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Predicting One Shot Play in 2x2 Games using Beliefs

based on Minimax Regret

Andrea Gallice∗

Department of Economics, European University Institute

Abstract

We present a simple procedure that selects the strategies most likely to be played by

inexperienced agents who interact in one shot 2x2 matching pennies games. As a first

step we axiomatically describe players’ beliefs. We find the minimax regret criterion

to be the simplest functional form that satisfies all the axioms. Then we hypothesize

players act as if they were best responding to the belief their opponent plays according

to minimax regret. When compared with existing experimental evidences about one

shot matching pennies games, the procedure correctly indicates the choices of around

80% of the players. Applications to other classes of games are also explored.

Keywords : predictions, minimax regret, beliefs, matching pennies, experiments.

JEL classification : C72, C91.

1 Introduction

Consider the situation faced by individuals who are involved in a one shot 2x2 game, possibly

as subjects of a controlled experiment. The players do not have any knowledge of game

theory and they never played before the specific game they are facing. In addition, given

that the interaction is not repeated, they cannot expect to learn and improve on their

performance over time.

∗I would like to thank Karl Schlag for careful supervision as well as Pascal Courty, Antonella Ianni,
Shachar Kariv and Pierpaolo Battigalli for useful discussion. The paper also benefited from comments by
participants at the 2005 European meeting of the Economic Science Association (ESA 2005), at the annual
meeting of the Association of Southern Europeans Economic Theorists (ASSET 2005), at the SET-FEEM
2005 international workshop on economic theory and at the RES PhD Presentation Meeting (LSE). I started
working on this paper while I was a visiting scholar at the Economics Department of UC Berkeley, whose
hospitality I gratefully acknowledge. All errors are mine. Contact: andrea.gallice@iue.it
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How should these players decide which strategy to play? Irrespective of the specific game

under consideration, the rational approach for dealing with such a decision under uncertainty

(in a spirit similar to Savage, 1954) is the following:

1 - each player forms a belief about what his opponent will play.

2 - each player chooses the strategy which best responds to this belief.

Interpreting it as a heuristics, this procedure cannot be expected to describe the behavior

of all the agents. Single individuals may in fact use different decisional processes or they may

incur in computational errors in choosing their best response. Still, in spite of this noise, the

fact that in simple strategic situations the majority of individuals behave in a manner which

is coherent with their beliefs finds confirmation in some recent papers1. Nyarko and Schotter

(2002) study a 60 times repeated 2x2 game and find that around 75% of the players do indeed

best respond to their stated beliefs. For the case of 3x3 games, Rey Biel (2004) considers 10

one shot games and finds a similar rate of compliance while 55% is the percentage found by

Costa-Gomes and Weizsäcker (2005) using data about 14 (more complex) one shot games.

Given these results, it is therefore a conservative guess to expect that, in one shot 2x2 games,

at least half of the individuals play consistently with their beliefs. We want to capture the

behavior of this majority of players.

The first part of this paper is focused on the process of beliefs formation. The goal is

to find a single function (with the payoffs of the game as its argument) that may describe

players’ beliefs. In looking for this function we adopt an axiomatic approach: first, we list

desirable properties that, according to us, should characterize a belief function. Then, we

check existing concepts and criteria commonly used in game theory and decision theory to

see which of them, if any, fulfills all the requirements.

We find the minimax regret criterion (originally proposed by Savage, 1951) to be the

unique candidate that obeys all the axioms. Therefore we propose minimax regret as a

proxy for players’ beliefs2 and we claim that the majority of players play "as if" they were

best responding to these approximated beliefs.

This conjecture is tested in the second part of the paper. The predictions stemming from

the suggested procedure (best respond to beliefs equal to the minimax regret distribution

of the opponent) are compared with experimental evidences about different versions of 2x2

one shot matching pennies games. To forecast players’ choices in this class of games is

particularly problematic, also because the indication given by the Nash equilibrium is often
1These papers elicit players’ beliefs using a proper quadratic scoring rule, such that for the players "telling

the truth" is optimal.
2This proxy is "operationally" accurate in the sense that the conjectured minimax beliefs and the real

subjective beliefs appear to lead, in the majority of cases, to the same best response.
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misleading (see for instance Ochs, 1995 and Goeree and Holt, 2001). Our procedure proves

to be an effective way to identify the strategies which are more likely to be played. In fact

it correctly predicts the actual choices of around 80% of the players.

In a later section the same procedure is also applied to other kinds of 2x2 games and

its relationship with the Nash prediction is explored. An interesting result is that the

procedure selects a single outcome even in games that have multiple Nash equilibria and

so it contributes to the debate on equilibrium selection (see Straub, 1995 and Haruvy and

Stahl, 2004).

This paper thus aims to get some insights into the way people actually behave in simple

strategic interactions and it is motivated by experimental results that traditional theory fails

to explain. Therefore, despite the initial theoretic axiomatic approach, the paper places itself

in the behavioral game theory literature. Behavioral game theory enriches pure game theory

by adding elements which are typical of the human nature: limited rationality, heuristic

decisions, psychological regularities, feelings and emotions. In the last few years it proved

to be successful in narrowing the gap between theory and experimental data3. Camerer

(2003) provides a very rich overview of the aims, the methods, the empirical evidence and

the findings of this fast growing area of research.

A number of studies that focus on how people play one shot simultaneous games and

investigate the issue of beliefs formation are more related to this paper. Stahl and Wilson

(1995) and Costa-Gomes et al. (2000) test the existence and relative importance of various

archetypes of players that differ in the prior they have about the degree of sophistication of

their opponents. Results indicate that the majority of the individuals behave as if they were

performing one or two steps of strategic thinking. A similar result is also found by Camerer

et al. (2004) with experiments about market entry games, Nash demand games and stag

hunt games.

There are also various papers that are more specifically focused on the experimental

study of matching pennies games. Games of this family have in fact been extensively used

to test the validity of the Nash prediction and to study the issues of individuals’ learning and

adaptive dynamics. These questions stimulated much research with important contributions

by Mookherjee and Sopher (1994), Ochs (1995), McKelvey and Palfrey (1995), Erev and

Roth (1998), McKelvey et al. (2000), Tang (2001) and Goeree et al. (2003). The natural

design of these experiments consisted in letting subjects repeatedly play the same version

of a matching pennies game. A different question is to study how agents behave in front of

a single interaction: in fact in this case players cannot learn over time and their behavior

3For instance, and as already briefly mentioned, the concept of Nash equilibrium is sometimes too "rad-
ical" and it may lead to conclusions which are often rejected by experimental evidences.
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is not affected by inter temporal considerations. Less work has been carried out to study

individuals’ play in one shot games4 with a unique Nash equilibrium in mixed strategies,

the reason possibly being the fact that agents’ behavior is too erratic to reach some general

conclusions. Our paper is focused on one shot games mainly for three reasons: first, we

claim our theory is able to capture the behavior of inexperienced players; second, as just

mentioned, one shot individuals’ play has been less investigated; third, we think that enough

real life situations are more likely to be similar to one off events rather than to repeated

interactions.

The paper is structured as follows: Section 2 lists the axioms we feel characterize a

beliefs function. Section 3 shows that minimax regret satisfies all the axioms being at the

same time very simple in its functional form. In Section 4 other candidate functions are

shown to under perform the minimax regret; in particular it is shown that various proposals

connected with the concept of mixed strategy Nash equilibrium cannot be expected to

adequately mimic players’ beliefs. Section 5 formalizes the procedure that we claim is able

to capture the behavior of the majority of individuals. Section 6 uses existing experimental

evidences about matching pennies games to test the validity of our predictions. In Section

7 the procedure is applied, as a robustness check, to other classes of 2x2 games. Section 8

concludes.

2 An axiomatic approach to belief formation

The aim of this section is to provide an axiomatic description of players’ beliefs. These

beliefs will be later used as the starting point for a procedure that selects the strategies

most likely to be played in one shot 2x2 games. We tackle the issue of beliefs formation in a

very simplified framework. Still the axioms and the results that follow can be easily restated

for the more general case.

Consider the following 2x2 game, where player i = {A,B} can choose between strategies
Hi and Ti. We assume that x ≥ 0 and y > 0.

1)

HB TB

gH(x, y)→ HA x, · 0, ·
gT (x, y)→ TA 0, · y, ·

We focus on the beliefs of player B about what player A will play. This is the reason why

4A notable exception is Goeree and Holt (2004) that presents a model of iterated noisy introspection for
one shot interactions which is then tested over a large number of games.
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the payoff matrix is incomplete and only the payoffs of player A appear5. Whilst keeping in

mind the example of an inexperienced boundedly rational player, B’s beliefs are considered

as being just a function of player A’s payoffs. To further simplify the analysis and the

exposition we assume two of the payoffs of player A (the ones for the outcomes in which

players make different choices) to be equal and normalized to 0.

We indicate with:

• gH(x, y) the belief of player B about player A playing strategy HA.

• gT (x, y) the belief of player B about player A playing strategy TA.

According to us, a belief function must obey the following axioms:

[A1] Consistency with probability distribution: gH(x, y) ≥ 0, gT (x, y) ≥ 0 and
gH(x, y) + gT (x, y) = 1, ∀x, ∀y.

Axiom 1 states the most basic properties a belief function must obey, namely that it

has to identify a meaningful and complete probability distribution. Note that, because of

the relationship gH(x, y) + gT (x, y) = 1, a single probability is enough to define the entire

distribution. Therefore A1 allows us to focus just on gH(x, y). In addition the specific

functional form of gH implies that player B realizes A does respond to changes in his own

payoffs. The own payoff effect is a robust feature of games played in experiments (for clear

evidences of this effect in matching pennies games see, among others, Ochs, 1995 and Goeree

and Holt, 2001).

[A2] Symmetry: gH(x, x) = 1
2 , ∀x.

[A3] Dominance: gH(0, y) = 0, gH(x, 0) = 1, ∀x, y > 0.

Axioms 2 and 3 restrict the behavior of the beliefs function for some peculiar values of

the payoffs x and y. Axiom 2, which is partly derived from A1, states that the function has

to assign a uniform prior to player B whenever A’s strategies look the same. Even if A may

still have idiosyncratic preferences over his two pure strategies, these cannot be anticipated

by B. Axiom 3 implies that players are able to recognize a weakly dominated strategy and

that they assign a null probability to the event of the opponent playing such a strategy.

The same holds a fortiori for strictly dominated strategies. A3 is thus in line with basic

5Depending on B’s payoffs, the partial structure of Game 1 is compatible with games such as pure
coordination, battle of the sexes and matching pennies, with the last class being our main interest.
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rationality assumptions. In 2x2 one shot games the majority of players seems to be able to

recognize and eliminate dominated strategies (Roth, 1995).

[A4] Continuity: gH(x, y) is a continuous function of both x and y.

[A5] Monotonicity: gH(x1, y) > gH(x2, y) if x1 > x2 , gH(x, y1) < gH(x, y2) if y1 > y2.

[A6] Homogeneity of degree zero: gH(kx, ky) = gH(x, y), ∀k > 0.

These three axioms list some more general properties that must characterize the function

gH . Continuity (A4) is required since there are no evident reasons for B’s beliefs to jump

in a discrete way given small changes in the arguments of the function. The monotonicity

axiom (A5) defines the sign of the already mentioned own payoff effect. It states that players

believe their opponent are attracted by strategies that "look better". This implies that if the

payoffs associated with strategy HA increase so does the probability that player B assigns

to the event of A playing that strategy. The axiom therefore requires gH(x, y) to be strictly

increasing (respectively decreasing) in x (resp. y). This requirement is in line with a large

experimental evidences (among others Ochs, 1995; Goeree and Holt, 2001; Goeree et al.,

2003). Players’ beliefs have thus to respond to any change in the payoff structure with the

exception of the case in which all payoffs are multiplied by a positive constant k. In fact

such a transformation would not modify the relative attractiveness of the strategies. The

homogeneity of degree zero axiom (A6) formalizes this requirement.

Two more axioms conclude the normative description of the belief function.

[A7] Insensitivity to column switch: gH(x, y) remains unchanged if the payoffs of

the two columns are inverted.

[A8] Sensitivity to row switch: gH(x, y) = gT (x, y) if the payoffs of the two rows are

inverted.

These last two axioms are a bit more unusual but they still refer to very basic properties

of a beliefs function. Axiom 7 states that the beliefs of player B have to remain the same

if the payoffs of the columns of the game are inverted. In fact this would not affect the

relative preferences of player A over his two pure strategies. To clarify this point with an

example, the axiom implies gH(x, y) = g0H(x, y) where gH(x, y) refers to the original Game

1 and g0H(x, y) refers to Game 1
0 below. For similar reasons Axiom 8 implies that B’s beliefs

distribution has to be the mirror image of the original one if the payoffs of the two rows in
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Game 1 are inverted: gH(x, y) = 1− g00H(x, y) = g00T (x, y) where g
00
T (x, y) refers to Game 1

00.

In other words players’ beliefs consistently react to the payoff structure of the game.

10)

HB TB

g0H(x, y)→ HA 0, · x, ·
TA y, · 0, ·

100)

HB TB

HA 0, · y, ·
g00T (x, y)→ TA x, · 0, ·

2.1 Some useful properties of the beliefs function

If a function satisfies axioms A1-A8 then it also fulfills some other more specific require-

ments. An important relation is easily obtained. Start from the equality stated in Axiom 1:

gH(x, y) + gT (x, y) = 1. Because of homogeneity of degree zero (A6) every argument of gH

and of gT can be divided by y > 0. Call z = x
y with z ≥ 0 to get gH(z, 1) + gT (z, 1) = 1.

Invoking again Axiom 6 divide the arguments of gT by z: gH(z, 1)+gT (1, 1z ) = 1. By axioms

7 and 8 the term gT (1,
1
z ) is equivalent to gH(

1
z , 1) so that gH(z, 1) + gH(

1
z , 1) = 1 must

hold. Rename gH(·, 1) with f(·) and rearrange to get Relation 1:

f(z) = 1− f

µ
1

z

¶
(1)

Relation 1 implies that player B assigns the same probability to the event of player A

playing strategy HA in Game 2 and to the event of A playing strategy TA in Game 3 shown

below.

2)

HB TB

f(z)→ HA z, · 0, ·
TA 0, · 1, ·

3)

HB TB

HA
1
z , · 0, ·

1− f( 1z )→ TA 0, · 1, ·

Note that in Game 2 and 3 only the variable z appears. Moreover, because of Relation

1, to know f(z) means to know f
¡
1
z

¢
. Given the one to one relation between ∀z ∈ [0, 1] and

the reciprocal 1z ∈ [1,∞), the analysis of a function that obeys Relation 1 can be restricted
to the partial domain z ∈ [0, 1].
It is therefore much more practical to study the beliefs function f that refers to Game

2 rather than the original function gH in Game 1. Lemma 1 states the conditions under

which the two functions are equivalent. In particular it provides sufficient conditions for a

generic function gH to be transformed in a simpler function f as well as conditions a generic

function f has to satisfy for being used to approximate players’ beliefs originally captured

by gH .
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Lemma 1 Consider gH and let gH(z, 1) = f(z). Then:

a) ∀gH s.t. gH satisfies axioms A1-A8 =⇒ ∃f s.t. f (z) = 1−f ¡ 1z ¢ , f(0) = 0, f (1) = 1
2

and f is strictly increasing on [0, 1].

b) ∀f : [0,∞]→ [0, 1) s.t. f(z) = 1− f
¡
1
z

¢
, f(0) = 0, f (1) = 1

2 , f is strictly increasing

on [0, 1] and f is homogeneous of degree 0 =⇒ ∃gH s.t. gH satisfies axioms A1-A8.

Proof.

a) The proof replicates the steps used to derive Relation 1. Transformations applied to

gH in order to get f are innocuous, therefore the axioms are still valid and they just need to

be restated. f(0) = 0 indicates f obeys dominance, f (1) = 1
2 refers to symmetry and the

requirement of f being strictly increasing on [0, 1] is equivalent to the monotonicity axiom

about gH .

b) Given that by definition f(z) = gH(z, 1), then if f is homogeneous of degree 0 the

following relation is also true: f(z) = gH(kz, k),∀k > 0. Therefore the original belief

function gH can be reconstructed starting from the relation f(z) = 1− f
¡
1
z

¢
and following

backwards the proof used to get Relation 1.

From now on we restrict our attention to generic functions f that obey the requirements

of Lemma 1 and the main object of study will be f(z): the beliefs of player B about player

A playing strategy HA in the reduced Game 2.

Some other properties of f(z) are implied by the axioms and by Relation 1. In particular

the function f is continuous both at z = 1 (limz→1− f(z) = limz→1− f
¡
1
z

¢
= 1

2 by Lemma

1) and at z = 0 (limz→0 f(z) = 0 and f(0) = 0 by Lemma 1) and limz→0 f( 1z ) = 1

(limz→0 f(z) = 0 and A1). Moreover, as mentioned before, there is a one to one relationship

between any z and the correspondent 1z and so between f(z) and f
¡
1
z

¢
.

f(z) : [0, 1]→
·
0,
1

2

¸
⇔ f

µ
1

z

¶
: [1,∞)→

·
1

2
, 1

¶
(2)

The following propositions are particularly important in the task of describing as pre-

cisely as possible the beliefs function because they investigate the possible curvature of f .

Proposition 2 does not require f to be differentiable, but if differentiability is assumed then

sharper results can be proven (Proposition 3).

Proposition 2 On the entire domain, f(z) is neither linear nor strictly convex.
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Proof. For any z ∈ (0, 1) take the linear combination between z and 1
z such that α̂z+(1−

α̂) 1z = 1 so that α̂ = 1
z+1 . Then, by Axiom 2, we know that f(α̂z + (1 − α̂) 1z ) = f(1) =

1
2 . Compare it with α̂f(z) + (1 − α̂)f

¡
1
z

¢
which, using Relation 1, can be expressed as

1
z+1f(z)+

z
z+1 [1− f (z)] and thus as f(z)

³
1−z
1+z

´
+ z

z+1 . We show that the relation defining

concavity holds: f(α̂z + (1 − α̂) 1zf(z) > α̂f(z) + (1 − α̂) which in this specific case means
1
2 > f (z)

³
1−z
1+z

´
+ z

z+1 . This last condition simplifies to f(z) < 1
2 which is satisfied given

that z ∈ (0, 1) and the monotonicity axiom. The function f(z) is concave at least over part

of its domain and thus it cannot be linear or strictly convex.

Proposition 3 If f(z) is differentiable then it is strictly concave at z = 1.

Proof. Differentiate twice with respect to z the relation f(z) = 1 − f
¡
1
z

¢
to get the first

(3) and second (4) derivatives.

f 0(z) =
1

z2
f 0
µ
1

z

¶
(3)

f 00(z) = − 2
z3
f 0
µ
1

z

¶
− 1

z4
f 00
µ
1

z

¶
(4)

Evaluating (4) at z = 1 we get f 00(1) = −f 0(1). Given that, because of monotonicity,
f 0(1) > 0 it follows that f 00(1) < 0 and the function is strictly concave at z = 1.

2.2 Bounds on the function f(z)

The axioms and the derived properties imply a rather specific behavior of the beliefs function.

A graphical description of the bounds that restrict f appears in Figure 1. In what follows

we let z ∈ [0, 1] and therefore 1
z ∈ [1,∞).

Axioms 2 and 3, when restated according to Lemma 1, provide the starting point: given

that f(0) = 0 and f(1) = 1
2 the function has to pass through points a = (0, 0) and b =¡

1, 12
¢
. However, this is not enough to identify the function given that f(z) is not linear

(Proposition 2). Still the fact that f(1) = 1
2 together with the monotonicity axiom implies

that f(z) ∈ £0, 12¤ and f
¡
1
z

¢ ∈ £12 , 1¢.
For what concerns the curvature of the function we know that, assuming the function to

be differentiable (as we do), f(z) has to be strictly concave at z = 1 (Proposition 3). Note

that z = 1, given its mirroring properties captured by Relation 1, is the only "peculiar"

point of the domain, i.e. the point in which a change in the sign of the second derivative

may have been expected (think for instance of a logistic function). Moreover f has also to

be concave at least in some part of the domain for 1
z → ∞ because it is strictly increasing

9



but bounded above by 1. Because of these two facts and in order to find a function which

is as simple as possible, we require f to be strictly concave over all the domain. In fact a

function that changes concavity would have a more complex analytical form with respect to

a "well behaved" strictly concave function6.

The concavity requirement provides a lower bound for the function in the interval [0, 1].

In fact ∀z ∈ [0, 1] , f(z) ≥ 1
2z has to hold where

1
2z is the equation of the line that connects

points a = (0, 0) and b =
¡
1, 12

¢
. Since f(z) = 1 − f( 1z ) has to be always valid, this lower

bound becomes an upper bound in the interval [1,∞) where f( 1z ) ≤ 1− 1
2z has to hold.

Finally note that ∀ 1z ∈ [1,∞), and given that f( 1z ) < 1, the condition f( 1z ) <
1
z holds

and the same condition holds ∀z ∈ ¡12 , 1¤ as well. We require this condition to be valid also
∀z ∈ ¡0, 12¤ and thus f(z) < z, for any z 6= 0. This last assumption implies two things: (1)
f(z) increases less than proportionally with respect to z and (2) f(z) approaches the upper

limit 1 not too slow. In fact, given that f(z) ≤ z, the lower bound f( 1z ) ≥ 1 − z in the

interval 1z ∈ [1,∞) is directly derived from Relation 1.

Figure 1 provides a graphical representation of the results of this section. The four thin

lines define the two corridors in which the function f has to develop with the additional con-

straints that f has to pass through points (0, 0) and
¡
1, 12

¢
and be strictly increasing. These

restrictions do not identify a unique function. Indeed any function that stays within the

bounds could be used to approximate players’ beliefs as stated by the following proposition.

Proposition 4 ∀f s.t. f(z) = 1− f( 1z ), f is strictly increasing on [0, 1] and
1
2z ≤ f(z) ≤

min
©
z, 12

ª
,∀z ∈ [0, 1] =⇒ ∃gH s.t. f = gH .

Proof. If f satisfies Relation 1, it is strictly increasing on [0, 1] and it stays within the

bounds then it means that f satisfies Lemma 1 and thus there exists a gH s.t. f = gH .

Among all these possible functions we now turn our attention to the one which appears

in bold in Figure 1: this function is the minimax regret.

6Given that the beliefs retrieved through f will be used to predict the outcome of 2x2 games, a simple
functional form is a valuable quality. Indeed our aim is to identify the simplest function among those that
satisfy all the axioms and the derived properties.
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f(z)

1 2 3 4                                  z

Figure 1: lower and upper bounds for f(z) vs. the minimax regret proposal.

3 The proposed beliefs function: the minimax regret

According to the conjecture of the paper the beliefs of player i about what player i0 will

play can be approximated by the minimax regret of player i0. Minimax regret, originally

proposed by Savage (1951), is a concept which found its main applications as a selection

criterion in decision theory (starting with Milnor, 1954). More recently minimax regret has

also been used in modeling the behavior of subjects with limited rationality (for instance

Bergermann and Schlag, 2005, for the case of boundedly rational monopolists) as well as

a way to deal with missing data in econometrics (Mansky, 2005) and it also appears in

the artificial intelligence literature (Brafman and Tennenholtz, 2000). The minimax regret

criterion prescribes a player who has to make a decision under uncertainty to choose the

action that minimizes his expected regret. The regret is defined as the difference between

the best payoff player A could have got if he knew what his opponent (a player or Nature)

had played and the payoff the player actually got. In fact the first step to compute the

minimax regret consists in building the regret matrix which captures these differences. In

the specific case of Game 2, which remains the game under study, and given that z > 0, the

regret matrix is given by R2:
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2)

HB TB

f(z)→ HA z, · 0, ·
TA 0, · 1, ·

R2) HA 0, · 1, · (pmmr)

TA z, · 0, · (1− pmmr)

Strategy HA attains minimax regret in pure strategies for any z > 1 while strategy TA

attains minimax regret for z ∈ [0, 1). Taking this specification as a belief function would
clearly be unsatisfactory since the pure version of the minimax regret fails both the continuity

and the monotonicity axioms. The use of mixed strategies solves this problem. Before

moving to the computation of the mixed minimax regret (mmr) note that, by construction,

in any 2x2 game, the regret matrix contains at least two zeros, a feature that makes the

computation of the mmr very easy.

To find the mmr means to find the probability distribution (defined by p̃mmr) that

equalizes the expected regret of the two strategies so that playerA is indifferent in playingHA

or TA. This optimal p̃mmr solves pmmr (1) = (1− pmmr) z so that p̃mmr =
z

z+1 . According

to the conjecture of this paper f(z) = p̃mmr should (heuristically) hold and thus:

f(z)mmr =
z

z + 1

Once again, referring to Game 2 above, this means that player B approximately believes

player A to play strategy HA with probability z
z+1 and strategy TA with the complementary

probability of 1
z+1 . This candidate function obeys all the axioms and the derived properties

and assumptions as shown by the following proposition (the subscript mmr is dropped

wherever it is superfluous).

Proposition 5 the mixed minimax regret function f(z)mmr:

i) satisfies axioms A1-A8.

ii) satisfies Relation 1.

iii) is differentiable and strictly concave.

Proof. i) Trivial for the first few axioms. In particular: f(z) ∈ [0, 1] (A1), f(1) = 1
2

(A2), f(0) = 0 (A3), f is continuous (A4) as well as strictly increasing (A5) in z and it is

homogeneous of degree zero in its payoffs (A6). Concerning the last two axioms note that,

with respect to Game 2, f is indeed insensitive to column switch (A7) as shown by Game

20 and sensitive to row switch (A8, Game 200).
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20)

HB TB

HA 0, · z, ·
TA 1, · 0, ·

f(z) = z
z+1 200)

HB TB

HA 0, · 1, ·
TA z, · 0, ·

f(z) = 1
z+1

ii) Compute f
¡
1
z

¢
=

1
z

1
z+1

= 1
z+1 and verify that f(z) + f

¡
1
z

¢
= z

z+1 +
1

z+1 = 1.

iii) The second derivative is given by f
00
(z) = −2

(z+1)3
which is defined and strictly negative

over all the domain.

Moreover the proposed function also "works" with strictly dominated strategies in the

sense that f(z)mmr assigns to a player a null belief about the event of his opponent playing

a strictly dominated strategy.

As explained in the previous section we cannot claim the minimax regret to be the

unique function that satisfies all the axioms and the additional requirements. It is however

an advantage that an already existing concept (though normally used for different purposes)

may be used to approximate players’ beliefs. In this way in fact there is no need to invoke

new definitions or ad hoc formulas.

Moreover the following proposition underlines an appreciable feature of f(z)mmr, namely

that it is the unique one among all linear functions that obeys all the axioms and derived

properties. As before, the results are proven in the simplified context of Game 2 but, because

of Lemma 1, they also hold with more general payoff structures.

Proposition 6 If f(z) = az+b
cz+d ,∀z and f satisfies Lemma 1 =⇒ f(z) = z

z+1 = f(z)mmr,∀z.

Proof. For f to satisfy Lemma 1 we must have f(0) = b
d = 0 (which implies b = 0) and

f(1) = a
c+d =

1
2 (which implies 2a = c + d). Now impose the condition f(z) + f( 1z ) =

az
cz+d +

a
c+dz = 1 which is equivalent to (z

2+1)(ad− cd)+z(2ac− c2−d2) = 0,∀z. Consider
for instance the cases of z = 1

2 and z =
1
4 . If z =

1
2 then (a)

5
4(ad−cd)+ 1

2(2ac−c2−d2) = 0.
If z = 1

4 then (b)
17
16(ad − cd) + 1

4(2ac − c2 − d2) = 0. Subtract (b) from (a) to get : (c)
1
4(2ac − c2 − d2) = − 3

16(ad − cd). Substitute (c) in (b) : 17
16(ad − cd) − 3

16 (ad − cd) =

14
16(ad − cd) = 0 i.e. ad − cd = 0. This last condition is verified if: (1) d = 0, but given

that 2a = c+ d then we would have f(z) = 1
2 ,∀z which fails Lemma 1 because f would not

be strictly increasing. (2) a = c, but given that 2a = c + d we must have a = c = d. This

simplifies to our formulation: f(z) = az+b
cz+d =

az
cz+d =

az
az+a =

z
z+1 = f(z)mmr.
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4 Other candidate concepts

In the previous section the mixed version of the minimax regret has been shown to obey all

the axioms and derived properties required for approximating players’ beliefs in a 2x2 game,

being at the same time very simple in its functional form.

In this section we check the compliance to the axioms of other existing concepts commonly

used in game theory and decision theory. Two categories are recognizable among these

candidates: the first one collects proposals that are connected with the concept of mixed

strategy Nash equilibrium (subsections 4.1 and 4.2), the second one considers criteria which

mainly find application in decision theory, namely the maxmin (4.3) and the Laplace (4.4)

criteria. Subsection 4.5 considers the hypothesis that beliefs may be captured by a logit

specification. In line with what has been done for the minimax regret we keep on referring

to Game 2, considering how these candidate functions perform in approximating the beliefs

of player B on what A will play. The table that appears in section 4.6 summarizes the

results.

4.1 Mixed strategy Nash equilibrium of player A

According to this hypothesis playerB believes player A randomizes overHA and TA following

the probability distribution the mixed strategy Nash equilibrium (msne) attaches to player

A. At first glance this may seem a good candidate given that mixed Nash equilibria, out

of many different interpretations7, have also been considered as mimicking players’ beliefs.

However this proposal does not even pass the requirements of the first axiom. First there

is an issue of existence: in a 2x2 game a well defined msne exists only when there are no

strictly dominant strategies. Second, and more important, the msne of player A depends

by construction only on player B’s payoffs given that the mix adopted by A has to make

B indifferent among his strategies. In other words, this criterion does not capture any own

payoff effect: no matter how the payoffs of player A could change, A’s distribution in the

mixed equilibrium (and thus B’s beliefs) remains the same as far as B’s payoffs remain fixed.

The msne of player A thus fails Axiom 1 and as a consequence, it also fails all the remaining

ones8.
7Cfr. section 3.2 in the book "A course on game theory" by Osborne and Rubinstein (1994, MIT press).
8Moreover the predictive power of such a beliefs formulation would be very low. In fact any strategy in

the support of the mixed equilibrium of B would be a best response.
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4.2 Mixed strategy Nash equilibrium of player B

This alternative would imply that the probability distribution that the msne attaches to

player B could be considered as B’s beliefs about what A would play. The msne of player

B still suffers from the problem of nonexistence in the presence of dominant strategies but

it is indeed a function of the payoffs of player A. In order to assess the performance of this

proposal, we apply it to Game 2, which is reproduced below.

2)

(q) (1− q)

HB TB

f(z)→ HA z, · 0, · (pmm)

TA 0, · 1, · (1− pmm)

200)

(q) (1− q)

HB TB

f(z)→ HA 0, · 1, ·
TA z, · 0, ·

The probability distribution of themsne is defined by the q∗ that solves q∗z+(1− q∗) 0 =

q∗0 + (1− q∗) 1, i.e. q∗ = 1
1+z . Then the beliefs of player B about A playing HA should be

captured by:

f(z)msneB =
1

1 + z

This specification does not obey the monotonicity axiom since f(z)msneB is decreasing

in z, the opposite behavior with respect to the one prescribed by Axiom 5. To see how

misleading this interpretation could be, consider as an example the case in which z = 9. In

such a situation the msne of player B proposal would imply that player B believes A will

play HA with probability f(z) = 0.1, clearly a counter intuitive indication. Indeed letting

players best respond to these beliefs would lead to predictions which are often totally in

contrast with experimental results.

To solve this problem one may be tempted to approximate the beliefs of player B with

the complement to 1 of f(z)msneB . The functional form for the beliefs function would then

be: f(z) = 1− q∗, where again q∗ defines the probability distribution of the msne of player

B. If applied to Game 2, this proposal leads to the following functional form:

f(z)1−msneB =
z

1 + z

which indeed satisfies the monotonicity axiom. Actually this function identifies the same

beliefs indicated by the minimax regret9 and so, apparently, it should obey all the axioms.

9Gallice (2005) shows that in any 2x2 game where a well defined msne exists its probability distibution
is either the same or the mirror image of the minimax regret distribution of the other player.
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However it fails axioms 7 and 8. Consider for instance Game 200 above, a game in which

the payoffs of the two rows have been inverted with respect to Game 2. The probability

distribution of the mixed equilibrium of B is again defined by q∗ = 1
1+z . It follows that

player B’s beliefs on A playing HA would then be the same as before: f(z)1−msneB =
z

z+1 ,

a fact that violates Axiom 8 for ∀z 6= 1. A similar demonstration shows that this proposal
also fails Axiom 7.

4.3 Maxmin of player A

Are the strategies selected by the maxmin criterion a credible candidate for approximating

players’ beliefs? The pure version of the maxmin criterion predicts a player to choose the

strategy which guarantees him the highest minimum payoff. As in the case of the minimax

regret, such a "pure" formulation does not obey the continuity and monotonicity axioms.

Allowing for mixed strategies the maxmin criterion assumes the player to mix over his

strategies in such a way to maximize the expected minimum. Referring to Game 2 this

would imply f(z)mm = pmm where pmm is such that pmmz = (1− pmm) and thus

f(z)mm =
1

1 + z

In the context of Game 2 this alternative leads to the same functional form which

characterized the msneB proposal. Therefore this specification does not satisfy Axiom 5

(monotonicity). More in general, in 2x2 games where all the payoffs are different from 0,

the probability distributions implied by the maxmin criterion and by the msne are usually

different. However they both continue to fail the monotonicity requirement.

4.4 Laplace

According to this possibility player B believes player A chooses the strategy to play following

the Laplace criterion. This criterion assumes a player to best respond to uniform priors.

The strategy to be chosen is then the one which has the highest sum of payoffs. In the case

of Game 2, this means:

f(z)La =


1 if z > 1

0 if z < 1

0.5 if z = 1

Clearly this criterion fails both the continuity and the strict monotonicity axioms.
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4.5 Logit rule

If the beliefs of player B about player A playing HA in Game 2 were approximated using a

logit rule, they would take the following analytical form:

f(z)lo =
ez

ez + e1

It is easy to see that this formulation fails Axiom 3 (dominance) given that f(0)lo 6= 0
as well as Axiom 6 (homogeneity of degree 0) given that ekz

ekz+ek
6= ez

ez+e1 .

4.6 A summary

Table 1 summarizes the compliance to the axioms of the candidate functions which have been

considered till now. The axioms are identified as: consistency with probability distribution

(1), symmetry (2), dominance (3), continuity (4), monotonicity (5), homogeneity of degree

zero (6), insensitivity to column switch (7) and sensitivity to row switch (8).

CriteriaÂAxioms 1 2 3 4 5 6 7 8

Minimax regret of pl. A y y y y y y y y

Msne of pl. A n n n n n n n n

Msne of pl. B y10 y n y n y n n

1-Msne of pl. B y11 y y y y y n n

Maxmin y y n y n y y y

Laplace y y y n n y y y

Logit y y n y y n y y

Table 1: compliance to the axioms of the candidate functions.

5 A procedure to forecast outcomes

The proposal that the minimax regret may approximate players’ beliefs has been until now

discussed in the simplified framework of Game 2. Still we claimed from the beginning that

results were also valid in more general cases. Here we apply our conjecture to a game

that encompasses the cases of a matching pennies game and of a game with a dominant

10The axiom is satisfied if there are no dominant strategies.
11As before.
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strategy. The example is meant to show how simple is the process to approximate beliefs,

understressing once more the inadequacy of proposals connected with the concept of mixed

strategy Nash equilibria. It also serves as a preliminary stage to introduce a simple procedure

for forecasting individuals’ strategies which are more likely to be observed when games are

played "for real". The predictions of this procedure will then be compared with existing

experimental evidences.

Consider the following game where k ∈ [−∞,∞).

4)

HB TB

HA k,−1 −1, 1
TA −1, 1 1,−1

R1
k∈(−1,∞)

=

HB TB

HA 0, 2 2, 0

TA k + 1, 0 0, 2

R2
k∈[−∞,−1)

=

HB TB

HA −1− k, 2 2, 0

TA 0, 0 0, 2

For k ∈ (−1,∞) Game 4 is a matching pennies game. With k = 1 the game is in its

standard version, with k 6= 1 the game is asymmetric. In both cases the regret matrix is given
by R1. The minimax regret mixed strategy for player A is given by: (p̃AHA + (1− p̃A)TA)

where p̃A = 1+k
3+k is the probability that the mmr allocates to strategy HA and thus our

candidate to approximate B’s beliefs about A playing that strategy. The function for p̃A

appears as the bold concave curve in Figure 2 which focuses on the conjectured beliefs of

player B about what A will play12.

For k ∈ (−∞,−1] the game has a different structure since strategy HA is dominated by

TA. The dominance is weak for k = −1 and strict otherwise. The regret matrix is given by
R2 and the minimax regret attaches probability 0 to A playing HA. In Figure 2 this appears

as the bold line that lies on the x-axis for k ≤ −1.
The other two functions (thin lines) that appear in Figure 2 depict, respectively, the

probability that the mixed strategy Nash equilibrium assigns to player A playing strategy

HA

¡
1
2

¢
and to player B playing strategyHB

³
2

3+k

´
. The figure thus highlights the problems

which were mentioned in the previous section: the msne of player A does not respond to a

change in A’s payoff (in this case k) while the msne of player B does respond to a change in

k but not in the desired direction. Note also that the functions for the minimax regret and

12For ∀k ∈ (−∞,∞) the minimax regret of player B is 1
2
HB +

1
2
TB . According to our interpretation

this implies that player A believes player B is equally likely to play any of his strategies no matter the
specific value of k.
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for the msne of the two players intersect just once. The intersection happens for the unique

k (in this case k = 1, symmetric game) for which all the three functions reach a value of 12 .

0

f

-8 -6 -4 -2 2 4 6 8 10k

Figure 2: beliefs approximation through minimax regret in a specific game.

In front of such a game, a way to test our theory would be to set a certain k, elicit players’

beliefs and check if these subjective beliefs lie close to the ones implied by the minimax regret.

We do not pursue this testing strategy for two reasons. First, we claim that the minimax

regret beliefs are a good approximation of the real ones from an "operational" point of

view, in the sense that they both lead to the same best response13. In fact there is no need

of extreme precision as far as the conjectured beliefs prove to be useful in forecasting the

behavior of the majority of individuals. Second, the technique of beliefs elicitation is still a

bit controversial in the literature. The risk is to get biased answers since agents, in declaring

their beliefs, are pushed to think more strategically than they would normally do. Croson

(2000) finds, for instance, significant differences in the experimental results of public good

and prisoner’s dilemma games played with and without belief elicitation. On the other side

Nyarko and Schotter (2002) and Rey Biel (2004) do not observe different behavior in the

context of normal form games.

Therefore, instead of testing the precision of the theory, we test its usefulness. Refer

again to Game 4. For any possible k the minimax regret function indicates a unique beliefs

distribution defined over the two strategies of the opponent. The expected payoff of the
13This happens whenever the subjective beliefs and the conjectured ones of player i lie on the same side

of the unit interval with respect to the mixed equilibrium of player i0, which sets the indifference point.
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two pure strategies conditional on this distribution can then be easily computed. The

strategy characterized by the highest expected payoff is the one which best responds to the

conjectured beliefs and thus the one we would expect individuals to play. This is the simple

structure of the procedure we now present. The testing strategy is equally simple: to check

if the hypothetical behavior which stems by the conjectured beliefs is consistent with the

one observed in experiments. The focus remains on matching pennies but the procedure,

which we now formally define, can (and will) also be applied to other classes of games.

We consider a 2 × 2 matching pennies game played between players A and B. Let

Si = {Hi, Ti} be the strategy space of player i = {A,B} and ui (si, si0) the payoffs of the

game. The unique minimax regret distribution is given by:

{(p̃AHA + (1− p̃A)TA) , (p̃BHB + (1− p̃B)TB)}

where p̃i defines the probability with which player i should play strategy Hi in order to

minimize his expected regret. With a slightly different notation with respect to the previous

sections where only B’s beliefs were considered, define now as fi = [θ, 1− θ] the beliefs

player i holds on player i0 playing strategies Hi0 with probability θ and strategy Ti0 with

probability 1− θ. βi(fi) is the best reply function of player i. It uses i’s beliefs as an input

and provides as an output the strategy i must choose in order to maximize his expected

payoff.

The procedure

1. Compute the minimax regret distribution for the two players and retrieve p̃A and p̃B .

2. Assign the following beliefs to the two players:

• fA = [p̃B , (1− p̃B)]

• fB = [p̃A, (1− p̃A)]

3. Let the two players choose the strategy to play according to βi(fi):

• βi(fi) =


{Hi} iff ui(Hi|fi) > ui(Ti|fi)
{Ti} iff ui(Hi|fi) < ui(Ti|fi)
{0.5Hi + 0.5Ti} iff ui(Hi|fi) = ui(Ti|fi)

The strategies selected by βi(fi) are the ones which have the largest probability to be

played in a one shot game or, equivalently, the ones which we would expect to be chosen
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with the highest frequency if the game is played in a large enough population. Whenever

ui(Hi|fi) 6= ui(Ti|fi),∀i, every player has a single best response and the intersection of the
two selected strategies indicates a single outcome of the game as the most likely one. If

ui(Hi|fi) = ui(Ti|fi) for a unique i = {A,B} then two are the outcomes selected by the
procedure. Finally if ui(Hi|fi) = ui(Ti|fi),∀i, it means that both players are indifferent on
what to play and therefore all the four outcomes are equally likely.

The procedure thus provides a forecast in three simple steps: it is enough to compute the

minimax regret, use its probability distributions to approximate players’ beliefs and choose

for each player the strategies (one or two) that best responds to these beliefs. Again we

do not claim this procedure to be consciously used by players. What we claim is that, on

average, the procedure is operationally valid i.e. the majority of individuals play the game

"as if" they were applying it.

6 Experimental evidences for matching pennies games

We apply the proposed procedure to matching pennies games for which experimental results

are available from other studies14. Given that the procedure aims to capture the behavior of

inexperienced players the ideal data to test our conjecture come from experiments in which

subjects played just once a single game (data are reported in Table 2, Section 6.1). Still, as

a matter of comparison, data about the first round of repeated games are also considered

provided that players were randomly matched in each round so that inter temporal effects

are minimized (data appear in Table 3, Section 6.2). Also in this second case the procedure is

able to predict the strategies which are overplayed even though the robustness of the results

is lower. Despite of the games being different, this last result suggests that individuals’

behavior is different (though still similar) in front of one shot interactions and first round of

repeated games.

6.1 One shot games

The first three games in Table 2 (GH1, GH2 and GH3) and the correspondent experimental

results are taken from Goeree and Holt (2001). Each game was played only once by a

different pool of 50 subjects. In the original paper the authors use these games to evaluate

the predictive power of the mixed strategy Nash equilibrium. The last three games appear

in Goeree and Holt (2004) who took them from Guyer and Rapoport (1972). In the original

14With respect to the original papers strategies will be renamed in order to be consistent with previous
sections.
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experiment 214 subjects were asked to play in a random order 244 games belonging to

different typologies. Note two things about these last three games: first, the payoff structure

is more complex and second, despite of the fact that games were one shot, the huge number

of strategic situations that the players had to face makes the experiment less reliable for our

purposes.

The last four columns of Table 2 are the important ones: in the fourth to last column

we report βi(fi) = {·}, the prediction of the procedure. The third to last column presents
the experimental results in the form a/b Si, where a is the number of players that chose

strategy Si = {Hi, Ti} and b = 0.5N is the total number of row or column players.

The second to last column shows the hit rate which measures the performance of the

prediction in forecasting actual behavior. The hit rate is a simple summary statistics which

counts the number of hits, i.e. the proportion of player that chose the forecasted strategy.

It is described in Verbeek (2004) and used for instance in Gneezy and Guth (2003). The hit

rate ranges between 0% (all misses) and 100% (all hits) with 50% being the expected rate

of randomly guessing between the two strategies and thus the benchmark for evaluating the

value added of the procedure. So, when the procedure indicates a single strategy the hit

rate simply captures the percentage of players who actually played it. In games in which the

procedure indicates that subjects should uniformly randomize and b is odd (like in GH1),

the hit rate reaches 100% if the players split as equally as possible. In game GH1 for instance

the hit rate would have been 100% both if 12 or 13 out of the 25 row or column players

chose HA
15.

Finally in the last column we test for the significance in the difference between the pro-

portions of actual plays observed in the experiments and the benchmark uniform distribution

of choices. Our claim is in fact to be able to ex-ante individuate the strategies which are over

played by agents. We use the Fisher’s exact probability test which calculates the probability

of the difference in the distribution between the observed data and the alternative uniform

data. When our procedure selects a single strategy we would expect the null hypothesis

(observed data being generated by a uniform distribution) to be rejected while when the

procedure indicates that players should uniformly mix then we would expect the null hy-

pothesis not to be rejected. The last column reports the (one sided) p-values in percentage:

values below the critical value of 5% indicate that the observed proportions are unlikely to

come from a uniform distribution, values above 5% are such that the null hypothesis cannot

be rejected. For clarity purposes, p-values that are in lines with our procedure are preceded

by an asterisk.

15A more precise formulation of the hit rate, which has to be used in more complex cases, but that
encompasses the ones just described, is presented in the next subsection.
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Game Notes Procedure Exper. Hit Fisher

N selects results rate p-values

HB TB

GH1 HA 80, 40 40, 80 1 shot 1
2HA+

1
2TA 12/25 HA 100% *22%

50 TA 40, 80 80, 40 1
2HB+

1
2TB 12/25 HB 100% *22%

GH2 HA 320, 40 40, 80 / / HA 24/25 HA 96% *0,04%

50 TA 40, 80 80, 40 TB 21/25 TB 84% *1,6%

GH3 HA 44, 40 40, 80 / / TA 23/25 TA 92% *0,2%

50 TA 40, 80 80, 40 HB 20/25 HB 80% *3,6%

GR4 HA 24, 5 5,−10 1 shot HA 91/107 HA 85% *0%

214 TA 26, 9 −10, 26 244 g. HB 85/107 HB 79% *0%

GR5 HA 15, 5 5,−10 / / HA 82/107 HA 77% *0%

214 TA 26, 9 −10, 26 HB 81/107 HB 76% *0%

GR6 HA 9, 5 5,−10 / /
1
2HA

+1
2TA

74/107 HA 62% 0,4%

214 TA 26, 9 −10, 26 TB 32/107 TB 30% 0,2%

Table 2: the hit rate of the procedure in one shot matching pennies games.

To have a better feeling of how the procedure works in practice consider a couple of

examples. Game GH1 is a standard or symmetric matching pennies game. The minimax

regret is obviously 1
2Hi +

1
2Ti,∀i = {A,B} and thus the procedure assigns uniform beliefs

to both players. Indeed, in front of such a game, no player has any reason to expect his

opponent to be biased in playing a specific strategy. Both strategies therefore lead to the

same expected payoff and the procedure predicts all outcomes to be equally likely. Actual

frequencies confirm that the distributions of choices of the two populations of players are as

uniform as possible.

Things are different when the game is asymmetric like for instance in game GH2 where

the payoff for players A in the outcome (HA,HB) has been modified. In these cases the

minimax regret distribution remains the same for players B
¡
1
2HB +

1
2TB

¢
but it changes

for players A
¡
7
8HA +

1
8TA

¢
. It follows that, according to our conjecture, a generic player
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A still has uniform beliefs about B while B’s beliefs change. The procedure then selects

strategy HA as the most likely choice for players A. This strategy has an expected value of
1
2 (320) +

1
2 (40) = 180 which is larger than the expected value of TA :

1
2 (40) +

1
2 (80) = 60.

Strategy HA was in effect chosen by 24 out of the 25 A players. The mechanism is the same

for players B: according to the conjecture they strongly believe (probability of 78 ) that their

opponents will play HA. The procedure thus selects TB as B’s most likely strategy given

that 78 (80) +
1
8 (40) = 75 > 45 =

7
8 (40) +

1
8 (80). Strategy TB was indeed chosen by 84% of

B players.

The prediction of the procedure is confirmed also in Game GH3 where strategies TA

and HB are the selected ones and the hit rate is again considerably high. The hit rate

remains above 75% and the p-values are in line with our conjecture also in games GR4 and

GR5 while results are less good in the case of Game GR6 in which the procedure failed

to predict that players over played strategies HA and HB. Again we stress that the last

three games use data collected more than thirty years ago (1972), that they have a more

complex structure involving also a substantially negative payoff and that the design of the

experiment does not exactly fit our ideal framework of a single non repeated interaction.

Nevertheless the overall hit rate is above 50% in 11 out of the 12 predictions, being above

70% in 10 out of 12 cases. Considering just games where the procedure indicates a single

outcome (GH2, GH3,GR4, GR5), the procedure correctly predicts the choices of 81% of the

players. Note that in these cases the outcome selected is clearly not an equilibrium since a

generic player A would always like to deviate. It may then seem that somehow players A act

with a lower degree of rationality in comparison with players B16 . However the behavior of

the majority of both classes of players is consistent with the archetype of individuals that

play as if they were best responding to the conjectured minimax beliefs.

6.1.1 A comparison with Nash equilibrium and maxmin prediction

We briefly compare the performance of the prediction of our procedure with the ones pro-

vided by the mixed Nash equilibrium and by the maxmin criterion. For brevity we just

consider the first three simpler games (Goeree and Holt, 2001).

For what concerns the Nash equilibrium, the authors present the results for Game GH1

as supportive of the msne prediction, while they show the results of games GH2 and GH3

as evidences of its failure: in fact, given that player B’s payoffs do not change, the msne

predicts player A to keep on uniformly mixing in all the three games, a forecast which is

clearly denied by the data. Therefore the authors write that "The Nash analysis seems to

16This obviously cannot be the case given the large number of subjects and the random allocation of
players to roles.
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work only by coincidence, when the payoff structure is symmetric and deviation risks are

balanced”17.

Analyzing the same results through the lens of our conjecture, it seems indeed that the

fact that the Nash analysis works in game GH1 may be the result of a coincidence. But

this coincidence has an explanation. In symmetric matching pennies games the probability

distributions implied by the msne and by the minimax regret always coincide. In fact the

situation of Game GH1 is analogous to the game depicted in Figure 2 with k = 1, the unique

point for which the functions for the minimax regret and for the msne intersect.

Still individuals’ behavior is by far better captured by our behavioral model rather than

by the mixed strategy Nash equilibrium prediction. In fact in games GH2 and GH3 the

Nash mixed equilibrium is extremely good in capturing players B’s proportions but, because

of the already mentioned "no own payoff effect", it totally fails in predicting that players A

will over play strategy HA. To have a feeling for this difference, Table 3 computes the hit

rate of the Nash prediction for the first three games18. The table also computes the hit rate

of the maxmin prediction: as in the case of the msne, maxmin works fine in the symmetric

game GH1 but its prediction is completely misleading in games GH2 and GH3. Asterisks

next to the hit rate indicate that the associated p-values do not reject the hypothesis of the

prediction being able to selct the strategies which are overplayed.

Game Exper. Nash eq. Hit Maxmin Hit

N results prediction rate19 prediction rate

HB TB

GH1 HA 80, 40 40, 80 12/25 HA
1
2HA+

1
2TA *100% 1

2HA+
1
2TA *100%

50 TA 40, 80 80, 40 12/25 HB
1
2HB+

1
2TB *100% 1

2HB+
1
2TB *100%

GH2 HA 320, 40 40, 80 24/25 HA
1
2HA+

1
2TA 8% 1

8HA+
7
8TA 5%

50 TA 40, 80 80, 40 21/25 TB
1
8HB+

7
8TB *86% 1

2HB+
1
2TB 32%

GH3 HA 44, 40 40, 80 23/25 TA
1
2HA+

1
2TA 16% 10

11HA+
1
11TA 9%

50 TA 40, 80 80, 40 20/25 HB
10
11HB+

1
11TB *88% 1

2HB+
1
2TB 40%

Table 3: the hit rate of the Nash and maxmin prediction in the GH matching pennies games.

17Goeree, J. & Holt, C. (2001), “Ten Little Treasures of Game Theory and Ten Intuitive Contradictions”,
American Economic Review, Vol. 91, pp. 1419.
18Results are similar also for the three GR games where the Nash equilibrium indicates that players should

randomize according to 17
32
Hi+

15
32
Ti, i.e. an almost uniform distribution.

19Given that msne and maxmin often indicate non uniform mixed strategies, the hit rate has been com-
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6.2 First round of games with random matching

A similar behavior as the one found in the case of one shot games characterizes also in-

dividuals’ play in the first round of repeated games. We restrict our attention to games

in which players were randomly matched each round to minimize inter temporal strategic

effects. Table 3 reports data about matching pennies games played in this way. The first

game has been studied by Nyarko and Schotter (2002). It has been played for 60 rounds

and over four treatments to investigate the issue of beliefs learning. Game NSa reports the

data of treatment 4 (random matching and no belief elicitation) which, in the original paper,

served as a control treatment. Game NSb is equal to the previous one but the number of

players is larger because data from treatment 4 and treatment 1 (random matching and

belief elicitation) are pooled together. The last four games (MPW ) have been studied by

McKelvey, Palfrey and Weber (2000)20. In the original paper these games were played 50

times and data were used to test a version of the quantal response equilibrium that allows

for heterogeneity among subjects.

Table 4 has the same structure of Table 2 and it summarizes the results. Again asterisks

in the last column indicate that the p-values are in line with the predictions of the procedure.

GameNS is a constant sum game. Minimax regret distribution are given by
¡
3
5HA +

2
5TA

¢
and

¡
2
5HB +

3
5TB

¢
. The expected value of strategy HA is then 2

5 (6) +
3
5 (3) =

21
5 which

is equal to the expected value of TA: 2
5 (3) +

3
5 (5) =

21
5 so that players A are indifferent

on what to play. The procedure instead indicates that players B will select strategy TB

and it thus forecasts outcomes (HA, TB) and (TA, TB) as the most likely ones. The hit rate

is particularly high when only the data about the treatment without beliefs elicitation are

considered but it still remains above 75% when the data coming from the belief elicitation

treatment are also considered. The p-values always indicate that the data for players A are

not unlikely to come from a uniform distribution of play while they confirm that players B

overplay strategy TB.

The last four games all have a similar structure with the payoff for players A in the

outcome {HA,HB} being the largest one. The hit rate never goes below 50% even though

its value is lower than before. In some cases, also because of small samples, the p-values do

not allow us to make precise statements about the robustness of these results. Finally note

puted according to the formula: H = 1− |a−p|
max{b−p,p} ·100. As before, a is the number of player that played

strategy Si = {Hi, Ti}, b = 0.5N is the number of total players in that role and p is the number of players
that should have played strategy Si according to the (msne or maxmin) prediction. Loosely speaking the
hit rate assigns a penalization (numerator) which increases in the distance between the predicted and the
actual outcomes. This penalization is then scaled (denumerator) such that a hit rate of 0% is assigned to
the case in which the distance is maximal. This formulation encompasses the simpler cases of the previous
section so that the hit rates of tables 2 and 3 are directly comparable.
20 I thank Roberto Weber for giving me access to the original data set.
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that the procedure seems to work better in anticipating the behavior of B players (with an

overall hit rate of 77% in all the MPW games, p-value of 0%) than the one of A players

(hit rate of 55%, p-value of 8%).

Game notes Procedure Exper. Hit Fisher

n selects results rate p-values

HB TB

NSa HA 6, 2 3, 5 1st round 1
2HA

+1
2TA

8/15 HA 100% *28%

30 TA 3, 5 5, 3 random m. TB 13/15 TB 87% *3%

NSb HA 6, 2 3, 5 1st round 1
2HA+

1
2TA 11/29 HA 76% *13,5%

58 TA 3, 5 5, 3 r.m.+bel.el. TB 23/29 TB 79% *1,4%

MPWa HA 9, 0 0, 1 1st round HA 20/36 HA 55% 16,7%

72 TA 0, 1 1, 0 random m. TB 29/36 HB 80% *0,05%

MPWb HA 9, 0 0, 4 / / HA 14/24 HA 58% 19,3%

48 TA 0, 4 1, 0 TB 21/24 HB 88% *0,5%

MPWc HA 36, 0 0, 4 / / HA 13/24 HA 54% 21,8%

48 TA 0, 4 4, 0 TB 17/24 HB 71% 8%

MPWd HA 4, 0 0, 1 / / HA 6/12 HA 50% 31,6%

24 TA 0, 1 1, 0 TB 8/12 TB 75% 23,3%

Table 4: the procedure in first round of repeated matching pennies games with random matching.

7 The procedure in other games

The same procedure which until now has been applied only to matching pennies can also be

used with other games. In fact the procedure provides predictions for all 2x2 games. In some

of them it is probably not needed given that it is trivial to forecast the strategies the players

adopt. Still it is good to know that the procedure selects a meaningful outcome, i.e. an

outcome which has some theorethical foundations and which is confirmed by experimental
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evidences. In this respect the content of this section can be seen as a robustness check of

our conjecture.

In any 2x2 game the steps to select the strategies more likely to be chosen by inexperi-

enced players remain the same: compute the minimax regret, use its probability distribution

to approximate players’ beliefs and choose the pure strategies that best respond to these be-

liefs. Simple examples of a game with a single dominant strategy (SD), prisoner’s dilemma

(PD), pure coordination games (PC), stag-hunt games (SH) and symmetric (BS) and

asymmetric (aBS) battle of the sexes games are shown in Table 5. The claim about the

effectiveness of the prediction still refers to one shot interactions.

Game Minimax Procedure Related Notes

regret selects outcome

HB TB

SD HA 3, 1 1, 0 1HA+0TA {HA} {HA,HB} Unique

TA 1, 0 0, 2 1
3HB+

2
3TB {HB} NE

PD HA 3, 3 0, 5 0HA+1TA {TA} {TA, TB} Unique

5, 0 1, 1 0HB+1TB {TB} NE

PC HA 2, 2 0, 0 1
3HA+

2
3TA {TA} {TA, TB} Pareto dominant

TA 0, 0 4, 4 1
3HB+

2
3TB {TB} NE

SH HA 2, 2 3, 0 2
3HA+

1
3TA {HA} {HA,HB} Risk dominant

TA 0, 3 4, 4 2
3HB+

1
3TB {HB} NE

BS HA 3, 1 0, 0 3
4HA+

1
4TA {HA, TA} {·, ·} All outcomes

TA 0, 0 1, 3 1
4HB+

3
4TB {HB, TB} equally likely

aBS HA 5, 1 0, 0 5
6HA+

1
6TA {HA} {HA,HB} Payoff dominant

TA 0, 0 1, 3 1
4HB+

3
4TB {HB} NE

Table 5: the procedure applied to other classes of 2x2 games.

In games that have at least a Nash equilibrium (NE) in pure strategies, if the procedure

selects a single outcome, then this outcome is always a NE of the game (SD,PD,PC,SH, aBS).

However it may be the case that the procedure does not select any outcome (or better it
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selects them all), even if pure Nash equilibria exist. This is what happens in the case of

symmetric battle of the sexes (BS): in fact the expected payoffs of the two strategies con-

ditional on the conjectured beliefs are equal. Indeed, because of the tension between the

preferences of the two players, data coming from the laboratory confirm quite a dispersed

distribution of choices. The situation is different in the asymmetric version of the game

(aBS) where, in accordance with experimental evidences, the procedure selects the payoff

dominant equilibrium. The reason is that a generic player B correctly believes that his

opponent has stronger incentives in playing his preferred strategy.

The conjectured beliefs of the players sometimes happen to be incorrect in the sense

that they are not in line with the strategies selected by the procedure (SD,BS, aBS). For

instance in the SD game the row player expects his opponent to be biased toward playing

strategy TB but indeed player B plays strategyHB . We do not perceive this to be a problem.

In fact we axiomatized the beliefs of inexperienced, unsophisticated and boundedly rational

players and therefore the possibility that in some cases the procedure allocates to players

"incorrect" beliefs was embedded in our model since the beginning. What matters is that

the players play according to their beliefs and that the prediction of the procedure is in

line with existing evidences. In the case of the SD game for instance, player A chooses his

strictly dominant strategy (which is a best response to any possible belief) and player B

best responds choosing HB

It is also interesting to note how the procedure performs in the case of coordination

games. In accordance with theory, intuition and experimental results the Pareto dominant

NE is the outcome selected in pure coordination games (PC). More controversial is the

indication in stag hunt games (SH) where players face a trade off between an unsafe, but

potentially more rewarding, strategy and a safer one. Such games have therefore two Nash

equilibria in pure strategies: a Pareto dominant one (more rewarding) and a risk dominant

one (less risky). The latter is the one indicated by the procedure. For this class of games

the experimental evidence is mixed (see for instance Harsanyi and Selten, 1988; Straub,

1995; Haruvy and Stahl, 2004) but there is a prevailing consensus indicating indeed the

risk dominant equilibrium. With this respect and because of its capacity to select a single

outcome, the suggested procedure can also be considered as a tool for equilibrium selection

in games with multiple equilibria.

8 Conclusion

2x2 one shot games remain a fundamental tool for modeling strategic interactions. These

games capture the simplest relations (the number of players and strategies is minimal) but
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still they can be used to describe an uncountable number of situations. In fact many real

life interactions take place among two subjects and many decisions are binary in nature.

No wonder therefore that the study of 2x2 games has always attracted a lot of attention.

Theory provides elegant tools to individuate the equilibria of these games; these equilibria

have often been given not only a normative interpretation (about how fully rational players

should play) but also a positive one (about how, less rational, real players are indeed expected

to play). The empirical relevance of these predictions may be weak, particularly for games

in which players’ interests are always in contrast (matching pennies). As a consequence to

predict players’ behavior in one off interactions remains a problematic issue.

This paper introduced a simple procedure to be used for forecasting the outcome of 2x2

one shot games. Using an axiomatic approach, we justified the use of minimax regret to

approximate the beliefs of inexperienced individuals. Then we let players behave as if they

were responding to these conjectured beliefs.

A nice feature of the procedure is that, in selecting the strategies more likely to be played,

it considers all the payoffs of the game. In fact the beliefs of generic player i are mimicked by

the minimax regret probability distribution of the opponent i0 and thus they depend on the

payoffs of the latter. But then, in computing best responses, also the payoffs of player i are

taken into account. Traditional concepts like the Nash equilibrium and maxmin strategies

do not display this "all payoff" effect being functions of only half of the payoffs of the game.

Indeed, when compared with existing experimental evidences about one shot matching

pennies games, our suggested procedure proved to be an effective tool in anticipating the

moves of the vast majority of the players. Far from having fully solved the problem (for

instance the performance of the procedure seems to be much lower in games with more

than two strategies), we think that this paper may contribute to the study of individuals’

behavior in one shot games.
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