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Abstract

Large carpenter bees (Hymenoptera: Apidae: Xylocopa) have traditionally been

thought of as exhibiting solitary or occasionally communal colony social organization.

However, studies have demonstrated more complex fonns of social behaviour in this

genus. In this document, I examine elements ofbehaviour and life history in a North

American species at the northern extreme of its range. Xylocopa virginica was found to

be socially polymorphic with both solitary and meta-social or semi-social nests in the

same population. In social nests, there is no apparent benefit from additional females

which do not perfonn significant work or guarding. I found that the timing of life-history

events varies between years, yet foraging effort only differed in the coldest and wettest

year of2004 the study. Finally, I that male X virginica exhibit female defence polygyny,

with resident and satellite males. Resident males maintain their territories through

greater aggression relative to satellites.
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General Introduction

Group living exists in almost all major groups in kingdom Animalia, including

birds, mammals, insects, crustaceans, and arachnids. Forms of group living may range

from simple associations of individuals residing near each other to the complicated and

highly specialized forms found in the advanced eusocial insects. Group living may be

influenced by a host of ecological and behavioural factors and is often associated with

cooperation, a behaviour in which one individual aids another individual. In many

instances, cooperation comes at a cost to one or more of the cooperating individuals;

when this occurs we refer to it as 'altruism' because one individ~al (the helped) is

increasing its fitness at a presumed cost to the other (the altruist).

There are numerous examples of cooperation and group living. For instance, in

birds, cliff swallows signal to others when they locate a food patch (Ward and Zahavi,

1973). This.behaviour benefits those individuals that are·attracted to the food source and

comes at a minimal cost, as there is more resource than an individual· can consume· (Ward

and Zahavi, 1973). The individual that signals will benefit in the long term from living

within a larger group that will be more apt to locate food in the future. In other species

such as Belding's ground squirrels, calling signals danger, and comes at a potential cost

to the signaller; despite evidence ofnepotism, this behaviour is thus considered

"altruistic" (Sherman, 1977).

Examples of seemingly altruistic behaviour exist in numerous taxa including

mammals (naked mole rats, bats), shrimp, and arachnids. However, the extreme forms of

"altrUism" are mostly in the social insects (thrips, aphids, termites, and especially the

Hymenoptera), although, mole rats and some species of shrimp also exhibit extreme
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sociality. Social Hymenoptera include ants, bees, and wasps. In many social insects, a

division of labour exists where members of the worker class forego some or all

reproduction in favour of helping another reproduce; in some instances, these workers are

sterile. This has the effect of a fitness cost to one individual while she increases the

fitness of another (Lin and Michener, 1972). How helping behaviours, that seemingly

reduce fitness relative to reproductive or selfish individuals, have evolved has been a

dilemma to behavioural ecologists and evolutionary biologists since Darwin. Multiple

hypotheses have been proposed to answer this dilemma. Two of these explanations,

mutualism (Lin and Michener, 1972) and parental manipulation (Alexander, 1974;

Michener, 1974) are primarily behavioural. Kin selection, the third hypothesis, is an

explanation based on genetic relationships.

Hypotheses to ·explain the evolution of altruism

Kin selection
The modem explanation of cooperation and altruismis based on Hamilton's kin

selection theory (Hamilton, 1964). Hamilton noted altruism evolves due to an unstated

goal of reproduction, i.e. the propagation of alleles. Kin selection is the concept that

fitness consists ofboth the direct evolutionary effects of one's own reproduction and

indirectly through non-offspring relatives. Kin selection suggests that natural selection

can favour behaviours that are seemingly costly (in terms of fitness) if an individual can

offset the loss of its personal reproduction and passing of genes by helping genetically

similar relatives. Essentially, if an individual can pass on more genes by helping than by
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reproducing, the genes for that behaviour would also be passed more frequently and the

behaviour would be favoured.

Hamilton codified this concept into the equation known as Hamilton's rule. The

equation can be expressed as rkb > roc, where rk is the coefficient of relatedness between

the altruist and the kin she is -helping to raise, b is the benefit to the recipient ofhelp (in

terms ofnumber ofkin raised), ro is the coefficient ofrelatedness between the altruist and

her own offspring, c is the cost of to the altruist of helping (measured as the number of

offspring sacrificed). By this inequality, if relatedness is high enough, the number of

additional offspring is great, or the cost is very low,. it can be beneficial to act

altruistically. Changes in the values of c and b may occur due to numerous ecological

factors.

In the Hymenoptera, sex determination is through complementary sex

determination and results in haplodiploidy, which is also found in thrips (Thysanoptera),

some beetles (Coleoptera), mites, ticks and whiteflies (Crozier and Pamilo, 1996; Wilson,

1971). In haplodiploids, males are produced from unfertilized eggs, while fertilized eggs

become female offspring. This has the result that males are haploid while females are

diploid. Haplodiploidy thus results in unusual patterns of relatedness between relatives.

Ifwe assume a female has mated only once, in a haplodiploid system, all of a male's

alleles are identical to their mother's, while the mother shares halfher alleles with her son

(relatedness = 0.5). When a mother produces female offspring,half of each daughter's

genome will be from the father and will be shared with all her sisters, because males are

haploid. The remainder of the female offspring's genome will be from the mother and

thus two daughters will have a 50% chance of inheriting anyone gene. When taken to its
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end, these associations-have the consequence that sisters on average share 75% of their

genes with an r of 0.75; males are related to sisters on average by 25% with an r of 0.25.

In contrast, a female is only related to her offspring by 0.5, and so by kin selection

theory, a female may benefit from raising her sisters rather than her own offspring, due to

the benefits of inclusive fitness. This·unusually high relatedness between sisters has been

proposed to promote altruism in the Hymenoptera.

Mutualism
A second explanation for the evolution of altruism is mutualism. Proposed by Lin

and Michener (1972), mutualism is a scenario in which both a helper and the individual

receiving help benefit from interactions. Ifboth individuals are cooperating evenly, a fair

trade-off will occur and each party will benefit equally. Mutualism does no.t require close

relationships among group members and the different group members may perform

differing tasks that result in equivalent (or increased) net fitness (Lin and Michener,

1972; Michener, 1974).

Queen control
A third explanation for the evolution ofhelping behaviour is direct manipulation

by queens (Crozier and Pamilo, 1996). Specifically, a queen or dominant may physically

force group members to perform a task, or more likely to refrain from reproduction. This

manipulation takes the form of aggressive behaviours such as nudging, biting or pushing

(Michener and Brothers, 1974) directed towards workers. Such queen manipulation has

been well documented in sweat bees (Kukuk and May, 1991; Michener and Brothers,



15

1974; Richards et aI., 2005; Richards and Packer, 1996). In many instances, dominant-

subordinate size dimorphism may be associated with a dominant's ability to control

workers; thus queens are expected to·be larger than subordinates (Richards et aI., 2005;

Richards and Packer, 1994).

Social organization in insects
In the social insects, there· are numerous classifications and definitions for forms

of social interaction. At the heart of these definitions are the concepts of division of

labour, help in raising offspring, and contact between generations (Michener, 1974). In

the simplest form of social organization which is solitary behaviour, there is no overlap

between generations and there are is no division of labour. The other extreme is

eusociality in which a colony contains reproductive queens and workers that are rarely

reproductively active (if at all) but perform large amounts ofhelping behaviour. Such

helpful behaviours.may include foraging, nest construction, and nest guarding or defence;

examples of advanced (or highly)eusocial insects include honeybees (Apis spp.) and

many ants. Between these extremes is a series of gradations or types of social

organization that are defined by the extent ofhelp, generational overlap and division of

labour and some morphological and physiological characteristics. Table 1.1 summarizes

levels of sociality.
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Table I. 1: Explanation of tenninology used to describe various fonns of social
organization. Summarized from Michener (1974) and Wilson (2000).

Term Definition

Solitary and Subsocial One female lives alone and does all reproduction, foraging
and nest work.

Communal Multiple females share a nest (entrance), do all their own
foraging, reproduction and nest work.
Females mayor may not be related.
Females are. structurally similar.

Quasisocial Multiple females (2 to-several) share a nest and cooperate in
raising brood.
All females reproduce.
Females are usually of the same generation.
Females mayor may not be related.
Females are structurally similar

Metasocial1 Multiple females cooperate to raise brood
Females are ofmultiple generations
Not matrifilial
No reference made to relatedness
Females are structurally similar

Semisocial One female reproduces, others work.
Not matrifilial.
Workers are Queen's sisters, or of same generation.
Females are structurally similar

Eusocial Many females of overlapping generations, queens reproduce
while workers assist the queen in reproduction and generally
do not reproduce.
Workers are usually the daughters of queens.
There are usually structural differences between queens and
workers.

1 This term is derived from Gerling at al. (1983) and has been applied only to Xylocopa
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Evolution of eusociality in insects
Eusociality has evolved numerous times within the insects, in addition to two

times in mole rats (Bathyergidae) (Jarvis and Bennett, 1993) and at least twice in shrimp

(Synalpheus) (Duffy, 1996; Duffy and Macdonald, 2000; Toth and Duffy, 2005).

Eusociality has also evolved once in the termites (Isoptera) (Wilson, 1971), once in

beetles (Coleoptera: Curculionidae) (Kent and Simpson, 1992), twice in the thrips

(Thysanoptera) (Chapman et aI., 1998; Kranz et aI., 2002; Kranz et aI., 2000; Kranz et aI.,

1999)"approximately six times in aphids (Homoptera: Aphidae) (Stern and Foster, 1997)

and in Hymenoptera. In the Hymenoptera, eusociality is thought to have arisen at least

twelve times (Crozier and Pamilo, 1996; Wilson, 1971): once in the ants, at least four

times in the wasps (Hines et aI., 2007), and five or more times in the bees (Schwarz et aI.,

2006). Eusociality likely evolved once or twice in the family Apidae, three times within

the Halictinae and once in an ancestor of the allodapinebees (Apidae: Xylocopinae)

(Schwarz et aI., 2006). It is plausible that eusociality has evolved multiple times because

differing ecological conditions have acted towards a similar outcome. This is the

foundation of comparative studies of social evolution.

Many evolutionary studies ofbehaviour involve comparisons among species,

populations and occasionally broader taxonomic groups (Packer, 1991). The assumption

is that closely related groups should be similar by descent and thus should have similar

behavioural patterns. When patterns differ, it is then possible to examine the pattern

within the ecological·context of that specific species, or population. Ecological

differences may be responsible for differences in behavioural patterns. Ecological factors

should alter the value of a particular behaviour, either via changes in the mortality and

survivorship of the individual performing the behaviour, or via that individual's fitness,



18

which in itself is affected by mortality. In studying cooperation and social evolution,

ecological factors may be responsible for much of the variation in the costs (c) and

benefits (b) that lead to the evolution of group living (altruism) (Alexander, 1974; Lin

and Michener, 1972; Schwarz et aI., 1998). Thus, applying comparative methodology

should lead to an understanding of the variation in factors related to social organization.

Naturally, this approach is most effective when similar information is available for

multiple species, and making such comparisons requires detailed studies of life history

traits in related taxa. Further, choosing the correct taxa is essential, as different taxa

allow the examination of different ecological factors.

Reproductive skew models
A feature of almost all group-living organisms is reproductive skew, a common

term used to refer to the apportioning of reproduction among group members. In general,

a social group with high skew has a single or a few individuals that monopolize direct

reproduction. Conversely, in a social group with low skew, reproduction is more

egalitarian and there is a more balanced distribution of reproduction throughout the

society (Johnstone, 2000; Keller and Reeve, 1994).

Models of reproductive skew attempt to explain the degree of skew in a society by

accounting for levels of dominance, and by assuming that some individuals may defer or

surrender some reproduction in favour of some delayed return (Dugatkin and Reeve,

1998). Simple skew models include factors that are mostly consistent across taxa and

have been applied to insects, birds and mammals (Clutton-Brock et aI., 2001; Johnstone,

2000; Reeve and Keller, 1995; Reeve and Jeanne, 2003; Reeve and Keller, 2001). In
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"optimal skew" models, it is assumed that a single dominant individual has complete

control over reproduction (Dugatkin and Reeve, 1998). This contrasts with "incomplete

control models" which assume that a dominant individual's control of reproduction is

limited (Dugatkin and Reeve, 1998; Reeve et aI., 1998). These models take many forms,

but are ultimately based on evolutionary game theory models and attempt to predict how

various factors may influence the apportioning of reproduction when a single individual

is not in control.

There are multiple types ofreproductive skew models. Transactional models

assume that individuals are conceding reproduction to other individuals within a group

for some variety of incentive (Reeve and Keller, 2001). Transactional models are usually

divided into "concession models" and "restraint models." In a concession model, a

dominant is assumed to control group membership and the proportion of the group's

reproduction that subordinates receive. Restraint models assume that the dominant

individual controls group membership while subordinates control reproduction. A final

group of skew models are the "tug ofwar" models in which neither the dominant nor a

subordinate has complete control and are thus forced to "compromise" as each maximizes

their share ofreproduction (Johnstone, 2000).

Many newer models extend reproductive skew models to include additional

factors such as the possibility of reproducing later (social queuing) or inheriting resources

(Johnstone and Kokko, 1999; Ragsdale, 1999). Since factors such as nest inheritance and

social queuing have been shown to playa role in the social organization of many taxa,

such models are likely to prove useful in understanding how social aggregations may

form (Bull et aI., 1998; Waser, 1988). It is reported that some species in the genus
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Xylocopa are social and often inherit the natal nest (Gerling et aI., 1983; Gerling et aI.,

1989; Maeta and Sakagami, 1995). These species maybe useful in empirical tests of

these models.

Subfamily Xylocopinae
The subfamily Xylocopinae is one of five subfamilies in the family Apidae.

Xylocopinae includes four tribes, the large and small carpenter bees,. Xylocopini and

Ceratinini, respectively, as well as Manueliini and the Allodapini. The phylogenetic

relationships among tribes ofXylocopinae have been investigated; however, there is

some uncertainty as to the relationships among groups. Sakagami and Michener (1987)

and Roig-Alsina and Michener (1993) placed the Ceratinini and Allodapini as a sister

clade basal to the subfamily. There is no agreement on the sister group to the Allodapini-

Ceratinini clade, and both of the remaining tribes have been suggested as the basal group

(Minckley, 1998). Minckley (1998) and Roig-Alsina and "Michener (1993) both

identified the family Megachilidae as the next most basal taxon to the Xylocopinae. The

allodapine bees have been the subject ofmany studies of social evolution (Schwarz et aI.,

1998; Schwarz et aI., 2006), while species within the Ceratinini (Sakagami and Maeta,

1995; Sakagami and Michener, 1987) and Xylocopini have been studied to a lesser

extent, often with respect to general life-history characteristics (Camillo and Garofalo,

1989; Gerling et aI., 1983; Gerling et aI., 1989; Hogendoom, 1996; Hogendoom and

Velthuis, 1993; Michener, 1990; Sakagami and Laroca, 1971; Sakagami and Maeta,

1995; Stark, 1992a; Stark et aI., 1990; Velthuisand Gerling, 1980; Velthuis and Gerling,

1983; Vicidomini, 1996).
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Species within the Xylocopinae exhibit a variety of social organizations ranging

fonn solitary to eusocial (Michener, 1985; Michener, 1990). While most members of the

Xylocopinae nest in some variety ofplant material, there is tribal variation in many

nesting habits and provisioning strategies. Specifically, there are two provisioning

strategies exhibited, one in the Allodapini, which feed their brood progressively and do

not separate them into cells (Michener, 1974; Schwarz et aI., 1998), and another in the

Manueliini, Ceratinini and Xylocopini, all ofwhich use mass provisioning. The mass

provisioning species lay eggs on pollen masses and their brood are placed into individual

cells. Within the subfamily Xylocopinae there is also variation in the number of

generations with univoltine (one brood) and multivoltine (multiple broods) species, and

this variation is sometimes associated with climate (Michener, 1990).

Tribe Xylocopini
In their revision of the Xylocopini, Hurd and Moure (1963) recognized three

genera within the tribe Xylocopini. The genus Lestis Lepeltier & Serville was defined

based on its geographic distribution to Australia, Proxylocopa Hedicke, was identified as

the only genus that was ground nesting, and the genus Xyiocopa Latreille contains the

remaining species. However, Minckley (1998) has since produced a cladistic study that

shows these three genera belong to a single monophyletic group comprised exclusively of

the genus Xylocopa Latreille; this taxonomy was also supported by Leys and by

Michener (Leys et aI., 2000; Leys et aI., 2002; Michener, 2000; Minckley, 1998).
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Genus Xylocopa
The genus Xylocopa has been classified by Minckley (1998) as the sole genus in

the tribe Xylocopini and containing 31 subgenera. This position is supported by two

molecular studies (Leys et aI., 2000; Leys et aI., 2002; Minckley, 1998). In his study,

Minckley gives a number of approximately 500 species ofXylocopaand Michener (2000)

presents a similar number. However, the only exhaustive cataloguing ofXy10copa lists

750 described species (Hurd and Moure, 1963). Commonly, researchers use the

taxonomic scheme ofHurd and Moore, while accepting a single genus (Da Silva et aI.,

1999; Doolan and Macdonald, 1999; Leys, 2000b; Leys et aI., 2002; Michener, 2000;

Minckley, 1998; Steen, 2000) .

Xylocopa is widely distributed and can be found on all continents except

Antarctica (Hurd and Moure, 1963). Most species ofXylocopa are distributed in tropical

and subtropical climates but some species may be occasionally found in temperate areas

(Hurd and Moure, 1963). Many subgenera are restricted to particular regions or islands

with distributions rarely crossing zoogeographical boundaries (Hurd and Moure, 1963;

Leys et al., 2002).

Subgenus Xylocopoides
The subgenus Xylocopoides contains five species, two ofwhich (virginica and

cali/ornica) purportedly contain subspecies (Hurd, 1978). This is a chiefly Nearctic

subgenus that is distributed in North America mostly in warm and temperate regions.

Members of this subgenus can be found in south-eastern Canada, most of the United

States and ranging into southern Mexico (Hurd, 1978). Reports on the nesting of this

subgenus suggest that all members nest in dry, sound wood, but it appears that the
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particular substrate choice varies among species (Hurd, 1958; Hurd, 1978; Hurd and

Moure, 1963). Reports on foraging suggest that these bees forage on a variety of native

and introduced plant species (Hurd, 1978).

Xylocopa virginica virginica
Xylocopa virginica virginica (L.) is one of three subspecies within the species

virginica,which also includes Xylocopa virginica texana and X v. krombeini (Hurd,

1978). Xylocopa virginica virginica is the most widely distributed member of the

subgenus Xylocopoides ranging from southern Ontario to Florida and west to the

Mississippi River and into Texas. However, X v. virginica's range overlaps with the

other subspecies in Florida and Texas. Further, preliminary molecular data based on COl

sequences raise questions about the validity of the subspecies (S. Prager, unpublished

data). Since Xylocopa virginica are large bees and often nest near humans, they have

been the subject of occasional studies and publications, most ofwhich are descriptive in

nature. Most notable of these studies are those of Gerling and Hermann (1976) in

Georgia and that ofRau (1933) in Missouri. Additional studies have focused on male

behaviour(Barrows, 1983; Barthell and Baird, 2004), foraging (Dukas and Real, 1991;

Frankie and Vinson, 1977), and specifics ofmorphology and physiology (Chapman,

1999; Chapman and Abu-Eid, 2001; Chapman, 1986; Williams et aI., 1983). None of

these studies has managed to combine elements of male and female behaviour in the

same population or has examined these bees· in the more northern extremes of their

distribution.
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Aims of this research
It is the overall conceptual goal of this work to further the knowledge of social

evolution and animal behaviour. Since much of the work to date on social organization

in Xylocopa has been on only two species, this will add to the available data for

comparative studies. To date, studies ofXylocopa social evolution have suggested a

complex trade offwhich results in helping behaviour (Dunn and Richards, 2003;

Hogendoorn, 1996; Hogendoorn and Leys, 1993; Hogendoorn and Velthuis, 1993), while

another study cites reproductive skew as a mechanism for social evolution in these bees

(Steen, 2000). The quantitative data I will present should be helpful in evaluating these

explanations and in making comparisons among species. Further, in facultatively social

bees, an understanding of factors that influence an individual's decision to help may

provide insight into the evolution of obligate social organization. (Hogendoorn and Leys,

1993). These factors likely include nest inheritance, queen control and guarding

behaviour, all ofwhich are related to hypotheses explaining the evolution of helping

behaviour. I will show thatX virginica is facultatively social and offer data and

suggestions as to why this social polymorphism exists.

In the study presented here, I intend to accomplish a series of goals:

1. I will expand on existing knowledge ofXylocopa virginica life history by adding

additional data and more quantitative data with respect to social behaviour,

foraging and phenology.

2. I will offer the first detailed examination of this bee's social and mating behaviour

in the northern extreme of its range, and compare those data with studies

conducted in other locations.
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3. I will examine variation in life-history traits among years with different weather

conditions.

4. Finally, I will examine male behaviour and its relationship to female life history

traits. This information should prove useful for future comparative studies with

other species ofXylocopa, bees and social insects in general.
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General background and methods

Many of the data presented in this thesis were generated using the same

techniques and in the same study sites. These common data were used to answer

different questions in different chapters. Therefore, the same data sets were.often

analyzed in different manners. For brevity, common techniques and methods are

presented here. Individual chapters contain details and variations relevant to the data

they present. For purposes of clarity, .I also provide definitions for terms commonly used

in this document.

Study sites-St. Catharines

I conducted work between 2003 and 2006 at two sites located on the Brock

University campus (St. Catharines, Ontario, Canada) (43°07'21 ", 79°14'37"). The

primary site, "Courtyard", was used for observational studies and non-destructive

sampling. The Courtyard site was situated between academic buildings and residences,

had limited shade and consisted mostly of a concrete walkway through a grass lawn

(Figure 1.1).

A second site, "Farmhouse", was used for destructive sampling of nests. The

Farmhouse site was located on the southern end of the campus, approximately 400 metres

from the Courtyard site, near a farmhouse, an old-field meadow, and parking lots. This

site was smaller than the Courtyard site and was well shaded by numerous large trees. In

addition, this site consisted entirely of lawn, dirt, and wood shavings rather than the

concrete of the Courtyard site. These factors made the Farmhouse site two to three
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Figure 1.1: a. Scale diagram of Courtyard site showing location of each bench and its 1m
surrounding' perimeter. The number ofnests in a bench in each year (2003, 2004, and
2005) is given in brackets. b. Expanded view of courtyard and surrounding buildings
(hatched areas). Box indicates path along which benches are located. Note that bench 7
was moved prior to the 2005 season.
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degrees· cooler than the Courtyard site for most of the day. The Farmhouse site was used

exclusively as a source ofnests for destructive sampling.

In both study sites, nests were contained within wooden benches (Figure 1.2a and

b). Study sites were defined as the area encompassing a perimeter of approximately 10

metres from the edge of each bench, and all the area contained within. This area

constituted approximately 900 m2 in the Courtyard site and 400 m2 at the Farmhouse site.

In 2003, the Courtyard site contained seven cedar benches and a total of 81 nest

entrances. In 2003, the Farmhouse site contained 6 cedar benches and 35 nest entrances.

All the nests at the Farmhouse site were destructively sampled in 2003 and no new nests

were constructed in subsequent years, although benches remained. The Courtyard site

was used for all non-destructive sampling work. Prior to the start of each season, each

nest entrance was marked with an alphabetical identifier (used once per bench); the same

i4entifier was assigned to a nest in every year. In 2006, I obtained five nests from the

eves trough of a pavilion in Burgoyne Woods, a city park in St. Catharines, Ontario,

located 2 Ian north of the Brock University Campus. These nests were not subjected to

preliminary study prior to collection, and were primarily used for architectural analyses

(Chapter 2). Females collected in Burgoyne Woods nests are included in some

morphological analyses (Chapter 1).

Phenology and life cycle

Here I summarize the life-cycle ofboth female and maleXylocopa virginica in

chronological order. The season for X virginica females begins when they become

active after a period of overwintering that typically lasts from late September until late
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Figure 1.2: a: Diagram (side view) of typical bench containing X virginica nests as
contained in both the Fannhouse and Courtyard sites. b: Top view of a typical bench
containing X virginica. Not to scale.
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April. In mid- to late April, the beginnings ofbee activity are indicated when debris and

dead individuals appear below nest entrances, indicating nest renovation has begun.

Shortly after nest renovation has begun, females can be seen making flights that do not

involve pollen collection.

At about this same time (mid-April) males begin to emerge from nests; four to six

weeks later, males can be observed "hovering" over the benches and occasionally at trees

or flowers in the study site. Males are thus active after nest construction or renovation

begins. Following nest renovation, pollen foraging by females begins and continues for

about 6 weeks (usually from late May until early July). Males are therefore present near

nests before females begin foraging. Brood begin to eclose in late July or August, at

which point a second period of foraging begins; this period lasts into September. Young

females (and males) overwinter together in their natal nests along with surviving

foundresses. Detailed life-cycle information is provided in chapter 3.

Bees obtained from other sources

Some analyses required bees that could be behaviourally classified as having

performed specific tasks outside of a nest or as having been active during a particular

time. To generate sufficient sample sizes forthese analyses, X virginica were collected

using other methods. First, bees were collected "on the wing" at various locations on the

Brock University campus and around St. Catharines using a hand net. Second, bees

collected for a separate project (Rutgers-Kelly, 2005) were dissected and included in

analyses. These bees were collected in sweep nets or directly collected on flowers and

thus were known to have been foraging. Finally, bees captured incidentally or that died
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during marking were included in some analyses. Bees collected using these methods

constitute the remainder of the "outside" females dissected and analyzed in chapter 1.

Destructive sampling of nests and collection of contents
All destructively sampled nests from Fannhouse were collected and opened using

the same protocol. The Fannhouse nests were collected in summer, after females had

stopped provisioning broods. Nests collected in other St. Catharines sites and in

Maryland were collected with procedures modified as indicated. Appendix 1 gives

collection dates for all nests collected in St. Catharines. The evening prior to collecting a

nest, 1plugged nest entrances with non-sterile cotton wool secured with duct tape, to

ensure that all adults were insid~ the nest; X virginica are inactive at night, returning to

nests in early evening. To expose the nest, 1planed the boards a layer at a time using a 6"

block plane (Stanley model 12-220) until nests were visible. When the nest was exposed,

the remaining wood was carefully removed using forceps, razor blades, and a penknife.

Once nests were fully visible, all adult inhabitants were collected, their wings

were removed (to facilitate measurements), and the specimens were stored at -80°C in 50

ml conical centrifuge tubes. At the time ofnest opening, 1recorded the contents.of each

brood cell (Figure 1.3) and the developmental stage of all brood (very small, small,

medium, large, or fully-grown larvae; white, pink, red, brown, or black-eyed pupae; 1/4,

1/2, 3/4, or fully pigmented pupae; adult); the use of developmental stage gives more

gradation than instars. Larvae and pupae were left in situ and raised to adulthood. When

brood reached the adult stage or died, their brood cell position and final development

stage was recorded and they were stored at -80°C or in 95% ethanol (redistilled in the
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Figure 1.3: Individuals ofvarious brood stages. Stage progresses from left to right, A is
a pollen mass, B is a medium larva. C through D are sequential pupal stages identified by
the proportion ofpigmentation; C is a ~-pigmented pupa and D is a fully pigmented
pupa. E is an imago.
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lab). The majority ofnests collected at the Farmhouse site contained broods in advanced

stages, suggesting that -females had finished laying and broods were complete at the time

of collection.

Some data could not be obtained from all destructively sampled nests.

Specifically, in three nests, females escaped after the nests were returned to the lab and

the females could not be assigned to a specific nest. Five nests did not contain any adult

females when collected. Two nests were collected without brood or adult females (i.e.

were empty). For all analyses, I use data from as many nests as possible and thus sample

sizes vary. Appendix 1 gives the exact contents of each nest. Appendix 2 gives the

number of destructively sampled nests used in each analysis.

Paint marking for identification
In order to track the activities of individual bees, bees were individually marked

using Testors lead-free, all-purpose enamel paint applied with a small brush or transfer

pipette to the abdomen and thorax. Since X virginica is sexually dimorphic, colour

combinations were used once on each sex; colours were chosen for visibility at a

distance. In every year (2003-2005), I used the same procedure. Bees were captured

using a hand net and transferred into a 50 mL centrifuge tube that was then chilled on ice

to reduce movement and prevent bees from grooming themselves before the paint dried.

After marking bees and taking head capsule width measurements bees were released at

the bench closest to where they were caught.

Intensive marking was done at the beginning of each year (as soon as bees were

seen flying) until mid-June when behavioural observations began. One person would

walk the length of the study site and capture any bee that was outside of a nest.
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Previously marked individuals were released immediately, while unmarked individuals

were retained for marking. During the initial intense periods ofmarking in each season,

approximately five hours per day was spent capturing and marking individuals,

depending on weather (X virginica does not fly in the rain, when it is too cold (below

14°C)), and occasionally when it is too hot (above approximately 30°C). Following

intense periods, marking continued every two to three days or whenever an unmarked

individual could be caught without interrupting other activities. I continued marking

throughout the entire study period, so almost all individuals that flew regularly in the

study site were marked.

Videoscope observations of nests
In 2004 and 2005, I was able to inspect nests in the Courtyard site without

destroying them using an Everest VIT Inc. VP300™ video boroscope (henceforth

'videoscope'), which has an adjustable light source and a camera lens on the end of a

flexible probe that can be inserted into a nest. Nests were inspected to ascertain the

minimum number of individuals present, the sex ofvisible individuals, the identity of

marked inhabitants, and the presence ofpollen stores and brood. Nests were also

examined to determine their basic shape, the number ofbranches, and in some instances,

the nest's position withinthe board. As some segments ofnests were not accessible to

the probe (either because the distance exceeded the length of the probe or the nest tunnel

changed direction on too sharp an angle), the number of females and branches always

represented a minimum number.

Benches were inspected approximately every third day in random order, with all

accessible nests observed from 10 July to 22 September 2004 and from 17 May to 1
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September 2005. The duration of observations varied as was necessary, from

approximately 10 minutes to 3 hours based on the ability to determine occupancy, female

activity, and technical considerations.

Observations of females at nest entrances
I observed individually identifiable females as they entered or exited their nests to

determine the number of foundresses occupying each nest and their daily activity

patterns. In 2003, preliminary observations were taken to determine when females first

. began foraging for a day and when they finished activity for a day. In three days of

observations in June, no females were seen entering or exiting a nest prior to 0845 h or

after 1800 h. In general, activity began around 0930 h and ended at approximately 1630

h. A period ofbehavioural observation began with the first indication of daily activity

and lasted 6 hours. However, if during the initial 30 minutes of the day's observation, no

activity occurred at any bench, then conditions were presumed inappropriate for bee

activity and observations were cancelled for that day. Thus, observations should closely

approximate daily activity. In 2003 and 2004, the order of observation was randomized

with respect to bench. In 2005, observations were associated with a removal experiment

(Chapter 1) and could not be randomized with respect to order of observation. During the

observations, the identities of all individuals arriving, entering and departing from a nest

were recorded, as well as the time of day and whether pollen was visible on the legs.

Behavioural observations began in mid-June and continued until late August. Each nest

was observed at least once per week. Observations were conducted daily until foraging

activity became less frequent, at which point observations were conducted as activity

patterns made practical (i.e. some indication that activity would occur). As the number of
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nests in bench 5 (Figure 1.1) increased, it sometimes became necessary to split

observations at this bench so that three hours were spent facing each side of the bench.

Terminology
Here I present definitions for terminology used throughout this thesis. In all

chapters, foundress refers to an adult female that is present at the start of a season (before

brood are laid). Foundress is used in opposition to the term female that indicates any

adult female, regardless of timing. Since some females may leave a nest for purposes

other than collecting pollen to provision brood, forager specifically refers to a female

observed carrying pollen at any time during the season; not all females that are observed

flying outside a nest are foragers. "Inside females" describes females collected along

with a destructively sampled nest for which there is no behavioural evidence of their

having left the nest. Conversely, "outside females" refers to a female (regardless of

collection method) for which there is behavioural evidence that she left the nest (i.e. she

is marked or was caught on the wing). Male always refers to any adult male. The term

haplometrotic is used interchangeably with solitary to describe a nest containing a single

foundress. Pleometrotic refers to nests containing multiple foundresses. A colony refers

to the adult and immature bees within a nest; nest refers to the physical structure

(Michener, 1974).
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Chapter One: Foundress associations in Xylocopa
(Xylocopoides) virginica

Introduction
Facultatively social bees can offer special opportunities to examine the evolution

ofhelping behaviour and multiple-foundress associations through comparative studies

(Dunn and Richards, 2003; Richards, 2000; Richards, 2003; Richards and Packer, 1994).

Comparative studies have commonly been made within the bee family Halictidae and to a

lesser degree in members of the tribe Allodapini (Michener, 1990; Packer, 1993;

Sabrosky, 1962; Schwarz et aI., 1998; Schwarz et aI., 2006; Schwarz et aI., 1997).

However, sporadic studies of the genus Xylocopa (Apidae: Xylocopinae: Xylocopini)

suggest that these bees, often considered solitary or communal, may also be useful in

such studies of social evolution.

Some species ofXylocopa have previously been studied with respect to social

organization and evolution. The most extensive studies ofXylocopa to date are of the

species X pubescens and X sulcatipes. Studies ofX pubescens suggest that sociality

(semisocial or metasocial) can arise when a female loses her nest and social position to a

usurper. When this occurs, the usurped female may have previously laid eggs, but only

the usurper remains reproductive; to date, there is no genetic evidence to confirm

maternity in these nests (Hogendoorn and Velthuis, 1999; Michener, 1990; Stark et aI.,

1990). Similarly, both the usurped and usurper may have foraged, but only the usurper

continues to forage (Dunn and Richards, 2003; Hogendoorn and Velthuis, 1999). InX

sulcatipes more than one female of the same age may occupy a nest, but only one female

collects food, the others remaining in the nest (Gerling et al., 1983; Stark et aI., 1990).
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Overall, sociality has been demonstrated in eight species ofXylocopa (Camillo and

Garofalo, 1989; Gerling et aI., 1989). Some other species ofXylocopa have been

considered, and studies suggest that they may be solitary or facultatively social (Balduf,

1962; Maeta et aI., 1985; Michener, 1990; Stark, 1992a; Steen, 2000; Steen and Schwarz,

2000; Van Der Blom and Velthuis, 1988; Velthuis and Gerling, 1983; Velthuis et aI.,

1984; Vicidomini and Priore, 1999; Watmough, 1983).

In eastern North America, there are two species ofXylocopa. X micans resides in

southern Georgia and Florida and is mostly unstudied (Hurd, 1978; Hurd and Moure,

1963). The more common species ofXylocopa in eastern North America isX virginica

(Hurd, 1978; Hurd and Moure, 1963). X virginica ranges from Florida to southern

Ontario and from the Atlantic Ocean to the Mississippi River. Due to its large size, this

species is conspicuous and has been the subject of occasional study (Balduf, 1962;

Barrows, 1983; Chapman and Abu-Eid, 2001; Frankie, 1977; Sabrosky, 1962), mainly

concentrating on male behaviour. There have been two extensive publications on the

behaviour of female X virginica, a book chapter by Rau (1933) that is mostly qualitative,

and a study by Gerling and Hermann (1976) conducted in Georgia. Gerling and

Hermann (1976) suggested that females can nest in solitary or in multi-foundress nests

with older females performing the nesting activities while younger bees remain in the

nest and perform little or no work (Gerling and Hermann, 1976). They proposed that

social aggregations might result from limited nesting sites. In addition, in their study

Gerling and Hermann (1976) noted that females are often in their second spring (twice

overwintered) when they reproduce.

In this study, I examine a population ofXylocopa virginica found at the northern

extent of the species' range and look for evidence of sociality. To this end, I examine the
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roles of individuals in multi-foundress nests with respect to division of labour and

reproductive skew and I examine factors related to fitness in multi-foundress nests and

solitary nests. In particular, I test the hypothesis that X virginica nests socially, resulting

in nests with larger or more successful·broods than solitary nests. The quantitative data I

present here both expands on the more qualitative studies ofRau (1933) and of Gerling

and Hermann (1976), and provides novel information on populations at the northern

extreme of the species' range.

Methods

Nest contents and productivity
The first requirement for social behaviour is the presence ofmultiple foundresses

within a nest. Further, I hypothesised that multi-foundress nests would be more

productive than solitary nests. I used three methods to determine the number of

foundresses within nests. The first method was to count the number of foundresses

contained within destructively sampled nests. While this method was the most reliable

and gave an absolute number, it required the destruction of nests and thus nests examined

with this method could not be used in subsequent studies. The second method was

videoscope observation, which allowed counts of individuals within nests and was non-

destructive..The third method was observation of females as they entered or exited nest

entrances and was also non-destructive. Observational methods provided a minimum

estimate ofnumber of foundresses residing within a nest because females were

potentially out of the range ofthe videoscope or did not leave the nest. Since neither

video observation nor observation at nest entrances provided exact numbers, the use of

multiple methods provides greater confidence in the estimates of foundress number.
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I calculated both the number of individual brood per nest and the production per

foundress as indications ofbrood size. These were both based on a direct count of the

number of completed brood cells in destructively sampled nests from Farmhouse in 2003.

Following the maturation ofbroods, maximum brood size was adjusted by subtracting

cells in which individuals died ofnatural causes. The result was two brood sizes, one that

represented the initial female investment (number of cells) and one that represented the

number of surviving brood. Foundress productivity was calculated for each nest as either

the number ofbrood cells,or number of surviving individuals, per foundress. Nests

without brood or foundresses were excluded from productivity calculations. These

analyses were only conducted for the 2003 Farmhouse nests because other years and sites

had insufficient numbers to control for differences between locations or years. Nests that

did not contain females but did contain brood were included as zero foundress nests for

some analyses on brood, but are excluded from analyses ofproductivity.

Brood parasites
Some brood were parasitized by the bombyliid fly Xenox (formerly Anthrax)

tigrinus (De Geer genus revised by Evenhuis). These flies are undetectable until larvae

reach advanced stages (at least the medium larva stage). However, once this stage is

achieved, the flies are large and obvious. Since all individuals from a brood were raised

to maturity, individuals that were parasitized could be easily identified, as could the cells

in which parasites had been residing. I compared both the degree ofnest parasitism

(proportion ofnest parasitized) and the number ofparasites per brood cell for solitary and

multi-foundress nests. When possible, flies and pupal exuvia were gathered and stored in

95% ethanol just after eclosion for potential future use.
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Foundress survival and colony longevity
Since X virginica nests in wood, nests can be reused in multiple years. The

ability to reuse nests means that they are occupied for multiple seasons, likely by the

same family ofbees. Nest reuse is therefore an indirect measure of colony longevity

when reuse is by relatives. I used data from videoscope observations to determine

whether nests occupied in 2004 (the first year ofvideo observations) were re-occupied in

2005 and likewise ifnests used in 2005 were re-usedin 2006. Active nests were defined

based on the presence ofbrood cells, cleanliness (no fecal pellets or pollen bits present)

and seemingly light coloured walls (an indication ofnest tunnel maintenance).

Conversely, nests that were not provisioned and contained debris such as broken cell

partitions and rotten pollen were classified as inactive nests. In 2006, additional re-use

information was available via females trapped directly at nest entrances as part of an

unrelated study (Peso, M., 2008, MSc thesis). Since daughters are expected to inherit a

nest, when a nest was occupied and is then vacant the following year, it indicates the

death of the colony. Starting in early April, and continuing until September, nests (and

the pavement below the nest entrances) in the Courtyard site were inspected daily for the

presence of i~dicatorsof occupancy, nest renovation (preparation or elongation of an

existing nest for reuse), and construction (creation of a new nest). These indicators

included the presence of sawdust, debris (old pollen, cell partitions) and dead pupae

under nest entrances. These data were used to supplement data from video observation or

for nests that were not accessible to the videoscope.
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Behavioural roles of females
To explore potential differences in behavioural roles among females, I compared

various morphometric characteristics among females that were known to have left a nest

(outside females) and females that were collected inside nests (inside females). The

outside set included all females collected in St. Catharines that were not collected along

with a nest, as well as marked females collected with a nest, and these data were pooled

across years except for analyses of size.

Morphological measures of work
When females were captured for marking, I measured head capsule width (HW)

using an Edmund Scientific 6x pocket comparator equipped with a reticle. Infemales

that were collected away from the study site, I also measured forewing length (CVL) as

the length of the costal vein from its intersection with the subcostal vein to the notch near

the prestigma, using a Zeiss Stemi SVII binocular dissecting microscope equipped with

an eyepiece reticle (Figure 1.1). Based on the assumption that in social nests queens

would be larger (to facilitate physical manipulation ofworkers) and that workers are

more likely to leave the nest to forage, I hypothesised that bees collected outside the nest

would be smaller than those collected within nests. I used these size data to test this

hypothesis.

I measured wing wear (WW) for all collected bees. Wing wear is a proxy for

flight activity; greater wear indicates that a female flew more (Cartar, 1992). Wing wear

was scored on a scale of 0-5 (Figure 1.1) using a Zeiss Stemi SVII binocular microscope.

A score ofzero indicates an intact forewing distal edge whereas a score of five indicates
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Figure 1.1: Unworn (top) and worn (bottom) Xvirginica wings. The worn wing would
receive a score of five while the unworn would receive a score ofzero. Forewing length
as measured from subcost':ll vein to "nick" near prestigma (b).
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that the distal edge of the forewing was completely tom away by nicks or tears (Richards,

2000; Richards et aI., 2003).

To determine how adult females might differ in terms ofnest construction and

maintenance activities, I scored mandibular wear (MW) in all collected females on a

scale of 0-5. As with wing wear, greater activity is expected to result in greater wear

(Richards, 2000; Richards et aI., 2003). A score ofzero represented no wear, as indicated

by .sharp, shiny, unblemished mandibles. A score of five represents completely worn

mandibles, which are dull and possess rounded ends. To confirm the repeatability of the

scoring methods, sub-samples were scored by naive observers; scores matched at a 95%

confidence interval. I also calculated a total wear (TW) score by adding wing wear and

mandible wear, for a score between 0 and 10 that indicates the total amount ofwork that

a female was performing.

Morphological measures of reproduction
All adult females collected were dissected to assess ovarian development (aD)

and largest oocyte size. While both these variables measure reproductive readiness, aD

better indicates the investment a female has made to reproduction overall, while largest

oocyte size indicates how near a female is to laying an egg. I scored ovarian

development by assessing the proportional development of each developing oocyte

relative to the size of a fully developed egg, on a scale from 1/4 to 1 (Michener, 1974)

and summing oocyte scores into an overall ovarian development score (aD).

Females with thickened ovaries but no developing oocytes were scored as 0.1.

Females with no developed oocytes and thin ovaries received a score ofzero. Scores of

zero were pooled with scores of 0.1 into a single category (0), as both indicate no

developed oocytes. All oocytes were measured, allowing analyses based on oocyte sizes
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(relative to a fully developed oocyte) in addition to ovarian development score.. In all

analyses of reproduction, females were only considered if they were collected during the

brood laying period: between when a female was first observed with pollen and when the

provisioning ofbrood ended for the population. The completion ofprovisioning was

determined via nest collections in 2003 and via videoscope and observation at nest

entrances in other years (no females returning with pollen or observed working on brood

cells).

In addition to ovarian development, mating status was determined whenever

possible. Only mated females can produce daughters, and thus mated females are more

likely to produce full broods. Matednesswas determined based on the presence ofvisible

sperm in spermathecae (sperm storage organs) after dissection; mated females have

opaque spermathacae while those ofunmated females are clear (Wyman and Richards,

2003). Determining matedness inXylocopa is notoriously difficult and error prone (R.

Minckley, pers. comm.). Females that had significant fat deposits, were decomposing,

highly damaged, or had recently consumed large amounts ofpollen were difficult to

assess accurately and were excluded.

Cross-tabulation of reproduction and work

Indicators ofwear (total wear) and indicators ofreproduction (largest oocyte and

aD) were compared in cross-tabulation. Two sets of analyses were performed. In the

first analysis, cross-tabulations were tested using chi-square goodness of fit tests to

determine ifvalues differed in distribution from even (the same values for each

condition). In the second analysis, the frequencies ofvarious combinations ofwork and

reproduction were compared to hypothetical distributions. Hypothetical distributions
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were based on the observed sample size of75 and constrained to have a minimum

number of five individuals in all cells, in order to meet this assumption of the chi-square

analysis. Thus, for solitary behaviour the hypothesized distribution had 60 individuals in

the high work and high reproduction category, and five females in each of the remaining

three categories (high work/low reproduction, low work low/low reproduction, low

work/high reproduction). I also created an expectation that represented eusociality (and

similarly semi-sociality). Since this social organization has workers that are mostly non-

reproductive, this distribution placed half of all individuals in the high work and low

reproduction category; this assumes that half of all foragers are workers. The minimum

value of five individuals was placed in the low work/low reproduction, since all

individuals would be expected to either work or reproduce. The remaining individuals

were.divided evenly among the remaining categories because both conditions can be

expected foreusocial (or semi-social) queens.

Comparisons of females from multiple foundress nests

Morphological comparisons

Measures ofwork and reproduction were recorded for all females in the

population, regardless of whether they came from a solitary or multi-foundress nest (this

is unknown for many females). Sociality, however, predicts division of labour among

females within a nest. Therefore, I next considered morphological differences among the

subset of females that came from multi-foundress nests. Only nests collected at the

Farmhouse site with known foundresses were included in these analyses of wear and

reproductive measures.
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. Behavioural comparisons
In addition to morphological data, I also used methods based on behavioural

observation to examine potential roles offemales.within multi-foundress nests. These

methods included a forager removal experiment, and comparisons of foraging rates for

foragers from multi-foundress versus solitary nests.

Forager removal experiment
In the summer of2005, I perfonneda foundress removal experiment on multi-

female nests in the Courtyard site to detennine whether the absence of a forager leads to

an assumption of foraging duties by other females. Initial observations for this

experiment were conducted on 80 nests in four benches, and began on 2 June 2005, prior

to any brood emergence, and immediately following the first observation of a female

entering a nest with pollen.

I used videoscope counts and observations at nest entrances to ascertain which

nests were pleometrotic; single foundress nests were excluded. I estimated foraging rates

based on the numbers of departures and arrivals per observation period and assessed

these along with nesting density to detennine which benches had the most active nests.

The most active benches, those containing the most nests with foraging females, were

chosen as they allowed me to conduct more experiments (observations) simultaneously.

From these observations, I selected 20 (of the initial 80) nests based on the criteria that

the nests contained multiple females, but only a single identifiable female was observed

leaving and entering with pollen. These detenninations were based on at least three days

(9 hours) of observation. I then removed the actively foraging females from 12 of these

nests on either 21 or 22 June. Eight of the females previously identified as foraging were
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not observed durit:lg the removal period on 21 or 22 June and were never removed; these

nests were not considered further..After removing the designated foraging female,

observations were conducted on each of the two days following the removal, and then at

least once a week until all female activity in the site ceased. Final observations were

conducted on5 September 2005. Interspersed with observations at nests, videoscope

observation was used to confirm the presence of females within nests from which a

female had been removed. Removed females were later dissected and treated as "outside

bees."

Two sets of control nests were used for this experiment. The first set consisted of

unmanipulated multi-foundress nests contained in the same bench as the nests from

which foundresses were removed. The second set of control nests consisted of

unmanipulated nests from additional benches within the Courtyard site. Both sets of

control nests were observed in the same manner as experimental nests. Nests subject to

removal and those in the first control set were observed simultaneously. Nests in the

second set of control nests were observed on alternate days.

Comparisons of foraging rates
If the additional foundresses in multi-foundress nests act as guards, foragers from

multi-foundress nests are expected to spend more time away from the nest than those

from solitary nests. I addressed this by comparing foraging rates between females from

solitary and multi-foundress nests, based on observations of females observed at nest

entrances. Data were collected in 2004 and from the control nests in the removal

experiments of 2005. I labelled as solitary those nests that had a single observed female

entering or exiting nests and only a single female in videoscope observations. If more
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than one female was observed entering or exiting nests, or in videoscope observations,

the nest was deemed multi-foundress. As there are no videoscope data for 2003, this year

was not included in analyses. There were limited data for 2004, and thus most

calculations are only for the 2005 season.

Statistical analyses
Distributions ofwing and mandible wear in inside versus outside females were

compared using Kolmogorov-Smimov (K-S) tests performed using a custom worksheet

in Microsoft Excel®. K-S examines differences between two data sets without

assumptions of distribution and is sensitive to differences in both location and shape of

distribution (Zar, 1999). K-S critical and p-values were taken from tables in Zar (1999).

K-S was used in these analyses because these data are essentially ordinal. Analyses of

the size relationship between CVL and HW was performed as an ANCOVA with a model

including CVLand HW as ranks in addition to type of female (inside or outside) and

year. Year was included as a categoric~l variable to control for size differences between

years. Chi-square analyses on frequency ofmultiple foundress nests, reproductive

measures, and for cross tabulations were performed in Microsoft Excel®. Chi-square was

used on reproductive measures because OD scores are not truly continuous. Regression

analyses on brood productivity, correlation ofwing and mandible wear, and Wilcoxon 2-

sample analyses on rates ofparasitism were performed in SAS 9.1.3. In all analyses,

significance was set at alpha equals 0.05.
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Results

Nest contents and productivity
The simplest indication of social organization is the number of foundresses

contained within a nest: sociality requires multiple foundresses. Destructively sampled

nests contained zero to six live adult females (foundresses) with a mean of 2.1 ± 1.5 live

foundresses per nest (n=29 nests) (Figure 1.2a). In the courtyard site, the mean number

of foundresses per nest observed with the videoscope in 2004 and 2005 combined was

2.3 ± 1.1 (n=56 nests) (Figure 1.2b). Based on females observed entering and exiting

nests during observations· in the 2003, 2004, and 2005 field seasons, the average number

of females per nest was 2.0 ± 1.4 females (n=127 nests). All three methods indicated that

some nests are solitary (1 female) while others contained multiple foundresses.

I next considered the frequency ofhaplometrotic (single foundress) versus

pleometrotic (more than two foundresses) nests. Among destructively sampled nests

from 2003, 8 of 26 nests (31 %) were solitary, with the remainder (69%) containing

multiple females. Observations at nest entrances revealed that, averaged across all years,

52% (66/127) ofnests were solitary. However, the proportion of solitary nests varied

among years. In 2003, more than half (69%) of all nests observed had multiple females

at the nest entrance, while in 2004 and 2005 only 18% and 19% ofnests, respectively,

had multiple females· entering or exiting (Figure 1.3). Videoscope observations done in

2004 and 2005, however, revealed differences in the number of solitary foundress nests.

In 2004, 34% (13/38) of nests examined had a single foundress, while in 2005, 24%

(9/38) ofnests contained a single foundress; the frequency of solitary and multi-foundress

nests differed significantly between 2004 and 2005 (Chi-square: i 1=0.03, p<O.001).



51

7

6

5

S 4
f/)
CI)
c....
o 3
ciz

2

Figure 1.2: a. Frequency of adult females from 29 destructively sampled nests collected
nests at the Fannhouse site in summer 2003. Note that zero foundresses indicate that the
nest had indications ofuse, but no foundresses. b. The minimum number of females
observed in videoscope observations ofnests at Courtyard in 2004, during the active
foraging season (black bars, n=38 nests) and 2005 (white bars, n=18).
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Figure 1.3: The proportion ofnests with one to five females observed entering or exiting
nest entrances during the 2003 (n=72 nests), 2004 (n=28 nests) and 2005 (n=27 nests) bee
season. All females are included regardless of whether they were ever observed carrying
pollen.
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Both brood size and foundress productivity (number of offspring per foundress)

reflect social structure. In communal nests, brood size per foundress will be

approximately even, as all foundresses should be reproducing. In most other multiple

foundress associations, we expect either larger absolute brood size or greater productivity

if social nesting is to be beneficial. In the Fannhouse population, additional foundresses

did not result in larger brood or in more surviving individuals in a brood. There was no

significant relationship between the number offoundresses and the number ofbrood cells

(Regression: F1,24=4.41, p=O.59), or the number of surviving brood (Regression: F1,

24=0.07, p=O.79). Asa result, the number ofbrood cells per foundress decreased

significantly with increasing number offoundresses (Regression: F1,23=20.72, p=O.OOI)

(Figure 1.4), as did the number of surviving offspring per foundress also decreased with

the number offoundresses (Regression:F1,22=10.66, p<0.004; n·= 23 because

survivorship data are missing for one nest)..This implies that there was no fitness benefit

from multi-foundress nesting in terms ofbrood size.

Likewise, multi-foundress nests did not benefit through increased guarding

against predation or parasitism. The most significant source of mortality I observed in X

virginica brood was parasitism by the bombyliid fly Xenox (formerly Anthrax) tigrinus.

Forty-one percent of occupied nests collected in 2003 were parasitized and the number of

nests parasitized did not differ between solitary and multi-foundress nests (Wilcoxon 2­

sample test: W27=151.5, p=0.6) (Figure 1.5a). There was also no difference in the

proportion ofparasitized cells (flies per brood cell) between solitary and multi-foundress

nests (Wilcoxon 2-sample test: W22=57.5, p=I.0) (Figure 1.5b).
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Figure 1.4: Productivity at Fannhouse (number of offspring per foundress) decreased
significantly with increasing number of foundresses. This was true for both brood cells
(open triangles) (Regression: F1,23=20.72, r2=0.48, p=O.OOO1), and surviving offspring
(filled circles) (Regression: F1,22=10.66, r2=0.32, p=0.004).
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Figure 1.5: a. Rate ofparasitism for nests with differing numbers offoundresses.
Numbers above bars are sample sizes, given as total number ofnests. b. Proportion of
parasitized cells for all nests combined with 1 to 6 foundresses. Numbers above bars are
total number of cells.
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Foundress survival and colony longevity
Additional foundresses may result in less work perfonned per individual (or for a

subset of individuals) resulting in longer life spans or greater survival for some

individuals. Because a brood must be laid by at least one female, all nests containing a

brood must also have contained a foundress, at least initially. Among all destructively

sampled nests containing brood and collected in summer, two of27 (7%) contained no

adult females but contained brood, indicating that the original foundress which laid the

brood died or abandoned the nest. Eight of the remaining nests contained a single female

and a brood. Three of these eight nests (37.5%) contained a female that was unworn (did

no substantial flying or nest building); these were probably two-foundress nests where the

active foundress died or abandoned the nest. Among the 17 nests with multiple

foundresses, one (6%) contained no worn females but contained brood. In this nest, the

female that foraged (flew) and constructed nests appears to have died leaving only the

less active foundresses. Putting this together, six foragers appear to have died, with two

coming from solitary nests and four from multi-foundress nests.. Therefore, foragers from

solitary nests do not appear to have decreased longevity compared to those from multi-

foundress nests. Thus, there was likely limited opportunity for additional foundresses to

takeover egg laying or foraging and limited benefit from social nesting in tenns of

increased longevity for the forager.

Social structure may influence colony survival, because multi-female nests may

have more females to inherit the nest. I examined this by comparing nest re-use between

years for solitary and multi-foundress nests. Between 2004 and 2006, two solitary nests

examined were not reused (n=19), and six multi-foundress nests were not re-used (n=50).
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There was no significant difference in the proportion ofre-used solitary nests and re-used

multi-foundress nests (Chi-square: X21=O.34, p>O.05).

Behavioural roles of females

Morphological measures of work and reproduction
Foraging, expected to be the most common task performed by workers

(reproducing is the most common task of queens), requires leaving the nest. Therefore, I

compared females that were known to have left a nest (outside females) with those

collected within nests that had apparently never left the nest (inside females).

Specifically, I compared morphological measures associated with common tasks

perfonned by workers and queens in most social bees, to look for evidence that inside

and outside females have different roles.

Females cannot reproduce without a nest and reproduction must therefore involve

some nest construction or renovation. I used mandibular wear (MW) as a proxy for

estimating the amount of effort devoted to nest construction and renovation. Outside

females had higher mandible wear scores than inside females (K-S test: D=51, p<O.OOI,

nl=139, n2=102), with more scores of four and five, and fewer scores ofzero (Figure

1.6).

I used wing wear (WW) scores to examine differences in flying effort for inside

and outside females (Figure 1.7). Wing wear differed significantly between inside

females and outside females (K-S test: D=35.4, p<O.OOI, nl=151, n2=115). Outside

females exhibited fewer scores ofzero and more scores of two, three, four and five;

inside females exhibited more scores ofzero and one (Figure 1.7). To determine whether

some individuals do both nest construction and tasks involving flying, I examined the
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Figure 1.6: Distribution ofmandible wear scores (0-5) for females by location of
collection. White bars indicate "outside females" (n=102); black bars indicate "inside
females" (n=139), (see text for explanation of female groups). Females are pooled across
years and collection sites.
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Figure 1.7: Distribution ofwing wear scores (scale is 0-5) for adult females by location
of collection. White bars indicate "outside females" (n=115); black bars indicate "inside
females" (n=141) (see text for explanation of female groups). Females are pooled across
years and collection sites.
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relationship between wing wear and mandible wear. In these populations, mandibular

wear was highly correlated with wing wear (Spearman rank correlation: r256=0.52,

p<O.OOl). Based on this correlation, I used total wear (TW), the sum ofWW and MW,

for each individual in future analyses.

I used both ovarian development (OD) and maximum oocyte size to examine

differences in reproductive status between females. OD score best reflects the overall

investment a female has made in producing eggs, while maximum oocyte size indicates

how close a female is to laying an egg; a female may have a high OD score but no large

oocytes that are ready to be laid. More than half (49 of 82 = 60%) of all females

exhibited an OD score of zero (Figure 1.6). The number ofundeveloped (OD=O) and

developed (OD > 0) females differed significantly between inside 'and outside females

(Chi-square: X21=4.6, p<0.05), with more outside females having an OD > 0 than

expected by chance (Figure 1.8). Inside females were also more likely to have only

undeveloped oocytes, while outside females more often had one-half, three-quarter and

fully developed oocytes (Chi-square: X24=27.9, p<O.Ol) (Figure 1.9).

Since only mated females can produce female brood, most reproductive females

should be mated. I examined the number ofmated females within destructively sampled

nests. Overall, most nests contained a single mated female, although some nests

contained no mated females, or multiple (up to four) mated females (Figure 1.10).

Amongst all females collected during the active foraging period that could be assessed

for mated status (n=153), 56 females were mated and 64% ofmated females were

"outside females". As mated females should be reproductive, I inspected mated females

for developed oocytes (Figure 1.11). Mated females possessed larger oocytes than

unmated females (Chi-square: X24=27.9, p<O.OOl), with almost 70% ofunmated females
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Figure 1.8: Distributions of total ovarian development score for inside (n=30) and
outside females (n=78). Total ovarian development score is the fractional size of all
ovarioles summed within the individual. Proportions are based on the total number of
females in that class. Only females collected during the active foraging period are
included. Data are pooled across years and across seasons.
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Figure 1.9: Proportion of inside (n=28) and outside females (n=54) with no developed
oocytes, or a largest developed oocyte that is one-quarter developed, one-half developed,
three-quarters developed or fully developed. Data are pooled across years and study
sites. Only females caught during the active foraging period are included.
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Figure 1.10: The number ofnests with varying number of mated individuals (n=22).
Nests with no worn and no mated females are excluded (n=3), as are nests where
matedness could not be determined for all individuals (n=3). Nests with nofoundresses
were also excluded (n=2).
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Figure 1.11: Proportions ofmated females and unmated females with no developed
oocytes, a largest developed oocyte that was one-quarter developed, one-half developed,
three-quarters developed or fully developed. Sample sizes were 56 mated females, 97
unmated females for a total of 153 individuals. All years and sites were pooled, and data
were included only for females collected during the active foraging season.
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having no developed oocytes; mated females exhibited more one-half, three-quarter and

fully developed oocytes than unmated females (Figure 1.11).

In the social Hymenoptera females of different roles typically vary

morphologically, particularly in size because larger females may be capable of

manipulating smaller ones. I compared measures of size between inside and outside

females to examine whether size differences occurred. First, I compared head capsule

width (HW) and costal vein length (CVL) to test whether these were suitable measures of

size. Both HW and CVL were treated as ranks, as the underlying distributions were not

nonnally distributed. An analysis that controlled for the female type (inside or outside)

and year (as category), revealed a significant positive correlation between HW and CVL

(Regression on ranks: F1,202=9.65, p<O.OOl), and a significant effect of year (Regression

on ranks: F3, 199=3.94, p=0.009) (Figure 1.12). Size did not vary between types of

females (Regression on ranks: F1,202=0.08, p=0.78). I confinned the inside versus

outside difference by specifically testing HW between inside females and outside females

and found no significant difference (Wilcoxon 2-sample test: W=14988.0, p=0.6, n=266);

because CVL and year were not included in this analyses, sample sizes were larger. This

suggests that any division of inside nest tasks and outside nesttasks is not based on size,

and that morphological castes do not exist.

To examine the relationship between work and reproduction in adult females, I

created cross tabulations ofwear and ovarian development (Table 1.1). First, I examined

the relationship between work, measured as total wear (TW) and ovarian development

(OD). I divided females into two wear groups: unworn (TW=O) and worn (TW>O); I

also divided females into two OD groups: "high OD", defined as an OD greater than or

equal to 0.25, and "undeveloped", a score less than 0.25 (Table 1.1). Frequencies in each
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Figure 1.12: The relationship between head width (HW) and costal vein length (CVL)
with female type and year as covariates. HW was correlated with CVL (F1,202=9.65,

. p<O.OOl). There was no significant effect of female type (inside or outside females) (F1,
201=0.08,p =0.78). There was a significant effect ofyear (F3, 199=3.94, p=0.009), but not
a significant interaction between HW and year (F3,200=1.50, p=0.22).
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Table 1.1: Cross tabulation of total wear (TW) (wing wear + mandible wear) and
reproduction measured as ovarian development (OD). High OD is defined as a total
score above 0.25. Unworn is defined as a wear score ofzero, worn is any wear score
greater than zero. All females are from the period following the first observation of a
female with pollen, and before complete nests were collected. Total sample size is 75
females. There was a significant difference detected from random (all values equally
distributed among cells) (X23=13.05, p<0.005). This was also significant when compared
to an expected distribution for solitary (communal) bees (X23=158.22, p<O.OOl), and
eusocial bees (X23=39.6, p<O.OOl).

No OD (~0.25) High OD (>0.25)
n=45 n=30

Unworn (TW=O)
n=24

Worn(TW>l)
n=51

17 (23%)
Solitary=5
Eusocial=5
28 (37%)
Solitary=5
Eusocial=38

7 (9%)
Solitary=5
Eusocial=16
23 (31 %)
Solitary=60
Eusocial=16
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class differed significantly from even when OD and wear were examined in cross­

tabulation (Chi-Square Goodness ofFit: X23=13.05, p<O.05). I further made comparisons

with two hypothetical (expected) distributions based on 75 individuals (the sample size)

(Table 1.1). For these distributions, I imposed a minimum frequency of five individuals

in a category. Because all solitary foundresses should both perform all nest tasks and

reproduce, the expected distribution under this scenario had most individuals in the worn

and high OD category; the observed distribution differed significantly from this (Chi­

square Goodness ofFit: X23=158.22, p<O.OOl).

I also created a hypothetical distribution based on eusociality, assuming half of all

females that foraged were workers and that the minimum number of females were both

unworn and had no ODe I also assumed an even probability ofhighly worn, highly

reproductive females and ofunworn, highly reproductive females; both conditions are

expected for eusocial queens. This hypothetical distribution also differed significantly

from the observed (Chi-square Goodness ofFit: X23=39.6, p<O.OOl).

I next examined the relationship between work and reproduction when

reproduction was defined as the possession of an oocyte at least one-half developed and

worn was again defined as total wear greater than zero. When reproduction was defined

in this manner, the observed distribution (Table 1.2) varied significantly from the

assumption that all conditions are equally probable (Chi-Square Goodness of fit:

X23=87.6, p<O.OOl). In particular, a seemingly high percentage ofunworn, undeveloped

females (31 %) was present (Table 1.2). When the observed distribution was compared to

expectations for solitary and eusocial colonies, a significant difference existed from both

the solitary (Chi-square: X23=80.5, p<O.OOl) and eusocial (Chi-square: X23=241.8,
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Table 1.2: Cross tabulation of total wear (TW) (wing wear + mandible wear) and
reproduction measured as largest oocyte. Oocytes smaller than one half developed are
considered undeveloped. Unworn is defined as a wear score ofzero, worn is any wear
score greater than zero. All females are from the period following the first observation of
a female with pollen, and before complete nests were collected. Total sample size is 75
females. There is a significant difference in the distribution relative to equal distribution
(X23=87.6,p<0.001). This was also compared to an expected distribution for solitary
(communal) bees and was significantly different (r3=80.5, p<O.OOl), and an expectation
for eusocial bees (X23=241.8, p<O.OOl).

Unworn (TW=O)
n=24

Worn (TW>l)
n=51

No OD (::;0.5)
n=55

23 (31%)
Solitary=5
Eusocial=5
32 (43%)
Solitary=5
Eusocial=38

High OD (>0.5)
n=20

1(1%)
Solitary=5
Eusocial=16
19 (25 %)
Solitary=60
Eusocial=16
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p<O.OOI) expectations. Both sets of cross-tabulations· suggested wear and reproduction in

the study population differed from both those expected for solitary (or communal) and

eusocial bees. This suggests that these bees differ in allocation from both typical

communal, solitary, eusocial, and semi-social colony social organizations.

Comparisons of females from multiple-foundress nests

Morphological comparisons

Since the population patterns suggested differences between females that left a

nest and those that remained within a nest, I examined foundresses.from multi-foundress

nests collected at the Farmhouse site to determine the relative roles that inside and

outside females might play. I counted the number ofworn females within a nest to

determine ifmultiple females in the same nest were performing work. Five of 17 multi­

foundress nests contained more than one foundress that exhibited some wear (wing,

mandible, both) (Figure 1.13). I also examined multi-foundress nests to determine if

more than one foundress was likely to be reproductive. Only two of 17 nests contained

more than one highly developed foundress (OD ~ 0.5), while six of 17 nests contained a

single highly developed foundress (Figure 1.14). Both nests that contained more than

one highly developed female also contained multiple worn females. Reproductive

foundresses are expected to both be mated and to possess developed oocytes. I was able

to assess this in 10 of the 17 multi-foundress nests and found that among all foundresses

within these nests, four nests contained a single mated foundress; whereas six nests

contained multiple mated foundresses (Figure 1.15). Finally, since size often determines

roles within nests (larger females can better control small females), I compared head

capsule widths between worn and unworn foundresses within the same nest (Figure 1.16).
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Figure 1.13: The proportion of 17 multiple-foundress nests with two or more worn
individuals. The "either/both" category includes females with worn mandibles, worn
wings or both and is not the sum of the wings and mandibles categories. Wom is defined
as any wear score greater than zero. Numbers above bars are number ofnests within the
category.
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Worn and unworn foundresses did not differ in size (Wilcoxon 2-sample test: W=987.50,
n=65, p=0.64).

Behavioural comparisons
To investigate whether some foundresses may have been "hopeful reproductives"

(females waiting to inherit the nest) or replacement queens, I removed active females

from some nests. If females are hopeful reproductives, they are· expected to begin

foraging and laying eggs in response to the imposed absence of other reproductive or

foraging females. After removing the actively foraging female from 12 nests, I observed

no replacement females exiting these nests during the foraging period (Figure 1.17). In

contrast, I observed females entering and exiting the entrances of control nests from the

same bench and in additional control nests observed on alternate .days.

In the removal experiments, there was a spike of flight activity that occurred

afterwards in nests. that were known to contain pupae (Figure 1.17). This spike could be

seen in both the experimental and control nests. In control nests, this spike may represent

foundresses collecting pollen to feed offspring: in four different nests on three days in

August 2004, I observed both females and males licking pollen off the· legs of a marked

female. The feeding ofnew newly eclosed juveniles by foundresses prior to

overwintering, has been reported for this species (Gerling and Hermann, 1976). Activity

was also observed in nests from which the forager was removed (Figure 1.17); these

females did not typically return with pollen and were unmarked,·suggesting that they

represented newly eclosed females foraging on their own.
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Removal experiments were also intended to test whether unworn and undeveloped

females were replacement foragers. If a foraging foundress dies prior to eclosion of the

brood, it might be necessary for another foundress to take on feeding tasks. I would have

observed this as unmarked females flying and returning with pollen after brood emerge.

Three such events occurred on August 8; one instance involved a single female making

two trips with pollen and in two instances,a single female made a single trip for a total or

three occurrences in 12 nests. However, it is also possible that these were newly emerged

females and not old foundresses.

Finally, females that are not flying or constructing nests may be acting as guards.

Having guards would allow a foraging foundress to leave. the nest with less risk from

parasites, predation, or nest take-over. This may allow increased time away from the

nest, either through more trips, taking more time per trip, or both. I examined the number

of foraging trips taken by foragers (females known to have carried pollen) from solitary

and multi-foundress nests based on observations at nest entrances (Figure 1.18) and

found no statistical difference in 2004 (Wilcoxon 2-sample test-W=35.5, n=18,p=0.5) or

in 2005 (Wilcoxon 2-sample test: W=76.8, n=55, p=0.15). There was also no difference

in the average time spent away from the nest during foraging trips between solitary nests

and multi-foundress nests (Figure 1.19) (unequal variance t-test: t7=-1.3, p>0.08);

although, appropriate data for these analyses were limited.
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Figure 1.18: The mean number of foraging trips per female per nest for females from
solitary (n=4 females in 2004, n=24 in 2005) nests (grey) and from multi-foundress nests
(white) (n=14 females in 2004, n=31 in 2005). Solitary versus multi-foundress nest
designation was determined based on videoscope observation. Trips only include
females known to be foragers (females that were observed carrying pollen at least once
during the season).
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foundress (n=3) and multi-foundress nests (n=4).
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Discussion

The social organization ofXylocopa virginica
In the population studied, Xylocopa virginica shows asocial polymorphism.

Some nests are solitary with a single foundress while other nests are social and contain up

to six foundresses. Multi-foundress nests do not have a common social organization.

These might more appropriately be described as multi-female nesting aggregations,

where one female apparently establishes dominance early in the season and then utilizes

the nest as would a solitary foundress. The remaining females reside in the nest and

perform few, if any, tasks. These seemingly inactive foundresses may also function as

guards, similar to what has been observed in X combusta, X sulcatipes, and X pubescens

(Bonelli, 1976; Stark, 1992a), may be "hopeful reproductives", or may be replacement

foragers. Each ofth~se possibilities is discussed below.

Examining the relationship between wear and reproduction in cross-tabulation

(Table 1.3), it is possible to interpret what behavioural role a female with a particular

combination ofwing/mandible wear and reproductive status fills. When I examined

females within the population, I found that some females show signs ofperforming work

and reproduction, the typical condition for solitary and communal females. This pattern

can also occur if one individual foundress performs foraging, nest construction and

reproduction even in multiple foundress nests. The population also contained females

that showed signs of only working or only reproducing; these resemble workers and

queens in semi-social and some eusocial colonies.



Table 1.3: Cross tabulation of the expected relationships between work (wear) and
reproduction (OD or largest oocyte) in females of different castes and forms of social
organization.

No OD (::;0.5) or no large oocytes High OD (>0.5) or oocyte larger
than 'li developed
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Unworn

Worn

Other (failed foundress, hopeful
reproductive, replacement forager)

Worker-like

Queen-like
(advanced eusocial)

Solitary, Communal,
Queen-like (primitivelyeusocial)



82

Very few ofthe females I examined were in the highly reproductive category

(highly reproductive and unworn); this suggests an absence of advanced eusocial-like

queens. It is more likely that these females were preparing either to "sneak" an egg into a

brood cell prepared by another female, or to obtain a nest via takeover later in the season.

Steen (2000) has provided genetic evidence that some Xylocopa bombylans nests contain

brood from more than one mother and I found multiple reproductively developed and

multiple mated females within a single nest, both ofwhich suggest that someXylocopa

females may sneak eggs.

Females that are worn and not reproductively developed generally fall into the

class ofworkers. This is possible with X virginica, and it has been reported that in the

Xylocopa subgenus Lestis two females may forage while only a single female reproduces

(Steen and Schwarz, 2000). At Farmhouse, I occasionally observed nests with multiple

females entering or exiting nests, and with multiple worn individuals; some of these nests

had multiple females carrying pollen as they entered or exited (see Chapter 3 for further

discussion). I propose that some of the lesser-worn females in these nests are worn

because they began to establish a nest and failed. The result is that their ovaries

regressed (although I observed no evidence of reabsorbed eggs in dissection). This

possibility is supported by the observation ofmultiple females entering and exiting a nest

before brood cells are actively prepared (Chapter 3).

The final combination ofwear and reproduction is the situation in which a female

is unworn and undeveloped, again a condition indicative ofhigh reproductive skew. This

condition is anticipated if the unworn and undeveloped females are guards, hopeful

reproductives, or insurance against the death of the foraging female. However, in my

video observations, marked females conducted the most aggressive guarding in nests, so



83

it is unlikely that unworn and undeveloped females are guards. In addition, unguarded

(solitary) nests experienced equal parasitism. Removals demonstrated that additional

foundresses do not leave the nest when the primary foraging female is absent, suggesting

that these females are not assuming foraging roles. Similar experiments with Xylocopa

pubescensfound that only 8% of subordinate females became egg layers when the

d01?1inant was removed (Hogendoorn and Leys, 1993; Hogendoorn and Velthuis, 1993;

Steen and Schwarz, 2000). While I cannot eliminate the possibility of egg replacement in

already provisioned brood cells, the evidence for this is limited and it is seemingly

infrequent (Chapter 2), which corresponds to observations in other species. I suggest that

non-reproductive, low work females are likely those that lost the competition for the nest,

and failed to establish their own nests. In most instances, losing females would be dead

and we would not observe them;· however, in this system they instead apparently remain

mostly passive within the nest.

Adaptive significance of solitary versus multi-foundress nesting in Xylocopa
virginica

There was no apparent difference between multi-foundress and single foundress

nests in terms ofbrood size or colony longevity. Further, as the number offoundresses

within a nest increases, the number ofbrood produced per foundress decreases. These

findings are consistent with those for other species ofXylocopa (Hogendoorn and Leys,

1993; Watmough, 1983) and suggest that any fitness advantages of solitary or multi-

foundress nesting are not from greater brood survivorship, larger overall brood sizes, or

increased productivity.
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Recent work on Xylocopa in the subgenus Lestis (Steen and Schwarz, 2000) and

on reproductive skew theory (Ragsdale, 1999) has suggested that when a resource is of

enough value, the division of reproduction among females (skew) can be extreme with a

single female dominating reproduction, and that multi-female nesting might still occur,

even ifno tasks are being perfonned by subordinates. This is a likely scenario in X

virginica. Gerling and Hennann (1976) suggestedthat, in Georgia, suitable boards for

nesting are limited, and it is costly to construct a new nest even when nesting substrates

are available, and therefore the benefit of inheriting a nest is high. In my study

population, many nests are pennanently abandoned and likely no longer suitable (Chapter

3). In addition, while the site contained many panels without nests, there is an apparent

preference for some benches and panels over others (Chapter 2). Further, when

additional artificial nests were added or artificial entrances drilled, these went unused.

Therefore, it is possible that there is less suitable room for nesting than it may appear.

Nesting materials are considered to be limiting for other species ofXylocopa (Gerling

and Hennann, 1976; Hogendoorn, 1991; Hogendoorn, 1996; Hogendoorn and Leys,

1993; Watmough, 1983). This means that a female who loses a fight for dominance may

be better offwaiting in a nest that she will inherit rather than attempting to establish her

own nest or attempting a nest takeover. This alternative will be particularly attractive

given the time involved with constructing a new nest, which might limit time available

for provisioning (Chapter 2). InX virginica, because nests are frequently re-used

(Chapter 3) and re-use is likely to be by relatives of the reproductive (dominant)

foundress, a dominant may choose to allow some females to live and attempt to establish

a colony the next season, resulting in indirect fitness for the dominant. Dominant females

may also benefit if additional females act indirectly as guards. Gerling and Hennann
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(1976) have suggested that a female may be effective in guarding simply by residing in a

nest, and may not need to perfonn any particular action. However, my data suggest that

there is no benefit of guards in tenns of foraging time. In such a situation, there might

still be additional benefit to the dominant in some fonn, but little cost to the queuing

female(s).

In other species ofXylocopa, there are high rates ofmortality due to predation by

invertebrates, and guarding is common (Gerling et aI., 1989; Hogendoorn and Velthuis,

1995; Steen, 2000; Watmough, 1983) (Appendix 4). High predation would_make any

guarding beneficial and, in part, would explain the evolution ofmulti-foundress nests. It

has been suggested that in halictine bees parasitic and predatory pressure is a major factor

in the evolution ofmulti-foundress nesting (Lin, 1964). In my study populations, brood

mortality is almost exclusively due to parasitism by bombyliid flies that do not enter the

nest (Gerling and Hurd, 1976); similar parasitism was observed in Georgia where the

flies lay eggs outside the nest (Gerling and Hurd, 1976). This means that guards cannot

effectively reduce mortality, and that solitary nests are at no more risk than multi­

foundress nests. In addition, I observed nests containing various invertebrates (wasps,

earwigs, and other bees) while inhabited by X virginica, which also suggests that

guarding is not essential in some populations. In Chapter 2, I further discuss parasitism

as it relates to nesting behaviour, and I suggest that nest structure is also adapted to

reducing. parasitism.

Some authors (Hogendoorn and Leys, 1993; Hogendoorn and Velthuis, 1993)

have suggested that guards mostly prevent pollen robbery or nest usurpation (which I

rarely observed), which could also be prevented by a female returning to the nest more

frequently, resulting in shorter foraging trips. However, I found that solitary females
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make the· same number of foraging trips as those from multi-foundress nests, and that

they spend the same amount of time away from the nest. This suggests that additional

females do not allow for more effective foraging X virginica via guarding. Finally

while the finding that few nests contained more than one highly developed female is

suggestive, genetic analysis of females from nests will be required to determine whether a

single foundress laid all members of a brood, or conversely to prove that multiple females

oviposit.

I suggest that guarding may be an ancestral behaviour to many species of

Xylocopa and perhaps the genus. This trait is exhibited in various forms throughout the

genus, but is not adaptive in northern populations ofX virginica where few invertebrate

predators exist and nest usurpation is likely rare. Anecdotal evidence suggests that X

virginica may be more recent to southern Ontario and so nesting materials may be less

limited (discussed in Chapter 2) than in habitats that are more southern. This could alter

the value of inheriting a nest and thus the decision to cooperate.

Broader implications ofXylocopavirginica social structure
There are three broad explanations for the evolution of altruism in social insects.

The first of these is kin selection as proposed by Hamilton (Hamilton, 1964; Hamilton,

1972), an explanation based upon genetic relatedness. The other two explanations for the

evolution of altruism in social insects are more behavioural and ecological in nature. Lin

and Michener (1972) have proposed mutualism, the situation where a helper and a

reproductive both receive direct fitness from their interactions, ·as a mechanism for the

evolution of altruism and eusociality. Other authors have suggested that manipulation of

workers bya queen may lead to the evolution ofhelping (Crozier and Pamilo, 1996).



87

This thesis, and other studies ofXylocopa, provides some of the necessary information to

test the competing hypotheses ofmutualism and queen control as they relate to the

evolution of social nesting and altruism.

If social nesting in Xylocopa virginica evolved via mutualism, some behaviour

would have to benefit both the foundress that is reproducing and foraging and the females

that are seemingly not performing significant tasks. Guarding is a behaviour that might

accomplish this. If a guarding is a trade-off, as has been proposed for X pubescens

(Dunn and Richards, 2003; Hogendoom, 1996; Hogendoom and Leys, 1993), then it is

possible that both individuals achieve a benefit. In these populations, such a benefit

would arise if the seemingly underproductive female sneaks eggs, or if she gets to inherit

a nest in exchange for guarding; guarding would potentially help her own offspring or

would serve as a guarantee to the quality of the nest. However, since guarding is

seemingly not beneficial in the study populations, it is questionable how much benefit the

dominant foundress actually receives. Future studies ofXylocopa behaviour in both this

species and others may help to clarify these possibilities. It would be particularly useful

to examine parasitism in other ecological settings where selection pressures may be

different.

X virginica is a good species for studying queen control as a mechanism for

social evolution because it can be contrasted with other species known to have some

queen control, and because division of labour is non-traditional. In many species ofbee,

divisions of labour and reproduction are maintained via physical manipulation on the part

of the dominant (queen) (Kukuk and May, 1991; Richards et aI., 2005). InXylocopa

Lestis, aggressive interactions occur among foundresses, as do instances of two foraging

females within a nest; these instances may be related to dominance and queen control,
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although, these bees also show size variation between "castes" (Steen, 2000). I did not

detect size differences in the study populations. In the study populations, less active

foundresses may be under queen control where the dominant female prevents them from

reproducing in most instances. Under the usual expectations of queen control we would

expect a dominant to monopolize reproduction while forcing subordinates (workers) to

perform the risky tasks such as foraging. Neither of these expectations is met fully in

these populations. First, most foundresses in nests do less work than the primary

reproductive females; dominants are thus not able to gain the presumed advantage of

having workers. Second, some nests contain multiple females which are mated or

reproductively developed which suggests that dominants may not be able to prevent other

foundresses from reproducing in all instances. It is thus intriguing that this species

appears to have evolved to the point of tolerating conspecific females and to have some

control, yet has not evolved a proper worker caste. This deserves further study as it may

be an "exception that proves the rule" scenario and raises many questions, such as: Does

the lack of size difference make it impossible for females to be fully dominant? Are

dominants capable of distinguishing between various females within the nest? Is the

benefit ofworkers too small to result in the evolution of queen control or a true worker

caste?

Conclusions
This study suggests that as in many species ofXylocopa, multi-foundress nests of

X virginica are associations of a single dominant female that is acting like a solitary

female by performing work and reproduction and subordinate females that are seemingly

underproductive and perform limited work. In southern Ontario, it is likely that guarding

is of limited benefit due to the lack of invertebrate predators and nest usurpation. If
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nestmates are related, there might be enough indirect fitness for the dominant foundress

to offset any·costs from allowing subordinates to remain in a nest. Since fighting may be

costly, it is probably not beneficial for the dominant to incur the risk or use the energy

required to kill other females rather than allowing them to remain and possibly gaining

future fitness, particularly if subordinates do not impose a significant cost in efficiency or

personal reproduction for the dominant female. Some of the differences between my

study population and those studied in Georgia or Missouri may be due to the seemingly

recent expansion ofX virginica's range into southern Ontario where nesting sites may be

less limited and seasons may be shorter. Future studies ofX virginica behaviour may

add to our knowledge of queen control mechanisms, reproductive skew, and the role of

parasitism in the evolution of sociality.



90

Chapter Two: Relationships between nest architecture
and behaviour in Xylocopa virginica

Introduction
Nests constitute a large portion of the environment in which social insects spend

their life-cycle. Most bees, ants, and wasps lay their eggs within nests and these nests

presumably influence reproductive behaviour and life-history. Consequently, the

influence ofnesting biology on aspects ofbehaviour is a common topic in social insect

biology. Studies of nesting behaviour consider a diverse array of topics including basic

nest architecture, the relationships between nesting and parasitism, and the influence of

nests on efficiency with respect to tasks such as nest construction, brood laying and

foraging.

A common topic in the study of wasps is the role ofnest architecture in the

evolution of sociality and a colony's efficiency due to division of labour. Jeanne (1975),

for example, has demonstrated that elements ofnest architecture are related to brood

sizes: nests hang from a pedicil and ifthe nest is too large and heavy it will fall and the

colony will fail. Karasi and Wenzel (1998) discussed the relationships between nest

structure and a colony's efficiency and noted that these factors are also related;

inefficiency will lead to smaller nests and consequently smaller broods. Studies ofbees

have examined the functional significance of architectural elements as they relate to

aspects such as mortality and parasitism (Packer, 1991; Packer et aI., 1989). These

studies note that different nest structures and positions may serve to protect the colonies

from parasitism. Finally, nest structure has been investigated with respect to its influence

on social evolution in various taxa (Hansell, 1993).



91

The subfamily Xylocopinae consists of four tribes, all of which nest in stems,

twigs, or wood (Daly et aI., 1987; Maeta et aI., 1996; Michener, 1974; Michener, 1990;

Minckley, 1998). The exception is the ground nesting behaviour of the subgenus

Proxylocopa (Hurd, 1978). Some of the tribes in this subfamily contain social species

and the evolution of sociality is linked to nest structure and availability in at least one of

these tribes, Allodapini (Bull and Schwarz, 1996). In the Allodapini the absence of cell

partitions leads to increased contact between females and social nesting may occur as a

result of limited nesting substrate (Schwarz, 1986; Schwarz et aI., 1998; Schwarz et aI.,

1997).

The genus Xylocopa gets its common name (the large carpenter bees) from its

tendency to burrow nests into wood, stems or reeds. Since these nesting behaviours are

characteristic of the genus, descriptive studies ofnests have often been a topic of research

conducted on Xylocopa (Dunn and Richards, 2003; Maeta et aI., 1996; Steen and

Schwarz, 2000; Thoenes and Buchmann, 1994; Vicidomini, 1996). Xylocopa construct

nests of two basic shapes, linear and branched that vary in the number of "tunnels"

(Gerling et aI., 1989). The chronology and order ofnesting events such as constructing

cells and laying brood has been linked to nest architectural factors such as nest shape and

architectural complexity (Steen and Schwarz, 2000; Velthuis et aI., 1984). Further, the

architecture of a nest may influence other elements of life-history such as brood size,

provisioning efficiency, and susceptibilityto parasitism. For instance, the available space

within a nest can influence brood size and number of foundresses. Likewise, the

developmental stage of an individual offspring reflects the time since an egg was laid,

which occurs immediately after the cell is provisioned (Gerling and Hermann, 1976).

Therefore, the developmental stages ofbrood can be used to infer the order in which
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brood cells were provisioned. Since completed brood cells impede access to points of a

tunnel beyond them, the number of termini within a nest may influence brood

provisioning strategies. In linear nests, foundresses might provision one terminus at a

time, completely filling one end of the tunnel with brood before commencing in the other,

or they may alternate between the two sides (Steen, 2000; Steen and Schwarz, 1998). In

branched nests, the possibilities increase; for example, one branch might be provisioned

entirely and then the remaining termini might be provisioned in an alternating pattern

(Steen, 2000; Steen and Schwarz, 1998).

In Xylocopa, as in other Hymenoptera, females can choose whether an oocyte is

fertilized, giving them control over the sex of oviposited eggs. This control leads to a

great deal of speculation about the order and patterns of sex allocation in these bees. The

linear and fixed nature ofbrood cells inX virginica nests makes this species especially

suitable for examining patterns of sex allocation, particularly with respect to nest

architecture.

Nest architecture ofXylocopa virginica has been studied twice previously, by Rau

(1933) in Missouri and later by Gerling and Hermann (1976) in Georgia. These studies

both concentrated on description of the nest architecture. Similar descriptive work is

available in Appendix 10. Here I extend studies ofX virginica nesting behaviour.

Specifically, I examine the role that nest architecture has on the order ofbrood laying,

brood sizes, parasitism and foundress number of a southern Ontario population ofX

virginica.
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Methods

Study sites
Nests used in this study were collected at two sites in St. Catharines, Ontario.

Between 13 July and 26 August, 2003 nests were collected from the Brock University

Farmhouse site. In 2006, an additional five nests were obtained from a pavilion in

Burgoyne Woods, a pubic park 2 Ian from the Brock University campus. All nests were

excavated according to the methods in Chapter 1 and the general methods.

Nest architecture as it relates to brood laying order and size
The number ofbrood cells in a nestmay be constrained by nest architecture. To

determine if constraints exist, I counted the number·ofbrood cells in each terminus and

compared this to the. length of termini and the total length ofnests using linear regression.

In order test the hypotheses that eggs are laid starting from the end of a terminus, and one

branch at a time, a rank that reflected developmental stage (pollen ball, larva,

unpigmented pupa, pigmented pupa, adult, as described in general methods, Figure 1.3)

was assigned to each individual; earlier developmental stages were assigned lower

values. I also assigned a number value to each cell that reflected its position within a

terminus (Appendix 10). These numbers were assigned sequentially from the terminus to

the entrance gallery along each branch so that lower numbers indicate a greater distance

from the gallery.

I examined the relationship between developmental stage of offspring and their

position within a terminus, and a nest, to test the hypothesis that brood are laid starting

from the end of a terminus and ending near the entrance gallery. Since developmental

stage reflects brood laying order, younger brood stages were expected near the entrance
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gallery (i.e., in cells ofhigher number). Analyses were performed via ANCOVA with the

model, brood development = cells from terminal end + number of cells (within nest); this

tests an effect ofposition on age.

To test the hypothesis that brood laying was sequential within termini and among

termini, I used ANOVA with a model where the dependent variable was brood stage

(converted to a rank), and the predictor was terminus nested within nest. This tests for a

pattern between when an individual was laid and terminus nested within nest.

Consequently a significant effect means each terminus is provisioned completely prior to

the start of another, while no significance would indicate a random positioning.

The relationship between nest architecture and sex allocation
I examined whether there were patterns of sex allocation with respect to the sex of

an individual offspring and its position within the nest. I counted the number of instances

in which cells were provisioned in a particular sequence (male followed by female,

female followed by female, female followed by male, male followed by male). These

frequencies were compared to an expectation that all sequences were equally likely using

a chi-square-goodness of fit test performed in Microsoft Excel. To determine if there was

a nest wide pattern of sex allocation, I examined the relationship between sex and

position within the nest using logistic regression performed with the SAS 9.1.3 (SAS

Institute Inc, Cary, NC). PROC Logistic. Two different models were used. The first

model treated sex as a binary categorical response variable with unknowns excluded

(male, female) and the second model treated unknowns as an additional category (male,

female, unknown). Both-models used the numerical position of individuals within a

terminus as a predictor. The model used binary logits for categorization of sex as male or
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female, and used cumulative logits when the sex was categorized as male, female or

unknown; all models used Fisher's scoring technique (Stokes et aI., 2000).

Relationships between nest architecture and parasitism
While Chapter 1 demonstrates no role ofparasitism in the·social behaviour ofX

virginica, relationships between parasitism and nest architecture are commonly studied.

Further, it is possible that the architecture of a nest protects against parasitism making

guards unnecessary. Similarly, it is also possible that nest architecture influences the

degree ofparasitism in a nest indirectly by its influence on brood size. I tested four

hypotheses relating nest architecture to parasitism:

1) I tested the hypothesis that branched nests would contain moreXenox tigrinus (the

most common parasite ofX virginica) compared to linear nests using Wilcoxon 2-sample

tests.

2) I tested the hypothesis that longer nests would contain fewer parasites, because it is

more difficult to reach brood cells. I tested this using linear regression with the number

ofparasites as a dependent variable and the total length of a nest (see Appendix 10) as a

predictor.

3) I tested the hypothesis that nests containing larger broods (more individuals) would

also contain more parasites. This analysis was conducted using linear regression ofbrood

size (number of cells) versus number ofparasites.
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4) Finally, I examined the positional patterns ofparasitism, to test the hypothesis that any

cell within a nest is equally likely to be parasitized. This was conducted using a logistic

regression model that treated parasitism as a binary response variable (parasitized or

unparasitized) and position as the number of cells from the terminus (Appendix 10).

PROC logistic (SAS) was used with binary logits·and Fisher's scoring method.

Relationships between nest architecture and number of females
To test the hypothesis that branched nests will contain more foundresses than

linear nests, I compared the number of foundresses in each nest type using Wilcoxon 2-

sample tests. I used ANCOVA to test the hypothesis that the spatial and architectural

elements ofnest (total length, empty space, space occupied by brood cells and whether

nests were branched) will influence the number of foundresses within a nest. These

variables may influence the space in which foundresses reside, and therefore the number

offoundresses within a nest. I used an ANCOVA model that included the total length of

the nest, the amount of space occupied by brood cells, the space not occupied by brood

cells that could accommodate them and whether nests were branched or linear as

predictors, and the number of foundresses as a dependent variable. Initially, interaction

terms were included for all variables, but no interactions were significant and the final

model excluded these terms with no noteworthy difference. The measure of space

occupied by brood cells violated assumptions ofnonnality, and was thus log transformed

to meet the. assumptions ofGLM. To determine if there were associations between the

number ofworking females and nest architecture, ANOVA was also performed replacing

the number of foundresses with the number ofworn females (an indication that the

female either foraged or constructed nests - see Chapter 1 for explanation) and again with
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the number of females with worn mandibles (an indicator ofnest construction or

renovation).

Sample availability considerations
Not all variables were available for all analyses (Appendix 2). In particular, some

nests were collected without foundresses (n=3) or brood (n=3); one nest contained

neither. For three other nests, it was not possible to assign foundresses to a particular

nest. Details for nests collected in Ontario are available in Appendix 1. Appendix 2

gives details ofnests included in each analysis. Sex could not be determined for

parasitized individuals, nor for larvae that failed to pupate.

Results

Relationships between nest architecture and brood

Branched nests from Farmhouse (n=13) contained significantly more brood cells (11.1 ±

4.9) than linear nests (n=14) (7.2 ± 4.1) (Wilcoxon 2-sample test: W=236.5, n=26,

p<O.OI). In nests collected from Farmhouse in 2003; 73% (16/22) ofnests showed an

ordered pattern ofbrood laying in which a single terminus was provisioned before

moving to the next branch (Table 2.1). In 86% (19/22) ofnests, age was sequential

within a branch (Table 2.1). I tested whether brood laying was sequential within termini

and among termini using ANOVA with a model where the dependent variable was brood

stage (converted to a rank), and the predictor was termini nested within nest. The overall

model was significant (ANCOVA: Fs6, 187=5.68, p<O.OI), as was the effect ofnest

(ANCOVA: F29,187=9.41, p<O.OI), which suggests that the age ofbroods varies among
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nests. The tenninus (nest) factor was also significant (ANCOVA: F27,187=1.68, p<O.05),

indicating that the variability between termini was greater than the variability within a

tenninus.

The relationship between nest architecture and sex allocation
I found no significant pattern of sex allocation. The number of instances in which

cells were provisioned with females consecutively (n=16), a female followed by a male

cell consecutively (n=18), male cells consecutively (n=22), and males followed by

females (n=16) were not different from the expectations of an equal probability (Table

2.1) (Chi-square goodness of fit: X23=1.33, p>O.7). I also found that the pattern of sex

allocation is not statistically associated with an offspring's position in the nest, and

therefore with the order in which it was laid. These patterns are consistent when the

model treated sex as a binary category.of either male.or female (Logistic regression:

QW1=O.81, p=0.37) and when the model treated individuals ofunknown sex as an

additional category (Logistic regression: QW1=O.59, p=O.44).

Relationships between nest architecture and parasitism
I found no significant relationships between nest architecture and parasitism.

There was no difference in the number ofparasites between branched and linear nests

(Figure 2.1, Table 2.1) (Wilcoxon 2 sample test: W=176.5, n=27, p=0.79); on average

linear nests contained 1.4 ± 1.6 parasites while branched nests contain 1.2 ± 1.5 parasites

(Table 2.1). In addition, the number ofparasites at Farmhouse was not related to brood

size, and large broods did not contain more parasites than smaller broods (Regression: F1,

22=0.76, p=0.39). Nest length did not influence the rate ofparasitism and no statistical
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2.1: The developmental stage and sex of brood relative to its position within the nest. Cells represent the number of cells between

a given cell and the end of the branch in which it is located. Lower numbers are farther from the nest entrance gallery, while larger numbers
are closer to the gallery. Developmental stages are given as: pollen ball (PB), larva, unpigmented pupa (UP), pigmented pupa (PP), and
adult. Individuals that developed into females are indicated by F, those that developed into males are indicated as M, U indicates an
individual of unknown sex. Parasitized cells could not be sexed and are not assigned a developmental stage. Empty cells contained no
pollen or offspring.

Nest Branch
A A

B

CeliO
Larva-M
Larva-U

Cell 1
Larva-U
Larva-U

Cell 2
Larva-M

Cell 3
Larva-U

Cell 4
Larva-U

CeliS
Larva-U

Cell 6
Larva-U

Cell? Cell 8 Cell 9

B A PB-U PB-U PB-U

BB A
B

Parasitized UP-U
Adult-F Adult-F PP-F Parasitized UP-M UP-U UP-U

C A Larva-U

CC A
B
C

PP-M
UP-M
PP-M

PP-M
UP-M
PP-F

PP-U
UP-M

PP-U
UP-F UP-M

D

DD

E

A
B

A
B
C

A
B

PB-U
Empty

PP-M
PP-F
Parasitized

Larva-U
Dead

Larva-U
Larva-U

Dead-U
UP-M
UP-F

Larva-U
Dead

Larva-U
Larva-U

PP-M
UP-U
Empty

Larva-U
Larva

Larva-U

Parasitized
UP-M

Larva-M

UP-F
UP-M

Larva-U

Empty Parasitized

EE A
B

PP-M
UP-M

PP-M
UP-M

PP-M
UP-M

PP-M
UP-U

PP-u
UP-U

PP-M
UP-F

PP-U
UP-U
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Nest Branch CeliO Cell 1 Cell 2 Cell 3 Cell 4 CeliS Cell 6 Cell 7 Cell 8 Ceng

F A Larva-U Empty
B Parasitized Parasitized Parasitized Empty Larva-U

FF A PB-F PB-F PP-M PP-U PP-U PP-M PP-M PP-M UP-M UP-F

GG A UP-F UP-F UP-F UP-U UP-F
B Empty UP-U Empty PP-f Empty PP-U

H A UP-F UP-F UP-F UP-M Larva-U Larva-M
B Dead

A UP-F UP-M PP-M Dead
B UP-F UP-M UP-M UP-F Dead
C Larva-U Parasitized

J A Parasitized Larva-F

K A Parasitized Larva-F
B PB UP-F UP-M
C Parasitized PP-U Parasitized UP-M

L A UP-M UP-F PB PB Parasitized
B UP-M UP-F UP-F UP-F

M A Parasitized UP-F UP-F UP-F UP-M UP-F
B UP-M UP-F UP-M UP-M Parasitized Parasitized

N A UP-M UP-F UP-F UP-M
B Larva-M Dead Larva-F Larva-M

0 A Larva-U Larva-F Larva-U

P A Empty E~!U?ty Empty Empty
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Nest Branch CeliO Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 Cell 7 Cell 8 Ceng

Q A UP-M Parasitized UP-M UP-U UP-F UP-M UP-M UP-U UP-U

Ra A UP-M UP-F UP-M UP-F
B UP-U UP-M UP-F UP-M

S A UP-M
B UP-F UP-M UP-M UP-M UP-F
C UP-M

T A UP-F UP-F UP-U UP-U UP-U UP-U UP-M UP-U UP-U
B UP-U Parasitized
C PP-M PP-M PP-M dead

U A PP-F UP-F Parasitized UP-F Dead
B Dead

V A UP-M UP-F UP-M
B Dead PP-U PP-U PP-F PP-F UP-M UP-F UP-F

W A UP-M Parasitized UP-M UP-M UP-M UP-U UP-F
B PP-U PP-M
C Parasitized

X A Parasitized UP-F UP-U UP-M UP-F

y A Parasitized Parasitized UP-M Parasitized 'Parasitized Larva UP-M

B UP-F Larva-U UP-F

Z A PB PB Parasitized Parasitized

B PP-F PP-M Parasitized Larva PB
C PP-U PP-U UP-U dead UP-F Parasitized

a Nest R contained a third branch but brood could not be assigned positions
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Figure 2.1: The mean number ofparasites and' standard error in linear nests·(n=14) and
branched nests (n=13). In both linear and branched nests, the minimum number of
Bombyliids was 0 and the maximum was 5.
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relationship existed between the number of flies and the total length of the nest

(Regression: F1,25=0.62, p=0.44). Finally, there were no significant relationships

between the position of a brood cell within a tenninus and whether it was parasitized

(Logistic Regression: QW1=2.4, p=0.12) (Figure 2.2, Table 2.1).

Relationship between nest architecture and number of females
The number of females occupying a nest was significantly greater in branched

nests than in linear nests (Wilcoxon 2-sample test, W=94, n=27, p<0.05). On average,

branched nests contained 3.3 ± 2.1 foundresses while linear nets contained 1.9 ± 1.0

females. Similarly, when Courtyard nests were examined by videoscope (see general

methods), branched nests contained more females than linear nests (2.7 ± 1.4 in branched

versus 1.3 ± 0.6) in linear nests (Wilcoxon 2-sample test, W=472.0, n=27, p<O.OOl).

I tested the hypothesis that nest architecture influences the number of foundresses

using an ANCOVA model with the total length of the nest, the amount of space occupied

by brood cells, the space not occupied by brood cells that could accommodate them and

whether nests were branched or linear as predi~tors, and the number of foundresses as a

dependent variable; interaction tenns were not included. While the overall model was

significant (ANCOVA: F4, 18=3.34, p=0.03), none ofthe effects tenns were significant

(Table 2.2). When a similar analysis was perfonned replacing foundresses with the

number of females that exhibited total wear greater than zero (see Chapter l·for details),

the model was not significant (ANCOVA: F5, 15=0.98, p=0.45). Finally, to determine if

females worked cooperatively to construct longer nests, which would have more room for

brood cells, I tested the relationship between the number of foundresses with worn
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Figure 2.2: The relationship between parasitism and position within a nest. Cells from
terminus (x-axis) was measured as the number of cells from the end of a branch farthest
from the entrance gallery. The y-axis gives the number ofparasitized cells in that
position across all nests. Numbers above bars indicate the total number of cells in that
position across all nests.



Table 2.2: The effects ofnest architectural characteristics on the number of
foundresses within a nest. Results are based on type III sums of squares.
Characteristic F p-value df
Total length 0.16 0.7 1
Unused (empty) space 0.00 0.99 1
Length occupied by brood cells (log transformed) 3.59 0.07 1
Branched or linear 2.31 0.15 1

105
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mandibles (those that constructed or renovated nests) and total length of a nest and

again found no significant relationship (ANOVA: F2, 17=0.23, p=0.8).

Discussion

Brood development and nest architecture
Many authors have speculated on the developmental rates ofXylocopa,

concentrating on the order and mechanisms of emergence (Gerling and Hermann, 1976;

Rau, 1933; Skaife, 1952). Specifically, Gerlinget al. (1978) claimed that X virginica

nests in Georgia have a mechanism that synchronizes the development time of

individuals,but only presented a speculation as to the mechanism. In Niagara,

individuals varied significantly in developmental stage, within and between branches; the

oldest individuals were at the end of a branch. However, the order ofbrood stages within

a branch was not perfect suggesting no synchronizing mechanism exists in Niagara

populations. This finding also indicates that some variation may exist in developmental

rate; although, it seems unlikely that individuals in the same nest would develop at

substantially different rates. It is not clear if lack of synchronization results from lab

rearing brood or if this is a population difference, but since it was apparent in nests

collected late in the season it seems to be a natural phenomenon.

In Xylocopa that provision cells sequentially, it is not possible to access a

previously provisioned cell without destroying the cell partitions built after it; although

these cells could be rebuilt later as is seen in some species of Ceratina (Michener, 1974;

Michener, 1990; Sakagami et aI., 1977) and Halictini (Michener, 1974). In solitary

cavity nesting bees, such as some species of Osmia (Bosch and Vicens, 2006) and

Ceratina (Sakagami and Maeta, 1977) a pattern exists where cells are ordered by age
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within the nest; the oldest progeny are located at the branch's tenninus. I observed

the same pattern in X virginica, which provisions cells sequentially, a single branch at a

time, and did not appear to revisit cells once completed. However, I did detect some

variation within branches, which is open to multiple explanations. Variation may be

expected ifpollen masses differ in nutritional value, and thus individuals develop at

different rates. The variation observed in the age of cells within branches, may also

indicate that eggs are occasionally replaced, since a replacement egg would be younger

than those on either side of it. This scenario implies that cells are revisited, for which

there is little evidence. If foundresses worked together to provision some brood cells, it

might be seen as variation in the age of individuals within a branch; since cooperatively

constructed cells would be built and provisioned more quickly and the individual would

be older relative to individuals in surrounding cells. While unlikely, this is not

incompatible with some findings in Chapter 1. In strictly communal species, I would

expect to find multiple nest branches as is reported for Xylocopa sauteri (Iwata, 1964;

Michener, 1969). I would also expect each branch to contain. brood of approximately the

same age in·equivalent cell positions within a branch. This is because each female should

be constructing and provisioning cells on her own, in a branch specific to her. Neither of

these patterns was visible in Xvirginica, and therefore brood age patterns do not support

communal social organization in this species.

Relationships between nests and sex allocation
I did not detect any pattern in the allocation of sexes within brood cells with

respect to position or laying order. There was neither a pattern with respect to nest, or

within consecutive brood. My findings contradict those of Stark for X sulcatipes (Stark,
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1992b) and Watmough's for the average of 15 Xylocopa species; both studies found

female biased broods (Watmough, 1983). While Gerling and Hermman (1976) did not

report sex ratios directly, they noted that nests of overwintering X virginica from

Georgia contained on average 4.5 ± 2.21 females and 3.4 ± 2.15 males. Since broods

overwinter in their natal nest, this would suggest a female biased sex ratio. However, this

number likely includes old foundresses (those attempting to overwinter a 2nd time) in

addition to newly emerged brood. Hence, the number of females may be inflated.

Similarly, while she did not give analyses, Steen reported data for two species of

Xylocopa in the subgenus Lestis in which she showed nests with both more male brood

and nests with more female brood (Steen, 2000). It is possible that sex ratio varies with

species ofXylocopa; this may be related to social organization, differences in the relative

"value" ofmales versus females in a given environment, or it may reflect seasonal

variation.

Relationships between parasitism and nesting
The primary source ofmortality in southern Ontario populations ofX virginica

brood is bombyliid parasitism (Chapter 1). Nest architecture may influence parasitism

rates. Packer (1988) compared mortality from parasitism between ground nesting sweat

bees and trap nesting megachilid bees and concluded that mortality from parasites is

higher in trap nesting bees. This contradicts Michener (1985) who suggested that

ground-nesting bees should suffer greater mortality from parasites (Michener, 1985). In

nests collected from the Farmhouse site, 41 % of nests were parasitized which

corresponds to the range observed in other twig nesting bees (40%-44%).
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In multi-foundress nests ofX virginica, females do not appear to guard by

plugging or blocking the nest entrance. It is possible that guarding instead is performed

on a per branch basis with one female per branch; this would require extra space in

termini to accommodate the guarding female. Dhaliwal and Kapil (1968) have suggested

that extra space in nests ofX fenestrata, which nests in bamboo, is for purposes ofnest

defence (Dhaliwal and Kapil, 1968) and this has also been suggested for species of

Ceratina (Daly, 1966). I have observed space that is not dedicated to brood cells or

entrance gallery in nests ofX virginica from the Fannhouse population (Appendix 10).

On the other hand, in Chapter 1, I demonstrated that multi-female nests do not benefit

from reduced parasitism. Similarly, in a study ofHalictus ligatus in southern Ontario,

Packer found no difference in levels ofparasitism for pleometrotic nests, which were

guarded versus solitary nests (Packer, 1988). These similar results may suggest that, in

general, guarding by a female is not an effective defence against bombyliid parasitism in

X virginica.

Relationships between nests and social structure
After the completion ofbrood provisioning and until broods eclose, much ofthe

space within tunnels is occupied by brood cells. However, many nests have space that is

not filled with brood cells. Some unused space is a function of transitional areas, and

cannot be used especially in branched nests, while other space is within termini and

presumably could be filled with cells (Appendix 10). It is possible that this seemingly

empty space is necessary to accommodate additional foundresses. If a single female

founds a nest, a branched nest may not be necessary until there are additional adult

females to benefit from branches. However, there does not seem to be a relationship in
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which larger nests or those with more unused space are associated with more

foundresses. Similarly, longer nests are apparently not the result ofmore females

performing construction (more females with worn mandibles). This is an important

observation in relation to division of labour as it implies that the additional females

discussed in Chapter 1 do not benefit a colony by creating nests that can accommodate

larger broods.

Numerous authors have discussed potential interactions between social behaviour

and nest architecture (Gerling and Hermann, 1976; Michener, 1974; Michener and

Kerfoot, 1967; Steen and Schwarz, 1998; Steen and Schwarz, 2000). Some have

suggested that branched nests may allow for variable brood laying strategies, as females

may choose to either lay in alternating termini or sequentially in a single branch at a time.

Sequential brood laying may explain the larger broods seen in branched nests; using a

single branch at a time may allow a foundress to work with less obstruction from other

females than in linear nests.

Steen has suggested that both polymorphisms in provisioning strategies (laying

sequentially vs. alternating between branches), and branched nests are related to social

behaviour (Steen, 2000; Steen and Schwarz, 2000). In branched nests, workers can

provision cells simultaneously, as inX sulcatipes (Stark, 1992a). This is not possible in

linear nests where at maximum two cells can be accessed at a time. In multi-foundress

nests ofX virginica, a single female (or occasionally more) perform(s) most brood

related tasks including nest construction (Chapter 1) (Gerling and Hermann, 1976; Rau,

1933). This form of task allocation would negate the benefits of alternating between

branches, as only a single cell is provisioned at a time and thus order is less pertinent. It

is possible that branched nests may be useful in reducing the number of interactions
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between foundresses, because additional foundresses can reside in those branches of a

nest not being provisioned. This would reduce the number ofpassing events required and

in tum the time required to deposit pollen. However, in observations of foraging, I found

no difference in the total handling time per female for haplometrotic and pleometrotic

nests (Chapter 3). Although mean handling time may be a better indicator, it still appears

that branching does not influence how efficiently females handle pollen and construct

cells. This indicates that unlike many wasp species, the efficiency with which X

virginica provisions cells is not influenced by nest architecture.

Conclusions
In this study, I have shown associations between branched nesting and the number

of foundresses within a nest, but little evidence for an influence ofnest architecture on

task differentiation. I also found that broods are provisioned consecutively one branch at

a time with no overall bias or sequence of sex allocation. Nest architecture data suggests

that X virginicadoes not have a communal social organization. Similarly, additional

females do not appear to aid in nest construction. I· conclude that branched nesting in X

virginica is advantageous, resulting in more space to accommodate brood and

foundresses. However, nest architecture does not substantially influence the efficiency of

provisioning brood or sociality.
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Chapter Three: Annual variation in demography and
activity of Xylocopa virginica in southern Ontario

Introduction
Ecological factors are thought to be a major force in the evolution of sociality

within bees and wasps (Cronin and Schwarz, 1999a; Strassmann and Queller, 1989;

Yanega, 1993). In addition to predation and parasitic pressures, many elements related to

climate may influence the social structure of a colony or related behaviours. In the

literature on primitively social bees, a vast amount of effort has been dedicated to studies

ofhow social variation is related to environmental factors such as weather and length of

season. These factors often vary with latitude (Packer, 1990; Sakagami and Munakata,

1972) or altitude (Eardley, 1983; Eickwort et aI., 1996) and result in differing levels of

sociality. Solitary behaviour is apparently more common in high altitudes and northern

latitudes relative to increasing social organization at lower altitudes and more southern

locations. It has been demonstrated that in warmer drier years primitively social sweat

bees are less strongly eusocial than in colder, wetter years (Richards et aI., 1995).

Similar patterns have been proposed for species in the genus Xylocopa (Maeta et aI.,

1996). Specifically, local climatic and weather factors may influence sociality by

limiting or increasing the time available for brood production and thus resource

availability.

The members of the subfamily Xylocopinae are becoming increasingly popular in

studies ofprimitive sociality. Studies on members of this subfamily demonstrate that at

least three tribes (Ceratinini, Xylocopini and Allodapini) exhibit some form of sociality

(quasi-social, semi-social or weakly eusocial) in addition to solitary and possibly
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communal behaviour. In some members of this group, weather influences brood

development resulting in variation in social organization. In particular, studies of the

allodapine bee, Exoneura robusta, demonstrated that both the timing and the duration of

brood development varied among sites with differing climates (Cronin, 2001; Cronin and

Schwarz, 1999b; Cronin and Schwarz, 1999c). Conversely, no such variation was seen"in

the related species Exoneura angophorae (Cronin and Schwarz, 1999b).

In many bees, foraging is a primary link between the environment and elements of

life history such as brood size. Females must collect pollen to provision brood and in

many species more pollen (Bosch and Kemp, 2004; Bosch and Vicens, 2006; Tepedino

and Torchio, 1982) or pollen with more protein (Roulston and Cane, 2002) can lead to

larger individuals. In other bees, pollen is allocated differently among sexes (Paini and

Bailey, 2002; Tepedino and Torchio, 1982) or among females of different castes

(Richards,2004). Given that weather may affect a female's ability to forage, there is a

potential for interactions between weather and the size, sex or morphology ofbroods.

Packer has shown that in Augochlorella striata individuals from northern habitats forage

less and contain fewer workers than the same species in more southern populations

(Packer, 1990). Richards (2004) has shown significant influences ofweather on foraging

and consequently on brood sizes and social organization ofHalictus ligatus. Finally, a

study of the megachilid bee Osmia pumila illustrated associations between foraging and

parasitism which indirectly link foraging to "reproductive success (Goodell, 2003).

The genusXylocopa (the large carpenter bees) has become common in studies of

social evolution. Xylocopa is the sole genus in the tribe Xylocopini (Leys et aI., 2002;

Minckley, 1998), and is the largest, most speciose and most widely distributed of the

Xylocopinae (Steen and Schwarz, 1998). Some species of Xylocopa exhibit facultative



114
forms of sociality and sociality may be influenced by how long a female spends away

from her nest or from limits in the availability ofnesting substrates (Dunn and Richards,

2003; Hogendoorn, 1996; Hogendoorn and Leys, 1993; Hogendoorn and Velthuis, 1993;

Maeta et aI., 1996; Stark, 1992a). Xylocopa is widely distributed and varies in social

organizations, which makes it a good group for studies ofhow intra and interspecific

variation in demography, phenology (life-cycle) and activity such as foraging influence

sociality.

X virginica is one of the two species ofXy10copa in eastern North America, and

is the more widely distributed; its range spans from Florida to southern Ontario, west to

Texas and the Mississippi River. Like mostXylocopa species,X virginica creates nests

by burrowing into wood. Nests may be linear or branched and typically are in softwood

structural timbers (Chapter 2). Female behaviour has been extensively studied three

times. Gerling and Hermann (1976) reported on the behaviour and life history of this bee

in Georgia in a single season, Rau reported anecdotally on the behaviour and life history

of this species in Missouri (Rau, 1933), and this thesis provides a detailed study of a

southern Ontario population.

In this chapter I: (1) describe the phenology of this bee in the northern most extent

of its range, (2) determine whether and how phenology varies among seasons, (3)

examine relationships between climate and phenology, (4) assess the·influence of climate

on population size, (5) examine seasonal and annual variation in foraging effort, and (6)

examine annual variation in morphological size. I predict that southern Ontario presents

a shorter overall "bee season" (the period in which X virginica is active), with a breeding

season that has more cold and wet days (resulting in fewer suitable days) than most X

virginica habitats, and that this results in the season starting later and ending earlier. I
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also predict that annual variation in weather will influence foraging effort and that

females may alter foraging effort over the course of the season. Both of these are

expected if females respond to loss of "good bee days" by increasing effort on other days.

Finally, I expect that broods provisioned in cold and wet years will be smaller in size and

in number of individuals.

Methods

Study sites
Most observational data are from the Courtyard site (see General Methods).

Destructively sampled nests were collected at the Brock Farmhouse site in 2003 and at an

additional location in Port Dalhousie, St. Catharines, Ontario in 2006. The Port

Dalhousie nests were all contained in a single pine board collected from a picnic pavilion

which was· otherwise surrounded by a large lawn and a forested area. These nests were

not examined prior to their collection in 2006.

Phenology and life cycle ofXylocopa virginica
In any single year, I used all pieces of available data to establish dates for events

in the X virginica life cycle. This was necessary because not all data were available in

all years. Specifically, nests were only collected in 2003 and 2006, videoscope

observations were not available in 2003, and most data from 2002 were derived from a

pilot study. In 2006, the courtyard population was the subject of another study (Peso, M.,

2008, MSc thesis) which involved trapping bees at nest entrances, making some data

unavailable. Finally, data were available from biodiversity sampling carried out between
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2003 and 2006 on the Brock University Campus and at the contiguous Glenridge

Quarry Restoration Park (Rutgers-Kelly A., 2005, MSc thesis), but the availability of

these data varied among years.

In every year of this study, data were available from individuals that I marked and

from observations at nest entrances (although these were limited in 2006); full details of

protocols are provided in the general methods. Briefly, starting in early April, the area

around and below nests at the Brock Courtyard site were inspected daily for indicators of

activity. These indicators includedthe presence of fallen sawdust, debris (old pollen, cell

partitions) and ejected dead pupae. At the same time as these "spot checks", field notes

were made indicating temperature, precipitation, general bee activity (or lack of activity),

and other evidence·of activity.

Demographic indicators ofphenology
Many demographic measures are associated with phenology. These include when

individuals pupated, and when they were marked. Since an individual female must

provision a cell before oviposition, the developmental stage(s) ofbrood represent the

time since the brood was provisioned. If foundresses began foraging at the same time in

different years, then assuming similar developmental times, brood in their nests would be

at approximately the same developmental stage at the same point in a given year. I

compared developmental stages ofbrood from nests collected 19-July 2003 at Farmhouse

with nests collected 19-July 2006 at Burgoyne Woods. The contents of cells were

classified as pollen ball, larva or pupa and the frequencies in 2003 were compared with

those from 2006 using a chi-square test of independence.
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The timing of some events can also be inferred from data from marked bees.

Since individuals were marked immediately after they were first observed, the number of

individuals marked on a particular day reflects the number of individuals active that day.

Further, the cumulative number of individuals marked on a given day reflects the number

of active bees in the population on that day, and thus overall. In every year from 2003-

2005 all individuals were marked according to the protocol in the general methods. In

2006, individuals were marked in association with another student (Peso, M., 2008, MSc

thesis) and according to a different protocol. I examined the cumulative number of

marked individuals at different points in the season in each year as an indicator of

seasonal and annual patterns of emergence and population size. This is discussed further

in Chapter 4.

Analyses and quantification ofweather and climate trends

Sources of data
Climate data were obtained from Environment Canada meteorological stations in

the proximity of Brock University. Data for 2002, 2003, 2004 and part of2005 were

obtained from the weather station at Port Weller, Ontario (WMO ID-71432, 43°15' N,

79°13'W); this station is located 14.3 Ian from Brock University. Data from this station

were not available from October 2005 through September 2006, so data from the Niagara

Falls station (43°1.800' N, 79°4.800'W) were used for this period. Port Weller is 79 m

above sea level, whereas the Niagara Falls station is 182.90 m above sea level.

Historical climate comparisons were made using the 30-year normal (mean)

because it is the internationally recognized and used measure (Guttman, and Plantico,

1987). Thirty-year climate data were retrieved in summarized form from the
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Environment Canada online database of Canadian climate normals. The nearest

weather station for which historical data were available was the St. Catharines A weather

station (43°12.00' N, 79°10' W), 12.1 Ian from Brock University and 98.1 m above sea

level. Since raw data were not available at the time of retrieval, some variables were not

available for analyses. The summarized weather data are available from

http://www.climate.weatheroffice.ec.gc.ca/climate_normals/index_e.html.

Weather and climate trends
Since many bees can (or do) not fly when the temperature is too cold (Willmer

and Stone, 1997) or is too warm (Cooper et aI., 1985; Roberts and Harrison, 1998), (but

see Abrol, 1992) temperature is likely to influence daily activity patterns. Temperature

can be represented by the mean daily, mean daily minimum and mean daily maximum

temperatures and heating or cooling degree-day accumulation for a given year. Degree

days in a time period are calculated as the difference between a reference value and the

average outside temperature and are indicative of the overall temperature patterns

throughout the season. In all analyses, degree-days were calculated using 18°C as the

reference temperature. Bees in southern Ontario were rarely active below 14°C, so

degree-days were also calculated based on this value. There was no noticeable difference

in patterns or results between 14 °C and 18°C, so only 18 °C degree-day calculations

were used in analyses.

Since many bees including X virginica are not active when it rains, measures of

precipitation reflect days on which a bee was inactive. X virginica females do not forage

in rain, and on many occasions, observations ended early due to rain during the

observation period. On three documented occasions, females did not forage for a second
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day following significant precipitation. Anecdotally, this suggests that precipitation

is a particularly important weather factor. I consider precipitation both as the total

precipitation in a season and as the number of days with precipitation.

Bee season weather varied among the five years covered by this study and relative

to the 30-year mean (Table 3.1), with respect to both precipitation (Figure 3.1) and

temperature (Figure 3.2). In order to better classify and group years with respect to

weather variation, I conducted a principal component analyses (PCA) on several

measures related to temperature and precipitation. Since the maximum number of

variables that can be included in PCA cannot exceed the number of data points (in this

case years), PCA was repeated using different combinations ofweather variables to

determine the combination that explained the most variation. These combinations were

based on seven climate traits: (1) mean daily temperature, (2) mean maximum daily

temperature, (3) mean minimum daily temperature, (4) total cooling degree-days,. (5) total

heating degree-days, (6) total precipitation, (7) total number of days with measurable

precipitation.

After all combinations were tested in the PCA, the variables that explained the

most variability, and that were retained included: mean daily maximum temperature,

mean daily minimum temperature, total cooling degree-days, total precipitation, and total

days with measurable precipitation (Table 3.2). PCA was performed on data from two

periods; the first analysis was based on the spring and early summer (April-July). These

months were chosen under the assumption that spring weather is more likely to influence

phenology. The second analysis included all months in which bees were active. This

period was termed the "bee season" and was defined as 1 April to 30 September. Both

analyses gave similar results and so only bee season analyses are reported.



Table 3.1: Summary ofweather conditions for the X virginica active season (April-September) in St. Catharines, Ontario for the years
2002-2006 and the 30-year mean (1971-2000). For 30-year normal temperatures, the average extreme is presented; the absolute
extreme for the period (1971-2000) is presented in brackets. Bolded weather conditions are those included in the final principal
components analysis (Table 3.2).

Weather condition 2002 2003 2004 2005 2006 30 year normal
..

Mean daily temperature
Maximum 21.5 19.4 19.9 21.5 22.5 21.7

Minimum 13.6 12.0 12.6 13.9 12.2 11.2

Warmest temperature achieved 33.2 31.5 30.4 33.6 36.5 29.7 [37.4a
]

Coolest temperature achieved -1.6 -5.2 -3.8 0 -3 b4.2 [-9.1 ]

Total cooling degree-days (18°C) 489.6 314.1 256.5 529.5 282.5 328.4

No. of days with ppt>O mm 52 80 67 51 73 65.8

Total precipitation 74.1 80.0 97.6 54.3 67.6 77.8

Number of "good bee days" C 89 81 105 79 110 NAd

Comparison to 30-year mean Average, Warm Wet, Cold Wet, Cold Dry, Hot Dry, Warm

--

a Warmest day on record, July 1998

b April 1982

C Days with no precipitation and temperature greater than 14°C

d The necessary daily information for calculating this was unavailable
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Table 3.2: Factor loading values for the first two principal components ofvariables
related to weather. Loading factors scores 2:: 0.70 were considered significant for defining
a principal component. Analysis is based on entire bee season (April-September). Bolded
values indicate those treated as statistically significant.
Variable Factor value

1st principal component
Total precipitation
No. rainy days
Maximum temperature
Minimum temperature
Cooling degree days
Eigenvalue
Percent Explained
Cumulative Percent

-0.88413
-0.81033
0.84131
0.95039
0.74281
3.75259903
72.0
72.0

-0.26794
0.56649
0.24562
-0.53866
0.59491
0.9711696
21.0
94.0
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PCA reduces all the correlations among many variables into fewer variables

known as principal components (PC or factors) each ofwhich is independent and

explains some percentage of overall variability. Usually, a PC is considered significant if

it has an Eigenvalue greater than 1 (Zar, 1999). The extent to which a single variable

contributes to a PC is represented by the factor loading score of that variable CZar, 1999);

usually a score greater than 0.70 is considered significant (Dillon and Goldstein, 1984).

In the weather analyses, a single PC was found to explain 72% of all variability and so

this single variable (PC1) was used to represent weather (climate) in all further analyses

(Table 3.2). Plotting the value of the first principal component against year demonstrated

that the years 2003 and 2004 grouped together as wet and cool, 2005 and 2006 were hot

and dry, and 2002 was slightly warm and dry (Figure 3.3). Results were similar for a

PCA that included all years of this study plus the years 1971-2000 (Appendix 5).

Relationships between weather and bee phenology
In order to test for relationships between weather and life history events, a series

of linear regressions was conducted. Each model tested whether the date on which an

event occurred was associated with weather. In each model, PC1 (weather) was entered

as a predictor variable. The date ofthe event being examined was the dependent variable

and was measured as the number of days since January 1 of the same year. January was

chosen as it was unequivocally outside the "bee season" and was intuitive as the start of a

year. These analyses were also performed replacing date with the ranked order in which

events occurred among years; these analyses gave similar results. Events were only

examined if at least three years of data were available.
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Evaluation of female foraging effort
In order to examine variation in foraging effort for Xvirginica females, I

observed females entering and exiting nests at the Courtyard site in 2003, 2004 and 2005.

Preliminary observations suggested that females rarely begin foraging prior to 0930 h

(observed twice during all applicable observations in three field seasons) and rarely

foraged after 1700 h (3 observations in 3 field seasons). Observations were therefore

limited to 6-hour periods, which should be representative of a full day's activity while

keeping observation time consistent. In 2003, observations were made on 21 days, in

2004 on 11 days, and in 2005 on 16 days; for a total of 288 hours of observation.

During observations at nest entrances, the identities of all females entering and

exiting a nest were noted. In addition, the presence ofpollen on the female's legs and the

time she entered or exited the nest was also recorded. If a female carried pollen on any

return trip for a particular day, she was behaviourally like a forager for analyses for that

occurred on that day. Females that entered or exited a nest but did not return with pollen

on any trip for

that day's observations were excluded from analyses. The following measures of

foraging effort'were calculated for each forager observed on each day: the number of

foraging trips, mean flight time per trip (average time between departure and arrival),

mean turnaround time per trip (time between arrival and departure), total flight time per

day (mean flight time multiplied by the number of trips), total turnaround time per day

(mean turnaround time multiplied by number of trips), and total provisioning time per

day (time from first sighting to last sighting). Number of trips equalled one with only a

single sighting; all other foraging data calculations required at least two sightings in a

single day. The flighttime variable assumed that females returning with pollen had spent
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most of their time away from the nest collecting nectar, pollen or both, so flight time

should reflect time spent foraging. Similarly, the turnaround time variable assumed that a

female spent some or all of the time in a nest between trips depositing pollen; turnaround

time thus includes handling time.

Statistical analyses of foraging effort

Foraging effort was tested using a General Linear Model (GLM) in SAS 9.1.3

with the model: foraging effort = Date + Year + Date*Year. In this model, the date effect

described variation within the season while the year tenn represented variation among

years. Data were adjusted to account for differences in the start of the foraging season

among years by adding nine days to date values in 2003 and 29 days to 2005. The values

used in adjustments reflect the difference in the number of days between the first

observations of a female in each year. Inspection of the data revealed one instance in

each of 2003 and 2004 in which a female was observed, and suitable data were collected,

on multiple days. In 2005, there were three confinned observations and one possible

observation of the same female. In handling these repeat observations, the 1st day of

observations was retained and observations on subsequent days were discarded. Thus,

each female is represented in analyses only once. Since some violations in assumptions

ofnonnality were found, nonparametric analyses based on ranks were also perfonned;

however, most variables were nonnally distributed and all methods gave similar results,

and so parametric data are presented. Analyses are reported as type I (sequential) sums

of squares, as it was desirable to examine seasonal effect prior to annual effects. To

adjust for potential non-independence, all p-values were corrected using the conservative

Bonferroni method.
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Annual variation in morphological size
The size ofbees is known to be associated with the amount ofprovisions provided

to brood: offspring provided larger pollen balls will become larger adults. Weather

conditions may influence foraging, pollen availability and the quality of available pollen.

Therefore, I compared physical size ofboth males and females among years, to look for

effects ofweather on foraging in the previous year. Size comparisons were based on

head capsule width (HW) as it was the only morphological variable measured for marked

bees in all years of this study (see general methods). I tested differences in size relative

to year via ANOVA with a model that treated year asa categorical variable and ranked

HW as the dependent variable. Ranks were used because HW was not normally

distributed for either sex. Differences among years were further examined using Scheffe

post-hoc tests.

Results

Phenology and life cycle·ofXylocopavirginica
The annual life cycle for X virginica in southern Ontario is summarized in Table

3.3. The season typically began mid-April after two to three consecutive days of

temperatures greater than 14°C. The initial indication of seasonal activity was when

deb~s began to appear below the entrances ofnests; debris consisted of old brood

partitions, dead adults and pupae and occasionally mouldy pollen balls. Nest renovation

and construction activities began 1 to 4 weeks after nest debris appeared. This was easily

recognized as sawdust began to appear below nest entrances and could be seen in

observations with the videoscope. Activity was first observed outside the nest as a
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female crawling out of a nest and walking on the wooden surface for a short time

(approximately 5-15 minutes); no flight occurred.

Following the start ofnest construction, males were seen flying around nesting

aggregations, and shortly after, they established territories (Table 3.3). Males maintained

territories for three to four weeks (Chapter 4), and usually disappeared after females

began provisioning brood cells (Pollen Foraging I in Table 3.3). Mating attempts began

within a few days of the first female flights and continued until males disappeared from

the study site.

The first females were observed flying in late April or early May; however,

females did not appear in sweep samples from fields near Brock Uniyersityuntil June.

Females were first observed carrying pollen in mid-to late May, and generally appeared

to have finished provisioning brood by early July. Following the first foraging and

provisioning period, activity decreased and remained low until late July or August. After

the lull of activity, a second period ofpollen collection began (these patterns can be seen

in Figure 1.17); this period followed observations of larvae and pupae in nests, and

coincided with video observations of teneral individuals. All nest construction, mating

and foraging activity usually concluded in August or September by which time all broods

had eclosed. Old and new females, in addition to new males, overwintered together in

the same nests. The number of females (overwintered foundresses and newly emerged

females) in a nest varied over a year; however, the median number of females per nest

remained above one individual (Figure 3.4).



Table 3.3: The date of important events in the X virginica life cycle in 2002~2006. All dates are based on behavioural observations, and
recordings of the presence ofnest debris. Data from 2003 also include nest dissection data. Data from 2004, 2005 and 2006 are also based on
videoscope observations. Question marks indicate no data available for that year.

Event 2002 2003 2004 2005 2006
First day above 14°C 12 April 17 March 5 March 31 March 10 March
Appearance of dead bees and nest debris ? 20 April 17 April 10 April 19 April

Sawdust appeared below nests ? 14 May 12 May 15 April 28 April

First female flight observed 6 May 20 April 30 April 19 April 10 April

Male emergence 19 April 18 April 30 April 19 April 19 April

Male territories established ? 18 May 10 May 10 May 1 May

First mating attempted 28 May 23 May 10 May 10 May 8 May

First female collected in fields ? 12 June 14 June 21 June ?a

Pollen foraging I 28 May to 25 June 26 May to 7 July 20 May to 8 July 10 May to 18 Aug ?b

Last males guarding territories 18 June 30 June 21 June 20 June 13 Junec

First larvae foundd ? 20 July ? 22 July 6 July

First pupa foundd ? 8 Aug ? 22 July 19 July

Pollen foraging lIe ? 30 July to 25 Sept ? to 15 Sept ? to 29 Aug ?b

Last female observed near courtyard 5 July 15 July 15 Sept 22 Sept 8 Sept

Last female in pan and sweep samples ? 16 Sept 16 Sept 29 Aug ?a

a Collections were only via pan traps, and no Xylocopa virginica were caught

b Individuals were trapped at nest entrances preventing determination ofa date

C Male was captured at nest entrance so territoriality cannot be confrrmed

d Nest dissection or videoscope

e Sweeps and flower associations
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Demographic indicators ofphenology
I. also found variation in demographic indicators of timing. Brood developmental

stage and the timing of emergence reflect phenology and timing of life cycle events. As

can be seen in Table 3.3, the timing ofmany events in the phenology ofX virginica

varied among years, although the order in which events occurred generally did not.

I compared the developmental stages ofbroods from nests collected on the same

date (19 July) in 2003 and 2006 to determine ifbroods were at similar developmental

stages. If the developmental rates and the start ofprovisioning were similar in 2003 and

2006 then developmental stages would have been similar between these two years. In

2003 development was significantly delayed compared to 2006 (Figure 3.5); nests

collected on 19 July 2003 contained fewer pupae and more pollen balls that those

'collected on 19 July 2006 (Chi-square: )(21=21.88, p<O.Ol). These results suggest an

effect ofweather (rainfall and possibly temperature) on developmental time or the start of

provisioning.

Since an individual can only be marked if it leaves a nest, and since bees were

marked at the first opportunity, the number ofbees marked in a year reflects the timing of

some events in that year. The number ofbees marked on a particular day reflects the

number ofnew bees flying that day, while the first day on which bees were marked

reflects when bees became active for the season. The point at which the cumulative

number ofbees reached an asymptote reflects the point at which new bees were no longer

becoming active. The 2006 season was the earliest of the years studied; females were

marked earlier (30 April) and the cumulative number of females reached an asymptote

earliest (Figure 3.6). The 2003 season started the latest of all years with no females

marked until after 20 May and new females appearing until late July. Male activity also

began earliest in 2006 (3 April) and latest in 2003 (13 May) (Figure 3.6).
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Weather conditions can influence the number of days a female can forage and

consequently the amount ofpollen she can collect and the size ofher brood. Ifweather

conditions are poor early in a season, a female may begin foraging later, which could also

result in smaller broods. Since broods laid in one summer will become the individuals

marked in the next summer, the number ofmarked individuals should reflect a proportion

brood size the previous summer (when individuals were laid). These patterns were

examined in the context ofweather patterns as explained by the PCA (Figure 3.3), which.

indicated that 2002 was average (warm in 30-year PCA, Appendix 5) temperature and

slightly wet, 2005 and 2006 were warm and dry, and 2003 and 2004 were cool and wet.

Thus, the population abundance appeared greatest in 2003, even though it was a cold and

wet year (Figure 3.3), but 2002 was an average year and only slightly wet. Conversely,

the fewest individuals were marked in 2004, which followed the cool, wet 2003 season

(Figure 3.3). These patterns suggest that brood size may be influenced by weather and

that poor weather conditions lead to smaller broods (in number of individuals).

Spring timing and weather may be associated with nest construction and re-use.

A female must potentially choose between using an old nest (if available), constructing a

new nest, joining another nest or waiting until the next season. This decision likely

reflects a trade offbetween nest construction and foraging. Good weather conditions will

result in more time for foraging and nest renovation than in years with poor weather

conditions. Thus, in good years more new nests should be constructed as the time

expenditure is less costly. In the Courtyard site, both the number ofnew nests

constructed (Figure 3.7) and the number of existing nests that were unused (Figure 3.7)

varied among years. The most new nests were constructed in the 2004 season (19 nests);

however, in 2003 a greater proportion of active nests were newly constructed. Linear
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Figure 3.7: The proportion of active nests (those inhabited by X virginica) at Courtyard
that were newly constructed (a). The total active nests are given above each bar. The
proportion of existing (newly constructed excluded) nests that were unused (b). The total
nests minus new nests are given above each bar. For both a and b, numbers above bars
give denominator ofproportion.
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regression ofweather data (PC1) versus the number ofnewly constructed nests in a year

(Regression: FI , 3=5.69, p=0.14) or the proportion ofnewly constructed active nests

(Regression: FI , 3=12.93, p<0.07), demonstrate no significant relationships between

weather and nest construction.

Relationships between weather and bee phenology
Weather factors have the potential to influence the order and timing of events in a

species' life cycle. Temperature is likely to influence when a bee starts activity and both

temperature and precipitation affect the probability of a female foraging. Therefore, if a

given year is wann earlier than usual, bees may begin activity earlier than nonnal.

Conversely, if a season is particularly cold or rainy, some activities may be delayed or

last for shorter durations. I examined potential relationships between weather and

phenology via linear regression of the date on which an event occurred and PC1. Each

life cycle event (those in Table 3.3) was examined in a separate model. The start ofnest

construction was the only event significantly related to PC1, and occurred earlier in the

wann dry years of2005 and 2006 (Table 3.4).

Evaluation of female foraging effort

I compared variation in foraging effort within years (seasonal differences) and

among years (annual differences) to detennine ifweather patterns influenced foraging

behaviour. I calculated various measures of foraging effort including flying time,

turnaround time and number of trips (Appendices 7-9).
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p-value
0.16
0.0055
0.48
0.36
0.36
0.69
0.56
0.43

F df
4.96 3
181.87 3
0.74 3
0.31 5
1.16 4
0.19 4
0.44 4
0.97 3

First nest debris found
Nest construction begins
First male territories established
First males emerge
First female observed
First mating attempt observed
Last female observed
Last male observed

Table 3.4: The results of linear regressions examining the relationship between the dates
(no. of days since 1 January) on which each phenological event occurred and weather for
that year (PC1).· Each event was examined in a separate analysis. Significant effects are
in bold.
Event
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Total provisioning time varied significantly both within and between years (Table 3.5).

Turnaround time showed a significant effect between years. However, the model was not

significant when the p-value was adjusted. All significant trends were due to 2004,

which showed longer turnaround times, and longer (although not statistically significant)

average flight times. Scheffe's post hoc analyses demonstrated that. differences in

turnaround time were significant only between 2003 and 2004. Total provisioning time

also differed only between 2003 and 2004

Annual variation in morphological size
Both female (F3, 695=53.35, p<O.OOOl) and male (F3, 708=40.02, p<O.OOOl) HW

varied significantly among years (Figure 3.8), and pairwise comparisons with Scheffe's

post-hoc test indicated that HW in males and females differed significantly between 2004

and all other years. Female HW also differed between 2005 and 2006; females marked in

2006 were larger than females marked in 2005. Since broods overwinter as adults, the

weather in the previous spring should-represent the weather conditions under which

marked individuals were provisioned. For example, individuals marked in 2005 would

have been provisioned in the summer of 2004. Figure 3.8 shows both male and female

head capsule width as it relates to the previous spring's weather. Females measured in

2004 were significantly smaller than females from all other years, females provisioned in

2005 (those marked in 2006) were larger than the females provisioned in the 2004

season. Interestingly, the opposite pattern is seen among males. Males marked in 2004

(provisioned in 2003) were larger·than those from all-other years.



Table 3.5: Annual and seasonal variation in measures of foraging effort for X virginica, in southern Ontario for the years 2003, 2004 and
2005. Means and standard deviation are reported with sample sizes (number of females) in parentheses. Analyses used the model effort =
date + year + date*year. Each independent variable is reported as the partial effect (F-value) based on the Type I sum of squares. All times
are in minutes. Boldface indicates significauce at a=0.05 aud a Bouferroni correction for the overall model. NS indicates no significance
based on a Bonferroni corrected p-value.

Variable
No. foraging trips per day
Flight time per trip
Turnarouud time per trip
Total flight time
Total turnaround time
Total provisioning time

2003
2.8 ± 1.8 (111)
42.3 ± 41.8 (65)
66.2 ± 67.2 (54)
135.1 ± 147.7 (65)
75.9 ± 157.7 (19)
203.0 ± 143.3 (58)

2004
2.3 ± 0.8 (22)
65.1 ± 33.1 (7)
83.0 ± 27.8 (5)
193.8 ± 98.3 (5)
91.0 ± 31.5 (8)
276.4 ± 151.2 (5)

2005
2.9 ± 1.9 (78)
29.6 ± 21.6 (24)
49.4 ± 29.0 (25)
112.5 ± 58.4 (27)
76.8 ± 100.3 (44)
193.8 ± 88.0 (23)

Between years Within years
F=0.13, n.s. F=3.95, p=0.05
F=3.25, n.s. F=0.67 p=0.04
F=2.32, n.s. F=0.77, u.s.
F=0.79, u.s. F=0.74, u.s.
F=4.65, p=O.Ol F=0.14, u.s.
F=lO.59, p<O.OOl F=4.58, p=O.04

Date * Year
F=0.40, u.s.
F=0.31, u.s.
F=0.47, u.s.
F=3.05, u.s.
F=1.17, n.s.
F=0.57, u.s.
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Figure 3.8: The mean head capsule width in millimetres (HW) for males (open triangles)
and females (closed diamonds) marked in the courtyard site in the years 2003 through
2006. The x-axis gives the weather conditions for the summer in which most individuals
were laid and represents the. conditions under which they were provisioned. The year that
the individuals were measured is given at the top. Size data from 2006 were collected as
part of another study (M. Peso, MSc). Both female (F3, 695=53.35, p<O.OOOl) and male
(F3, 708=40.02, p<O.OOOl) HW varied among years.
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Discussion

Annual variation in phenology
In the five years of this study, the life cycle ofX virginica did not vary with

respect to the type, or the order in which phenological events occurred. However, the

dates on which events occurred varied among years; some events varied by up to a

month. Some.of the variation in timing may be an artefact of using different indicators to

infer dates in different years when some data were not available; videoscope data were

not available for 2003 and nests were not collected in 2004 or 2005. Nevertheless, given

that some events shifted dates in a uniform manner, it is more likely that the timing of

events changes as a function of ecological factors.

I found no significant relationship between most life cycle events and annual

weather patterns, but these analyses had limited statistical power, as data were often

available for only three years. The only event that showed a significant relationship to

weather was the timing ofnest construction.. This is an important event, as it precedes

most other activities inthe life cycle and may determine season length. In addition,

because of the linear nature ofX virginica nests, a female must complete most nest

construction and renovation activities before she can begin to provision brood cells

(Chapter 2). Further, while foraging may depend on factors such as nest flower

phenology, nest construction is seemingly dependent only on the start of female activity.

Thus, a female may begin nest construction as soon as weather permits, but may still have

to wait to conduct other tasks. In 2003 nest construction began later than in 2006, and

broods were older (at more advanced developmental stages) for equivalent dates of the

respective years. I was unable to determine a date for pollen foraging in 2006 but it

appears that this too started late.
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Geographic variation in life cycle and phenology
The life cycle presented here indicates geographical variation in the timing of life

cycle events relative to dates presented by Gerling and Hermann (1976) and by Rau

(1933) for X virginica in more southern environments. Specifically, X virginica in the

southern environment of Georgia first flies in March, almost a full month earlier than in

Ontario. Further, Gerling and Hermann (1976) reported that 23°C is required to induce

activity, while I frequently observed activity at or around 14°C. Similar to southern

Ontario, in Georgia once brood eclose there is a reduction in female flight activity

followed by a second round ofpollen foraging. In Georgia, this second round of foraging

occurs in October, versus late August or September in Ontario. Interestingly, Gerling and

Hermann report that nesting activity in 1973 ended on August 25; it is not clear if this

included the second foraging event, but if it is only referring to cell provisioning, then

this event occurs at about the same time as in cold wet years in southern O~tario. As in

my studY,Rau (1933) and Gerling and Hermann (1976) found males overwintering in

their natal nests. Overall, X virginica's life cycle appears to be similar in all latitudes,

with the timing of events changing, but not the order. This suggests that X virginica has

a single brood (univoltine) across its range, and thus cannot produce separate worker and

gyne broods.

Analyses of foraging effort
In light ofmy findings on variation in phenology, one might also expect variation

in foraging effort across the season. Females might maximize foraging effort in response

to different weather conditions in different years, foraging longer per day to compensate

for fewer suitable days. The data show longer total provisioning times in the bad year
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(2004), but this increased time was seemingly due to longer turnarounds (the effect was

significant but the Bonferonni corrected model was not). All variation between years was

due to the 2004 season and not due to differences with the exceptionally warm and dry

2005 season, suggesting a negative influence ofpoor weather, rather than an advantage to

good weather. This might result from females coping with poor weather by working

longer, but not as efficiently. Females do not adjust their foraging effort during the

season.

There are no published studies with Xylocopa foraging data similar to those

presented here; some authors have reported observations on foraging inXylocopa and

studies have been conducted on foraging in halictid bees (Minckley et aI., 1994;

Richards, 2004; Richards and Packer, 1995). Gerling and Hermann reported on foraging

ofX virginica in Georgia where 54 of89 (61%) observed arrivals were by females with

pollen versus 35 (39%)without. Gerling and Hermann (1976) further reported that trips

without pollen usually resulted in less time spent in the nest (lower handling time), but

that in all trips the time spent in the nest was usually less than that spent in the field. In

this study, foraging X virginica females spent more time flying than in the nest; the total

flying time was greater than the total turnaround time. This pattern was reversed when

mean times were examined and I occasionally observed turnarounds that well exceeded

time away from the nest. It is possible that during anyone round trip, time in the nest is

spent on tasks aside from depositing pollen and turnaround time reflects more than just

handling time. Velthuis and Gerling studied foraging in X sulcatipes and X pubescens

(Gerling et aI., 1983; Velthuis et aI., 1984), and found that females in these species

predominantly foraged in early morning. X sulcatipes reportedly foraged for pollen
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every day, making an average of 10 pollen flights per day (Gerling et aI., 1983; Velthuis

et aI., 1984), while,X pubescens made only 2.8 flights per day and took less time per

trip (Gerling et aI., 1983; Velthuis et aI., 1984). The behaviour ofX virginica is more

similar to that ofX pubescens; on average bees made less than 3 trips per day, never

made more than 11 trips in any a six hour period and rarely foraged on consecutive days.

Finally, X pubescens reportedly ends the day with a nectar foraging trip (a trip with no

pollen); X virginica may occasionally do this also, but it does not seem a consistent

trend, as some females were never observed returning to a nest without pollen. X

virginica probably collects pollen and nectar in the same trip, as inX pubescens.

Variation in X virginica foraging behaviour is likely due to differences in pollen

availability but might also result from the time required to perform other tasks such as

nest repair or from variation in the degree ofhelp in social species.

Richards (Richards, 2004; Richards and Packer, 1995) conducted studies on the

, sweat -bee Halictus ligatus with similar measures to those presented here. Contrary to my

findings, both studies found significant annual and seasonal effects in foraging. Richards

concluded that pollen gathering ability served to connect climate to colony development.

Since X virginica is univoltine, metasocial and has a short foraging season, it probably

cannot adjust foraging for weather. A single brood and no workers means that broods are

likely best compared to the first brood in eusocial Halictus ligatus, which is also

provisioned by a single foundress. However, unlike theeusocial sweat bee, all Xylocopa

individuals of a brood are potentially reproductive and so the consequences on brood size

and the size of individuals might differ. Richards (2004) found that poor weather resulted

in smaller first broods and smaller individuals. This coincides with the finding that
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following poor years, population size was smaller and females were smaller. As with

Richards' study, it appears that even if foraging can change, X virginica may not be

adaptable enough to completely compensate for poor weather conditions.

Weather and nest re-use
I found no relationship between nest re-use and weather. This contrasts with

findings for Halictus ligatus, where increased colony failure was observed in years of

high precipitation (Richards and Packer, 1995; Richards and Packer, 1996), which was

attributed to the effects ofmould and nest damage from precipitation. It is likely that in

Xylocopa, which nest in wood, these effects are reduced because water does not penetrate

the nests, limiting both mould and nest damage. Most failed X virginica nests were

unused from the start of the season, suggesting that unused nests were abandoned rather

than failed. It is also ofnote that more nests were unused in the dry and warm year of

2006 than in any other year. This is a bit surprising, as one would expect that good

conditions would allow females more time to locate nests and thus few nests would be

unused. It would also be reasonable to find a large number ofnew nests as good

conditions would allow more time for building nests, since presumably time spent

building new nests.is time that cannot be spent foraging. However, 2006 did not have a

large number ofnests and so I suggest that nest re-use is dependent on a factor or factors

other than weather.
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Taxonomic variation in phenology
Xylocopa phenology varies among species. Phenology is available for numerous

species ofXylocopa, but few of these studies span more than a single year, or cover

multiple populations. Many of these studies provide only limited data on number of

generations and order of life cycle events. For instance, Watmough (Watmough, 1974)

reports that some species (X caffra, X apicalis, X falvobicincta, X capitata, X lugubris,

X rufitarsis, X hottentotta, X fraudulenta) are obligately univoltine exhibiting full

"diapause" and reproducing in spring or summer. In Africa, high rainfall regions contain

exclusivelyunivoltine species (Watmough, 1974). Watmough (1974) suggests that

univoltine life cycles are due to temperature and precipitation limits on food availability

and the ability to use wood. Multivoltine. species are apparently less limited and breed

any time that conditions pennit (Watmough, 1974). Steen and Schwarz (1998) observed

that X bombylans in Australia varied in voltinism with geography, but did not observe

such variation in X aeratus (Steen and Schwarz, 2000). This suggests that some species

ofXylocopa can take advantage of climatic variability as is seen in ~weatbees (Packer,

1986; Richards, 2000; Richards, 2001; Yanega, 1989; Yanega, 1997) and proposed for

allodapine bees (Cronin and Schwarz, 1999c; Cronin and Schwarz, 2001), but data

presented here suggest X virginica cannot. X virginica simply "finishes early" in good

years without translating good weather into larger or additional broods, or into reduced

foraging effort. Thus, Xvirginica is univoltine in southern Ontario as it reportedly is in

other regions (Gerling and Hennann, 1976). As seen in Appendix 4, this makes X

virginica one of only two species known to have multi-female nests and be univoltine.
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Consequences ofpoor weather
I found that head capsule width varied significantly between years and it is

seemingly associated with the weather in the year that individuals were provisioned. This

relationship is logical and expected. Since females do not change the order in which

many life cycle events are conducted, and since foraging effort did not vary much

between years, females are forced to make decisions about pollen allocation. As females

do not make more or longer trips in bad years, they will have less pollen with which to

provision broods. The pollen that is collected can thus be used to make smaller overall

broods, smaller individuals, or can be disproportionately allocated among sexes. The

2003 season was wet and cold, and in the following 2004 season, fewer and.smaller

individuals were observed. This may indicate that weather prevented females from

foraging as efficiently in 2003 as they would in drier and wann years. As suggested in

other chapters, and in Appendix 3, brood sex ratios are likely even. This suggests that

when faced with less available pollen, females produce broods of fewer and smaller

individuals.

The 2004 season stands out as the most anomalous of those studied here. The

2004 season was the coldest year of this study, and was the second consecutive cold wet

season. This may explain the reduced population sizes and greater number ofunused

nests in 2004. In addition, females marked in 2004 were smaller and 2004 showed

variation in foraging with longer turnaround (handling) times and total provisioning times

relative to other years. I propose that many of these factors are related. Smaller

population size is probably associated with fewer active nests. Nest use decisions

probably involve multiple factors, but greater re-use may reflect increased competition

for nests due to more females. in the population.
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Conclusions
Here I have illustrated the life cycle ofX virginica in southern Ontario, the

northern extent of its range. This species has a similar life cycle at most latitudes,

although the chronology of the events varies annually in southern Ontario. There are

some connections between climate and phenology, and these are generally related to

when nest construction and renovation begins. With little exception, foraging effort does

not differ within a season or between years. Variation that exists is apparently not related

to a particular climate factor. Neither nest re-use nor population size is related to bee

season weather, but bee season weather does influence when brood provisioning is

completed. Finally, the univoltine nature and fixed order ofphenology in X virginica

likely precludes the types of social flexibility seen inhalictid and allodapine bees.
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Chapter ·4: Male behaviour, mating tactics and
aggression in association with female traits in the large

carpenter bee, Xylocopa virginica

Introduction
In the Hymenoptera, especially the bees, behavioural research tends to focus on

females. This is largely because studies focus on aspects. of sociality and all worker bees

are female. Further, males are often represented as simple drones that do little more than

donate spenn (Paxton, 2005). However, there is a considerable body of literature that

suggests diversity and complexity in the mating systems and strategies ofmany bee

species. Diversity has been demonstrated with respect to number ofmates (Moritz, 1985;

Tarpy and Page, 2001), mating tactics (Abrams and Eickwort, 1981; Aleock, 1978;

Alcock, 1991; Barrows, 1976; Barrows, 1983; Paxton et aI., 1999; Plowright and Pallett,

1979; Velthuis and Gerling, 1980) and courtship behaviour (Eickwort and Ginsberg,

1980). These studies have shed light on distinct behaviouralpattems in the mate finding

strategies ofmale bees, while addressing the adaptive significance ofvarious mating

tactics (Alcock et aI., 1977).

Emlen and Oring (1977), Thornhill and Alcock (1983) and Shuster and Wade

(2003) all define mating systems based on the relative number ofmates a male or female

has. Monogamy is a situation where there is one male to one female, while polygyny is

the situation in which one male mates with multiple females. Polygynous systems are

usually further subdivided based on the strategy that males use to locate and obtain mates.

Resource defence polygyny is the tactic in which a male establishes a territory, or

otherwise defends an item ofvalue to females in order to intercept females as they seek
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that resource. Female defence or harem polygyny is a scenario where males· directly

guard a group of females. Defence tactics are often associated with interloping, which is

an alternate tactic where males attempt to "sneak" past dominants and obtain copulations.

Polygynous strategies such as leks involve males and females gathering at seemingly

arbitrary landmarks, which the males guard, for the sole purpose ofmating (Emlen and

Oring, 1977; Shuster and Wade, 2003). Scramble competition is a tenn for polygynous

mating systems in which males compete directly to mate with females, typically during a

very short breeding season. Recent reviews ofmating behaviour in Hymenoptera have

developed frameworks to explain the evolution or choice ofvarious mating strategies

(Boomsma et aI., 2005; Paxton, 2005). These studies make predictions about what

strategy a male should use given a particular set of these conditions. Many of these

conditions are related to traits associated with females including the location and

proximity ofnests to each other, female foraging habits, and the physical size ofmales or

females.

Bees in the genus Xylocopaare considered ideal candidates for studying bee

mating systems (Barthell and Baird, 2004). These bees are large and conspicuous which

allows for easy observation and they exhibit a variety ofmating systems allowing for

comparative studies. Studies in Xylocopa have shown that males may exhibit female

defence polygyny, resource defence polygyny, scramble competition,and a system that

resembles a mammalian lek (Alcock, 1991; Alcock and Johnson, 1990; Barrows, 1983;

Barthell and Baird, 2004; Frankie et aI., 1977; Leys, 2000a; Minckley and Buchmann,

1990; Minckleyet aI., 1991; Vinson and Frankie, 1990). Further, an association has been

proposed between chemical attractants, morphology and mating system: males that
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exhibit lek systems often have large metasomal glands that may be associated with the

production of a chemical attractant (Minckley, 1994; Minckleyet aI., 1991).

Three previous studies ofmale X virginica have demonstrated territoriality in

males. Gerling and Hermann (1976) suggested that males. in a Georgia population are

territorial around active nest entrances and grab females as they make trips to or from the

nest. Barrows (1983) examined male behaviour in a Washington, DC population and

interpreted the repeated observation of males near a nesting site on multiple days as

evidence of territoriality. Barrows further suggested that territoriality was one ofmultiple

mating tactics (also including interloping and scramble competition) exhibited by males

within the same populations. Finally, Barthell and Baird (2004) studied the subspecies X

v. texana. In their study, they used a similar approach to Barrows in defining territoriality

and then. examined size variation and aggression between males identified at the "nesting

site" and the "nesting periphery and flower." Barthell and Baird (2004) concluded that

the mating strategy, aggression and dominance are correlated with size (head capsule

width). All three studies of male X virginica have stressed that to confirm mating

strategies, behaviours should be examined in populations with known and varying female

nest densities.

In this study, I aim to accomplish three goals. First, I examine the behaviour of

male X virginica in the northern extreme of its range, concentrating on males within

territories. Second, I examine the factors that determine male mating tactics. Finally, I

examine male Xylocopa behaviour in the context of female life-history traits such as nest

and female densities and compare it to predictions from the theoretical work such as that

ofPaxton (2005), and Baer (2003).
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Methods

Study Site
All research was conducted at the previously described Brock University

Courtyard site (Figure 1.1) from 2003 through 2005. The site remained the same in all

years with the exception that bench 7 was moved closer to other benches prior to the

2005 season (Figure 1.1).

Marking for identification
Males and females were marked in every year of this study, according to the

protocol described in the general introduction. Marking bees made it possible to identify

individuals in observational studies. Since all males and females that were observed in

the Courtyard site were marked (some females do not leave nest, see Chapter 1), the

number ofmarked individuals approximates the active adult population size (see Figure

3.6 and Chapter 3).

Behavioural observations and censuses
In 2003-2005, I conducted behavioural observations at benches to determine rates

ofmale-male and male-female interactions. Each year, behavioural observations began

shortly after the first male of the season was observed hovering near a bench and

continued daily (weather permitting) until males were no longer observed at the study site

(approximately late May through June). In some rare instances, multiple males were seen

hovering above opposite ends of the same bench, but usually a single male was observed

above a bench. The areas of observation were defined as the three-dimensional space
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surrounding a bench, and were divided into perimeters of 0.5 m and 1 m from the bench

(Figure 1.1, Figure 4.1); these distances were easily identified as the walkway was

constructed of 0.5-metre cement squares.

I observed the behaviour ofmales in a series of 15-minute observation periods

carried out throughout the day at each bench in tum. The order of observations was

randomized with respect to bench to avoid bias that might be associated with daily

variability in male activity patterns. In instances where no activity was observed for five

full minutes, observations at the bench were suspended until later in the day. If no

activity was observed in two attempts, the bench was declared inactive for that day. X

virginica was not active when it rained so observations were not made on days with

precipitation. Complete sets of observations (i.e. those uninterrupted by rain) were

conducted on 18 days in 2003, seven days in 2004, and nine days in 2005,for a total of

122.5 hours of observations.

The following behaviours were recorded during observations: loop (L), chase (C),

chase and touch (CT), chase and fight (CF), chase female (CFEM), and mating attempt

(MA). Loop was defined as a previously hovering male briefly leaving a territory and

flying in a circular motion not directed at an intruder or object before returning to his

original position. Looping behaviour was conspicuous and may be an advertisement or

represent a male searching for other males. Chase (C) was defined as a hovering male

flying towards an object (other than a female), but not making contact with it. The chase

and touch behaviour (CT) was defined as a chase that was followed by light contact
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between the male and the object ofpursuit. A chase and fight (CF) was defined as a

chase followed by prolonged contact, grappling, biting, or the individuals falling to

the ground; this is roughly equivalent to the "pouncing" described by Barrows (1983).

Chase female (CFEM) was defined as a hovering male flying towards a female

but not contacting her. A mating attempt (MA) was defined as a male chasing and

grabbing a female with the result that the pair landed on a surface or flew out of the

territory together. This is distinguished from CFEM where no contact was observed.

MA events follow CFEM events; however, not all CFEM events result in mating

attempts. It was not possible to observe copulation in most instances but MA behaviours

are consistent with the precopulatory behaviour described by Barrows (1983). Behaviours

were treated as single events, regardless of duration, and were recorded relative·to a focal

individual (male of interest), defined as the male that initiated the behaviour. All

behaviours performed by all males within 1m of the bench were recorded.

In order to quantify patterns of residency throughout the day and season and in

order to determine each male's positions relative to benches, I· censused the bees near

each bench throughout the day. A census consisted of a one-minute acclimation period

(males often initially react to humans) followed by a 10-minute census of the identity and

position of all individuals within 1m of a bench. Five censuses of each bench were

carried out each day; censuses were conducted in the periods between 15-minute

behavioural observations. These data were used to calculate the time spent in the study

site, the number of days a male was observed, and to determine resident status.
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Analytical Methods

Evidence for polygyny

I examined the -ratio ofmales to females marked in the courtyard site in each year

for evidence ofpolygyny. Specifically, I compared cumulative number ofmales and

females marked in each week of the bee season of each year. In each year, weeks were

designated a numerical value based on the start and end of each season. Comparisons

were performed using one-way chi-square goodness of fit tests with the calculated

expectation ofa IF:IM sex ratio (50% of individuals in each category). In instances

where sample sizes were less than those required for chi-square analyses, Fisher's exact

test was used. Chi-square tests were performed using Microsoft Excel; Fisher's exact

tests were performed by hand using Excel. The ratio ofmarked males to females is an

"operational sex ratio" (Kvamemoa and Ahnesjo, 1996) and represents the numbers of

males and females that had been documented outside a nest. This number differs from

the population sex ratio as many females rarely (or never) leave the nest and are likely

unmarked (Chapter 1).

Evidence of territoriality, resident and satellite males

In his study, Barrows (1983) interpreted the repeated observation ofmales near a

nesting site on multiple days as·evidence ofterritoriality. Similarly, Barthell and Baird

(2004) designated two classes ofmale based on position within a territory. They referred

to males near a nest as "nest males" and contrasted them to "periphery males" which

were located farther away from a nest. I looked for "nest males" and "periphery males"

(sensu Barthell and Baird (2004)) at the Brock Courtyard site. I refer to males near

benches as "residents" and to those on the periphery as "satellites", as these terms better
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reflect common terminology. It is assumed that a bench and its surrounding area reflect a

territory. Using data from 10-minute censuses, I tested whether males were randomly

distributed among benches. I compared the proportion of individually censused males

above a bench and on the periphery of a territory via chi-square goodness of fit tests. I

tested the hypothesis that certain males would be repeatedly censused either on the

periphery or above a bench, within or among days, using the average proportion of

censuses in which a male was observed above a bench across days. The resulting values

ranged from zero, which indicated a male was never above a bench on any day, to one,

which indicated a male was always censused above a bench. Data from males not

censused on two or more occasions were discarded.

I examined whether satellite males changed territories (moved between benches)

more often than resident males. For each year, I identified males censused on multiple

days and determined which males were censused exclusively atone bench, and those

censused at multiple benches. Finally, I teste'd the hypothesis that resident males would

remain in the study site longer than satellite males, because resident males live longer or

are less likely to change tactics. I compared time spent at the study site [the number of

days from marking (the first time a male was seen) until the last time the male was seen

in a 10-minute census] for satellite and resident males using a Wilcoxon 2-sample test.

Interactions between satellite and resident males
In order to classify behaviours, and to reduce the number ofvariables, I performed

principal components analysis (PCA) on the covariance matrix of all behaviours recorded

during 15 minute observation periods (C, CT, CF, Loop, MA and CTF). To determine if
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resident males maintain status through greater aggression, or engage females more often,

I compared the significant principal components (PCs) between satellite and resident

males. Males censused above a bench in the multitude (most instances but not

necessarily half) of the two to five IO-minute censuses conducted on the day that the

observations were made were categorized as residents. All other males were categorized

as satellites. Since analyses are unique to a day, a male may be a resident on one day,

and a satellite on another day. I compared each PC individually using General Linear

Models conducted in SAS 9.1.3. Each model used the PC as a dependent variable and the

predictors: male identity nested within year, resident or satellite status (hereafter

"status"), and days since the first territory was established in that year (hereafter "days").

The ID(days) term was included to account for repeat observations of a male on multiple

days, while identity was included to account for individual variation between males and

repeated use ofmale IDs in different years. There was no effect of days and this variable

was subsequently excluded from analyses. Although not explicitly a male-male

interaction, loop was also examined using this model.

I examined the rates ofboth chase-female (CFEM) and mating attempt (MA)

events between resident and satellite males to determine if resident males had greater

access to females. CFEM events were compared via ANCOVA using the number of

events per male per I5-minute observation period as the dependent variable and the

terms: satellite or resident (status), male identity nested within year, the number of days

since males established territories in a given year, and bench. Bench was included to

account for potential differences in encounter rate associated with territory quality. I also

performed these analyses using the number ofnests in a bench and number of females
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marked in proximity of the bench with no increase in the variation explained (~). I

removed non-significant terms from the model and the final model included only the

predictors male ID nested in year and days since territories were established. Mating

attempts were compared between resident and satellite males using chi-square goodness

of fit tests, because too few attempts were observed to apply more complex models.

Size relationships between males of different mating strategies

I compared males to determine ifresident and satellite males differed in size.

Head capsule width (HW) was recorded for every marked male; therefore I was able to

compare these values among all censusedand observed males. Since a male's position in

a territory reflects its status, I compared HW among males above benches, between 0 and

0.5 m from a bench and more than 0.5 m from a bench. I performedANCOVA with a

model that included the predictors: year, days since I-May of each year, bench, and

position. Year was included to account for size differences among years, date to account

for variation within the season, and bench to account for potential relationships between

size and territory quality. The HW data were not distributed normally; thus, ranked HW

data were used. I also tested HW as a function of status and date. Comp.arisons were

performed via ANCOVA on ranks with the following predictors: status (resident or

satellite) and date marked (days since 1 May) as a nested variable within the variable

year. For this analysis resident was defined as a male that was a resident on any day, all

others were "satellite". Finally, to determine if size influenced site fidelity, I compared

HW between males censused within the study site and males that disappeared after

marking using ANOVA. It was assumed that ifmales disappeared (were not censused) it
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was because they had adopted an alternate mating strategy outside the study site. The

ANOVAmodel included a year variable to account for annual variation in HW.

Characteristics of territory quality
Benches vary in the number ofnests they contain and in the number of females

that visit them. This might result in varying territory quality from a male's perspective. I

compared the average number ofmales censused at a bench among benches, which

should reflect differences in males' perception of a territory's quality. Analyses were

made using ANOVA with a model that included the categorical variables bench and year;

year accounted for annual variation in population size and number.ofnests between

years. I also examined whether equal numbers of males were marked near each bench.

Comparisons were made via chi-square goodness of fit tests with an expected distribution

ofmarked males equally distributed among benches. Patterns were examined separately

for each year. I examined potential relationships between the number ofmales censused

near a bench and both the number ofnests in that bench and the number of females

marked near that bench. Each factor (nests and females) was examined in a separate

regression model and factors were nested within year to account for variation among

years. Finally, I ranked bench quality to reflect territory quality as perceived by males.

Since, more males should visit higher quality territories, ranks were based on the mean

number ofmales censused at a bench per day. Lower scores were assigned to more

frequently visited benches so a lower rank indicated a higher perceived quality (e.g.

best=l, worst=7). Annual ranks reflected quality in a particular year, the mean rank of all

years represents the overall trend.



162

Results

Evidence for polygyny
I examined the timing ofmale and female emergence and the number ofmarked

-individuals of each sex to confirm polygyny in the courtyard population. Overwintered

males and females were first observed at about the same time (Table 3.3), but males

tended to become active before females (Figure 4.2). At this time, males were

aggregating around benches and were presumably establishing territories. The total

number ofmales in the population increased for a period of about six weeks after which it

reached an asymptote; during this time, there were more active males than females

(Figure 4.2, Table 4.1). The number of marked individuals may underestimate the sex

ratio bias, however, because in each year, the final number of males marked was greater

than the number ofmales observed at benches. On average, 60% (38% in 2003; 70% in

2004; 58% in 2005) ofmales left the study site after they were marked.

Evidence of territoriality, resident and satellite males
In this study, after emergence some males remained in the courtyard and

aggregated around the benches. These males usually hovered in place above and central

to a bench, or hovered in a similar manner up to 1 m from a bench. When males above a

bench were removed for marking, it was common to see one of the peripheral
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Table 4.1: The cumulative number ofmales and females by week for the 2003, 2004, and 2005 seasons. Week 1 began with the first
marked bee of each year and weeks continued' until no new individuals were marked. Weeks are not equivalent between years. Week
7 is the total number ofmales and females marked in 2003; this is shown in week 6 for 2004 and 2005. Significant results are in bold.
ns indicates p>0.05.
Week Females Males X2 p-value Females Males X2 p-value Females Males X2 p-value

2003 2004 2005
1 9 14 1.09 ns 18 41 ' 8.96 < 0.01 0 8 0.038 a

2 31 51 4.88 < 0.05 40 74 9.56 < 0.05 15 108 44.02 < 0.001
3 53 53 0 ns 63 91 4.74 <0.05 31 140 69.22 < 0.001
4 83 109 3.26 ns 104 97 0.18 ns 96 153 13.05 < 0.001
5 160 142 0.96 ns 109 97 0.58 ns 119 154 4.24 < 0.05
6 195 168 1.86 ns 123 98 2.6 ns 121 154 3.72 0.053
7 195 169 1.86 ns

a Fisher's exact test due to limited sample size
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males (those within the 1 m area surrounding but not above a bench) assume the vacated

position. Removed males often re-established their positions when released; the

occupying male(s) returned to the periphery. The observation that males replace each

other suggests that territoriality exists; the fact that males are differentially distributed on

the periphery suggests the presence ofboth resident males (nest males in Barthell and

Baird (2004)) and periphery males of Barthell and Baird (2004).

I used 10-minute census data to confinn whether males consistently reside over

benches or on the periphery as did the nest and periphery males described by Barthell and

Baird (2004). More censuses contained males only above benches in every year of this

study (Table 4.2). In 2003 and 2005, there were also censuses with a male above a bench

and on the periphery at the same time, but this did not occur in 2004 (Table 4.2). Less

frequently, a bench was censused that had males only on the periphery (Table 4.2).

Males that are above benches are better positioned to encounter females than males on

the periphery. Males above benches should therefore be seen repeatedly above benches

both within and among days. I examined this expectation using the average proportion of

censuses in which a particular male was censused above a bench and found that most

censused males were always located above a bench (mean proportion equals 1), some

were always on the periphery, and some males moved between a bench and the periphery

(Figure 4.3).

I examined 10-minute census data to detennine if resident males (those usually

above a bench) retained their status across days (Table 4.3). Within each year, males

observed more than one day were more frequently resident males, suggesting males retain

their status across days. Since a resident male may be displaced (or die) or a satellite
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Table 4.2: The number of censuses in which males were located above a bench, on the
periphery, and in both positions. Data are presented for each year of this study.

Only above bench Only periphery Above and periphery
2003 240 (67 %) 32 (9 %) 87 (24 %)
2004 87 (91 %) 9 (9 %) 0 (0 %)
2005 57 (45 %) 16 (13 %) 53 (42 %)
Mean 128 (66%) 19 (10%) 47 (24%)
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Figure 4.3: The number ofmales that on average were never above a bench (mean=O),
were sometimes above a bench, and were always censused above a bench (mean=I).
Data are based on five censuses per day for 18 days in 2003, 7 days in 2004, and 9 days
in 2005.
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Table 4.3: The mean number of days ± SD between marking and final census for resident
males and satellite males. Test statistics are results ofWilcoxon 2-sample tests.

Resident male Satellite male test-stat p-value
2003 31 ± 19.5 22.9 ± 15.4 1326 0.11
2004 27 ± 9.7 33.8 ± 0.5 46.0 0.17
2005 16 ± 8.6 21.0 ± 11.6 158 0.18
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male may assume a better position in another territory, some males should move between

benches. In 10-minute censuses in 2003,42% (30/54) of satellite males and 56% (13/31)

of resident males were observed at the same bench each time the male was censused, and

this was true for 100% ofmales censused in 2005 (n=16 residents, 12 satellites) (Table

4.3). This suggests that most residents maintain control of the territory through the season.

Territorial vs. satellite male behaviour

Interactions between satellite and resident males
In order to quantify male aggression, and determine ifbehavioural rates vary

between territory holding and satellite males, I measured a series ofmale behaviours

(chase, CT, CF, L) in addition to two behaviours·that involve male-female interactions

(chase female and mating attempts). Since these behaviours are potentially associated,

and to reduce the number ofvariables, I performed principal components analysis (PCA)

on all the behaviours recorded during l5-minute behavioural observations (Table 4.4).

Four principal components were significant in explaining variation in male aggression

(Table 4.4). PCl explained the most variation and represents most male behaviours

except ma~ing attempts. PC2 primarily explains variation in the male behaviours that

involve contact (CT and CF). PC3 explains variation in mating attempts. While no

variable was significant, the chase-female behaviour loaded strongest onto PC4. While

not significant, chase-female loaded most strongly onto PC4. In order to determine

whether rates ofmale behaviour vary between territory-holder and satellite males, I

performed ANCOVA on each of the first four PC scores (Table 4.4). PCl differed

significantly for satellite and residents, suggesting that territorial males are more

aggressive than satellite males; no other PCs showed significant differences.
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Table 4.4: Factor loading values for the first four principal components (PC) ofvariables
related to male behaviour, and results of statistical comparisons between resident and
satellite males. PCA analysis is based on covariance matrix. PCs were examined in
seperately using the model: PC = ID(year) status [days]. Partial F and p-values are based
on the type III sums of squares for the status term. Bold indicates model and effect were
both significant Sample size is 363 for all analyses.

Behaviour Eigenvector Eigenvector Eigenvector Eigenvector
PCI PC2 PC3 PC4

Chase (C) 0.778 0.042 0.012 -0.431
Chase-Touch (CT) 0.695 -0.433 0.063 0.215
Chase-Fight (CF) 0.518 -0.676 '0.120 0.055
Loop (L) 0.688 0.435 -0.199 -0.274
Chase-Female (CFEM) 0.625 0.505 -0.008 0.555
Mating attempt 0.021 0.200 0.975 -0.064

Eigenvalue 18.55 6.60 4.61 1.63
Percent Explained 57.0 20.3 14.2 5.0
Cumulative Percent 57.0 77.3 91.5 96.5

Partial F 37.89 0.00 0.05 0.42
p-value P<O.OOOI 0.97 0.82 0.5
df 1 1 1 1

Mean (SD)-Satellites -1.30 ± 3.36 -0.15 ± 1.98 -O.17±1.49 0.03 ± 1.15
Mean (SD)-Residents 3.95 ±4.40 0.43 ± 3.78 0.49 ± 3.38 -0.09 ± 1.60
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Male-female interactions
A male should adopt the mating strategy that provides him with the most

opportunities to interact with females and thus the most mating opportunities. I examined

two types ofmale-female interactions, chase-females (CFEM) and mating attempts (MA)

with the prediction that resident males were in a preferred position and would gain more

opportunities to interact with females. Specifically, residents should chase females more

often than satellite males and should engage in more mating attempts. I compared the

rate of chase-female events between resident and satellite males via ANCOVA. The

model used included male identity nested within year to account for potential repeat

observations of males, and days since males established territories to control for changes

in behaviour over the season. The overall model was significant (ANCOVA: F218,

145=1.45, p<0.008), and resident males chased females more frequently than satellite

males (Residents: 3.7 ± 3.6 per 15 minute period, Satellites: 0.8 ± 1.7).

Males were occasionally observed "grabbing" females and engaging in what was

presumably a mating flight. These flights involved a male mounting a female, followed

by the individuals flying together, often out ofview. In other instances, the pair crashed

to the ground. Since these events usually took the pair out of the territory being

observed, it was difficult to estimate the length of the events, but males often returned

during the same 15-minute observation period. I observed few mating attempts in any

year. In 2003, I observed seven attempts by resident males and 11 by satellites, which is

not a significant difference (Chi-square goodness of fit: X21=0.5, p=0.48). The sole MA

observed in 2004 was performed by a resident. In 2005, all five observed attempts were

by resident males. Summed across all years, residents did not perform significantly more
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mating attempts than satellites (13-resident, 11 satellite) (Chi-square goodness of fit:

2X1=0.04, p=0.8).

Characteristics of territory quality
Territories containing more nests or that are visited by more females will provide

males increased access to females. These differences in territory quality will result in

variation with respect to both the average number ofmales censused per day (Figure

4.4a) and the total number ofmales marked in a territory (Figure 4.4b). I compared the

average number ofmales censused per bench using an ANOVA model that included the

categorical variables bench and year. The overall model was significant (ANOVA: F8,

208=8.18, p<O.OOOI) as were the differences between benches (F6,202=9.44, p<O.OOOI). I

also examined the total number ofmales marked at benches in each year to determine if

equal numbers ofmales were marked at each bench. The number ofmales marked was

not evenly distributed in any year (Chi-square goodness of fit: 2003: X26=76.5, p<O.OOI;

2004: X26=62.6, p<O.OOI; 2005: i6=24.2, p<O.OOI). Both results suggest variation in

territory quality.

A male's perception of a territory's quality should reflect the number ofmating

opportunities he can obtain within that territory. This can be examined as the number of

males that visit a bench relative to the numbers of females marked near the bench (Figure

4.5a) or the number ofnests in the bench (Figure 4.5b). I examined this relationship

using the model (the total number ofmales marked at a bench in a given year) = number

ofnests in a bench, number of females marked near a bench, and an



173

.2003 02004 IZJ 2005

7

a
6

~5
eu
"C...
CD
Q,4
fn
CD
'is
E 3
'5
o
c
c 2
eu
CD
:E

o

b

Bench 1 Bench 2 Bench 3 Bench 4 Bench 5 Bench 6 Bench 7

.2003 0 2004 ~ 2005

90

80

70

"C 60
CD
-t:
eu 50
E
In

~ 40
E
'I-
o 30
o
Z

20

10

Bench 1 Bench 2 Bench 3 Bench 4 Bench 5 Bench 6 Bench 7

Figure 4.4: The mean number ofunique males (8E) censused per day by bench for 2003
(solid bars) (n=18 days), 2004 (white bars) (n=7) and 2005 (hatched bars) (n=9). In 2004
and 2005, no males were censused near Bench 3. In each of 2004 and 2005 bench six was
active on a single day, and only one male was censused on that day. No standard error
indicates a sample size of one for that year. b. The number ofmales marked by each
bench for 2003, 2004, and 2005.



174

14012060 80 100

No. of females marked

4020

o +----u;;::!i--r-------,,---------r-------.----.,.---,---------,----------.---

o

• 2003 0 2004 @ 2005

250
a

200

"C
CD
f/)
::s 150f/)
c
CD
CJ
f/)
CD

1ii 100
E
"I-
0

0z 50

• 2003 0 2004 2005

250

b
200

•
"C
CD
f/)

; 150
c
CD
CJ
f/)
CD

1ii 100
E
'0 •
o
z 50

o

302520

o +-----er'----,----------.-j-fO OJ---------r--,------------r--------,

o 5 10 15

No. of nests

Figure 4.5: The total number ofmales observed in censuses relative to (a) female density
(females marked in that territory) and (b) the number of nests in a particular bench in a
particular year. Sample sizes are 21 for both panels.



175

interaction t~rm for nests by females. The overall model was significant (Regression: F5,

15=11.19, p<0.0001), as was the effect of females (Regression: Fl, 15=12.09, p<0.004).

The effect of nests was not significant (Regression: F1,15=1.78, p<0.2).

Finally, to quantify male response to territory quality, I ranked benches based on

the mean number ofmales censused near them (Table 4.5). Ranks varied between years,

however, benches five and four were visited the most in each year, and benches three and

one were visited the least. Similarly, when averaged across years, benches five and four

were visited most often, and benches one and three were least visited. This suggests that

benches four and five were high quality while three and one were low quality. Bench

five contained the most nests in every year while benches three and six contained the

least (Figure 1.1).
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Table 4.5: Ranked territory quality for each bench in the 2003, 2004 and 2005 seasons.
Ranks are based on the average number ofmales censused per day. -Lower ranks indicate
higher territory quality. Mean is the average of ranks across all three years.

Bench 1 Bench 2 Bench 3 Bench 4 Bench 5 Bench 6
2003 7 3 5 2 1 6
2004 3 2 4 1 3 3
2005 5 3 6 2 1 5
MEAN 5 2.7 5 1.7 1.7 4.7

Bench 7
4
4
4
4
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Discussion

Mating system in Xylocopa virginica
While mating behaviour has been studied in X virginica, previous studies did not

provide detailed information on sex ratio, or associations with factors such as.nests and

females. In this study, I examined mating behaviour, and present findings in the context

of these additional factors. Past studies of male X virginica note as many as five mating

tactics, including female defence polygyny, territoriality at plants, scramble competition,

symbolic territories and interloping (Barrows, 1983; Barthell and Baird, 2004). While

Barrows did not distinguish between female defence and resource defence polygyny,

Barthell and Baird suggested that female defence polygyny is the primary strategy in X v.

texana, and the current study shows similar results for X v. virginica in southern Ontario.

I have shown that males emerged prior to females, and are significantly outnumbered by

females during the mating period, strongly supporting polygyny. Further, males

aggregated around nesting substrates, showed aggression towards conspecific males and

assumed vacated positions above benches; these behaviours are all common indicators of

territoriality in insects (Baker, 1972; Baker, 1983). As inX v. texana (Barthell and

Baird, 2004), males aggregated both near the centre (near nests) and periphery of

territories. Some males were exclusive to one position while others moved between

positions. These males constitute residents and satellites respectively, and are likely

equivalent to the nest and periphery males ofX v. texana of Barthell and Baird (2004).

Also, similar to X v. texana, resident and satellite males did not differ in head capsule

width.
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Behavioural differences between residents·and satellites
Since size does not vary between satellite and resident males, I propose that roles

are detennined via males' willingness to chase competitors and an advantage to initially

holding a territory. Resident males were more aggressive than satellite males even

though aggressive behaviours involving contact have been shown to cause physical

damage in other species ofbee (Jaycox, 1967). No difference was detected in the time

between marking date and final census observation date for satellite and resident males.

This suggests that satellite and resident males have similar lifespans, and that

consequently that the risks from aggressive interactions are minimal in X virginica.

Numerous studies ofmale territoriality in insects have demonstrated that resident

males have an advantage in male-male contests (Kelly, 2006a; Kelly, 2006b; Kemp and

Wiklund, 2001; Kemp and Wiklund, 2004; Olsson and Shine, 2000), although no such

phenomenon has been confinned in bees. These studies suggest that the resident will be

more aggressive in chasing away competitors. When the increased aggression leads to

the resident winning the encounter, the resident receives positive feedback, whichresults

in increased aggression in future encounters. Therefore, winning is expected to result in

an advantage for the resident. Such scenarios require residents to be more aggressive

than satellites or interlopers, but do not require a size dimorphism between types ofmale.

While I did not explicitly test these scenarios, I found that in X virginica males there was

no size difference between satellite and resident males, but overall residents were more

aggressive and mostly retained their positions. Anecdotally, males appear to become

more aggressive over time; however, the data do not allow for this observation to be

empirically tested. These findings resemble those expected if these bees show resident



179

male advantage. This is similar to the findings ofBarthell and Baird (2004) who found

increased aggression in males near nesting sites relative to those on the periphery.

Male-female interactions
Resident males pursued females with a greater frequency than did satellite.males,

but did not engage in significantly more mating attempts. Possibly, this is due to the

increased potential for interactions associated with holding a territory, but it may also

indicate less risk of injury or loss of status to residents if they chase unreceptive females.

X virginica flights often take the pair out of a territory (Gerling and Hermann, 1976), and

so resident males which can regain their territories may be more likely to pursue females.

Interestingly, Barthell and Baird (2004) did not detect a difference in male-female

interactions between nest and periphery males ofX v. texana, but did find that males in

nesting sites interacted with females more often than males at flowers.

Neither the rate ofmale-female chases nor the numberofmat.ing attempts varied

with territory. This is somewhat surprising as the number of females varied between

territories, and increased with the number ofnests, and thus it would have been expected

that the number of receptive females also varied. However, since the rates ofmale­

female interactions may be influenced by female activity rates, particularly with respect

to leaving and arriving on foraging trips, 15 minutes of observation may not have been

sufficient to detect trends. Overall, the rate ofmale-female encounters was much greater

than the actual number ofmating attempts; I recorded over 700 male-female chases

between 2003 and 2005 but less than 50.mating attempts; of these, only 14 were by

resident males. This is similar to what was found in Anthidium septemspinosum (Sugiura,

1991), inXfimbriata (six copulations and 14 male-female interactions in 38 hours)
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(Vinson and Frankie, 1990) and inX californica (no copulations in 158 male-female

encounters) (Alcock, 1991). However, more frequent mating has been observed in X

virginica texana (16 contacts per 15 minute observation period near nests versus 13.05

per 15 minute period on.the periphery) (Barthell and Baird, 2004) and inX varipuncta

(7.35 per 15 minute observation period) (Alcock and Smith, 1987). Alcock speculates

that the limited copulations in X californica was because most females were already

mated (Alcock, 1991) and that females mate a single time, a notion that is proposed in

other studies ofXylocopa (Barrows, 1983; Barthell and Baird, 2004; Gerling and

Hennann, 1976).

It is not clear if females in these populations mate more than once. However, I

never observed the same female engage in multiple mating flights in an observation

period, and often saw females acting aggressively towards males. Velthuis and Gerling

(1980) suggest that in species where males wait near nests, some mating attempts will not

result in insemination because females will not be receptive. Genetic evidence of

multiple mating is limited in Xylocopa, but Steen demonstrated multiple patrilines in the

subgenus Xylocopa Lestis via allozymes (Steen, 2000). In Ontario, I found that at the

end of the season, more than 50% ofnests contained at least a single mated female

(Chapter 1). Also, I found that multiple females may enter or exit the same nest entrance

(Chapter 1 and 3). However, I also found that many unmated females were unworn

(perfonned limited flying) and undeveloped (not reproductive), suggesting they were not

reproductive. Therefore, if males pursue every female that passes through a territory,

some interactions may be between males and non-reproductive females.
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Territory quality
While behavioural rates did not vary with bench, the number ofmales visiting and

defending territories did. For instance, multiple males frequently aggregated around

bench five while bench three rarely had more than a single resident male and no satellites.

Similarly, the number of unique males marked varied among benches. Most importantly,

benches without active nests often had no resident males and usually were not guarded at

all. Therefore, territories appear to vary in quality as perceived by males. Further, males

seem to prefer guarding the far periphery ofa higher quality territory where many

females will pass through, than to be central in a very poor quality territory in which few

females are present. Thus many males will be satellites in good territories rather than hold

poor territories.

Michener (2000) has shown that some bees may construct nests that are

particularly visible to males, while Barthell and Baird (2004) have suggested that X v.

texana males might cue in on particularly visible substrates. If every nest has at least one

female associated with it, then by defending resources (nests), a male can also defend

mates (the female(s) residing within the nests) and thus maximize the number ofmating

opportunities. While I found that males are associated with both the number of nests and

the number of females in a territory, since males establish territories prior to female

activity, it is likely that males in this population are cuing on nests.

Mating strategies in Hymenoptera
The literature on male behaviour in the Hymenoptera tends to cover three general

topics. Many studies focus on mating behaviour in mostly solitary species (Alcock et aI.,

1977; Alcock et aI., 1976; Danforth and Desjardins, 1999; Danforth and Neff, 1992). A
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second body ofwork examines conflict over sex allocation in social species (Boomsma

and Eickwort, 1993; Boomsma and Ratnieks, 1996). The remaining literature is devoted

to developing and reviewing general frameworks for the evolution ofmale mating tactics,

and systems in the Hymenoptera (Baer, 2003; Barrows, 1976; Boomsma et aI., 2005;

Eickwort and Ginsberg, 1980; Willmer and Stone, 2005). In one such review, Paxton

(2005) presented a conceptual framework for examining male mating behaviour in bees.

Paxton suggested an association between the location and density ofnests and male

mating behaviour. Territorial males were predicted when females are gregarious and

when nests are densely aggregated, but males should adopt an alternative strategy when

nests are dispersed. These predictions are echoed in other literature (Boomsma et aI.,

2005). Paxton's (2005) framework also suggests that foraging patterns can influence

male mating strategy. Specifically, it is suggested that polylectic species should be

territorial at nesting sites, while oligolectic species should defend at flowers (foraging

sites) since females are very likely to visit them. This paper provides the data necessary

to examine these frameworks for X virginica.

I have demonstrated that X virginica displays female defence polygyny where

territorial males guard sites containing nests and consequently females..These nesting

sites are typically dense and are highly aggregated. Xylocopa virginica is polylectic

(Hurd, 1978; Hurd and Moure, 1963; Rutgers-Kelly, 2005) and while evidence suggests

alternative mating tactics, this is expected when some males have significant mating

advantages. In this study, residents did not mate more often, but had more interactions

with females, which may represent such an advantage. In addition, territoriality appears

to be the primary tactic and also the most common, as it is X fimbriata and X

gualanensis, which also have dense nesting aggregations (Vinson and Frankie, 1990). In
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contrast, males in species with less gregarious nesting, such as X sulcatipes, guard

foraging sites (Velthuis and Gerling, 1980) or adopt a strategy similar to a mammalian

lek (Minckley and Buchmann, 1990; Minckley et aI., 1991).

While the predictive frameworks presented seem to conform to Xylocopa

behaviour, this is not true for all species. Anthidium manicatum (Jaycox, 1967;

Nachtigall, 1997) and Osmia rufa (Seidelmann, 1999), for example, are polylectic but are

not territorial. This might indicate that other factors are involved with mating tactic

choice, but there may also be taxonomic complications. Paxton, Baer and Boomsma

have all stressed the potential benefits of examining male hymenopteran behaviour in

taxa with multiple tactics and in the context ofphylogeny (Baer, 2003; Boomsma et aI.,

2005; Paxton, 2005). I propose that the genus Xylocopa would be well suited to these

studies because individuals are large, there is enormous variation in mating system both

within and between species, individuals ofboth sexes have been studied and because

factors such as nest density can easily be quantified. In addition, while no species level

phylogeny exists, there are phylogenies of the subgenera and Velthuis and Gerling (1980)

have speculated that male behaviour is consistent within a subgenus.

Finally, theoretical and conceptual studies ofmating in bees make predictions

about size relative to mating strategy or system. Paxton (2005) notes that in solitary

species which are not territorial, males should show greater size dimorphism than in

territorial species. Alcocket al. (1977) suggests that ifmales are larger than females they

would be difficult to repel resulting in polyandry. Size has been. shown to influence

mating system in some species ofbee. For instance, in communal Perdita that exhibit

mixed mating systems (mating inside and outside nests), large males monopolize mating

within nests while smaller males obtain mating opportunities at flowers (Danforth, 1991).



184

Alcock et al (1976) found that size differences between males with different mating

tactics in Centris pallida; larger males searched for females at nesting sites (Alcock et aI.,

1976).

My data suggest that X virginica males are smaller than females (Figure 3.8) but still

territorial and polygynous; so size dimorphism may result from differential sex and

resource allocation decisions rather than mating biology.

Conclusions
Previous studies ofXylocopa mating behaviour have cited a need for data on male

mating tactics with respect to female densities and male size. Here I present such data for

X virginica. My analyses show that male X virginicaexhibit female defence polygyny,

but probably have alternate mating tactics such as resource defence polygyny at flowers.

Males appear to prefer to defend "high quality" territories with more nests and females.

While size does not differ between satellite and resident males, residents are more

aggressive and may have an inherent advantage.
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General Discussion and Conclusions

Associations between males and females
In this thesis, I examine the behaviour ofboth males and females from the same

population. This is rather unusual in social insect biology where most studies concentrate

on females, and in which studies ofmales rarely consider social organization. Xylocopa

is a particularly good group in which to conduct integrative studies ofmale and female

behaviour because there is variation in both social organization and male mating strategy.

Many theoretical frameworks that describe evolution ofmale mating tactics are based on

ecological and life-history traits realized via females, such as nesting site selection, sex

allocation and choice of foraging patches. I found that males ofX virgi1?ica are

territorial, in accordance with many predictions. I also found evidence that many

instances ofmales pursuing- females do not result in mating. Further, females are often

not receptive to mating attempts, suggesting that females may only mate once. These

factors may greatly influence relatedness and in tum elements related to sociality in these

bees.

Anomalous 2004 season
A reoccurring trend in this thesis is that the 2004 season was anomalous. In

almost every comparison among years, significant variation among years was due to

differences in 2004. In 2004, the population size was smaller (as it was in 2005, which

also followed a cold and wet season), females had smaller head widths, males had larger

head widths, and females spent more time in nests between foraging trips and exhibited

longer foraging times. Further, both males and females were active on fewer days and

the density ofmales near territories was lower. It is likely that many of these aspects are
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related and associated with weather (2004 was unusually cold and wet). However, I

hypothesize that some factors such as the size individuals reach,and the size of a

population are associated with the provisions they are provided as brood, and thus the

weather in the previous bee season. This would mean that the size of individuals in 2004,

and the small population size in 2004 would be related to the weather in 2003, which was

both wet and cold. It appears that various elements of life-history are influenced by

weather in this species.

Sociality in Xylocopa
In this study, I provide evid.ence thatXylocopa (Xylocopoides) virginica virginica

is social. Sociality was supported by a combination ofbehavioural observations at nest

entrances, video observation ofbehaviour within nests, and dissections and analyses of

wear and ovarian development in females. Elements ofnest architecture and phenology

also support these conclusions.

Early studies ofXylocopini suggested that the tribe contained either solitary,

social or in some instances communal species. Instances ofmultiple females within a

nest were attributed to a mistake or some variety of coincidence (Michener, 1974;

Wilson, 1971). These findings are being overturned as detailed reports ofmulti-female

colonies ofXy10copa become available (Sabrosky, 1962; Stark, 1992a; Steen, 2000;

Watmough,1974). Studies suggest that species ofXylocopa maybe communal, quasi- or

semi-social and perhaps primitively eusocial. Gerling at al. (1983) have proposed the

term metasocial to describe a form of social organization in Xylocopa where there is

cooperation between females ofmore than one generation but no matrifilial associations.

Detailed studies have demonstrated both division of labour and reproductive skew in the

Xylocopa, among both relatives and unrelated individuals (Gerling et aI., 1983; Gerling et
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aI., 1989; Hogendoom and Leys, 1993; Stark, 1992a; Wcislo, 1996). These relationships

are often based on complex tradeoffs involving guarding and pollen robbery (Dunn and

Richards, 2003; Hogendoom, 1996; Hogendoom and Leys, 1993), but may also be

related to nest inheritance (Stark, 1992a; Steen, 2000).

In X virginica, it appears that social nests are either aggregations of sisters, or

nieces and aunts. Since these bees are univoltine, it is unlikely that there are any

significant matrifilial associations. As in other social Xylocopa, social nests demonstrate

a division of labour and reproductive skew. In most instances, a single female is

reproducing and performing most work, but there are instances when multiple females

show physical signs of flying or nest construction. Division of labour is seemingly more

common in nests with more foundresses, as nests with more foundresses contain more

foundresses that demonstrate some wear or ODe However, since brood evidence suggests

that cells are provisioned one at a time, these bees are not communal. Most appropriately

this species should be classified as either semi-social ormetasocial.

Social X virginica probably result from females remaining within the natal nest.

In some instances, these females may have attempted to found nests in spring and failed.

These failed females may function as guards, but there are no apparent benefits to guards

in the populations studied. It is possible that this behaviour is ancestral to the group and

is exhibited even when it is unnecessary. It is also possible that guards protect against

nest usurpation or pollen robbery, but evidence of such behaviours is limited. I propose

that social nesting did not evolve uniquely in X virginica, but instead is more likely

inherited from a common ancestor in the Xylocopa or perhaps the Xylocopini. The fact

that social nesting remains in this species likely results from multiple factors including

the benefit of a guard in some populations (although not in the northerly extreme of the
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range studied here) and, more importantly, the fitness gains associated with nest

inheritance as suggested by Ragsdale (1999). One topic that deserves further

investigation is the mechanism that determines nest inheritance, as this may greatly affect

such a system.

In an attempt to explain the evolution of sociality, Michener (1974) proposed a

series of factors that may function as pre-adaptations to cooperation. These factors

include construction of a nest that houses the reproductive female and brood, long

reproductive life of adult females, tolerance ofbees of the same species and the ability to

omit parts of stereotyped behaviours such as brood cell construction. These factors

resemble traits considered pertinent to social evolution in birds (Bull and Schwarz, 1996).

In birds, and in allodapine bees, two additional factors, staggered opportunities for

reproduction and progressive rearing, are also considered relevant to evolution of

cooperation. In this thesis, I present data necessary to evaluate most of these factors in X

virginica, while published data can be used for comparisons with other species. I suggest

that whileXylocopa and perhaps all Xylocopinae have pre-adaptations to cooperation,

ecological conditions were not appropriate for these factors to result in the evolution of

advanced sociality in most species. Further, I propose that the·form of sociality exhibited

by X virginica is evolutionarily stable.

X virginica, as with some other species ofXylocopa, exhibits a form of sociality

where a single dominant female performs most tasks associated with reproduction. Inside

females (presumed subordinates) compose the higher percentage ofunworn females,

which suggests that inside females do little work and may wait to inherit nests in the

following season. These behaviours are similar to those observed in birds such as scrub

and grey jays, which have helpers that perform some work, do not reproduce, and later
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inherit a territory (Cockburn, 1998; Emlen, 1982; Stacey and Ligon, 1987; Waite and

Strickland, 1997). In many of these scenarios, the "helper" has much to gain (experience,

a territory, a nest etc.), but there is little cost to the individual receiving the assistance,

who may also receive some added fitness. In the Xylocopa studied here, the additional

females inherit a nest, do not cost the nest holder, and offer some benefit (possible

indirect fitness and perhaps some protection for the nest). It is interesting, though, that

this behavioural pattern is considered evolutionarily stable (an evolutionary stable

strategy) in birds, but in insects, it is considered unusual or even maladaptive. This

attitude is present despite the occurrence of similar behaviour in species ofXylocopa

(Gerling et aI., 1983; Hogendoorn and Velthuis, 1995; Michener, 1990), Exoneura (Bull

and Schwarz, 1996), the sweat bee Pseudaugochloropsis spp. (Michener, 1974), and in

wasps (Strassmann and Queller, 1989). I suggest that cooperation in birds and carpenter

bees may have evolved due to similar ecological pressures acting on similar pre-

adaptations; although, carpenter bees likely had more pre-adaptations than jays.

It is ofnote that in a few instances, when foraging females were removed, an

additional unmarked female was seen returning to the nest with pollen. These females

may either be newly emerged females that are returning with pollen for all their siblings,

or inside females that have replaced the original forager in feeding the brood. Both of

these explanations are possible; however, my data cannot distinguish between them.

A proposed sequence for the evolution of sociality in Xylocopa
Given thatXylocopa, and possibly all the Xylocopinae exhibit many of the

proposed pre-adaptations for cooperation, I hypothesize the sequence of events outlined

in Figure D.1 to explain the evolution of sociality in some species ofXylocopa. Much of



Xylocopa exhibit the following traits:
1. Construct a nest in which they reside and reproduce
2. Females are tolerant of at least some conspecifics
3. Females are relatively long lived
4. Females can omit steps in a behavioural pattern

Females overwinter together
resulting in nests with

sister/sister or niece/aunt
foundress associations

Some females fail to acquire their own nests and remain in, or
return to, the natal nest. These females form a mutually
beneficial association with the nest holder where they function
as guards or "squatters" in exchange for the possibility ofnest
inheritance.

The nest owner (dominant) has enough queen control to prevent
reproduction, although mating may occur.

OR
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Dominants never evolve an
ability to force subordinates
to forage.

Most species evolve
colonies with unhelpful
nestmates. These
colonies likely do not
respond to ecological
change.

Workers do not increase the
fitness of dominants because eggs
are .limited, seasons are too short,
or parasites are not present.
"Workers" never evolve.

Most species evolve an
evolutionarily stable
strategy that resembles
some vertebrate social
systems. Subordinates
will help (e.g. guard a
nest), and queue to
inherit a nest at a later
point.

Figure D.I: A hypothetical scenario for the evolution of sociality inXylocopa spp.
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what is presented here is speculation; however, these steps can be examined with data

provided in this thesis, published studies, or in future work.

I suggest that, sinceXylocopa are long-lived (Michener, 1974) and reproduce

within nests (that can typically be re-used for many seasons), there is a high probability

that generations will overlap, or that female brood will reside together for an extended

period. Matrifilial associations might thus be rare, since foraging females do not usually

live multiple seasons, they appear to die during their second winter, but aunt-niece and

associations between sisters would be common.

Once multiple female nesting had evolved, it would have only have taken a few

simple steps to result in dominant and subordinate roles. If, at the start of a season, some

females failed to found nests, then they may have returned to, or remained in, the natal

nest. While these returning females probably did not reproduce that season, they would

have been in a position to inherit the nest the following season. A queuing female would

have been in an inferior position relative to the female that retained the nest, but would

have experienced a delayed fitness benefit, since she would not have reproduced

otherwise. The nest-holder would benefit if the queuing female guarded against

predation, parasitism, pollen robbery or nest usurpation as observed in other species of

Xylocopa (Dunn and Richards, 2003; Gadagkar, 1985; Gerling et aI., 1983; Michener,

1990; Stark, 1992a; Watmough, 1974; Watmough, 1983). Over time, this mutually

beneficial situation probably evolved so that the nest-holder gained more control over the

queuing female. Eventually dominants evolved enough control to prevent the

subordinate from reproducing, but could not force them to perform significant work.

If the social structure I describe is stable, as in birds or some allodapine bees (Bull

and Schwarz, 1996), then it can sufficiently explain Xylocopa sociality. In these bees,
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workers may not result in greater fitness, reduced risk to foraging individuals, or lower

brood mortality, and so selection for workers to evolve never existed. Many species of

Xylocopa are univoltine, have short seasons, relatively long development times and must

feed juveniles. Together, these factors may limit the fitness benefit ofworkers. Further,

Xylocopa have very large oocytes (Iwata, 1964; Michener, 1974), which may take a long

time to develop, resulting in a limit to the number of offspring that a female can produce.

Such a limit reduces the utility ofworkers because the collection ofpollen would likely

outpace the development of oocytes. Finally, workers are beneficial if they result in

longer-lived dominants that receive more opportunity to reproduce. However, evidence

suggests low mortality inXylocopa during foraging (Watmough, 1983) so workers are

unlikely to increase lifespan of dominants. This scenario would favour guarding

subordinates, but not workers. On the other hand, queen control may be limited in

Xylocopa. A dominant m~y prevent other females from reproduction but may be unable

to coerce any to perform helping tasks. If dominants cannot·force others to work, a

colony structure with subordinate females that do not forage but remain in nests will once

again result. This, however, would be less a stable strategy than an evolutionary "dead

end". Specifically, in the guard scenario different colony structures may evolve in

response to different ecological conditions, while a "dead end" scenario implies an

inability to evolve alternative colony structures. In the proposed guarding scenario,

advanced sociality may arise; however, in the proposed "dead end" scenario advanced

sociality cannot.

In summary, I suggest that meta/semi sociality as observed inXylocopa is a stable

strategy. Specifically, I propose that while these bees have most of the prerequisites for

advanced fonils of sociality, they are not in a position to benefit from workers. Instead,
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mutual benefits from guarding and nest inheritance have encouraged multi-female

associations. These associations were acted upon by one or both of two pathways, which

are not mutually exclusive. Since females did not benefit from workers, and dominants

could not force subordinates to forage, X virginica, and perhaps other species of

Xylocopa did not evolve advanced sociality. However, the benefits ofhaving nest

inheritance to subordinates, or from reduced risk from a guard, m~kes this workerless

association evolutionarily stable.

Further Research
Relatedness information would contribute significantly to further understanding

ofXylocopa behaviour. Specifically, knowing whether a single female lays all eggs

within a nest would allow examination of reproductive skew in full. Relatedness

information would also allow evaluation ofHamilton's. equation (Hamilton, 1964) in this

species. Genetic evidence from microsatellite markers would also aid in quantifying

male reproductive success. Unfortunately, because of time and cost constraints attempts

to develop such markers were abandoned. While allozymes may be effective for some

such analyses, preliminary screens did not reveal allelic variation, and these data were not

robust enough for all analyses. In addition, many individuals were dead when nests were

collected or died during development, making them unsuitable for allozyme analyses.

Therefore future work should attempt to develop robust microsatellite markers for X

virginica, and ideally these markers will function across many species ofXylocopa.

A robust species-level phylogeny is essential to future work onXylocopa.

Currently the only phylogenies for the tribe (genus) are on the level of subgenus. With

more than five hundred species and 30 subgenera, the relationships between many species
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must be inferred based on inconsistent taxonomic placements. One approach would be to

create a phylogeny of the New World species first, as these appear to be a distinct clade

within Xylocopa. This would allow further comparative studies to stem from this work on

X virginica. Future work on Xylocopa should concentrate on behavioural and genetic

studies of species chosen based on phylogeny or specific ecological factors.
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Appendices
Appendix 1: The contents of all·nestscollected and included in this study in Ontario. Brood cells refer to the total number of cells
regardless of contents. Columns are not additive.

No. cells
No. No. cells No. cells No. cells with pollen

Date No. brood containing containing containing ball, empty
Nest ID Source opened foundresses cells Bombyliids larvae pupae or dead
D Farmhouse site 15 Jul 03 0 7 1 5 0 2
E Farmhouse site 25 Jul 03 3 8 0 6 0 2
F Farmhouse site 25 Jul 03 1 7 3 2 2 2
H Farmhouse site 08 Aug 03 4 7 0 2 4 1
I Farmhouse site 08 Aug 03 5 12 1 1 7 3
J Farmhouse site 08 Aug 03 1 2 1 1 0 0
K Farmhouse site 11 Aug 03 5 9 3 1 3 2
L Farmhouse site 12 Aug 03 2 9 1 0 6 2
M Farmhouse site 11 Aug 03 2 12 3 0 9 0
N Farmhouse site 13 Aug 03 2 8 0 3 4 0
0 Farmhouse site 14 Aug 03 4 3 1 2 0 0
pa Farmhouse site 14 Aug 03 0 0 0 0 0 4
Q Farmhouse site 14 Aug 03 2 12 2 0 10 1
R Farmhouse site 18 Aug 03 3 14 0 0 8 6
S Farmhouse site 18 Aug 03 5 7 0 0 7 0
T Farmhouse site 21 Aug 03 3 15 1 0 13 1
U Farmhouse site 21 Aug 03 ~ 1b 6 0 0 4 1
V Farmhouse site 21 Aug 03 ~ 1b 11 1 0 10 1
W Farmhouse site 21 Aug 03 ~ 1b 10 1 0 8 0
X Farmhouse site 21 Aug 03 1 5 1 0 4 0
Y Farmhouse site 22 Aug 03 2 10 5 0 4 2
Z Farmhouse site 22 Aug 03 3 15 5 0 7 4
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No. cells
No. No. cells No. cells No. cells with pollen

Date No. ' brood containing containing containing ball,.empty
Nest ID Source opened foundresses cells Bombyliids larvae pupae or dead
AA Farmhouse site 26 Aug 03 4c 10 0 0 0 0
BB Farmhouse site 26 Aug 03 2 9 2 0 7 0
CC Farmhouse site 26 Aug 03 1 11 0 0 11 0
DD Farmhouse site 26 Aug 03 1 14 3 0 9 0
EE Farmhouse site 26 Aug 03 1 16 0 0 15 1
FF Farmhouse site 26 Aug 03 1 10 0 0 7 3
GG Farmhouse site 26 Aug 03 0 11 0 0 8 2
HH Farmhouse site 10 Dec 03 1 0 0 0 0 0
AAAAd Burgoyne Woods 19 Jul 06 0 ,0 0 0 0 0
BBBB Burgoyne Woods 19 Jul 06 1 5 1 0 2 0
ecce Burgoyne Woods 19 Jul 06 3 13 0 9 3 1
DDDD Burgoyne Woods 19Jul06 6 21 1 0 20 0
EEEEd Burgoyne Woods 19 Jul 06 0 0 0 0 0 0

a Nest contained 4 empty brood cells and no foundress

b Five foundresses were found among nests U, V and W but they could not be assigned to a specific nest. Nest V also contained a dead, marked female.

e This nest had multiple termini when opened and brood could not be properly assigned

d Nest contained no brood or foundresses
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Appendix 2: Destructively sampled nests used in each analysis in Chapters 1 and 2. Numbers in parentheses
indicate the total number of nests collected from that site. X indicates that the set was not included. + indicates
all nests from the set were included. Numbers indicate how many nests from the set were excluded.
Analyses-Chapter 1 Fannhouse (30) Burgoyne Woods (5)
No.offoundresses -1 X
Productivity (brood/foundress by foundress) -5 X
Parasitism (all analyses) -3 X
Foundress survival -3 X
Mated status -8 X

Analysis-Chapter 2
Brood laying order
Sex by position
Parasitism by position
Parasitism and length
Nest architecture and foundresses

Analysis-Appendix 9
Nest measurements (non brood related)
Nest measurements (brood related)
Nest contents (brood cells)

-8
-3
-8
-4
-11

+
-2
-2

(5)
X
X
X
X
X

(5)
+
-2
X

a Measurements also include a nest collected at the Farmhouse site in winter for a total of 31 nests
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Appendix 3: The number ofmale, female·and unknown sex offspring for active nests collected at
Farmhouse in 2003 (n=27). Nests with no brood are excluded (n=3).

NestID
A
C
D
E
F
H
I
J
K
L
M
N
o
Q
R
S
T
X
Y
Z
BB
DD
EE
FF
GG
U
V
W
Population

Number of Number Number of Total brood
Females of males unknowns size
o 2 6 8
o 0 1 1
o 0 7 7
o 1 4 5
o 0 2 2
2 3 0 5
4 4 1 9
1 0 0 1
3 2 0 5
4 2 0 6
5 4 0 9
3 4 0 7
1 0 2 3
1 4 3 8
3 4 1 8
2 5 0 7
2 4 7 13
2 1 1 4
2 2 0 4
1 1 0 2
3 1 3 7
3 5 1 9
1 9 5 15
3 4 2 9
5 0 3 8
3 0 1 4
5 3 2 10
1 5 2 8
60 70 54 184

Proportion
male
0.25
0.00
0.00
0.20
0.00
0.60
0.44
0.00
0.40
0.33
0.44
0.57
0.00
0.50
0.50
0.71
0.31
0.25
0.50
0.50
0.14
0.56
0.60
0.44
0.00
0.00
0.30
0.63
0.38
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Appendix 4: Social organization and life history aspects for species ofXylocopa. - indicates no data available
Species Voltinism Multi-females Primary mortality Division of labour Reference

among foundresses
aeratus Univoltine Yes Huntsman spider, ants, Single forager & Steen, 2000

mites guard

Van Der Blom, 1988; Vicidomini, 1998; Vicidomini,
1998; Vicidomini, 1996

Bombyliids Forager(s) &_g_uar~(s) This study; Gerling 1978

artifex Multivoltine Yes
bombylans Bivoltine Yes

eapitata Univoltine No
earinata Multivoltine Yes
eombusta Multivoltine Yes
fimbriata - Yes
flavieolis Multivoltine Yes
flavorufa Bivoltine No
frontalis Multivoltine Yes
imitator Bivoltine Yes
ineonstans Multivoltine Yes
iris Univoltine No
nigrita Bivoltine Yes
nogueirai Multivoltine Yes
pubeseens Multivoltine Yes

rufitaris Univoltine No
sonoria Bivoltine Yes
suleatipes Bivoltine Yes

tranquebarorum Bivoltine Yes
varipuneta Multivoltine Yes
violaeea Varies No

virginiea Univoltine Yes

Huntsman spider, ants,
mites

Nest usurpation
Coelopeneyrtus (wasp)

Bombyliids

Ants, Melittobia sousi

Single forager &
guard

Eusocial.?

Single reproductive
forager & guard

Single reproductive
forager & guard,
delayed

Sakagami & Laroca, 1971
Steen 2000

Watmough, 1983
Bonelli 1976
Bonelli 1976
Vinson et ai, 1986
Watmough, 1983
Watmough, 1983
Camillo & Garafolo, 1982
Gerling 1989
Bonelli 1974, Watmough 1983
Sakagami & Laroca 1971, Bonelli 1976
Watmough 1983, Watmough1974
Sakagami & Laroca,1971
Hogendoorn 1995, , Hogendoorn, 1993, Velthuis
1988, Gerling 1981 Mordechi 1978
Watmough, 1983
Gerling 1983
Stark 1990, Stark 1992,

Sakagami & Laroca 1971
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Appendix 5: Positioning ofprincipal components 1 and 2 for 30-year climate data. PCl accounts for 70% ofvariation and represents
temperature. PC2 has a marginal eigenvalue of 0.78, and accounts for an additional 19% ofvariation. PC2 represents precipitation.
The PC analysis was based on the months April to September and included the variables: total precipitation, mean temperature, mean
maximum and mean minimum temperature. Open squares represent the years of this study.
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virginica in 2003 (grey circles), 2004 (open squares), and 2005 (closed triangles). Each point
represents a single female. Statistical analyses are available in Table 3.5.
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Appendix 9: Head capsule width for males ofvarious conditions in the years in 2003, 2004 and 2005.
Condition Mean ± SD (Range) (em)

2003 2004 2005
All marked males 6.2 ± 0.5 (5.0-7.7) 6.5 ± 0.4 (5.7-7.3) 6.2 ± 0.3 (5.1-6.7)

All censused males 6.3 ± 0.4 (5.2-7.0) 6.2 ± 0.2 (5.7-6.5) 6.2 ± 0.2 (5.6-6.5)
Satellite males 6.5 ± 0.5 (5.7-7.7) NAa 6.2 ± 0.3 (5.1-6.4)

< 0.5 m from bench 6.4 ± 0.6 (5.7-7.7) NAa 6.2 ± 0.3 (5.9-6.4)
> 0.5 m from bench 6.5 ± 0.4 (5.8-7.5) NAa 6.2 ± 0.2 (5.1-6.4)

Resident males 6.4 ± 0.4 (5.7-7.7) 6.3 ± 0.1 (6.3-6.5) 6.2 ± 0.2 (5.1-6.4)

Disappeared males 6.3 ± 0.7 (5.0-7.0) 6.2 ± 0.2 (5.7-6.5) 6.1 ± 0.2 (5.1-6.6)

a No males were identified as satellites in 2004

All years
6.3 ± 0.4 (5.0-7.7)

6.3±0.3(5.2-7.0)
6.4 ±0.5 (5.0-7.7)
6.3 ± 0.5 (5.8-7.5)
6.5 ± 0.4 (5.8-7.5)
6.4 ± 0.4 (5.0-7.7)

6.2 ± 0.5 (5.0-6.5)
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Appendix 10: A descriptive and comparative study of
nest architecture in Xylocopa virginica

Introduction
Nest architecture ofXylocopa virginica has been studied extensively only twice

previously, by Rau (1993) in Missouri and later by Gerling and Hennann (1976) in

Georgia. Here I.describe the nest architecture ofX virginica in southern Ontario and

Maryland, and compare these findings to previously published records ofnest structure

for more southern populations.

Methods

Study sites, nesting site- and substrate selection

Destructive sampling of nests in Ontario and Maryland

In order to detennine if climate or latitude influences nest architecture, I collected

nests in two geographic locations. The first location was southern Ontario, primarily St.

Catharines, Ontario. Nests were collected at the Brock Farmhouse site in 2003 (n=31)

and Burgoyne Woods in 2006 (n=5). I also collected nests from the campus ofthe

United States Department ofAgriculture's Beltsville Agricultural Research Center

Beltsville, Maryland, approximately 490 km south of St. Catharines. Nine nests were

obtained on 15 March 2005 and six nests on 26 January 2006. These nests were from

abandoned wood structures in fallow fields and grazing areas.

Destructively sampled nests from St. Catharines were dismantled according to the

protocol in the general methods. Procedures varied slightly in Maryland as it was not

necessary to seal the nests prior to collection because they were collected in winter and
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thus were·inactive. The nests collected in 2005 were stored in a 4°C cold room overnight

before being opened, while those collected in 2006, were opened on the day of collection.

In some instances, not all variables could be measured. In particular, some nests were

collected without foundresses (n=3) or brood (n=3); one nest contained neither. Nests

collected in winter (n=20) or after brood had emerged do not contain brood cells and

related measurements could not be made. Details for nests collected in Ontario are

available in Appendix 1, while specific sample size information is provided in Appendix

2.

Observational and survey methods
In addition to using nests from known populations from St. Catharines, I also

conducted surveys ofvarious locations in search ofnests. During surveys I examined

older wooden structures for nest entrances and signs of nest use such as sawdust; I also

looked for males, as males conspicuously hover around nests. I inspected potential

nesting sites three times a season in each of2003, 2004, and 2005. I used a similar

approach in the Maryland location during my collecting trips (March 2005, January

2006). In addition, I inspected three wooded sites in St. Catharines for the presence of

nests. In each site, I walked transects looking for hovering males, or wood such as logs

and fallen trees; these were carefully inspected for nest entrances.

For nests in the Courtyard population, where bees were being observed for other

studies, I calculated rates ofnest re-use. The number ofnests in the population was

determined based on direct count at the start of each season. New nests were also

identified by direct count; the appearance of a new nest entrance was obvious during my

systematic surveys ofbenches for nests. Nest re-use was determined based on a
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combination of all available evidence including: observation at nest entrances, daily spot

checks (inspections for debris on the pavement under entrances) and videoscope

observations. Not all evidence was available in all years; specifically, videoscope data

were not available in 2003.

Geographic comparisons
To test the hypotheses that nest architecture would vary with respect to latitude

and climate, I compared nest measurement data from different geographic locations. In

addition to the data I collected in Ontario, and Maryland, when possible, I also used

published measurements ofnumber of termini and total length from Missouri (Rau, 1933)

and Georgia (Gerling and Hermann, 1976). This provided a range of latitudes with

Ontario as the northernmost location and Athens, Georgia as the southernmost.

When suitable data were available (raw data were not available 'for Georgia), locations

were compared using ANOVA on ranks which allows for post-hoc tests and gave similar

results to non-parametric Kruskal-Wallis tests. Pairwise comparisons were made using

Tukey's post hoc tests. Since the Georgia population was not included in ANOVA tests,

where possible t-tests were used to allow analyses·ofthe Georgia population.

Evaluation ofnest architecture

Physical structure
I measured disassembled nests to describe and quantify nest architecture. Nests

were measured using a standard tape measure and analog calipers. For all nests, I

measured: number of termini; total length; width (diameter) of the beginning, middle and

end of each branch; entrance diameter; and the length of the entrance (gallery) (Figure
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A.10.1). These measurements were made for all nests collected in Ontario and all nests

collected in Maryland.

Measurements associated with b.rood

In disassembled nests that contained brood, additional measures were possible.

These measures included brood cell length, the number ofbrood cells per nest, the space

occupied by brood cells and the amount of empty space (Figure A.10.1). These data were

used to test the hypothesis that branched nests would contain larger broods (see chapter

2), and to examine the relationship between nest architecture and space dedicated to

brood or foundresses. Measures of cells per nest and brood cell length were also

available in Gerling and Hermann (1976) for populations from Georgia.

Videoscope inspection of nest architecture

From 2004-2006, nests in the Brock Courtyard site were inspected using the

videoscope. Video inspection followed the protocol in the general methods. Here I

present data from video observations relevant to nest structure. Variables noted include:

basic nest shape (linear vs. branched), number of termini and the position ofnests within

a board with respect to the grain and also the edges of the board. In addition to general

description ofnests, these data were used to test the hypothesis that nests will increase in

the number ofbranches (termini) as they are resued.
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a) Linear nest

b) Branched nest
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Figure A.tO.t: Diagram illustrating the measurements used throughout this appendix, Chapter2 and quantified in Table A.I0.2 for a
linear nest with 2 termini (a), and a branched nest with 4 termini (b). The following measurements were taken for all benches: number
of termini (=2 in a, =4 in b); total length (linear nest: A, branched nest: A t +A2+A3); terminus (cell) width measured at the beginning
and end of each terminus; (F) and entrance (gallery) length (D). In nests containing brood, the following additional measures were
taken: brood cell length (G for each C); space occupied by brood cells (sum of Bs); brood cells per nest (frequency of Cs); empty
space (sum ofEs). Brood cells (Cs) are numbered with respect to the order exposed during excavation (superscripts) and assigned a
value that reflects their distance (in number of cells) from the terminus (subscripts).
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Results

Nesting site and substrate selection
X virginica apparently prefers to construct nests in softwood structural lumber

rather than natural materials. All of the nests I located or collected were contained in

fabricated structures (Table A.I0.1). Among all survey transects, I failed to locate a

single nest in a natural substrate such a tree branch or stump. Nests were located in

pressure treated, painted, old and new wood. Nests were significantly not randomly

oriented (Chi-square goodness of fit: X23=52.6, p<O.OOI), with more nests oriented North-

South than East-West, and the fewest nests facing east (Table A.IO.I). Anecdotally,

nests were less common in shade; the shaded Farmhouse site had more nests than the

courtyard site in 2003; and no nests were located in the shaded locations of Burgoyne

Woods. Many seemingly suitable habitats, often within a few metres of inhabited nests,

were unused. In Maryland, I conducted fewer surveys, and did not survey along

transects, but I again only located nests only in man-made softwood structures. Almost

all the nests collected in Maryland were located in abandoned pine animal pens (18 of

21); two were located in a redwood picnic table (Table A.IO.I), and one was located in

the fascia of a garage.

In every year of this study, new nests were constructed at the courtyard site

(Figure A.IO.2). In addition, some nests were abandoned and others were reused (Figure

A.IO.2). Moreover, the number ofnew nests and the rates ofuse and re-use varied among

benches and among years. In every year except 2002, the distribution ofnests among
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Table A.tO.t: Nesting substrates, frequencies and orientation ofX virginica nests in the Niagara region, Ontario and Beltsville. Compass
direction refers to the outward facing side(s) of the structure on which nests are located. Number of nests refers to the number ofnests
observed; values in brackets indicate the number of nests collected from that location. - indicates data were not available.
Location
Brock University Jubilee Courtyard
Farmhouse site, Brock University Campus
Glenridge Quarry Naturalization site
Symphony House, Brock University Campus
Brock University Athletic fields
Brock University, South Campus
Highway 55, Niagara on the Lake, Ontario
Cat's Caboose, St. Catharines, Ontario
River Road, Niagara Falls
North St. Catharines residential areas
Merriton, St. Catharines, Ontario
South St. Catharines
Port Dalhousie, Ontario
Burgoyne Woods Park, St. Catharines, Ontario

North St. Catharines
USDA, Beltsville, Maryland
USDA, Beltsville, Maryland
USDA, Beltsville, Maryland

Type of structure
Park benches
Park benches
Gazebo
Eavestrough
Equipment shed eaves
Support structures
Bam eaves
Deck
Eaves
Porch roof
Garden shed
Tool shed
Patio roof
Equipment sheds,
picnic pavilion
Garden ornament
Abandoned animal pens
Picnic table
Fascia of garage

Properties
Untreated, unpainted cedar
Untreated, unpainted cedar
Pressure treated pine
Untreated and painted pine
Painted wood
Treated pine
Pine
Treated pine
Untreated cedar
Treated painted pine
Treated, painted pine
Treated pine
Treated pine
Painted eaves

Painted hardwood
Painted pine
Redwood
Pine

Compass direction(s)
N,S
N,S
E
N,W
S,E
S
E
S

N,W
W
S
N
N, S, E, W

S

No. ofNests
100
34 [31]

2
6
5
3
2
2
3
4
2
1
3

< 10 [5]

2
[18]

[2]
[1]
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Figure A.I0.2: The number ofnew (white), re-used (black), and unused.(hatched) nests
in each bench for 2002-2006. Occupancy in 2002 was determined from daily spot checks
and presence ofnest debris; occupancy in 2003 was determined from observations at nest
entrances, debris and daily spot checks. In all other years nest occupancy was determined
from daily spot checks, nest debris, observations at nest entrances, and videoscope
observations. See text for details ofpattems ofnest use and reuse. ·In every year except
2002, the distribution of nests among benches was statistically different from random
with p<O.O1. In 2002, nests were marginally different from random with a p-value of
0.06.
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benches differed from random (p-value<O.OOI for each year); in 2002 there was marginal

significance ofp=0.06. Some benches appear to be preferred (e.g. bench 5 and bench 4);

these are re-used more often and had more new nests than other benches in each year.

Other benches are seemingly less suitable for re-use or construction ofnests (e.g. bench 3

and bench 6) and had fewer new nests and were re-used less often. Finally, some

benches, especially bench 1, appear to become permanently unsuitable and showed an

overall increase in the number ofunused nests; benches 1 and 3 were completely

abandoned after the 2006 season.

Nest architecture
Nests collected at Farmhouse were constructed inside the same type of cedar

benches as in Courtyard. Each bench consisted of 12 boards, 235 cm long, 11 cm wide

and 4 cm thick (Figure I.2b). The boards were supported by two 37 cm by 25 cm

concrete blocks and boards were arranged so that the widest part was vertical and the

thinnest segment was horizontal (Figure I.2b). A space of 7.5 mm existed between

boards, maintained by a thin cedar spacer (Figure I.2b). Bees oriented their nests within

the boards so thatnest entrances were vertical, and the majority of the nest was parallel to

the grain of the nest. In 2003 at the Farmhouse site, 88% (30/34) ofnests were located in

the outside boards of a bench. In 2005 68% (27/71) ofnests at the Courtyard site were in

the outer boards of the bench.
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All the nests examined contained a single round entrance, an average of 1.03 ±

0.3 cm (n=28) in diameter that led to a vertical gallery (Table A.10.2). The galleries

terminated at a tunnel oriented perpendicular to them (Figures A.10.1 and A.10.3).

Tunnels extended in both directions relative to the gallery and parallel to the grain of the

wood; the extensions are referred to as 'termini'. No nests had termini perpendicular to

the grain.

I found both simple linear nests with two branch termini (Figure A.10.3a) and

multiply branched nests containing three or more termini (Figure A.1 0.3b); the latter are

referred to as "branched nests". In branched nests, additional tunnels usually extended

from the entrance gallery, and occasionally from other tunnels. In the Farmhouse site,

35% (12 of34) ofnests were branched (Table A.10.2). When the proportion ofbranched

nests in the Courtyard site was calculated from videoscope observations, the proportion

was found to increase each year. In 2004, 71 % (19/41) ofnests were branched, this

increased to 80% (35/44) in 2005, and 82% (31/38) in 2006; no videoscope data exist for

2003. Half (10/21=50%) of all nests collected in·Maryland were branched.

Nest tunnels from both Ontario and Maryland terminated with a convex end and

were, on average, 1.8 ± 0.19 cm in diameter (n=ll); this provided enough space for two

bees to pass each other. Tunnel lengths varied from slightly larger than the length of a

single bee (2 cm) to 93.5 cm in total length (Table A.10.2). Xylocopa virginica eggs

were laid in separate elliptical brood cells, arranged end to end within tunnels, parallel to

the grain of the wood. Figure A.10.4 shows atypical cell partition, which was bowl
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Table A.I0.2: Descriptive statistics for nest architecture in 31 (11 ,branched, 19 linear, one unknowna
) X virginica nests collected at the

Farmhouse site 2003, and 5 nests collected atBurgoyne Woods in 2006. Two linear nests from 2006 contained no brood or foundress.
n=number ofnests used for that calculation. Bold letters in parentheses refer to the equivalent measure in Figure 2.1.

2003 2006
Characteristic Mean (SD) Minimum Maximum n Mean (SD) Minimum Maximum n
No. termini 2.6 (0.95) l a 6 30 3.3 (1.89) 2 6 5

Total length (em) (A) or sum of (A's) 39.8 (19.7) 5.5 93.5 30 29.6 (23.2) 13.0 63.0 5
Linear nest length (em) (A) 29.8 (12.2) 3.5 28.7 10 14.0 (1.41) 13.0 15.0 3
Branched nest length (em) '(sum of all A's) 57.2 (18.1) 31.9 93.5 11 42.5 (25.1) 28.0 63.0 2

Entrance length (em) (gallery), all nests (D) 17.9 (18.7) 1.0 93.5 30 6.6 (4.5) 1.5 10.0 5
Entrance length (em) (gallery), branched nests (D) 29.0 (26.0) 5.0 93.5 11 5.8 (6.0) 2.0 10.0 2
Entrance length (em) (gallery), linear nests (D) 11.0 (8.4) 1.0 38.0 11 8.2 8.0 8.0 1

Brood cells per nest, all nests (frequency of C's) 9.3 (3.4) O.Ob 15.0 30 7.8 (9.1) 0.0 21.0 5
No. brood cells branched nests (frequency of C's) 10.0 (4.12) 3.0 15.0 11 17.0(5.6) 13 21.0 2
No. brood cells linear nests (frequency of C's) 8.9 (2.9) 0.0 14.0 11 1.7 (2.9) 0.0 5.0 3

Brood cell length (em) (G) 2.2 (1.0) 0.7 6.48 28 2.1 (0.5) 1.7 2.69 5
Brood cell width (em) (F) 1.8 (0.19) 1.2 2.05 25 2.1 (0.14) 1.9 2.25 5

Empty space (em) all nests (sum ofE's) 21.2 (20.0) 0.0 93.5 30 14.3 (11.1) 7.5 27.1 5
Empty space (em), branched nests (sum ofE's) 35.0 (25.3) 0.7 93.5 11 17.3 (13.9) 8.0 27.0 2
Empty space (em), linear nests (sum ofE's) 13.3 (10.3) 0.0 37.8 19 8.2 8.2 8.2 1
No. cells that could occupy empty space 10.1 (10.8) 0.4 51.9 27 7.6 (7.2) 2.8 15.9 5

Entrance diameter 1.03 (0.3) 0.5 2.3 28 1.02 (0.3) 0.5 1.3 5

Number of foundresses, branched nest 3.3 (2.1) Oc 6 11 4.0 (2.8) 2 6 2
Number of foundresses, linear nest 1.9 (1.0) 0 4 15 0.3 (0.6) 0 1 3

a A single "L" shaped nest consisting of one terminus only large enough to accommodate a foundress. The nest contained no brood

bnest contained a foundress but no brood (n=l nest)

C nest contained brood but no foundress (n=l nest)
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Figure A.I0.3: Typical linear (unbranched) nest (a). Typical branched nest (b). Arrows

indicate nest entrances. Numbers indicate termini. In b, numbers 1 and 2 constitute a

single terminus, while 3 indicates the terminus of an additional branch.

4cm

5cm
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Figure A.I0.4: Concave (a) and convex (b) side of a typical cell partition. The convex
side is placed facing a pollen mass, while the concave side faces away. Note the spiral
pattern in a.



231

shaped and placed at a 90° angle to the tunnel floor. This resulted in a concave side

facing the tunnel gallery entrance, and the convex side facing the brood pollen mass.

Partitions had a spiral pattern, which likely resulted from the female spinning during

construction in a manner resembling the action of a drill bit.

The average brood cell was 2.2 ± 1 cm long (n=28) and 1.8 ± 0.19 cm wide

(n=25) (Table A.10.2). This is consistent with the length of the tunnel and just larger

than a pollen mass, or a pupa (about 2 cm long). Cell partitions fully obstructed the

tunnel containing them.

Many disassembled nests featured "empty" space not occupied by brood cells

(Table A.10.2).Some of this space was comprised of the entrance gallery and thus was

not suitable for brood cells, but nests also contained empty space or branches. On

average, disassembled nests contained 18.5 ± 15.0 cm (n=35) of space not filled with

brood cells (Table A.10.2). When this value was adjusted for the entrance gallery, the

average nest contained enough space to accommodate an average of3.9 ± 8.8 (n=27)

additional brood cells (Table A.10.2). Branched nests (n=ll) contained, on average,

more empty space (34.9 ± 25.3 cm) than linear nests (n=19) (13.4 ± 10.2 cm), and also

proportionately more empty spc;lce (53% versus 47% in linear nests). However, this

difference is not statistically significant (t-test for unequal variances t14.4= -1.63, p=0.123)

(Table A.10.2).

Geographic variation
Since climate, and presumably season length, vary with geography, it is plausible

that nest architecture might vary with geography. The length of a season may be related
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to the amount of time that females can spend constructing and renovating nests, since

relative to shorter seasons, longer seasons allow more for nest construction and

renovation. I compared nest architecture among latitudes using nests collected in

southern Ontario and Maryland, and using published data from Missouri (Rau, 1933) and

Georgia (Gerling and Hermann, 1976) (Table A.10.3). I statistically compared patterns

among the Ontario, Maryland and Missouri nests (raw data were not available for

Georgia). The number ofbranches in nests differed significantly among locations

(ANOVA on ranks: F2, 59=4.61, p<O.Ol); pairwise comparisons with Tukey's post-hoc

test demonstrated that Missouri nests differed from Ontario and Maryland, but Ontario

and Maryland did not differ from each other. The total length ofnests also varied

significantly among locations (ANOVA on ranks: F2, 58=6.71, p<O.Ol); this effect was

also the result of a difference in Missouri nests. I compared brood cells between Georgia

(southernmost latitude) and Ontario (northernmost latitude), and found that southern

Ontario nests contained more brood cells (8.43 ± 4.2 cells per nest) than nests in Georgia

(6.6 ± 3.5 nests; t-test: t50=9.3, p<0.05) and also had greater variation in the space

occupied by brood cells (3.5-39 em) relative to Georgia (14.5-20 em), although this could

not be examined statistically.
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Table A.I0.3: Comparison ofnest elements for nests collected in southern Ontario, Maryland, Missouri, and Georgia. Maryland nests
were collected in winter and no data are available for foundresses or brood cells. NA indicates data are not available, n indicates the
number ofnests. Data are arranged from north (Ontario) to south (Georgia).

Location Totallength No. of termini Cells per nest Females per Brood cell
(em) Mean ± SD Mean ± SD' nest length (em)
Mean ± SD (range) (range) Mean ± SD Mean ± SD
(range) (range) (range)

Ontario 38.0 ± 19.9 2.6 ± 1.1 8.4 ± 4.2 2.2 ± 1.73 18.1 ± 11.03
(5.5-93.5) (1-6) (0-21) (0-6) (0-39)
n=35 n=35 n=37 n=36 n=33

Maryland 45.5 ± 26.0 2.8 ± 0.9 NA NA NA
(11.5-100.0) (2-5)
n=20 n=20

Missouri 102.0 ± 57.0 4.5 ± 2.3 NA NA NA
(50.8-193.0) (3-9)
n=6 n=6

Georgia 17.5 ± 9.3 2.4 ± 0.7 6.6 ± 3.5 2.1 ± 1.48 17.5 ± 1.48
(3.9-47) (1-4) (2-14) (1-3) (15-20)
n=39 n=29 n=23 n=19 n=39

Source

This study

This.study

Rau, 1933

Gerling, 1976
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Discussion

Nest site and substrate selection
In southern Ontario, X virginica appears to nest almost exclusively in wooden

man-made structures. This behaviour is a common trait in X virginica, as both Rau

(1933) and Gerling and Hermann (1976) also reported that nesting was rare in natural

materials, although, Rau (1933) did observe bees in a dead branch. Unlike inX

sulcatipes (Gerling et aI., 1983), there is an association between compass direction and

nest location. As with other species, X virginica may locate nests based on shade and

sun; nests appear oriented to maximize the·surface area that receives light. In the

populations studied, X virginica nests were frequently in aggregations within the same

boards or structures. It was rare to find a single nest in either one piece of wood or one

structure. In addition, some seemingly suitable substrates were unused while new nests

appeared in densely occupied boards. When I added "artificial nests" to the courtyard

site in summer 2003, none were occupied, nor boards with "pre-drilled" 2 cm diameter

nest entrances. These patterns may be because some substrates in the same location are

more suitable than others in factors such as orientation or water content. It is also

possible that there is a nesting cue that has yet to be detected. Finally, there may be a

benefit to nesting in aggregations either for protection or because ofproximity to

relatives.

The seeming specificity ofX virginica nesting substrate may lead to limited nest

sites. While a given location may have plenty of wood, it may not have wood that meets

the requirements for establishing a nest. Further, conditions may change so that wood

that was suitable becomes unsuitable in subsequent years. In chapter 3, I demonstrate

that the proportion ofnests changes annually but that some nests are permanently
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abandoned. This may reflect a change in nest suitability, variation in nest quality, or it

may indicate that some nests reach a point at which they are permanently unsuitable for

re-use. Females may also prefer to re-use the nests in which they overwintered. If this is

true, then nests unused one year would be available to females the next year. The

apparent tendency to increase the number ofbranches within a nest may result from

females re-using a nest but replacing branches that are no longer suitable for use. This

corresponds with the videoscope in which a single nest appears to have both used and

unused termini. Specifically, a nest may be re-used as long as new tunnels can be

constructed, and then abandoned when the available space for tunnels is consumed.

Taken as a whole, these factors indicate that nesting substrate is more limited than would

otherwise appear, at least on a local level.

Abandoned X virginica nests and termini are often occupied by other insects. In

video observation, I occasionally found nests containing insects other than X virginica.

It is not clear if these insects had infected an otherwise suitable nest or if they were using

nests that were abandoned, but it is more likely that when nests or termini are unused

other insects adopt them. With the videoscope, I have observed a leaf-cutting bee

(Megachile) in an abandoned nest. In the summer of2006 I observed what appeared to

be a female mason bee (Osmia) using an abandoned nest, and in one nest I found earwigs

(Dermaptera) in one branch and X virginica in another. Finally, the wasp species

Ancistrocerus adiabatus was observed near and within nests at Courtyard bench 1; this

bench is known to have few active Xylocopa virginica nests (Chapter 3).
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Factors influencing nest architecture
Xylocopa nests can have two basic shapes (Table A.l0.1, Figure "A. 10.3). The

more simple shape is linear and resembles a letter "T". The "T" shape appears to be the

default shape, and the first fonn of a nest. As nests are re-used, females may add

additional branches to replace unsuitable branches or to provide additional room for

brood cells. For instance, two new nests were examined at Courtyard with the

videoscope in 2005; one nest had a single tenninus (and one foundress), the second was

linear (2 tennini) and also contained one foundress.

In all of the nests I observed, nests were oriented so that entrances were vertical,

although they could be on the side or face down. Some authors have suggested that

vertical entrance orientation prevents rain from entering nests (Dhaliwal and Kapil,

1968). However, since nests are constructed along the grain of the wood, a vertical

entrance is inevitable as long as branches are perpendicularto the entrance. It is also

possible that downward facing entrances offer protection from parasitism because they

are more difficult to locate, or in the case ofmany bombyliid flies, to drop eggs in.

While some authors have observed species ofXylocopa (Rau, 1933; Stark, 1992a) in

nests that contain multiple entrances, none of the nests that I collected had more than one

entrance, and nests never intersected.

Many nests that were collected at Farmhouse contained extra space not occupied

by brood cells. Since provisioning appears to occur one branch at a time, and since nests

are provisioned starting at the tenninus of the branch (Gerling and Hennann, 1976; Rau,

1933), extra space in nests may reflect a situation in which a nest has more room for

brood than a female can produce. For instance, if climate or weather factors, such as the

number of suitable foraging days, limit the provisions a female can acquire, than she may
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not be capable ofusing all the space within her nest. Duchateau and Velthuis (1988)

suggested that in Xy10copa sulcatipes, which is multivoltine, extra space is associated

with a need to control development time between individuals at differing positions within

the nest (Duchateau and Velthuis, 1988). In chapter 1, I note that an adult must feed

juveniles after they.eclose; this may establish a time limit for provisioning. If a female

lays eggs too late in the season, the larvae may not develop to eclosion, or may not be an

adult in time to be fed. This would have the effect that a female must stop provisioning

cells before she filled all the available space, resulting in unused space.

Geographical variation in nest architecture
X virginica nest architecture varies geographically. Although all the locations .

examined show similar patterns of architecture with branched and linear nests, a single

entrance, and 2 em wide tunnels, specifics vary. Nests in Missouri contained more

branches and were longer than those in other locations; however, this may be a result of

the age, and consequently re-use, ofnests in the Missouri population, which was

reported to be older than any of the others studied (Rau, 1933). Older nests might have

been extended more often or contain more abandoned branches, which would result in

longer nests. Nests in Ontario have a greater overall length than those from Maryland

and Georgia, but this space does not arise from more branches. Finally, while there was

no difference in the number of foundresses between Ontario nests and Georgia nests;

there was a difference in brood size. On average, Ontario nests contained larger broods,

and displayed a larger maximum brood size. We might expect that a univoltine bee in a

southern habitat would have a longer breeding season, which would result in longer nests

and larger broods. However, my findings contradict this expectation as the southern-
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most nests (Georgia) were shortest and contained smaller maximum broods; they are also

univoltine. The finding that nest architecture varies with geography agrees with findings

for members of the subgenus Lestis (Steen and Schwarz, 2000) and for X (Xylocopa)

violacea where variation occurs in both in length and number ofbrood cells (Vicidomini,

1996).

Interspecific variation in nest architecture in the genus Xylocopa
While all species ofXylocopa except the members of the subgenus Proxylocopa

nest in wood or stems (Hurd, 1978), the choice of nesting substrates varies widely by

species (Table A.10.4). In addition, variation exists in specific aspects of nest

architecture, including total length, and shape that may be influenced by nesting substrate

(TableA.10.4). For instance, a bamboo nesting species cannot make branched nests,

while longer substrates can support· longer nests and larger broods.

Authors have noted that branched nests in many species can lead to communal

nesting where each foundress has a separate branch within a nest (Iwata, 1964; Sabrosky,

1962; Steen, 2000). While X virginica does not display communal colony social

organization, communalism is reported for Xylocopa augusti, X brasilianorum, X

frontalis, andX hirsutissima (Bonelli, 1976; Sakagami and Laroca, 1971). Ifbranched

nests facilitate social evolution then one might expect to see a relationship between

branched nests and cooperation. I examined whether nest shape (linear or branched) is

associated with social organization (only solitary or some multi-foundress) in 30 species

ofXylocopa (Table A.10.4) and found no significant association (Chi-square: il=0.35,

p=0.07). While this is by no means a definitive analysis and may be too simplistic, it
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Table A.I0.4: Comparison of aspects of nest architecture for various species ofXylocopa. NA indicates data not available.
Multiple Mean nest

Xylocopa species Nesting substrate females Nest type length

Watmough 1983
Bonelli 1974; Bonelli, 1976
Sakagami ,1971; Bonelli, 1967

Steen 2000
Steen 2000
Watmough, 1983
Bonelli, 1976
Bonelli, 1976
Watmough,1983; Vicidomini', 1996
Dhaliwal, 1968
Janzen, 1966; Bonelli, 1976
Watmough, 1983
Watmough, 1983
Camillo, 1982; Hurd 1958
Gerling, 1989

Reference

Steen, 2000
Sugiura, 1995
Hurd, 1958
Sakagami, 1971
Hurd, 1958

Steen, 2000

5.88 ± 0.7
7.75
5-7 or 6-11

8.09 ± 0.4a

6.74± 1.lb

1.00 ± 0.6a

5.05 ± 0.7b

8.67 ± 3.2
NA
8.00
NA
3.71 ± 1.7a

6.83 ± 0.5c

4.87 ± 0.6d

4.85 ± 0.5
7.83 ± 0.6
10.0
4.50
1.15
4.60
NA
3.75 ± 1.0
3.57 ± 0.2
6.09
NA

Mean no. brood
cells

NA
NA
NA

Branched
Branched
Branched & linear

Branched
Branched & linear
Branched
Branched
NA
Branched
Linear
NA
Branched & linear
Branched & linear
Branched
Branched

30.5-linear
Branched & linear 40.0-branched

19.2-linear
39.7-branched
15.6
NA
NA
NA
149.7
182.9
164.2
301.4
NA
NA
NA
6.4
25.4
NA
NA
8.8
21.0
NA

Branched & linear
Linear
Branched & linear
Linear
Branched

Yes
Yes
No

Yes
Yes
No
Yes
Yes
No
No
Yes
Yes
No
Yes
No

Yes

Yes
NA
NA
Yes
Yes

Banksia
NA
Redwood
NA
Hardwood

Xanthorrhoea

Xanthorrhoea
Banksia
Decayed, hard twigs & branches
NA
NA
NA
Bamboo
Seasoned wood fencepost, eaves
NA
Aloe, dead wood
Hardwood fence posts & tree stumps
Plants (Annona)
Decayed twigs & branches, agaves and

inconstans aloe
inconstans Decayed twigs & branches, agaves & aloe
Iris NA

aeratus

aeratus
appendiculata
arizonensis
artifex
augusti

bombylans
bombylans
capitata
carinata
combusta
erythrina
fenestrata
fimbriata
jlavicolis
jlavorufa
frontalis
imitator

Table A.I0.4 continued

a Woy Woy site

b Kangaroo Island site

c Yamba site

d Fraser Island site



240

Multiple Mean nest Mean no. brood
)(yloco~~~p~cies Nesting substrate females Nest type length cells Reference

Watmough,1983, Watmough, 1974;
nigrita Decayed & hard tree branches No Branched 11.2 5.50 Sakagami,1971
nogueirai NA NA NA NA 5.00 Sakagami, 1971
orpifex Redwood, pine and sequoia No Branched 10.2 NA Nininger, 1916
pubeseens Wood, poplar. Yes Branched 60.0 2-3 per branch Van Der Blom,1988; Gerling, 1981
rufitarsis Decayed twigs & branches No Linear NA 7.0±2.2 Watmough, 1983

Hibiscus, redwood & man-made
sonoria structures Yes Branched & linear 12.5 4.4±2.5 Gerling, 1983
suleatipes Dead twigs & branches, Arundo Yes Linear NA 4.7± 1.7 Stark,1990; Stark, 1992 a,b
suleatipes Dead twigs & branches, Arundo No Linear NA 3.0 ± 0.03 Stark,1990; Stark, 1992 a,b

Dead dry rotting wood, some man-made
suspeetaa structures Yes Branched & linear NA 4.5 ± 1.6 Camillo, 1982

Dead, dry, rotting wood, some man-made
suspeeta b structures No Branched & linear NA 11.8 ±4.9 Camillo, 1982
tranquebarorum Bamboo Yes Branched 22.4 ± .14.0 6 .o± 1.0 Sakagami and Laroca, 1971
varipuneta Oak, pepper, eucalyptus Yes Branched 12.7-30.5 NA Nininger, 1916; Maeta 1996

Vicidomini,1998; Vicidomini, 1996;
violaeea Poles, branches, cane No Branched & linear 15.3 7.5 ±2.7 Friese, 1923
virginiea (Georgia) Structural timbers (soft wood) Yes Branched & linear 6.6 3.5 Gerling, 1978
virginiea (Ontario) Structural timbers (soft wood) Yes Branched & linear 9.1 3.9 This study

aNew nests

b Re-used nests
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does suggest that the role ofnest architecture on social evolution inXylocopa may vary

among species, or that the relationship may be weak.

Conclusions
In this study, I have added to the general knowledge ofXylocopa nesting habits. I

have presented the first comparative infonnation on X virginica nesting with respect to

geography. Specifically, I have demonstrated that X virginica nests do notvary in

overall shape with geography, but do vary in size and ability to accommodate brood.

Finally, I have presented datathat suggest little association between nest shape and

sociality across species ofXylocopa.


