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Abstract

A method for describing preferences independently of the func-
tional form of utility is developed for log-linearized models and ap-
plied to finding general conditions for indeterminacy in the pres-
ence of externalities. It is shown that if the elasticity of output
with respect to labor in the social production function is less than
unity and externalities arise from output then there are no con-
cave utility functions consistent with indeterminacy. Considering
the same assumption in the more general setting where externali-
ties to labor and capital can be different, we prove that there are
no utility functions separable in consumption and labor and no
utility functions in the KPR class consistent with indeterminacy.

These results show that there is an error in Bennett and Farmer
(JET, 2000), who claimed that indeterminacy could occur with
low externalities for non-separable preferences of the KPR form.
Finally, we show that there can be sunspots below the former
lower bounds, if we continue to allow for factor-specific externali-
ties in the inputs and consider the admissible parameterspace for
preferences, not restricted by functional forms.



1 Overview

It! turns out that the existence of sunspots in a one-sector economy
depends on the specification of preferences and the way imperfections
enter the model. We start from a setting where there is no restriction on
functional forms of preferences whatsoever and where imperfections can
be due to output externalities or factor-specific input externalities. The
toolkit for dealing with preferences not restricted by any functional form
is developed in a note on the 4., notation in the appendix.

The strategy to find the results presented here was to solve the prob-
lem in its most general form and then use numerical methods, most im-
portantly random searches over the parameter space, that led to guesses
about theorems that might hold, that were then subject to analytic
proofs. This turned out to be a very useful way to go and the theo-
rems and their proofs are presented here.

Section 2 defines the model.

In section 3 it is shown that in a steady state, around which the
stability properties are evaluated, the admissible preference parameters
are subject to a specific restriction.

In section 4 we prove that under the assumption a« = am < 1,
B =bm < 1 (where o and 3 are the elasticities of output with respect to
capital and labor in the social production function, a and b are the shares
of capital and labor in the private production function) there are no con-
cave utility functions that would lead to indeterminacy. This means that
under empirically plausible assumptions there are no rational expecta-
tions stationary sunspot equilibria when imperfections are modelled as
externalities in output.

Next, we relax the assumption that social and private partial elas-
ticities of output are related by the same factor of proportionality for
both capital and labor. That is, we consider « = an < 1, g = bm < 1.

1T thank Roger Farmer, Thomas Steinberger and the audience in a presentation at
UCLA for comments. Of course, all remaining errors are my own.
My email address is hinterma@Qiue.it.



This can be interpreted as imperfections arising from externalities specific
to the use of inputs in production.

In section 5 we prove that in this more general environment indeter-
minacy is precluded by two standard classes of preferences. One theorem
relates to separable preferences to other to preferences of the KPR form.

In section 6 we continue to allow for this more general formulation
of imperfections. It turns out that there exist parametrizations of utility
which are consistent with indeterminacy when @ = an < 1, g = bm <
1. We find that, even when there are no externalities in labor, there
are preferences consistent with indeterminacy if capital externalities are
high enough, while capital externalities are still too low to allow for
endogenous growth.

Section 7 concludes the paper.

2 A nesting model

The following model nests the models of Benhabib and Farmer (1994)
and Bennett and Farmer (2000) and will be used to search for a credible
pure sunspot economy in a more general class of preferences.

The technology is the same as in the two above-mentioned nested
models. They assume a large number of competitive firms, each of
which produces a homogenous commodity using a constant-returns-to-
scale technology.

Y = KY°F, (1)

where a+b =1 and E > 0. Each firm takes I as given, however, in
practice F is determined by the activity of other firms. This imperfection
is modelled by the equation

E=K"T", (2)



where K and [ denote economy wide averages. It is further assumed
that 1 > a >a, § > b, and a+ 8 > 1. Combining (1) and (2) we get the
social production function

Y = K°I°, (3)

Factor markets are competitive and factors of production receive
fixed shares of national income,

wl
=— 4
b= (1
rkK
CL—T, (5)

where w is the wage rate and r is the rental rate, both measured in
terms of the consumption good.

Without loss of generality, imperfections are implicitly parametrized
by the parameters n and m, where n > 1, m > 1, n +m > 2, such that?

o = an,

g = bm.

The representative consumer maximizes the present value of utility

/ u(e, e dt,
0

where u(.,.) is assumed to be concave,

subject to the budget constraint

2When we let n = m, m can be interpreted as the returns-to-scale parameter;
more specifically, as the elasticity of scale at the social level, while at the firm level
returns-to-scale are constant.



K= (r— 686K +wl—c,

an initial condition for capital and the usual no Ponzi scheme con-
straint.

We start by setting up the Hamiltonian of the problem:
H=u(c,))+Al(r—6) K+ wl—(].

The necessary and, by the assumption of concavity of u(c,!), suffi-
cient optimality conditions are:

OH  Oulc,l) B _ Ou(c,l)
de e A=0=A= Oc (6)
OH  Ou(c,l) Ju(c, 1)

2l By +wA =0=wA =— 5l (7)

Note that we can combine (4), (6) and (7) to describe the labor
market in the model as

du(c,l)
Y ik Vb2
b— = = s
l du(c,l)
Oc
and using (3) as
_6u(c,l)
ajf—1 __ _ ol
b1 = = (8)
Oc

In the optimum the co-state variable moves according to:

OH
A=p ok P + A6 T,

A:A<p+6—%). ()
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We can substitute from (4) and (5) into the law of motion for capital
and get:

: aY bY
K: <7_6>K+Tl_c’

K=Y — 6K —c. (10)

The transversality condition of the problem is

lim e ?TA = 0.

T—o0

(9) and (10) can be restated as

A aY
= = S — —
A PTOT
KE_Y o ¢
K K K’

We then define
A=logA, k=logK,

l= logl, ¢ =logc, y=logV,

to reformulate the previous system as

)'\:p+6—aey*k, (11)

=o't =6 —eh (12)

which together with k(0) = kg and limp_,., e*?T = 0, completely
describes the dynamics of the system. Next, we let hats over variables de-
fine their deviations from the steady state, whose existence we postulate,
and find the log-linearizations of the contemporaneous side conditions:

5



A~

J=ak+ 8, (13)

(14681 —62) 1+ (6 — 6.0)C =17, (14)

X = 800+ 6al. (15)

This is where our d,, parameters, as introduced in the appendix of
this paper, come in and allow us to work with utility at its most general
level. (13) comes from the social production function, (14) and (15) come
from the first-order conditions for labor and consumption.

Our next goal is to obtain a relationship of the form

with

where
. oo b ptd
J = aﬁ% ¢ +5 aq_bgs ¢ +6 - (19)
DL — 5 (B2 6) ot — g, (22— o)

We write (13) and (15) in the following form:
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10 J—k 3\~ [0 1—alfX) (O
[od(e@)%a@)”[lU(z)<o>’

and substitute for 7, using (14) and (15), by [ = Ati—bie , to give us

146y
a system of the form
7—k P\
A ~ | +B| ~ | =0,
where
L+ — B B
A= 2
|: _6cl _666 - 6cc(sll + 6cl6lc , ( O)
—3 1+5ll—ﬁ+ﬁ5lc—a—@5u]
B = . 21
[ 1 + 6ll - 6cl _6cl - 6cc - 6006” + 6cl6lc ( )

Solve for (yj— E) and (E— E) in terms of A and & to get the ex-

pression in (16) with

d=-A"'B. (22)

We have now arrived at a point where the approximated dynamics
of the system are fully specified in terms of the parameters of the model,
by combining (16), (17), (18), (19), (20), (21), (22).

This puts us into a position to check for determinacy of the dy-
namic equilibrium of the economy. The economy is a sunspot economy
iff both eigenvalues of J have negative real parts, or equivalently, if the
determinant of J is positive and the trace of J is negative.

The analytic expressions for the trace and determinant of J are:

o +6 1—a—80 461 —B+8.00—BceB+61.5—ab
DetJ = _(P + 5(1 - a))% (_lécclfs”—5cci55w+6cl5llc) “

TraceJ = % (6ce = O1c) B (p+ 0) == {[becOu + bce — 0c1(b1c — 1)] (p + 0) } +
adad g

T )

with 7 = (_6006” - 6cc + ﬁ(scc + 6cl6lc)
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3 A restriction on 0,, in the steady state

from the symmetry of the Hessian

Consider the definitions of 6, and 6;., as given in the appendix on the

gy notation:

i ou, l

6cl - U, ol - u_cucl (23)
c Oy c

Sjp = —— = —Uy, 24

: u; Oc ulul (24)

By the symmetry of the Hessian, uy = u;., we get

e [
1 Uy (25)

O UC

Note that this is the only restriction we can derive from the defini-
tions of d,, that involves not other expressions than those present in the

equilibrium conditions.

Solve the two dynamic equilibrium conditions for the steady state:

aY

A

_— 6—_:
A
K Y c
_:__6——:
K K K 0

This yields the steady state solutions:

%:pzé (26)
c p+6(1—a) 27)



And hence also:

Y o
r__prto (28)
c p+o6(l—a)
Consider the labor market equation:
_Ou(cl)
L ol
bl = W= "Bue))
Oc
multiply by [ and divide by ¢ to obtain
Y I —uwl
L ——— (29)

c c UC

Substituting from (28) on the LHS and using the relationship in
(25) on the RHS, we have

Mptd) )
p+6(1—a) o1’
and finally
bp + bo
O = — 01 = kéy.. 31
! pEaTR l (31)

4 A general impossibility theorem and the

way out

We first consider the case where imperfections in the economy are mod-
elled es externalities in output by?®

— m—1

E=Y", (32)

3Bars over variables denote economy-wide averages, equal to the representative
firm’s values in a symmetric equilibrium.



or, equivalently, to fit into the model as defined above, as
E=(KP)" ", (33)

where m > 1, such that

Y = KI'E (34)

becomes
Y = Ko™ = K°1P, (35)

Definition 1 A utility function u(c,l) is said to satisfy the concavity
assumption C if and only if the corresponding 6., parameters satisfy:
e < 0,6 > 0,060,001 < 6464 (See the appendiz on the 04y notation for
a derivation).

Theorem 1 Under the assumption « = am < 1, 3 =bm < 1 there exist
no utility functions u(c,l) satisfying the concavity assumption C that are
compatible with the existence of stationary sunspot equilibria.

Proof. For simplicity we introduce the shorthand notation: 6. =
Uy O = V, 01 = W, Oy = T.

(1) Concavity

Concavity requires

ur < kw?

or kw? —ux >0

since k is negative, and u < 0,z > 0, from the concavity assump-
tion, for given v and x the concavity region in the space of w is the closed
interval between the roots of the polynomial whose graph is a parabola
open from below, since k is negative; and existence of a solution is guar-
anteed by u < 0,z > 0.

The bounds are w.= —/%%, We = +/%".

4The strictness of the first inequality ensures non-trivial dynamics.
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(2) Trace

We show that the trace cannot be negative on the domain of con-
cavity.

From the solution of the model above we have

) TraceJ = 2 (u—w)B(p+6) — Z{{ur+u—v(w—1)](p+8)}+
wd s

T

with 7 = (—uz — u + fu + vw).

Concavity and the assumption that § = bm < 1 can be shown to
ensure that 7 is positive:

Rearranging and using the restriction v = kw yields
7= —ux + kw? — u(1 — mb).

Since the concavity condition says that kw? —ux > 0, and u < 0,
and we have assumed mb < 1, positivity of 7 follows.

Hence, the negativity of the trace can be expressed as
(u—w)mb(p+6) — nfur +u —v(w — 1)](p+ 6) + navd — 76 < 0.
We substitute for v = kw and rearrange to get

—u{z[np+ (n—1)6+6(n—1)+ p(n —mb)}—wb(p+06)(m—n)+
w?k[np + (n — 1)8] < 0.

For any given values of all the parameters except w, the LHS is
a quadratic function in w. Given that u < 0,2 > 0 (by concavity),
p > 0,6 >0mn > 1mb < 1 we see that the value at w = 0 (the
intercept) is positive and that the coefficient of w? is negative, such that
the graph of the LHS is a parabola open from below.

Consider now the case m = n :
The trace condition becomes

—u{z[mp+ (m—1)8]+8(m — 1) +mp(1 — b)} +wk[mp + (m —
1)é] < 0.
Note that the term linear in w has cancelled, such that the graph

of the parabola is now symmetric in w. It is this symmetry that is crucial
in completing the proof.

11



We will show that at no point of the concavity domain the above
condition can hold. Because of the graph of the LHS is a symmetric
parabola open from below and the concavity domain is also symmetric
in w, we can establish positivity of the LHS on the entire concavity
domain, by considering its values at w = 0 and at the border of the
concavity domain.

The value of the LHS at w = 0is —u {x [mp+ (m — 1) 6] + 6(m — 1) + mp(1 —b)},
which is positive, since u < 0,z > 0 (by concavity), p > 0,6 > 0,mb < 1.

The value of the LHS at the borders of the domain of concavity,
that is at w = £, /%, is —u[6(n—1)+mp(1—b)], which is unambiguously
positive too. So, the trace condition cannot be satisfied for concave utility
functions if m =n. W

The proof of this theorem also gives the intuition of how to find
parametrizations of the economy that lead to indeterminacy. Relaxing
the restriction m = n, and letting m and n differ by a high enough value,
the parabola will lose its symmetry in w and shift. If the shift in some
direction is big enough the trace condition can be satisfied on the domain
of concavity. This is the idea behind the results below in section 6.

This result implies that Benhabib and Farmer (1994) hit the lower
bound of externalities in production required for indeterminacy, by re-
quiring bm > 1 for a standard utility function that is logarithmic in
consumption and additively separable in labor, where disutility of labor
is linear. There are no other concave utility functions that would be com-
patible with indeterminacy for lower levels of the externality parameter
m, when imperfections are modelled as externalities in production.

The plausibility of assuming bm > 1 was put into question by
empirical work. Basu and Fernald (1997) estimated m = 1.09, meaning
that the inequality would not hold for reasonable values of the labor-share
parameter b.

Bennett and Farmer (2000) claimed to have shown that indeter-
minacy can occur for lower levels of the output externality by assuming
preferences in a more general class utility functions of the so-called KPR
form, named after King, Plosser and Rebelo (1988). They develop a con-

12



dition which generalizes the condition of Benhabib and Farmer (1994).
The latter required the slope of the labor demand curve to be greater
than the slope of the constant consumption labor supply curve. The
more recent condition of Bennett and Farmer (2000) required the slope
of the labor demand curve to be greater than the slope of the Frisch
labor supply curve.’This condition is nested in the solution above. It
guarantees that the denominator of the determinant is negative, i.e.
T = (—06ceO — Oce + B0cc + 0u01c) < 0, or equivalently 5 — 1 > & — 505l—i“.
Note that the LHS is the slope of the log-approximated labor demand
curve and the RHS is the slope of the log-approximated Frisch labor sup-
ply curve as derived in the appendix on the 6., notation. Hence, the
condition is correct but cannot be applied to cases where § = mb < 1,
since then the negativity of the LHS would require negativity of the RHS.
However, as shown in the appendix on the 4., notation, the slope of the
Frisch labor supply curve is negative if and only if the utility function

u(c, 1) is not concave.®

5 Factor-specific externalities and standard

utility functions

We now allow for the possibility that externalities are specific to the
factors of production.” This corresponds to modelling

5The Frisch labor supply curve coincides with the constant consumption labor
supply curve in the case of a utility function that is logarithmic in consumption and
separable in labor, which explains the generalization achieved by Bennett and Farmer
(2000). This can readily be seen from the propositions on Frisch labor supply and
constant consumption labor supply in the appendix on the 6., notation.

6Bennett and Farmer (2000) calibrate k = —1. However, it was shown above that
k is determined by parameters of the model by the assumption of a steady state such
that there is no room for further calibration. For 0 < b < 1,p > 0,6 > 0, k is always
greater than —1.

"Factor-specific externalities are proposed and motivated by Harrison and Weder
(forthcoming), who also check for the relative importance of scale economies from la-
bor and capital. However, they require utility to be logarithmic in consumption and
additively separable and linear in labor. They conclude that it is primarily the exter-

13



E = Ka(n—l)ib(m—l)} (36)
where n > 1,m > 1,n +m > 2, such that
Y = KIE (37)

becomes
Y = K™ = K°[°. (38)

5.1 Separable preferences preclude indeterminacy

Theorem 2 There are no preferences described by the class of utility
functions

u(e,l) = Ule)—=V(), (39)
Ule) > 0,U"(c) <0,V'() >0,V"(l) >0,

which are compatible with indeterminacy if 6 =bm < 1,a = an <

Proof. Let the preference parameters be defined as

Oce = —1 <0,

oy = x=>0.
The assumption of additive separability of utility in consumption and
labor is reflected in 64 = 0, 6. = 0.

The dynamic system from the model as solved above is indetermi-
nate iff its trace is negative and the determinant is positive.

Consider the trace:

1
Trace] = = (6o~ 8i0) B (p + 5)—% {[8ecbt + 600 — 881 — )] (p+ 6) 1+

nalities associated with labor that generate indeterminacy in the one-sector model.
Below we find that in a general setting, where we do not restrict preferences to be
representable by standard classes of utility functions, we can well have indeterminacy
with externalities in capital only.

14




where 7 = (_6006” - 6cc + ﬁécc + 6cl6lc) .

In the case of separability, with 6,; = 0 and é;. = 0, this becomes:

1
TraceJ = ~ B (p+6) — a%'écc (14 6u)(p+06) =6,
T = 6cc(ﬁ_1_6ll)7

which we can combine to

15} «

TraceJ = —— (p+ 0) +
1—}—6ll—ﬁ(p ) a(l‘f‘éll_ﬁ)

(1+ou)(p+6)—9.

For indeterminacy this expression needs to be negative:

(0%

1
T’I"GCGJ: (p—{—é)m |:a

(1+6ll)—ﬁ] —-6<0

Above we assumed that 3 —1 < 0, or 1 — (3 > 0. 6; > 0, by concavity.
«a = an, so < =n > 1. Hence, the inequality above cannot hold, meaning
that indeterminacy requires non-separable utility if 6 < 1. W

5.2 KPR preferences preclude indeterminacy

Theorem 3 There are no preferences described by the class of utility
functions, as specified in King, Plosser and Rebelo (1988),

1—0o

u(c,l) = c v(l), foro>0,0#1

l1—0

u(c,l) = loge—w(l), foro=1

which are compatible with indeterminacy if B =bm < 1,a = an <

Proof. Substituting the utility function into the definition of the 6,
parameters, we find the restriction imposed on preference parameters by
this functional form of utility. KPR preferences imply 6. = 1 + ... We
reintroduce the shorthand notation 6.. = u,64 = v,6,. = w,é; = x. In
functional form of KPR preferences implies w = 1 + u.

15



Consider the domain of concavity: vz < kw?, which then becomes
x> l{:M.
- u

. p+6 1—a—b.+6; —L46ci0—bcc B+61.8—ad
We show that DetJ = —(p+6(1—a))Z= kb0 decithied ol

cannot be positive.

Given concavity and the assumption mb < 1, 7 = (=8¢0 — Oce + Bcc + 6cibic)
is unambiguously positive. Hence, 1 — a — 64 + 0y — B + dgqax — Oce5 +
O3 — ady would have to be negative. We show that this cannot be the
case. Rearrange the previous expression to get

—B(L 4 bec — O1e) + (1 — a)(1 — b + oy) <0

By the KPR restriction, the first term drops out:
—OBl+u—(1+u)]+1—-a)l —k(14+u)+2z] <0
Since o < 1, by assumption, we are left with

1 —k — ku+ x < 0. We substitute for x by its lower limit on the
concavity domain:

1 —k(14u)+ k(l;uu)? < 0, simplify to obtain
u+ k(1 +u) > 0, substituting for k we get

up(1—0)—b(p+6) > 0, which cannot hold, given u < 0 (concavity),
0<b<1,p>0,60>0. m

The previous two theorems show that even if we relax the assump-
tion that m = n, we cannot find indeterminacy in economies where

mb < 1 in two standard classes of utility functions, namely the sepa-
rable class and the KPR class.®

8KPR. preferences were derived by King, Plosser and Rebelo (1988) to make a
neoclassical accumulation economy with labor-leisure choice compatible with steady
state growth. Rebelo (1991) points out another way to make an economy with ex-
ogenous growth compatible with labor-leisure choice. This is by the assumption of
utility depending on the state of technology S by u(c,1S). It is this way that can be
followed in order to make non-KPR preferences, like the parametrizations that lead
to indeterminacy in the next section, fit into a model that includes exogenous growth.

16



6 Factor-specific externalities and general

parametrized preferences

Given the solution of the model and its stability properties as summarized
in DetJ and T'raced, it can be checked whether there are parametriza-
tions of the economy that lead to indeterminacy when allowing for weaker
assumptions than in the three non-existence theorems above. For given
values of a,b, p, 6, we search over the space of admissible values of the
externality parameters m and n, and the space of the preference parame-
ters 6, for combinations that lead to indeterminacy and satisfy the other
assumptions of the model (e.g. concavity of u(c,)).

The results presented here are for values of a = 0.3,b = 0.7,p =
0.065,8 = 0.1.2 In the parameter space of preferences we consider (8ce,010,0u) €
D = {[-10,0] x [-15,15] x [0,10]}.10

It turns out that by allowing for both factor-specific externalities
and more general preferences than in the standard classes considered
above there are economies with o = an < 1, § = bm < 1 that have
stationary sunspot equilibria.

Thus, in contrast and complementary to, the previous three non-
existence theorems we can state the following positive existence theorem:

11

Theorem 4 There are preferences'”, as parametrized by 65, and values

for the externality parameters m and n, satisfying « = an < 1, § =

9This benchmark calibration is also used by Benhabib and Farmer (1994) and
Bennett and Farmer (2000).

10Note that in the KPR case —d.. corresponds to the coefficient of relative risk
aversion, o, and that in the separable case §;; defines the curvature of disutility of
labor. The box above thus is wide enough to contain parametrizations of utility that
are usually considered reasonable. The range along the ¢;. dimension then guarantees
that we take into account the entire concave domain for given 6.. and §y;.

HThe three theorems above are about non-existence. Preferences are represented
by the utility function u(c, ) from which we derive (unique) parameters d,,, the only
properties of utility that matter for our problem. Hence, having shown that there exist
no 0., consistent with indeterminacy, it was clear that there are no utility functions
and preferences consistent with indeterminacy.

However, this theorem is about existence in a positive sense. We show that there

17



bm < 1 such that the model is indeterminate and, hence, stationary
sunspot equilibria exist. In particular, indeterminacy can occur without
any externality in labor, i.e. m = 1, when the externality in capital is
high enough.

Figure 1 shows combinations of the labor externality parameter, m,
and the capital externality parameter, n, for which we could find admissi-
ble preference parameters in the box D consistent with indeterminacy.'?
We see that there are no hits on the dashed line, corresponding to the
case of an output externality, where m = n. This corresponds to The-
orem 1, proven analytically above. Moving away from the dashed line,
we can find combinations of the labor and capital externality, satisfying
the assumption o = an < 1, f = bm < 1, that are consistent with inde-
terminacy for some triple (.. 01, 0u) belonging to D. Note that Theorem
2 and Theorem 3 tell us that these 0,, cannot result from preferences
described by utility functions of the separable or the KPR form.

It shows that indeterminacy can hold when there are externalities
to just one of the factors. The case without externalities in the labor

are 0, parameters, derived from utility, consistent with indeterminacy. We must then
make sure that we can map back the ¢, we found into an appropriate utility function
describing the preferences of the representative agent. Since the 0, are defined (see
the appendix) in terms of steady state levels of ¢ and [ and first and second partial
derivatives of u(c,1) evaluated at this point, this is, in principle, a problem of solving
a system of second-order partial differential equations. We can take the steady state
levels of ¢ and [ as given and also take the first partial derivatives as given, in order
to match any given real wage. By the steady state restriction from the symmetry of
the Hessian, as derived above, there are three free 6., parameters. We can obtain the
value of each triple by adjusting the second partial derivatives (the elements of the
Hessian) accordingly. This means that the existence of d,, parameters implies the
existence of an appropriate utility function representing preferences.

12The search over D was implemented in a way such that the points at which a
check for determinacy was performed are distributed uniformly over D. For each point
(m,n)on the grid of labor and capital externalities up to a millon trials over D were
done. At each (m,n) the random search was stopped as soon as the first hit had
occurred. This combination of random search and stopping rule proved quite useful
since it helped speeding up the computations to get results all the points on the grid
that were computationally affordable.
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input seems particularly interesting. A capital externality that is not
strong enough to allow for endogenous growth can be sufficiently high to
lead to endogenous cycles, while not requiring any further imperfection in
the economy. We found hits both above and below the dashed line, where
m = n. Using the propositions in the appendix about the properties of
64y preference parameters, it turned out that all the hits with m > n
implied that both consumption and leisure were normal goods; whereas
for all hits with m < n consumption was a normal good and leisure an
inferior good.
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Figure 1: Combinations (n,m) leading to indeterminacy for some 6,

In the next two figures we restrict attention to specific points in the
externality space, but instead have a closer look at the preference space.
Related work points out the importance of two labor market equations for
indeterminacy in models that are special cases of the model considered
here. Benhabib and Farmer (1994) show that the slope of the constant
consumption labor supply curve is crucial for the indeterminacy. Bennett
and Farmer (2000) emphasize the role of the Frisch labor supply curve.
In the appendix it is shown how to express these curves in terms of the 6,
notation. We can thus map the hits in the space of preference parameters
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into a well-known framework.

For the combinations m = land n = 1.5, m = land n = 2, m =
land n = 3, we checked each point on a grid of step-size 0.1 in the box D
of preference parameters, as defined above, for indeterminacy. The hits
obtained in the preference space were then mapped into the coefficients
of the following two equations, derived in the appendix:

The approximated constant consumption labor supply curve:

w = constant + (6” - 601)74— (6lc — (506) C. (40)

The approximated Frisch labor supply curve:

w = constant + <5zz — 62@6) I+ (% — 1) X (41)

Figure 2 expresses the preference parameters that led to indeter-
minacy in terms of the coefficients of the constant consumption labor
supply curve.

We see that the region of coefficients in the constant consumption
labor supply curve that corresponds to preference parameters leading
to indeterminacy increases considerably in size as we increase capital
externalities from n = 1.5 (for which we use solid squares) to n = 3 (for
which we use pluses), while having no labor externality in the model.
The constant consumption labor supply curve slopes up in all the cases.
As shown in the appendix, a downward sloping curve would imply that
consumption is an inferior good.

In Figure 3 the preference parameters that led to indeterminacy are
represented in terms of the coefficients of the Frisch labor supply curve.

Again, we see how the indeterminacy region gets larger as we let
the capital externality increase in a model without labor externality. It
is important to point out that the coefficient on labor is positive in all
the cases. As shown in the appendix, a downward sloping would mean
non-concave utility.
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Figure 2: Indeterminacy and constant consumption labor supply
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Figure 3: Indeterminacy and Frisch labor supply
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7 Conclusions

We conclude that, by considering preferences which are logarithmic in
consumption and additively separable in labor, and hence also belong to
the KPR class, Benhabib and Farmer (1994) hit three lower bounds on
the degree of imperfections required for a sunspot economy. This follows
from the theorems, which state non-existence of indeterminacy for levels
of the externality below the level they found. The lowest level of the
output externality m = n such that indeterminacy can exist for any
concave utility function is just high enough to make bm > 1 hold true.
The lowest level of the labor externality m consistent with indeterminacy
for any separable utility function is just high enough to make bm > 1
hold true. Similarly, the lowest level of the labor externality m consistent
with indeterminacy for any KPR utility function is just high enough to
make bm > 1 hold true. The first and the third statement are in contrast
to Bennett and Farmer (2000).

The models considered in the first three theorems differ in terms
of flexibility in two respects: In Theorem 1 there is no restriction to
any certain functional form of utility but at require externalities to be
due to output, or m = n. In Theorem 2 and in Theorem 3 we relax
the assumption on externalities by admitting factor-specific externalities,
where m can be different from n, considering two specific classes of utility
functions. We proved that none of these settings is compatible with
indeterminacy under our assumptions.

We have shown that by allowing for more flexibility in both mod-
elling imperfections and preferences we can find sunspot economies below
the bounds found from the first three theorems in this paper.
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A Appendix : Describing preferences us-
ing the 6,, notation

It has turned out that in log-linearized versions of models only the fol-
lowing 6, parameters of utility matter:

Let the utility function be given by U(c, L), where the arguments

are consumption and leisure, justifying the assumption that both du(eL)

Oc
and % are positive. In the appendix the same framework is applied

to the case when the second argument of utility is labor instead of leisure.

Definition 2

U, = % (42)

U, = % (43)

v, = 206D ()

U, = 26 L) (49
ULC - 62;][(/ch) (46)
Ury = 82%(;’ L) (47)

6 — gcaa% AL (48)
Oct, = éaa% = éc U.r, (49)
1. — U—aai - U, (50)
S = UAL% ;LULL (51)



The definition tells us that the é,, can be interpreted as the elas-
ticities of marginal utility. It seems worth pointing out that the é,, are
not invariant with respect to monotonic transformations of the utility
function.

Properties of the utility function and of what it implies can be
formulated using the 6, notation:

A.1 Concavity

The following proposition gives a condition in terms of é,, that translates
into concavity as a local property of the utility function.

Proposition 5 The utility function U(c, L) is concave if and only if Oc,
6LL S 0 and

6006LL 2 6CL 6Lc' (52)

Proof: Define the Hessian matrix H as

Ucc UCL ]
H = i 53
[ ULc ULL ( )

The function U (¢, L) is concave if and only if H is negative semidef-
inite. To check for negative semidefiniteness we have to consider the
principal minors of H. The following conditions must hold:

a) U, < 0; rearranging the definition of .. and using the assump-
tion that U, > 0 we get 6.. < 0.

b) Upr < 0; rearranging the definition of 67,7, and using the assump-
tion that Uy, > 0 we get 65,1, < 0.

¢) UeUrr — UrcUer, > 0; substituting for Uy, from the definitions
of 6., we get

U.. Uy U.. U,
— 8011, > —ber,—b L. 54
c I LL I L c L ( )
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The condition in the proposition follows immediately, using the
assumption that U,., Uy, > 0.1
A.2 Quasiconcavity

Proposition 6 a) If 6., > 0 (and hence also 6. > 0) and

6cc 1 6LL

1
1>= -
26Lc 266[1,

(55)

then U(c, L) is quasiconcave; conversely if U(c, L) is quasiconcave
then the above inequality holds weakly.

b) If 6.1, < 0 (and hence also 6. < 0) and

1 6cc + léLL

1<
260 20er

(56)

then Ul(c, L) is quasiconcave; conversely if U(c, L) is quasiconcave
then the above inequality holds weakly.

c) If 6., = 0 (and hence also 6. = 0) and

6cc S O; 6LL S 07 (57)

with at least one of the inequalities holding strictly, then Ul(c, L) is
quasiconcave.

Proof: We consider the bordered Hessian, H, defined as

0 U. Uy
H=|U U, Uy |. (58)
UL ULc ULL

If the determinant of H is positive, then U(c, L) is quasiconcave.
Conversely, if U(c, L) is quasiconcave then the determinant is > 0.

Positivity of the determinant means
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UCUCLUL =+ ULUcULc — ULUccUL — ULLUcUc > 0. (59)

Rearranging and using the definitions of 6., we get

6CL c 6LCL
——=+U —. 60
(SLCL + LL(SCL C ( )

ULc + UcL > Ucc

The result in ¢) follows from this stage of the proof.

Assuming Uy, > 0, and using the symmetry of the Hessian and the
definitions é,, again, yields the result in a).

The result in b) is obtained analogously by assuming U, = U.p, <
0, which implies 67. < 0, 6., < 0.1

A.3 Inferiority

Proposition 7 Leisure is an inferior good if and only if

6cL - 5LL 6cL

——. 1
6Lc - 6cc 6Lc (6 )

Proof: We maximize U(c, L), such that ¢ + wL = B, which leads
to the following system of equations:

B—c—wL=0 (62)
U~ A=0 (63)
UL—wA:O (64)

Totally differentiating we get:

—1dc — wdL = Ldw — dB (65)
—1d\ + Ueede + Uep,dL =0 (66)
—wdA + Upede + UppdL = Adw (67)
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This provides the basis for the use of the implicit function theorem
in several dimensions in the following:

0 -1 —w o —1
1 U, Uy de =10 (68)
—w Ur. Upp g—é 0

We then apply Cramer’s rule to get

0 -1 -1

oL 1

a_B - m -1 Ucc 0 ) (69)
—w ULc 0

where |J| denotes the determinant of the matrix on the left-hand

side of the previous equation.

oL Ure — wUg (70)
OB wU., +wU, — wU,. — Uy,
We then use the first order conditions to replace w by l{]—i
8[/ ULC - %Ucc
(9B - U U U 2 (71)
U_iUcL + FiULc - (7?) Ucc - ULL
U
oL _ ULc - FiUcc (72)
0B g_i (ULC - ll]]_iUcc> + ll]]_iUcL - ULL
Simplify and impose inferiority:
oL 1
OB Uy 4 %%UCL_ULL <0 (73)
Ue Uch%f;Ucc
UL
U, U —ULL
— + = <0 74
UC ULc - [[]]_iUcc ( )



Uu — LU
S | (75)
ULc_FiUcc

Now use the definitions of é,, and simplify to get

Ue _
L0 O (76)

U ’
TL 6Lc - 6cc

where the double fraction can again be replaced using the defini-
tions of 0, giving the result stated in the proposition.l

Proposition 8 Consumption is an inferior good if and only if

60_600 66
OLe = 0cc _ 0L

6CL - 6LL 6CL .

(77)

Proof: The proof is analogous to the one for inferiority of leisure.
The symmetry between consumption and leisure leads to the symmetry
between the two inferiority conditions.Hl

A.4 Constant consumption leisure demand

Let tildes over variables denote their logarithms. Start from the first
order condition

U
7’; = w (78)
U,—U, = (79)
Totally differentiating we get:
L U LA+ ——Upsedt — ~—U,yed? — U,y LdT, — dii (80)
UL LL UL LeCac Uc ccCacC Uc cL = aw
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Using the definitions of 6., we get

(6L — 6er) AL + (810 — b20) d& = db, (81)

leading to the following

Proposition 9 The constant consumption leisure demand curve can be
approximated by

w = constant + (67 — b.r) L+ (Ope — bee) - (82)

A.5 Frisch leisure demand

The Frisch demand curve corresponds to the demand curve holding con-
stant the marginal utility of consumption.

Start from the first order condition, let again tildes denote loga-
rithms of variables.

U, = A (83)

U. =\ (84)

In the same style as in the constant consumption case above the
last equation is totally differentiated as:

SuedC + berdL = d, (85)

which can be solved for d¢ and substituted into (81) to yield the
following

Proposition 10 The Frisch leisure demand curve can be approximated
by
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w = constant + <6LL — 6626LC> L+ <ZLC — 1) X (86)

A.6 Some corollaries

We are now in a position to harvest some corollaries on the propositions
made.

Corollary 11 If 6, < 0, as is usually assumed and required for con-
cavity, we must have 6., < 0 for constant consumption leisure demand
to slope up.

Proof: The result follows immediately, when considering the slope
coefficient of leisure in the (approximated) constant consumption leisure
demand curve.l

Corollary 12 If constant consumption leisure demand slopes up and
utility is quasiconcave then consumption is a non-normal good.

Proof: We want to show that the inequality in (77) holds weakly,
or equivalently,

< 0. (87)

Rearranging we get

26L060L - 6cc6cL - 6L06LL
<0. 88
(6er, — OL1L) Ocr, a (88)

We can use the previous corollary to concentrate on the case .1, <
0. Upward sloping constant consumption leisure demand implies from
(82) that 8., — 61,1, < 0. Therefore the denominator is positive. Nonpos-
itivity of the numerator is assured by quasiconcavity, as given in (56).H

Corollary 13 Frisch leisure demand slopes up if and only if utility s
not concave.
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Proof: Assume .. < 0 and rearrange the condition for upward

sloping Frisch leisure demand, as given by

6cL 6Lc
6cc

Orr, — > 0.

6CC6LL < 6CL6LC

This is the opposite of the concavity condition in (52).H

A.7 Using labor instead of leisure in the utility func-

tion

The utility function now is u(c, 1), where we assume that

Au(c,l)

el < 0.

Definition 3

> 0 and



l 8ul l
6 = —m = 1
i up 6[ up Ha ( OO)

Proposition 14 The utility function u(c,l) is concave if and only if
6cc S 07 6ll 2 0 and

6cc6ll S 6cl6lc- (101)
The proof is analogous to the one above in the case of leisure.
Proposition 15 a) If 64 > 0, and hence 6. < 0, and

1600 1 5ll
1< ——4+ == 102
26lc * 2(scl, ( )

then u(c,l) is quasiconcave; conversely if u(c,l) is quasiconcave then
the above inequality holds weakly.

b) If 64 < 0, and hence & > 0, and

lécc 4+ 1 5ll

1>-—+=-= 103
26, 264 (103)

then u(c,l) is quasiconcave; conversely if u(c,l) is quasiconcave then
the above inequality holds weakly.

c) If 6 = 0 (and hence also 6. = 0) and

6cc S 07 5ll 2 O; (104)

with at least one of the inequalities holding strictly, then u(c,l) is
quasiconcave.

The proof is analogous to the one above in the case of leisure.
Proposition 16 Leisure is an inferior good if and only if

6cl - 6ll 6cl
> ——,
6lc - 6cc 6lc

(105)
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The proof is analogous to the one above in the case of leisure.

Proposition 17 Consumption is an inferior good if and only if

6lc - 6cc _%

—_— > . 106
6cl - 6ll 6cl ( )

The proof is analogous to the one above in the case of leisure.
Proposition 18 The constant consumption labor supply curve can be

approximated by

w = constant + (6” — 661),ZV—|— (5lc — 506) C. (107)

The derivation is the same as in the case of leisure demand.

Proposition 19 The Frisch labor supply curve can be approximated by

0abic \ ~ [ i ~
w = constant + (6” - 6l l ) [+ <6_l — 1> A. (108)

The derivation is the same as in the case of leisure demand.

The corollaries can be reformulated using labor instead of leisure;
the proofs are analogous to those above.

Corollary 20 If 6; > 0, as is usually assumed and required for concav-
ity, we must have 6, > 0 for constant consumption labor supply to slope

doun.

Corollary 21 If constant consumption labor supply slopes down and
utility is quasiconcave then consumption is a non-normal good.

Corollary 22 Frisch labor supply slopes down if and only if utility is not
concave.
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