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Abstract

We consider multicointegration in the sense of Granger and Lee

(1990), that is, the cumulated equilibrium error cointegrates with the

process itself. It is shown, that if the process is given by the cointe-

grated VAR model for I(1) variables, then multicointegration cannot

occur. If, however, the cumulated process satis¯es an I(2) model then

multicointegration may occur. Finally conditions are given on the

moving average representation for the process to exhibit multicointe-

gration. This result generalizes the analysis of Granger and Lee.



1 Introduction

Since Engle and Granger's (1987) seminal paper the concept of cointegration
has developed progressively in several ways, and many extensions of the basic
concept have been made. One such extension is the de¯nition of multicoin-
tegration which refers to the case where the cumulation of equilibrium errors
cointegrates with the original I(1) variables of the system. Such situations
arise naturally in economic models involving stock-°ow relationships. One
example, analysed in detail by Granger and Lee (1989), is the case where
the two I(1) °ow series production, Xt, and sales, Yt, cointegrate such that
inventory investment Zt = Xt ¡ Yt is I(0). It follows that

P
t

i=1
Zi is the

level of inventories (stock) which might cointegrate with Xt and Yt such that
Ut =

P
t

i=1
Zi ¡ aYt ¡ bXt is I(0). Thus, there are essentially two levels

of cointegration between just two I(1) time series. Other examples involve
consumption, income, savings, and wealth, or new housing units started,
new housing units completed, uncompleted starts, and housing units under
construction, see Lee (1992).

Granger (1986) anticipates the notion of multicointegration, and the con-
cept is formally developed in Granger and Lee (1989, 1990). In particular,
they prove a representation theorem stating that multicointegrated time se-
ries are generated by an error-correction model which contains both Zt¡1

and Ut¡1 as error-correction terms. In addition, they show that multicoin-
tegration can be derived from a standard linear quadratic adjustment cost
framework often used in economics.

The papers by Granger and Lee constitute an important starting point for
the analysis of multicointegrated time series, but they are somewhat limited
in scope since they analyse only bivariate systems. Furthermore, in the
estimation procedure they assume that the cointegration vector at the ¯rst
level is known and, hence, does not have to be estimated. In estimating
the cointegrating vector at the second level they propose to use the simple
OLS estimator which in general is not optimal and does not allow hypothesis
testing using standard asymptotic theory. An asymptotically e±cient two
step estimation procedure for this situation can be found in Johansen (1995),
whereas maximum likelihood inference in the unrestricted multicointegrated
I(2) model is given in Johansen (1997).

The purpose of the present paper is to provide a more detailed analysis
of multicointegration in multivariate systems of I(1) time series. It is shown
that although the interest lies in the analysis of the I(1) series one can-
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not achieve multicointegration in the cointegrated error correction model for
I(1) variables. If, however, we assume that the cumulated variables satisfy
an error correction model for I(2) variables then we have the possibility of
modelling multicointegration for I(1) variables.

Engle and Yoo (1991) also suggest to relate multicointegration to I(2)
cointegration, and apply the Smith-McMillan decomposition to derive the
VAR representation from the MA representation. Their results are discussed
by Haldrup and Salmon (1996) for multivariate processes. Equivalently one
can say that the process satis¯es an integral control mechanism, see Hendry
and Von Ungern Sternberg (1981).

The contents of the present paper is the following. First we give a the-
orem about the inversion of matrix valued functions which is the essence of
the Granger representation theorem. We then discuss multicointegration in
the usual error correction model for I(1) variables, and show that this phe-
nomenon cannot occur. If, however, we assume that the cumulated process
satis¯es an I(2) model, then the results about this model can be phrased in
terms of multicointegration. Finally we show how the general formulation of
Granger's theorem solves the problem of deriving the I(2) model from the
moving average representation. This generalizes the results of Granger and
Lee (1990). Throughout we assume that the equations generating the process
have no deterministic terms. The representation results given are easily gen-
eralized, but the statistical analysis becomes more complicated, see Johansen
(1995, 1997) and Paruolo (1996).

2 A general formulation of Granger's repre-

sentation theorem

In this section we consider n £ n matrix valued functions A(z) with entries
that are power series in a complex argument z. Let jA(z)j denote the deter-
minant and adjA(z) the adjoint matrix.
Assumption 1 The power series

A(z) =
1X

i=0

Aiz
i

is convergent for jzj < 1 + ±; and satis¯es the condition that if jA(z)j = 0;
then either jzj > 1 + ° or z = 1: Here 0 < ° < ±: We assume further that

A(z) = I for z = 0:
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We are concerned with the power series for the function A¡1(z): This
function will have a power series expansion in a neighborhood of the origin,
since A(0) = I implies that jA(z)j 6= 0 for z su±ciently small, and hence
A¡1(z) exists.

We give a theorem that summarizes the Granger representation theorems
for I(0), I(1) and I(2) variables given in Johansen (1992). We give the results
a purely analytic formulation without involving any probability theory, since
the basic structure is then more transparent. The result allows a direct
identi¯cation of the relevant coe±cients of the inverse function in terms of
the coe±cients of the matrix function, and gives conditions for the presence
of poles of the order 0; 1; and 2 respectively. The result will be applied
below to derive the autoregressive representation from the moving average
representation and vice versa, and the explicit formulae allow one to discuss
the coe±cients in the moving average representation in terms of the estimated
coe±cients from the autoregressive model.

We expand the function A(z) around z = 1 and de¯ne the coe±cients
_A(1) and ÄA(1) by the expansion

A(z) = A(1) + (z ¡ 1) _A(1) +
1

2
(z ¡ 1)2 ÄA(1) + ¢ ¢ ¢ ;

which is convergent for jz ¡ 1j < ±: Thus

_A(1) =
dA(z)

dz

¯̄
¯̄
¯
z=1

; ÄA(1) =
d2A(z)

d2z

¯̄
¯̄
¯
z=1

:

For any n£m matrix a of full rankm < n, we denote by a? an n£(n¡m)
matrix of rank n¡m such that a0a? = 0: We de¯ne ¹a = a(a0a)¡1; such that
a0¹a = I; and ¹aa0 is the projection of Rn onto the space spanned by the
columns of a: For notational convenience we let a? = I if a = 0; and m = 0:
Note that if we can write a0 = (a1; a2); where a1 (m£m) has full rank, then
we can choose

a? =

Ã
¡a¡1

1 a2
In¡m

!
:

Note also that the choice of orthogonal complement is not unique. If a0
?
and

a1
?
are any two choices, then a0

?
= a1

?
» for some » (n¡m)£ (n¡m) of full

rank.
Let A(z) be a matrix power series which satis¯es Assumption 1. Then

the following results hold for the function A¡1(z):
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1. If z = 1 is not a root, then A¡1(z) is a power series with exponentially
decreasing coe±cients.

2. If z = 1 is a root then A(1) is of reduced rank m < n, and A(1) = »´0,
where » and ´ are of dimension n£m and rank m: If further

j»0
?
_A(1)´?j 6= 0; (1)

then

A¡1(z) = C
1

1¡ z
+ C¤(z);

where C¤(z) is a power series with exponentially decreasing coe±cients, and
where

C = ¡´?
³
»0
?
_A(1)´?

´¡1
»0
?
:

3. If z = 1 is a root such that A(1) = »´0 and if

»0
?
_A(1)´? = Á³ 0;

is of reduced rank, where Á and ³ are (n¡m)£k matrices of rank k < n¡m;

and if ¯̄̄
¯Á0?»0?(12 ÄA(1)¡ _A(1)¹́¹»0 _A(1))´?³?

¯̄̄
¯ 6= 0; (2)

then

A¡1(z) = C2
1

(1¡ z)2
+ C1

1

(1¡ z)
+ C¤¤(z);

where C¤¤(z) is a power series with exponentially decreasing coe±cients.
Expressions for the coe±cients C1 and C2 can be found in Johansen (1992,
Theorem 3). Here we give the expression

C2 = ´?³?

µ
Á0
?
»0
?
(
1

2
ÄA(1)¡ _A(1)¹́¹»0 _A(1))´?³?

¶¡1

Á0
?
»0
?
:

The proof can be found in the above mentioned reference for the case
when A(z) is a polynomial. The proof for the general case where in¯nitely
many terms are allowed is the same. Note that the conditions (1), (2), and
the expressions for the matrices C; C1; and C2 are invariant to the choice
of orthogonal complement, such that it does not matter which orthogonal
complement is chosen. Obviously the parameters Á and ³ will depend on the
choice of orthogonal complement chosen for » and ´.
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Note that it is not enough to assume that the roots are outside the unit
circle or equal to 1, since we could have in¯nitely many roots converging to
the unit circle, which would ruin the proof. Hence we assume that the roots
are bounded away from the unit disk or equal to 1. If z = 1 is a root then
A¡1(z) has a pole at the point z = 1, since

A¡1(z) =
adjA(z)

jA(z)j
;

and adjA(z) is a matrix valued power series with exponentially decreasing
coe±cients. The I(1) condition (1) is necessary and su±cient for the pole
to be of order 1. The function C 1

1¡z
has a pole of order 1 at z = 1 and the

theorem says that the di®erence is a convergent power series. Thus the pole
can be removed by subtracting the function C 1

1¡z
: The I(2) condition (2) is

necessary and su±cient for the pole to be of order 2, in which case it can be
removed by subtracting the function C2

1
(1¡z)2

+C1
1

1¡z
; which also has a pole

of order 2.
In order to apply this result in the autoregressive model

Xt =
kX

i=1

¦iXt¡i + "t;

de¯ne A(z) to be the matrix polynomial

A(z) = I ¡
kX

i=1

¦iz
i:

Then A¡1(z) gives the solution to the equations, that is, the coe±cients in
the expansion for A¡1(z) determine Xt as a function of the errors "t. The
translation of the result is via the lag operator, such that for a function C(z)
=
P
1

i=0Ciz
i with exponentially decreasing coe±cients and a sequence of i.i.d.

variables "t, we de¯ne the stationary process

C(L)"t =
1X
i=0

Ci"t¡i:

For the expression 1
1¡z

; we use the interpretation

(1¡ L)¡1"t = ¢¡1"t =
tX

i=1

"i;
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and 1
(1¡z)2

is translated into

(1¡ L)¡2"t = ¢¡2"t =
tX

j=1

jX
i=1

"i:

The result of Theorem 1 can be used to check whether a given example of
an autoregressive process is I(0); I(1) or I(2): It is the fundamental tool in
building I(1) and I(2) models for autoregressive processes as we shall show
below.

3 Multicointegration in the I(1) model

In the following we apply these results to discuss the problem of multicoin-
tegration as de¯ned by Granger and Lee (1989, 1990).

The n¡dimensional I(1) process Xt is said to be multicointegrated with
coe±cient ¿ if ¿ 0Xt is stationary and if the process

Pt
i=1 ¿

0Xi cointegrates
with Xt; such that there exist coe±cients ½ and Ã; that is, ½0

Pt
i=1 ¿

0Xi+Ã0Xt

is stationary:
We want to prove that multicointegration cannot take place in the error

correction model for I(1) variables

¢Xt = ®¯0Xt¡1 +
k¡1X
i=1

¡i¢Xt¡i + "t; t = 1; : : : ; T; (3)

where ® and ¯ are n£ r; where r < n:

Multicointegration cannot appear in the I(1) model (3) if the process Xt

is I(1); that is, if

j®0
?
(I ¡

k¡1X
i=1

¡i)¯?j 6= 0: (4)

We apply Theorem 1 to the polynomial

A(z) = (1¡ z)I ¡ ®¯0z ¡
k¡1X
i=1

¡i(1¡ z)zi:

Here A(1) = ¡®¯0 and _A(1) = ¡®¯0 ¡ I +
Pk¡1

i=1 ¡i; such that the I(1)
condition (1) becomes the condition (4). The inverse polynomial has the
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expression as

A¡1(z) = C
1

1¡ z
+ C¤(z)

= C
1

1¡ z
+ C¤ + (1¡ z)C¤

1(z);

such that the process has the representation

Xt = C
tX

i=1

"i + C¤"t +¢Yt + A; (5)

where A depends on initial conditions, ¯0A = 0, and Yt = C¤

1(L)"t is a
stationary process, see Johansen (1995). The matrix C is given by

C = ¯?

Ã
®0
?
(I ¡

k¡1X
i=1

¡i)¯?

!¡1
®0
?
:

The cumulated equilibrium error has the form

tX
i=1

¯0Xi = ¯0C¤

tX
i=1

"t + ¯0Yt ¡ ¯0Y0:

The common trends in the expression for Xt are of the form ®0
?

P
t

i=1
"i;

and the common trends in the cumulated equilibrium error are of the form
¯0C¤

P
t

i=1
"t: In order to see if these cointegrate we have to ¯nd the matrix

¯0C¤: From the relation A(z)A¡1(z) = I we ¯nd

Ã
(1¡ z)I ¡ ®¯0z ¡

k¡1X
i=1

¡i(1¡ z)zi
!µ

C
1

1¡ z
+ C¤ + (1¡ z)C¤

1
(z)
¶
= I:

or Ã
I ¡

k¡1X
i=1

¡iz
i

!
C + A(z)(C1 + (1¡ z)C¤

1
(z)) = I:

For z = 1 we ¯nd Ã
I ¡

k¡1X
i=1

¡iz
i

!
C ¡ ®¯0C¤ = I;

which when multiplied by ¹®0 gives

¯0C¤ = ¹®0¡¯? (®
0

?
¡¯?)

¡1
®0
?
¡ ¹®0;
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where ¡ = I ¡
P

k¡1

i=1
¡iz

i: This shows that the non-stationarity of the cu-
mulated equilibrium errors is given in part by the n ¡ r common trends
®0
?

P
t

i=1
"i of the process Xt; and in part by r random walks ®0

P
t

i=1
"i which

do not appear in Xt: Thus any linear combination of Xt and
P

t

i=1
¯0Xi will

necessarily contain the trends ®0
P

t

i=1
"i and hence be non-stationary.

This shows that multicointegration can not appear in the I(1) model.
Another way of formulating this result is that no process ¹0Xt; where Xt is
generated by the I(1) model, will be I(¡1): In order to see this assume that
there is a stationary process Zt; say, and a coe±cient vector ¹ 2 Rn such
that ¹0Xt = ¢Zt. From (5) we ¯nd that we must have ¹0C = ¹0C¤ = 0:
Hence ¹ = ¯· for some vector · and ¹0C¤® = ·0¯0C¤® = ¡·0 = 0 shows the
impossibility. We therefore next discuss the I(2) model for the cumulated
variables.

4 Multicointegration in the I(2) model

Next we want to prove a more constructive result where we take as a starting
point that the cumulated processes are generated by an I(2) model, see Engle
and Yoo (1991). Thus we de¯ne

St =
tX

i=1

Xi;

and assume that this new process is given by an autoregressive model, re-
stricted such that it generates I(2) variables. This model can be parametrized
in many ways. A parametrization that allows freely varying parameter is
given by

¢2St = ®(½0¿ 0St¡1 + Ã0¢St¡1) + ®?(®
0

?
®?)

¡1·0¿ 0¢St¡1 + "t: (6)

The parameters in this model are (®; ½; ¿; Ã; ·;) and it is assumed that all
parameters vary freely. This gives the possibility to derive the maximum
likelihood estimators and ¯nd their asymptotic distributions, see Johansen
(1997). We can add a lag polynomial applied to ¢2St; to account for more
short term dynamics.

The characteristic polynomial is given by

A(z) = (1¡ z)2I ¡ ®(½0¿ 0z + Ã0(1¡ z)z)¡ ®?(®
0

?
®?)

¡1·0¿ 0(1¡ z)z;
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such that

A(1) = ¡®½0¿ 0; _A(1) = ¡®½0¿ 0 + ®Ã0 + ®?(®
0

?
®?)

¡1·0¿ 0:

With ¯ = ¿½ we ¯nd that A(1) = ¡®¯0 is of reduced rank and that

®0
?
_A(1)¯? = ·0¿ 0¯? = ·0(¹½?½

0

?
+ ¹½½0)¿ 0¯? = (·0¹½?)(½

0

?
¿ 0¯?);

since ½0¿ 0¯? = ¯0¯? = 0: This matrix is of reduced rank, and we can de¯ne
Á = ·0¹½? and ³ = ¯0

?
¿½?. If further condition (2) is satis¯ed, the process

St is I(2), which implies that Xt = ¢St is I(1). It is a consequence of the
results in Johansen (1992) that ¿ 0¢St = ¿ 0Xt is stationary, and furthermore
that ½0¿ 0St + Ã0¢St = ½0

P
t

i=1
¿ 0Xi + Ã0Xt is stationary. Thus we ¯nd that

expressed in terms of the process Xt we have multicointegration and the error
correction terms are exactly the integral correction term ½0

P
t

i=1
¿ 0Xi + Ã0Xt

and the usual error correction term ¿ 0Xt:

Thus this model is a general version of the error correction model derived
by Granger and Lee (1990). The result shows that the general model for the
I(2) variable St can be formulated as an error correction model for Xt = ¢St

which has both integral correction terms and equilibrium correction terms
exactly as the model in Granger and Lee (1990). Model (6) can be written
in this way as

¢Xt = ®(½0
t¡1X
i=1

¿ 0Xi + Ã0Xt¡1) + ®?(®
0

?
®?)

¡1·0¿ 0Xt¡1 + "t:

Note that when the cumulated Xt satis¯es an autoregressive error cor-
rection model then Xt itself does not, since the equations we ¯nd for Xt by
di®erencing will have ¢"t as an error term.

5 Multicointegration and moving average mod-

els

The formulation of the result of Granger and Lee (1990) starts with the
MA representation of the process and derives an (in¯nite) AR model for the
process involving an integral correction term and an error correction term.
We shall here show how Theorem 1 gives a necessary and su±cient condition
for this construction to go through.
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We consider the situation where we model the process in the usual form
by its moving average form

¢Xt = C(L)"t = C0"t + C1¢"t + C¤(L)¢2"t

= C0"t + C1¢"t +¢2Yt:

If we assume that C0 is of reduced rank, such that ¿ 0C0 = 0 for some ¿ 6= 0;
then we ¯nd

Xt = X0 + C0

tX
i=1

"i + C1("t ¡ "0) + ¢Yt ¡¢Y0;

¿ 0¢Xt = ¿ 0C1¢"t + ¿ 0¢2Yt;

¿ 0Xt = ¿ 0X0 + ¿ 0C1("t ¡ "0) + ¿ 0(¢Yt ¡¢Y0);
tX

i=1

¿ 0Xi = ¿ 0C1(
tX

i=1

"i ¡ t"0) + ¿ 0(Yt ¡ Y0 ¡ t¢Y0):

In order to ¯nd examples which exhibit multicointegration we only have to
construct the matrices C0 and C1 such that there are coe±cients ½ and Ã

with the property that
Ã0C0 ¡ ½0¿ 0C1 = 0;

since

Ã0Xt ¡ ½0¿ 0
tX

i=1

Xi;

does not contain any random walk. Thus there by choosing C0 and C1

appropriately it is easy to ¯nd examples of multicointegration. We shall now
show how Theorem 1 generalizes the result of Granger and Lee.

Let the n¡dimensional process Xt satisfy the equation

¢Xt = C(L)"t;

where C(0) = I; and we assume that the roots of jC(z)j = 0 are either
bounded away from the unit disk or equal to 1.

1. If z = 1 is not a root, then ¢Xt satis¯es an (in¯nite order) autoregres-
sive equation

C¡1(L)¢Xt = "t:

The process Xt is I(1) and does not cointegrate.
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2. If z = 1 is a root, then C(1) = »´0 is of reduced rank m < n and
if further »0

?
_C(1)´? has full rank then Xt satis¯es an (in¯nite order) I(1)

model
®¯0Xt + A¤(L)¢Xt = "t;

with ®¯0 = ¡´?(»
0

?
_C(1)´?)

¡1»0
?
: Here A¤(z) = C¡1(z) ¡ ®¯0 1

1¡z
has expo-

nentially decreasing coe±cients.
3. If z = 1 is a root, such that C(1) = »´0 is of reduced rank m < n and

if further »0
?
_C(1)´? = Á³ 0 is of reduced rank k < n ¡m and condition (2)

holds then Xt satis¯es an (in¯nite order) autoregressive model with integral
and error correction terms.

1. If the roots of jC(z)j = 0 are all bounded away from the unit disk,
then the power series of C¡1(z) =

P
1

i=0
Aiz

i is convergent for jzj < 1 + ±;

where ± > 0: This means that the coe±cients in C¡1(z) are exponentially
decreasing such that the stationary process

P
1

i=0
Ai¢Xt¡i is well de¯ned and

equal to "t. Expanding the function C(z) around z = 1 we ¯nd

C(z) = C(1) + (1¡ z)C¤(z);

such that when summing the original equation from s = 1 to s = t we ¯nd
that

Xt = X0 + C(1)
tX

i=1

"i + Yt ¡ Y0;

where Yt = C¤(L)"t is stationary. Thus Xt is an I(1) process and since C(1)
has full rank it does not cointegrate.

2. Now assume that z = 1 is a root such that C(1) = »´0 is of reduced
rank, but »0

?
_C(1)´? has full rank. We then ¯nd from Theorem 1, that

(1¡ z)C¡1(z) = A+ (1¡ z)A¤(z); (7)

with A = ¡´?(»
0

?
_C(1)´?)

¡1»0
?
: Inserting this expression into (7) we ¯nd

AXt + A¤(L)¢Xt = C¡1(L)¢Xt = "t:

This is the required result if we de¯ne ¯ = »? and ® = ¡´?(»
0

?
_C(1)´?)

¡1:

3. Finally assume that C(1) = »´0 and that »0
?
_C(1)´? = Á³ 0 is of reduced

rank. In this case we have from Theorem 1

(1¡ z)2C¡1(z) = A2 + (1¡ z)A1 + (1¡ z)2A¤¤(z):
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Insert this into the equation for St =
P

t

i=1
Xi

¢2St = C(L)"t;

and we ¯nd

A2St + A1¢St + A¤¤(z)¢2St = C¡1(L)¢2St = "t:

Expressing this in terms of X we ¯nd

A2

tX
i=1

Xi + A1Xt + A¤¤(z)¢Xt = "t:

This shows the occurrence of integral correction terms and error correction
terms in the same model. This model can be expressed in terms of freely
varying parameters as (6) by using the explicit form for the matrices A2 and
A1 given in Johansen (1992).

6 An example

Consider the example given by Granger and Lee (1990)

¢Xt =

Ã
a+¢(1¡ a) ¡a2(1¡¢)

1¡¢ ¡a+¢(1 + a)

!
"t

In this case the polynomial is

C(z) =

Ã
a+ (1¡ z)(1¡ a) ¡a2z

z ¡a+ (1¡ z)(1 + a)

!
;

with

C(1) =

Ã
a ¡a2

1 ¡a

!
=

Ã
a

1

! ³
1 ¡a

´
;

_C(1) =

Ã
¡1 + a ¡a2

1 ¡1¡ a

!
:

In this case we ¯ndÃ
1
¡a

!0 Ã
¡1 + a ¡a2

1 ¡1¡ a

!Ã
a

1

!
= 0:
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Condition (2) is satis¯ed, since ÄC(1) = 0 and we can take Á = ³ = 0: In this
case the I(1) condition reduces to

»0
?
_A(1)¹́¹»0 _A(1)´? = 1 6= 0:

Thus the cumulated Xt satis¯es an I(2) model which gives multicointegra-
tion.
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