; ah; ah:el)

2
+

+
1

2
[� (1) 
s1(ah; ah; ah:el) + (1� � (1)) 
2(ah; ah; ah:el)] (29)


(ah; ah; ah:al) =

1(ah; ah; ah:al)

2
+

+
1

2
[� (2) 
s2(ah; ah; ah:al) + (1� � (2)) 
2(ah; ah; ah:al)] (30)


(�l; �l; �l:� ) = f�; �; 0; 0g (31)

These conditions are such that the strategy that implements f
g is well de�ned: that is, both
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its r (v)�s and g(v; t)�s are de�ned in terms of all the equilibrium probabilities rj (v) and all

the payments gj(v; t) in such a way that the allocation for a given type in a given state uses

the same probabilities of providing the good as the other types�allocations in the same state.

Moreover each of these allocations is feasible, because it is a convex linear combination of feasible

allocations contingent on the same state � so all constraints on payments and ex-post budget

balance constraints are satis�ed.

Now let us prove that the strategy that implements f
g is incentive compatible. Unilateral

deviations from truthful reporting to be considered are (indicating the true type on the left side

and the false type on the right side): e! a; a! e; eh! el; ah! al:

Since by construction; each type�s expected payo¤ from truthful reporting is the same under

f
g and
�

j
	
; the strategy that implements f
g is incentive compatible if the expected value of

lottery S (t1; d1; f
g) is lower than the expected value of lottery S
�
t1; d1;

�

j
	�
for each possible

t1; d1: Now, notice that the strategy that implements f
g must induce an individual of type t1

at date 1 to report t1. Instead the strategy that implements
�

j
	
; j = 1; 2; sk; k = 0; 1; 2 must

induce an individual that is of type t1 at date 1 not only to report his true type in group 1

but also to report his true types in all the possible second period groups. Therefore the strategy

which implements f
g o¤ers less opportunities for lying that the strategy that implements
�

j
	
:

Thus we conclude that the expected value of lottery S (t1; d1; f
g) is lower than the expected

value of lottery S
�
t1; d1;

�

j
	�
.

Finally, noting that the �rst-period principal gets the same group surplus as with
�

j
	
, we

conclude that (f
g ; f
g) is no worse than
�

j
	
; j = 1; :::; 2: Actually, the �rst-period principal�s

surplus coincides with the altruist�s expected payo¤ if at least one altruist belongs to the group

and with twice the egoist�s expected payo¤ if only egoist agents compose the group. Given that

our construction conserves total individual payo¤ for all types in any state, it also conserves

�rst-period principal surplus5 .

Step 2.

Let us come back to our original game, in which each agent learns and reports both dimensions

of his type simultaneously. Note that the incentive constraints in the �rst-period mechanism are

more restrictive than those considered in the modi�ed mechanism of step 1, since the deviations

to be considered are eh ! al; eh ! el; eh ! ah; el ! al; ah ! eh; ah ! al; ah ! el; al ! el:

Notice that our assumption that material surplus must be nonnegative implies that no low type

will ever report high type.

5Recall that a high bene�t altruist�s material surplus is one half of his surplus.
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It follows that in the class of the strategies that use the information elicited in the �rst period,

no strategy can exist that does better than the best strategy in the modi�ed game above.

Let us consider the class of those strategies that do not use the information elicited in the �rst

period. We will show that the system of incentive compatibility constraints in our game is

equivalent to that in the modi�ed game. In what follows we directly replace in the ICs the

optimal payments, which are described in Appendix A. Note the following three facts.

1) Incentive compatibility constraint IC(e; a) in the modi�ed game is equivalent to the two

constraints IC(eh; al), IC(eh; ah) in the original game �a low-type egoist does not have any

incentive to lie. In fact in both games r(�h; �h) = 1; r(�l; �l) = 0 at equilibrium and hence IC(e; a)

is

p�(p+ (1� p)(1� c)r(eh:al)) + p (1� �) (p(1� c

2
) + (1� p)(1� c)r(eh:el)) �

pmax
n
�p(1� c

2
) + (1� p)(1� c)r(ah:al)) + (1� �) (p(1� c) + (1� p)(1� c)r(ah:el));

�pr(ah:al)) + (1� �)pr(eh:al)g (32)

The IC above reads as follows. Take an egoist (addressed also as �rst player). The left-hand-side

represents the payo¤ he obtains by truthfully reporting his permanent type. Suppose he is high

bene�t, an event with probability p. He will obtain a positive surplus, the amount of which

depends on the bi-dimensional type of his partner. Conversely, an egoist with low bene�t (an

event with probability 1� p) will obtain no surplus independently of his partner�s type. Let us

discuss now how the positive expected surplus is formed. If the partner has type (a; h); whose

probability is �p; the public good will be certainly provided. The egoist under scrutiny will get 1

at no cost. The entire cost of provision is paid by his partner. When the partner has type (a; l)

the good is provided with probability r(eh:al), but now the full cost is borne by the �rst player.

Moreover, the partner can also be of type-e. With probability p he will be of type (e; h). In this

case the good is certainly provided and the cost is equally shared. With probability 1 � p the

partner is of type (e; l): now the good is provided with probability r(eh:el) and the entire cost

is born by the �rst player.

The right-hand-side represents agent�s surplus when he lies about his permanent type. Once

more he gets a positive surplus only when his own contingent type is h. Note that he has two

possible lies: saying he is of type (a; h) or of type (a; l). He will clearly opt for the one that

secures more surplus for himself. Consider the possible cases. First, the egoist declares (a; h).

When his partner is of type (a; h), the public good will be certainly provided and the cost is
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equally shared, because both individuals appear to have the same type. When the partner is

of type (a; l) the good is provided with probability r(ah:al) and all the cost is paid by the �rst

player. Again, when the partner is of type (e; h) the good is certainly provided and the cost is

paid by the �rst player because he has declared to be altruist. Finally, when the partner is of

type (e; l), the good is provided with probability r(ah:el) and the cost is born by the �rst player.

Now, suppose the egoist declares to be of type (a; l). If the partner is of type (a; h) the good is

provided with probability r(ah:al) at the partner�s expenses. When the partner is of type (e; h)

the good is provided with probability r(eh:al) again at the partner�s expenses. Finally, note that

when the partner is of low bene�t the good will not be provided.

This incentive constraint is equivalent to the system of constraints IC(eh; al) and IC(eh; ah),

that is

�(p+ (1� p)(1� c)r(eh:al))+

+ (1� �) (p(1� c

2
) + (1� p)(1� c)r(eh:el)) � �pr(ah:al)) + (1� �)pr(eh:al) (33)

�(p+ (1� p)(1� c)r(eh:al)) + (1� �) (p(1� c

2
) + (1� p)(1� c)r(eh:el)) �

�(p(1� c

2
) + (1� p)(1� c)r(ah:al)) + (1� �) (p(1� c) + (1� p)(1� c)r(ah:el)) (34)

2) The system of incentive compatibility constraints IC(a; e) and IC(eh; el) in the modi�ed game

is equivalent to the system of constraints IC(eh; el) and IC(ah; eh) in the original game. In fact

since in both games r(�h; �h) = 1; r(�l; �l) = 0 at equilibrium, and a high altruist will certainly

report h in both games, IC(a; e) is

(1� c)(1� p)p(�r(ah:al) + (1� �)r(eh:al)� �r(ah:el)� (1� �)r(eh:el))+

+ p� (p(2� c)(1� 1) + (1� p) (1� c) (r(ah:al)� r(eh:al)))+

p(1� �)(p(2� c)(1� 1) + (1� p)(1� c)(r(ah:el)� r(eh:el))) � 0 (35)

which simpli�es to

� (r(ah:al)� r(ah:el)) + (1� �) (r(eh:al)� r(eh:el))+

+ �(r(ah:al)� r(eh:al)) + (1� �)(r(ah:el)� r(eh:el)) � 0 (36)
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On the other hand IC(eh; el) is

�r(eh:al) + (1� �)r(eh:el)� �r(ah:el)� (1� �) r(eh:el) � 0 (37)

and IC(ah; eh) is

�r(ah:al) + (1� �) r(ah:el)� �r(eh:al)� (1� �) r(eh:el) � 0 (38)

and hence adding these two constraints we get

�r(ah:al) + (1� �)r(eh:al)� �r(ah:el)� (1� �) r(eh:el) + �r(ah:al)+

+ (1� �) r(ah:el)� �r(eh:al)� (1� �) r(eh:el) =

� (r(ah:al)� r(ah:el)) + (1� �) (r(eh:al)� r(eh:el))+

+ �(r(ah:al)� r(eh:al)) + (1� �)(r(ah:el)� r(eh:el)) � 0 (39)

3) IC(al; el); IC(el; al) and IC(eh; ah) are not binding at equilibrium. (see Appendix part A)

Therefore we have proved that the system of IC constraints in the modi�ed mechanism is equiv-

alent to that of the original mechanism. This allows us to conclude that the class of strategies

for the modi�ed mechanism that do not use the information elicited in the �rst period is large

enough to include the optimal strategy for our original game.

A careful examination of the proof above shows that dissolving the group is an equilibrium

strategy no matter what the number of altruists and the number of existing groups are, provided

that the equilibrium strategy used in fresh groups and in �rst-period groups is the same.

It is immediately seen that the logic of proof also applies to the case where one �rst-period

principal supervises all �rst-period groups with the purpose of maximizing the overall surplus,

adopting the same strategy in all of them.

The result just obtained is due to a complex sort of ratchet e¤ect. In the standard framework,

the ratchet e¤ect consists in the agent anticipating that in future rounds of interaction the

principal will exploit the information elicited in the current round, so there is an incentive for

the agent to lie on his type; restoring the incentive to telling the truth entails an additional cost

to the principal that overcomes the bene�t of exploiting the information. In our framework the
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story is more complicated, since the expectation that the principal will intertemporally exploit

information triggers three distinct perverse incentive e¤ects.

The �rst - that we call �plain ratchet e¤ect�- corresponds to the situation described above:

good-type agents are reluctant to declare truthfully their permanent type, fearing that the prin-

cipal will use it to their disadvantage in the current and in the following rounds. However,

setting a = 1 and e = 0 as we did for simplicity causes this e¤ect to vanish; in fact, perfectly

altruist agents do not care about possible reductions of their own surplus, as they look at the

whole group surplus. This allows us to focus on the remaining two e¤ects, which are much less

straightforward.

The second e¤ect - that we call �chain of lies e¤ect� consists in an agent misreporting his

permanent type in the �rst period in order to get the chance of advantageously lying on his

temporary type in the second period. This e¤ect only regards an egoist: he can falsely declare

himself to be altruist in the �rst period to increase the probability of group stabilization; if the

group is indeed stabilized, he will report low bene�t in the case that he discovers himself to be

a high bene�t individual. Speci�cally, as a consequence of the �rst lie he will face an incentive

constraint designed for an altruist, and therefore inappropriate for inducing an egoist to tell

the truth. An obvious case in which this e¤ect does prevent the exploitation of the information

elicited during the �rst period arises when the principal sets � (k) = 1; for all k; recall that Fact 1

ensures that in this case the group�s expected surplus in the second period is greater than in the

case �(k) = 0 for all k. For simplicity, let us consider the case of a single group. An altruist has

no reason to lie: in fact, by telling the truth he can only end up in groups s1 and s2 and in both

such groups e¢ ciency results; on the other hand, by lying he risks being part of group s0 where

ine¢ ciency prevails. Conversely, egoists �nd it pro�table to lie. This is an immediate implication

of Proposition 1 � still, we o¤er an independent proof in Appendix B. Crucially, note that it

is the possibility of a second lie that makes the incentive constraint of egoists especially hard

to satisfy. In fact, once the egoist has declared himself to be altruist, he pro�ts from declaring

low bene�t even when he is of high bene�t6 , so the perspective of the second lie increases the

attractiveness of the �rst7 .
6Once in an s1-group a false altruist who happens to be high bene�ts obtains p by lying and 1�c by telling the

truth. We know that p > 1 � c, as this inequality is implied by the ine¢ ciency condition, that can be rewritten
as p > (1� c) 2

2�(1+�)c .

In an s2-group the corrisponding condition is p� [p(1� c=2) + (1� p)(1� c)] = � 1
2
pc� 1 + c+ p > 0 , which

is satis�ed for p > 2�2c
2�c . This inequality also follows from the ine¢ ciency condition, since 2�2c

2�(1+�)c >
2�2c
2�c :

7For some triplets of parameters, absent the possibility of the second lie, the egoist would not �nd it advan-
tageous to tell the �rst lie in front of the announcement �0 = �1 = �2 = 1: In fact the payo¤ of truthtelling is

p
h
� (p+ (1� p)(1� c)) + (1� �)

h
p (1� c=2) + (1� p)(1� c) 1

2
p �2+c
1�c�2p+pc

ii
; while that of the single lie would
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The third e¤ect - probably the most surprising at �rst sight - concerns altruists: even a perfect

altruist, who does aim at maximizing group surplus, may be tempted to declare himself to be an

egoist to modify the probabilities of public good provision, in order to enforce what he myopically

sees as an improvement in group welfare. We label this e¤ect the �white lie e¤ect�. The point

is that the principal is assumed to have a commitment to implement - in a time consistent way

- the strategy initially announced; agents, on the other hand, are by de�nition followers, who

maximize ex-post, taking the principal�s announcement as given. So, in his reporting decision an

agent whose objective function is aligned with the principal�s does not realize - qua agent - that

the latter is subjecting himself to a costly constraint for the purpose of disciplining the egoists,

and tries to improve upon the resulting outcome. The consequence is the opposite since, in order

to prevent such behavior, the principal is forced to subject himself to further constraints, and

therefore to shift to a less preferred strategy.

Consider the following example, in which only one principal controls all N �rst-period groups

and N is in�nitely large - so the change in the expected composition of fresh groups due to an

agent�s deviation is negligible - and maximizes the overall surplus. Let c = p = � = 3=4: When

� (k) = 0; for all k; e¢ ciency can never be obtained8 . However, setting �(0) = 0; �(1) = 1;

�(2) = 0 would ensure full e¢ ciency in the second period. In fact, not surprisingly, e¢ ciency

is warranted in group s1 and, furthermore, thanks to the fact that the proposed selective group

stabilization leads to a � su¢ ciently greater than �; e¢ ciency would also be obtained in a fresh

group9 . It can easily be shown that this move does not deteriorate the incentive for an egoist

to declare truthfully her permanent type in the �rst period - indeed, an egoist who happens to

be high bene�ts and has declared his permanent type truthfully, obtains nearly the maximum

conceivable surplus10 in the second period. Conversely, it is only the altruists who now have

a clear incentive to lie: whoever an altruist�s partner, group surplus is greater if the altruist

declares himself egoist. To better see the point, let us consider the two possible cases. First

be p [�p(1� c=2) + �(1� p)(1� c) + (1� �)(1� c)] : In fact, for p = 3=4; c = 3=4; � = 3=4 the two expressions
amount to 0:345 7 and 0:552 9, respectively.

8The e¢ ciency condition p < 2�2c
2�c(1+�) is not satis�ed, as :75 > :727 27:

9Since N is large, � = �2

�2+(1��)2 = 0:9 and therefore the threshold for p would become p < 2�2c
2�c(1+�) =

0:869 57, so the e¢ ciency condition would be satis�ed �recall that it is p = :75:
10More precisely - remember that her payo¤ is only nonzero when she happens to be high - it can be shown

that she has only to lose by lying. In fact, if her mate is an altruist, she would obtain the payo¤ of an egoist
in the fresh group, rather than the payo¤ of an egoist in a s1 group, which is greater (there she is sure of being
matched with an altruist); if instead her mate is an egoist, the group would be stabilized, so the best payo¤ she
can get is by declaring low (again the chain of lies) and is equal to p (in fact by declaring high, as a supposed
altruist, she would be asked to pay all the cost of the good, and thus obtain 1 � c, which is less than p since
assumption a40 implies p > 1 � c) while by declaring truthfully, she would obtain the payo¤ of an egoist in the
fresh mechanism, which in this case is greater (indeed for p = c = 3=4 and � = 9=10 it can easily be checked that
it is �p+ (1��) p (1� c=2) + (1� p)(1� c) > p):
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case: the altruist has an altruist partner. The group will be stabilized thanks to the former

altruist�s lie, and thus he obtains the e¢ cient surplus. On the other hand, by telling the truth,

both partners would be reallocated to fresh groups, where they would each get less than half of

the e¢ cient pie. Second case: the altruist has an egoist partner. The lie will cause reallocation

to fresh groups, which is preferable to stabilization (stabilization would only ensure the e¢ cient

group surplus, while reallocation to fresh groups allows one altruist and one egoist to obtain

more because e¢ ciency still results and the ratio of altruists to egoists exceeds 1:1).

3.2 An in�nite number of active groups

We now turn to the case in which N groups exist and, according to the initial description of the

game, each �rst-period principal aims at maximizing the surplus obtained over the whole game by

the group he supervises. Since his �rst-period choices concur in determining the composition of

second-period fresh groups, a strategic interaction between �rst-period principals arises. In this

context Proposition 1 cannot be assumed to hold, since no game among �rst-period principals is

considered there. So, group stabilization cannot be excluded. Of course, Proposition 1 implies

that stabilization can only results in deterioration social surplus.

In the following, the number of groups is so large that each �rst-period principal can neglect

the impact of his own stabilization decisions on the composition of fresh groups.

Before presenting our results, let us explain, on intuitive grounds, why the strategy of never

stabilizing groups may not be Nash. If all the other �rst-period principals dissolved their groups,

one principal might �nd it advantageous to selectively stabilize his group: in particular, when

both members are of type-e; letting them go is attractive, since they will gain surplus in fresh

groups at the expense of type-a agents coming from other groups; conversely, stabilizing the

group when this is composed of two type-a individuals ensures more surplus than reallocation

into fresh groups. So, a free riding problem characterizes the interaction between �rst-period

principals. Nevertheless, group stabilization does not necessarily occur in equilibrium, since

eliciting and exploiting private information on members�permanent types is still made costly by

the ratchet e¤ect.

As regards the computation of Nash equilibria, thanks to N being in�nitely large we can

easily verify whether a given strategy for �rst-period principals is Nash by solving a simple

linear programming problem � actually, a �rst-period principal knows that the composition of

fresh groups is independent of his own decision. Below we present an example in which group

stabilization is obtained at equilibrium, and an example in which stabilization does not obtain.
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Let be � = 1=2; c = 3=4; p = 3=4; n = 2; N in�nitely large. The strategy of always

dissolving the group is not Nash since the best reply of a �rst-period principal to such a strategy

is �(0) = 0; �(1) = 1; �(2) = 11
15 ; which would get him an expected surplus of 1:610 � notice that

he will set r1(eh:al) = :7416; r1(ah:al) = :9841; r1(eh:el) = :4674; r1(ah:el) = 1; r1 (�h: � h) = 1;

r1 (�l: � l) = 0; instead the strategy of always dissolving the group brings him 2 (:786222) = 1:572

only. Therefore unilateral deviation is pro�table.

Then, consider stabilizing the group with probability � (0) = 0; � (1) = 1; � (2) = :4720: A

�rst-period principal knows that, independently of his move, the probability that a member of

a fresh group is of type a is � = �2(1��(2))+2�(1��)(1=2)(1��(1))
�2(1��(2))+(1��(1))2�(1��)+(1��(0))(1��)2 ; that is � = :34627. If

we compute a �rst-period principal�s optimal reply we �nd � (0) = 0; � (1) = 1; � (2) = :4720;

and so a Nash equilibrium occurs � he will set r1(ah:al) = 1; r1(eh:el) = :1386; r1(eh:al) =

:6944; r1(ah:el) = 1. Group expected surplus at equilibrium is :7799 + :7803 = 1: 5602: Notice

that, as we anticipated, expected group surplus at equilibrium is less than would be secured by

all principals adopting the strategy of always dissolving their group.

Now consider the parameter constellation � = 1
4 ; p =

3
4 ; c =

3
4 : The strategy of stabilizing the

group with probability � (0) = 0; � (1) = 0; � (2) = 0 is Nash when N is in�nitely large. Indeed

a �rst-period principal�s optimal reply is �(2) = 0; �(1) = 0; �(0) = 011 .

We summarize our results in the following:

Proposition 2 When a very large number of groups exists, group stabilization can be obtained in

a Nash equilibrium. Therefore the knowledge of group composition acquired in the �rst interaction

has a positive economic value for the group.

However, expected group surplus per period cannot be greater than in a single isolated interaction.

4 Discussion and extensions

First of all, notice that removing the assumption that the levels of bene�t which type-h and type-l

players derive from the public good are the same across periods does not invalidate Proposition

1. Moreover Proposition 1 still holds if a discount factor di¤erent from 1 is introduced, and also

if a greater (even in�nite) number of periods is considered. Notice, in this regard, that no stable

groups can dissolve after the second interaction since the share of altruists in fresh groups may

only decreases over time. Also, the assumption that group size is n = 2 can be easily generalized.

11The probability that a member is of type a in a fresh group is � = 1
4
: The probabilities of provision are

ri (�h: � h) = 1; ri (�l: � l) = 0; ri (eh:al) = :712; ri (ah:el) = :712; ri (eh:el) = :808; ri (ah:al) = 1
i = 1; 2:
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We conjecture that at Nash equilibrium only groups in which the share of altruists lies between

a lower and an upper limit might be stabilized.

It is of greater interest to reconsider the assumptions concerning: a) the principal�s powers;

b) the de�nition of altruism

4.1 The principal�s powers

Several alternatives to our assumptions can be considered. Below, we con�ne ourselves to exam-

ining one situation in which the principal has more powers and one in which he has less powers

than we have assumed until now.

i) More powers. Recall that in what proceeds, �rst-period principals do not choose allocations

in stabilized groups and second-period principals hold no more information about permanent

types than group members.

The �rst assumption is made only for simplicity and is not essential for the results above. In

fact, mechanism coordination across periods can improve the value of the best dynamic strategy,

but Proposition 1 continues to apply (the proof above holds, whatever the candidate optimum

strategy). On the other hand when �rst-period principals play Nash giving them greater powers

in the case of group stabilization could only enlarge the set of parameter triplets for which group

stabilization is obtained.

The second assumption rules out the possibility of an informed second-period principal who

might prefer not to reveal information to agents. Further research is needed to analyze this

possibility.

ii) Less powers. The principal might not be endowed with the power of stabilizing groups,

since this decision might be thought to be in the hands of group members. Of course, this

requires that group composition is common knowledge after the �rst period. The e¤ects of this

alternative power distribution are easily understood in our framework. After the �rst round,

agents will unanimously choose to terminate their relationship when no altruist is present, and

to continue it when there are either one or two altruists12 . So � irrespectively of whether one

12 It can be immediately inferred why two altruists prefer to stay together (so they split the e¢ cient surplus,
instead of receiving each less than half of it in fresh groups) and two egoists have nothing to gain from staying
together (that is the worst group composition from their point of view). When only one of them is an altruist, the
egoist prefers continuation, since it ensures him the best possible payo¤. As to the altruist, he must compare the
e¢ cient group surplus secured by the s1-group with the sum of the expected material payo¤ of one altruist and
one egoist in a fresh group. It is clear that this sum is less than the e¢ cient group surplus as soon as � < 1=2 (in
that case one altruist and one egoist together receive less than the expected group surplus, which is at most the
e¢ cient surplus). The last step is to observe that when �(2) = 1 and �(0) = 0 it is: � = �(1��)(1��1)

2�(1��)(1��1)+(1��)2
,

which is certainly less than 1=2 irrespectively of the value of �1.
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principal controls all groups, or instead N principals play Nash �in equilibrium no altruist will

be present in fresh groups.

Therefore, we are de facto in the situation in which �(k) = 1; for all k: In this case, as we

proved when illustrating the chain of lies e¤ect, egoists cannot be prevented from lying in the �rst

period. Notice that the �rst-period principal has no instruments at his disposal for countering

the incentive of a low bene�t egoist to declare himself altruist since, whatever the �rst period

allocation, he is indi¤erent as to reporting his permanent type. So separation of altruists from

egoists becomes impossible. This means that altruism is completely ine¤ective in the �rst period

� or, more generally, in all periods except the last.

4.2 Altruism

According to the de�nition of altruism we have adopted, in the �rst period altruists are concerned

with the future fate of their �rst-period partners. Indeed, a di¤erent variety of altruism is

conceivable: as far as future periods are concerned, in today�s decisions an altruist cares about

the future surplus not of today�s but of tomorrow�s partners. This apparently small change has

signi�cant e¤ects. Going back to the example presented above to describe the white lie e¤ect, it

is straightforward to check whether the strategy we examined there would now become feasible.

In fact, now the shift from � (1) = 0 to �(1) = 1 provides no incentive for an altruist to declare

himself egoist: his objective function is satis�ed exactly at the same level irrespective of whether

the group is stabilized or not, since in both cases group surplus takes on the e¢ ciency level.

Observe that in this example selective group stabilization is socially bene�cial. Commenting on

this result, one could notice that the initial de�nition of altruism is more �particularistic� in

nature, so it is not surprising if such altruists exert greater resistance to the principal�s attempts

at maximizing social surplus. Still, the �particularistic�de�nition seems to us more realistic as

a description of concern for group welfare.

5 Conclusions

The model we have presented helps clarify that, in hidden information contexts, the value of

repeated interactions is not necessarily embodied in long-lasting fruitful relationships themselves,

but rather in the possibility of eliciting information on group composition in the �rst stage of

interaction and using it for selectively stabilizing or terminating relationships. Suppose for

instance that all the principals but one adopt the strategy of never stabilizing groups. Then the

remaining principal may �nd it advantageous to stabilize groups with a relatively high share of
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altruists, and discontinue the others. This possibility is limited, but not necessarily excluded, by

the agent�s reluctance to reveal their degree of cooperativeness. In fact we �nd Nash equilibria

with stabilization. The di¤erence between the two statements above is not apparent in Ghosh

and Ray�s model, since their bad agents (i.e. the impatient) have �non cooperation� as the

dominant strategy, so they have nothing to gain from cheating on their type. So all productive

relationships (those with 2 patient players in their setting) persist in equilibrium. Conversely,

in our model, given that both types have good reasons for cheating, exploiting information

requires that certain fruitful relationships be discontinued (in particular those with two altruists).

Furthermore, the decision of one principal on group termination exerts externalities on the other

principals, via the expected composition of fresh groups. Thus, whilst social surplus and group

surplus coincide in Ghosh and Ray�s model, in our model maximization of group surplus may

entail stabilization of some groups even though social surplus is certainly less with stabilization

than without it.

Our model also sheds some light on the e¤ects of altruism in social relationships. On the one

hand, due to adverse intertemporal incentives connected with private information, the presence

of even perfect altruists can be ine¤ective at improving social surplus when mobility decisions

are left to individual discretion. On the other hand, the notion of altruism that appears natural

in the context of a single group, appears particularistic when it is applied to an intertemporal

context with mobility, so altruism may result less bene�cial to society than it is in a sequence of

one-time interactions.
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Appendix A

Proof of Fact 1.

When members�permanent types are common knowledge three cases are possible.

Case 1: both agents are of type a.

It is immediately seen that e¢ ciency is obtained at equilibrium. This means that r(2ah) =

r(ah:al) = 1; r(2al) = 0: Moreover, the payments are as follows: g(2ah; ah) = c=2; g(ah:al; ah) =

c; g(ah:al; al) = 0; g(2al; al) = 0:

Case 2: one agent is of type a and one of type e.

It is immediately seen that again e¢ ciency is obtained at equilibrium. This means that

r(ah:eh) = r(ah:el) = r(eh:al) = 1; r(al:el) = 0: Moreover the payments are as follows:

g(ah:eh; ah) = g(ah:el; ah) = g(eh:el; eh) = c; g(eh:al; al) = g(2al; al) = 0:

Case 3: both agents are of type e.

As, of course, at equilibrium it is r(2eh) = 1; r(2el) = 0; g(2eh; eh) = c=2; g(eh:el; eh) =

c; and g(eh:el; el) = 0; in order for the incentive compatibility constraint for type eh to be

satis�ed, it must be

(1� c=2)p+ (1� c) (1� p)r(eh:el) � pr(eh:el) (40)

Notice that from p > 2 1�c
2�c(1+�) (assumption a4�), it follows that: 1� 2p� c+ cp < 0 and

� 1
2 (2� c)

p
1�2p�c+cp < 1: Hence from (40) we get r(eh:el) � � 1

2 (2� c)
p

1�2p�c+cp < 1.

Next, let us consider the case in which individual permanent types are private information.

Equilibrium individual payments are easily characterized. When a member is of high bene�t

and his partner is of low bene�t, the former pays all the cost of provision. When both members

have high bene�t the cost is equally shared, except when one member is altruist and his partner

is egoist in which case the former pays the entire cost (this is for incentive purposes, as an

altruist is indi¤erent as to who pays the cost, whereas an egoist is tempted to lie to avoid any

payment). As regards the probabilities of provision, suppose that at equilibrium the binding

incentive compatibility constraints are IC(eh; el), IC(eh; al), IC(ah; eh) �we will verify this

later. Therefore we have the following three equations:

� (p+ (1� p) (1� c) r(eh:al)) + (1� �) p
�
1� 1

2
c

�
+

+ (1� �) (1� p) (1� c) r(eh:el)� �pr(ah:el)� (1� �) pr(eh:el) = 0 (41)
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� (p+ (1� p) (1� c) r(eh:al)) + (1� �) p
�
1� 1

2
c

�
+

+ (1� �) (1� p) (1� c) r(eh:el)� �pr(ah:al)� (1� �) pr(eh:al) = 0 (42)

(1� p) (1� c) ((1� �) r(ah:el) + �r(ah:al))� (1� p) (1� c) ((1� �) r(eh:el) + �r(eh:al)) = 0

(43)

The solution to this system has one degree of freedom. So let us write r(eh:al); r(ah:el);

r(ah:al) as a function of r(eh:el): This gives:

r(eh:al) = r(ah:el) =
2r(eh:el)(� + c� 1� c� + 2p� 2p� � pc+ pc�)� 2p+ pc� pc�

2� (�2p+ 1� c+ pc) (44)

and

r(ah:al) =
2p� pc+ 3pc� � 2pc�2

2�2 (�2p+ 1� c+ pc)
+

+
2r(eh:el)(1 + 4p� + 2c� + pc� 2� � c� 2p� 2pc� + �2 � 4�p� c�2 � 2p�2 + pc�2)

2�2 (�2p+ 1� c+ pc)
(45)

Now let us verify that IC(eh; ah)

� (p+ (1� p) (1� c) r(eh:al)) + (1� �) p
�
1� 1

2
c

�
+ (1� �) (1� p) (1� c) r(eh:el) �

�p(1� c=2) + (1� �)p(1� c) + �(1� p)(1� c)r(ah:al) + (1� �) (1� p) (1� c)r(ah:el) (46)

is not binding. By substituting (44) and (45) into (46), the left side becomes � 1
2p
2 c��c+2
pc�2p+1�c

which is greater than the right side (which amounts to � 1
2p

c�3pc�c2+pc2+2p+p�c
pc�2p+1�c ).

Next we show that IC(al; el) is satis�ed as an equality when IC(eh; el) and IC(eh; al) are

binding. In fact, from

� (p+ (1� p) (1� c) r(eh:al)) + (1� �) p
�
1� 1

2
c

�
+ (1� �) (1� p) (1� c) r(eh:el)+

� �pr(ah:el)� (1� �) pr(eh:el) = 0 (47)

and

� (p+ (1� p) (1� c) r(eh:al)) + (1� �) p
�
1� 1

2
c

�
+ (1� �) (1� p) (1� c) r(eh:el)+

� �pr(ah:al)� (1� �) pr(eh:al) = 0 (48)
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it follows that �r(ah:al)+ (1� �) r(eh:al)� (�r(ah:el)+ (1� �) r(eh:el)) = 0; which is IC(al; el)

written as an equality.

What remains to prove is our hypothesis that constraints (41) to (43) are binding. Let us

add three slack variables u1, u2, and u3; required to obtain equality. Then, compute again the

system solutions which are now expressed as (cumbersome) functions of r(eh:el) and of all the

slacks. Finally, substitute them into the principal objective function and take �rst derivatives

with respect to u1, u2, u3. It results:

@S

@u1
= 2p2 (1� p) (1� c) 1� �

1 + pc� c� 2p < 0 (49)

@S

@u2
= 2p (1� p) (1� c) � (1� c) (1� p)

1 + pc� c� 2p < 0 (50)

@S

@u3
= 2 (1� p) (1� c) p

1 + pc� c� 2p < 0 (51)

�recall that 1 + pc� c� 2p is negative by assumption a4�.

This proves that our hypothesis is true: at equilibrium IC(eh; el), IC(eh; al), IC(ah; eh) are

binding.

When the probabilities take the values de�ned in (44) and (45), it is dS
dr(eh:el) = 0, thus

r(eh:el) can really be set at discretion.

So let us set it to its equilibrium value in a group where it is common knowledge that

there are no altruists, that is r(eh:el) = p 1�c=2
p�(1�p)(1�c) : Then it is immediately veri�ed that

r(eh:al) = r(ah:el) = p
2p�1+c�pc < 1 for p < 1, r(ah:al) =

1
2
�c+c�+2�

� r(ah:el) < 1 since it is both

r(ah:el) < 1 and �c+c�+2�
� = (2 + c)� c=� < 2:

Therefore, we conclude that expected group surplus is lower when individual permanent types

are private information than when they are common knowledge.

Appendix B

This appendix proves that when N = 1, �(0) = �(1) = �(2) = 1 cannot occur at a Nash

equilibrium.

When �(0) = �(1) = �(2) = 1; the second-period expected surplus of an egoist if he reports

a (and then he optimally declares l) is p2, while if he truthfully reports e it is:

p f� (p+ (1� p)(1� c)) + (1� �) [p (1� c=2) + (1� p)(1� c)�]g (52)
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where � = r(eh:el) is the probability of providing the good when there are two egoists with oppo-

site evaluations in the s0-mechanism. Let � denote the highest value of � such that lying is prefer-

able for an egoist, so � solves p� (p+ (1� p)(1� c)) + p (1� �) [p (1� c=2) + (1� p)(1� c)�] �

p2 = 0. Hence this threshold amounts to

� =
1

2

2�(c� 1)� 3�pc+ pc+ 2�p
(1� c)(1� p)(1� �) (53)

On the other hand, we know from Appendix A that in the equilibrium of the s0-mechanism

we have � = 1
2p

�2+c
1�c�2p+pc

13 .

So, if � � � > 0 we know that the intertemporal incentive constraint of a type-e is violated.

Let us check this point. We have

� � � = �1
2

p2 (2� c) (1 + � � 2�c)� 2p (1� c) (1 + 2� � 2�c) + 2� (1� c)2

(1� �) (1� p) (1� c) (1� c� 2p+ pc) (54)

The denominator is obviously negative. The numerator is a U-shaped parabola in p. Since the

�rst and the last coe¢ cients are positive while the middle is negative, then if there are two inter-

sections with the p�axis, these are positive. The largest is p = (1� c) (1+2��2�c)+
p
(1�2�c+2�2c)

(2�c)(1+��2�c) :

If p > p then � � � > 0. Now we show that p is smaller than the threshold stated by assumption

a4�, i.e. p 6 2�2c
2�c(1+�) .

p� 2� 2c
2� c(1 + �) = (1� c)

24 (1 + 2� � 2�c) +
q�
1� 2�c+ 2�2c

�
[2� c(1 + �)] + 2� (1� c)2

� 2

2� c(1 + �)

35 <
(1� c)

"
(1 + 2� � 2�c) +

�
1� �c+ �2c

�
(2� c) (1 + � � 2�c) � 2

2� c(1 + �)

#
=

� (1� c)�c2 (1� �)2
(2� c) (1 + � � 2�c) [2� c(1 + �] < 0 (55)

where the �rst inequality derives from the fact that
q�
1� 2�c+ 2�2c

�
< 1� �c+ �2c. 14

So we can conclude that, in the relevant range of p, we have � � � > 0 , i.e. the incentive

constraint of egoists is always violated.

13 In the equilibrium of the s0-mechanism it is p (1� c=2) + (1� p)(1� c)� = �p, whence: � = 1
2
p �2+c
1�c�2p+pc :

Notice that the denominator is negative, since p > 1� c, as implied by the condition for ine¢ ciency.
14Notice that 1 >

q�
1� 2�c+ 2�2c

�
>
�
1� 2�c+ 2�2c

�
> 0

In fact 1 > 1� 2�c+ 2�2c since � < 1 and 1� 2�c(1� �) > 0; since �(1� �) < 1=2:
We know that for 0 < q < 1,

p
q < (1 + q) =2 (this is implied by (1�pq)2 > 0). Soq�

1� 2�c+ 2�2c
�
< 2�2�c+2�2c

2
= 1� �c+ �2c:
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Appendix C

This appendix proves that a symmetric equilibrium exists in the game among �rst-period

principals.

Consider the stabilization outcome when in�nitely many groups exist. Let us limit ourselves

to symmetric equilibria. First, notice that all �rst-period principals each share the same utility

function, the same strategy space f	1;�g, and the same constraint set. As far as the interaction

among �rst-period principals is concerned, their strategy pro�les can be summarized by the

proportion �(�) = �2(1��(2))+2�(1��)(1=2)(1��(1))
�2(1��(2))+2�(1��)(1��(1))+(1��)2(1��(0)) of altruists in fresh groups. This is

because our setting is anonymous and atomless. Then, each �rst-period principal�s best reply

function is:

f	�1(�(�));��(�(�))g = arg max
f	1;�g2G(�(�))

�1 (	1;�; �) + �c
��
	�j
	
; �
�

(56)

where G(�(�)) denotes the constraint set.

Since the principal faces a linear programming problem that has at least a solution for each

� � �(k) = 0 all k; r1(v) = 0, g1(v) 2 [0; c]; all v; is always feasible � , the constraint set is

compact (closed, bounded) for each �; and the function �1(�) + �c(�) is continuous and linear

in (�;�(�)), then, thanks to the maximum theorem, ��(�(�)) will be nonempty, convex-valued

and upper-hemicontinuous. Hence, there exists a �xed point of �� such that � 2 ��(�(�)). This

�xed point is a symmetric Nash Equilibrium as all players share the same best reply function.
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