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Estimating Potential Output and the Output Gap for the
Euro Area: a Model-Based Production Function

Approach

Tommaso Proietti∗, Alberto Musso †and Thomas Westermann ‡

Abstract

This paper evaluates unobserved components models based production function ap-
proach (PFA) for estimating the output gap and potential output for the Euro Area. Our
main purpose is that of implementing in a consistent model based framework one of the
most popular approaches to estimating those key macroeconomic latent variables, thereby
avoiding the use of ad hoc signal extraction filters. We fit and validate, against a bivari-
ate model of output and inflation, a system of five time series equations for the Solow’s
residual, labour force participation, the employment rate, capacity utilisation and the
consumer price index; the first four equations are used to define the output gap, whereas
the price equation relates the latter to underlying inflation, according to a triangle model.
Several hypothesis of interest are entertained: the common cycle hypothesis, with capac-
ity utilisation as the driving force, the hysteresis hypothesis, and we propose a model with
pseudo-integrated cycles that is quite effective in eliciting cyclical information from the
labour market variables, and enhances smoothness in potential output growth estimates.
A rolling forecasts experiment is used to assess the out of sample predictive accuracy of the
alternative models. The conclusion is that, although the PFA models cannot outperform
a bivariate model of output and inflation, they can be valuable for growth accounting and
for reducing the uncertainty surrounding the output gap estimates. We end with a discus-
sion about the use of unobserved components methods to obtain a thorough assessment
of the reliability of the output gap estimates.
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1 Introduction

Potential output, the associated output gap and the natural rate of unemployment are
all concepts which have received increased attention over the past few years, within both
central banks and international organisations as well as among academics.

Interest in these concepts, albeit with varying intensity, has been alive among analysts
for several years now, the reason being that they are central to some of the main ap-
proaches to the formulation, analysis and assessment of monetary and fiscal policy. First,
within a monetary policy framework, the output gap (defined as percentage deviations of
output from potential) and the unemployment gap (i.e. deviations of unemployment from
its natural rate) have often played a central role as indicators of inflationary pressures and
therefore have been among the main building blocks of inflation forecasting models. The
recent literature on monetary policy rules, aimed initially at providing a simple descrip-
tion of the monetary policy decision process of central banks, has also refocused attention
to the output gap from a normative point of view (see Taylor, 1999). Second, from a
fiscal policy perspective, the output gap represents a measure of the cyclical impact of
developments on the public finances and is therefore instrumental in estimating structural
budget deficits, which are needed to assess the sustainability of public debt. As a result,
in the short run the output and unemployment gaps provide indications of the existence
of either excessive demand or excessive supply, suggesting the most appropriate stance of
fiscal and monetary policies. Finally, in the medium-to-long run, estimates of potential
output growth and the natural rate of unemployment represent the main measures of the
sustainable growth path of production and employment, thus offering useful indications
on the appropriateness of economic policy strategies as well as on the need for structural
reforms in the products and labour markets.

In the European context these concepts are particularly relevant for both monetary
and fiscal policy. Within the framework of the monetary policy strategy of the European
Central Bank (ECB), estimates of euro area potential output growth are an essential
component in the derivation of the reference value for monetary growth (see Issing et
al. 2001). Furthermore, measures of the output gap are used, together with several
other indicators, for the purpose of estimating inflationary pressures in the context of the
second pillar of monetary policy, and as an input in the forecasting models. Moreover,
the Stability and Growth Pact assigns an important role to medium term structural
budget balances, thus establishing the need to estimate cyclically adjusted budget deficits.
Finally, given the decreasing but still relatively high levels of unemployment rates in most
European countries, estimates of the structural unemployment rate indicate to what extent
structural reforms in the labour markets are needed.

The two recent strands of literature on the uncertainty of output gap and natural rate
of unemployment estimates1 have shown that the practical usefulness of these measures
should not be overemphasised, as the bands of uncertainty of estimates tend to be large
and real-time estimates, which are precisely the most important ones for policy purposes,
are particularly less reliable. These problems can have severe negative consequences, as

1The literature has been largely influenced by the contributions of Orphanides and van Norden (1999) and
Staiger et al. (1997). See also Ehrmann and Smets (2001) and Camba-Mendez and Rodriguez-Palenzuela
(2001).
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wrong estimates can lead to wrong policy recommendations, as occurred in the seventies2.
However, the last decade has witnessed significant improvements in measurement methods,
which now allow the degree of uncertainty of estimates to be more precisely quantified
and, especially, to reduced it. A notable example is represented by the refinement of
modelling, estimation and inference of structural, or unobserved components, time series
models, starting from Harvey (1989) and proceeding to Durbin and Koopman (2001).

The purpose of this paper is to propose a model based approach to estimate potential
output and output gap, based on an unobserved components method that can address
many of the issues raised by the literature referenced above. In particular, an empirical
model consisting of a system integrating the production function approach and a model for
inflation is formulated. This approach has the advantages of being grounded in economic
theory and formulated in a general and flexible econometric framework which allows for
the specification of the model to be tested and for uncertainty bands to be estimated.
As by-product of the procedures also the structural unemployment rate can be obtained,
along with measures of underlying inflation.

The approach is applied to the Euro area and covers the sample period 1970.1 -
2001.4. The paper is structured as follows. Section 2 provides a discussion of the concepts
under analysis and reviews the theoretical foundations of the empirical model. Section
3 reviews the existing empirical methods proposed so far, whereas section 4 outlines the
measurement model at the basis the production function approach. The empirical part
of the paper sets off with a brief illustration of the available data (section 5). Univariate
structural time series models (section 6) and bivariate models (section 7) are adapted
to the Euro area output and consumer price index to provide suitable benchmarks for
later comparison. Various multivariate models implementing the production function
approach are discussed and estimated in section 8 and their performance assessed in
terms of predictive accuracy and the suitability of the resulting measures of potential
output and the output gap. The role of unobserved components methods for assessing
the reliability of the estimates is discussed in section 9. The final section summarises the
conclusions that can be drawn from the whole analysis.

2 Economic foundations

2.1 Definitions of potential output

Various definitions of potential output have been proposed and used in the literature,
depending on the objectives of the investigator. One of the most influential discussions
of potential output was provided by Okun (1962). In his seminal contribution, he defined
potential output as the maximum quantity of output the economy can produce under
conditions of full employment, specifying that the ”full employment goal must be under-
stood as striving for maximum production without inflationary pressures” (p. 98). The
latter qualification, often also equivalently framed in terms of a ”sustainable” level of
production, gave an economic content to his definition, differentiating it from a pure engi-
neering concept of maximum production attainable with a given set of inputs. The latter
concept, as observed by Tobin (1998), may have some relevance in particular periods such

2See Freedman (1989), Orphanides (2001), and Nelson and Nikolov (2001).
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as in wartime, but in peacetime periods it is Okun’s concept more of relevance from a
macroeconomic point of view.

Okun’s definition is still the main reference concept for economic policy-makers, in-
cluding central banks. Later refinements of the definition stressed alternative aspects of
the above-mentioned qualification, ranging from the intensity of use of labour and capital
(for example, in Artus, 1977) to the link with the labour market, and in particular with the
natural rate of unemployment (such as Gordon, 1984), but they are broadly equivalent.

A recent strand of theoretical macroeconomic literature, based on the New Neoclassical
Synthesis (also known as New Keynesian Dynamic Stochastic General Equilibrium) class
of models, has also paid an increasing attention to the concept of the output gap (see
for example Gali, 2002). However, contributions within this approach refer to a different
concept of potential output, the equilibrium level reached without nominal rigidities, that
is, with fully flexible prices and wages. As admitted by the same authors within this
literature, their concept of potential output and the output gap have little resemblance
with the concepts used in traditional analysis of monetary policy.

2.2 The time-horizon: the medium run

Economic policy requires different time horizons depending on the final objective and the
available instruments. For example, as recently pointed out by Smets (2000), there are
various reasons why monetary policy strategies should adopt a medium-term orientation.
First, monetary policy measures affect the final objectives only with a time lag. Second,
a fine-tuning approach aimed at stabilising the economy in the short-run is likely to
result in volatile interest rates and macroeconomic fundamentals. More in general, it
can be argued that a medium-run horizon can help preventing pro-cyclical, destabilising
economic policies.

At the same time, a precise temporal definition of medium-run is not desirable, mainly
because monetary policy affects the macroeconomy with variable lags. These lags are
difficult to estimate and vary along several dimensions, ranging from the presence of one
or more shocks which justify the policy measure, the mix of transmission mechanisms at
work, and the extent to which markets anticipated the monetary policy measure.

In the medium-run, both aggregate demand and aggregate supply are relevant and
it is essential to differentiate changes in output growth which are due mainly to the
former, possibly inflationary but temporary, or the latter, likely to be permanent and
non-inflationary. This distinction is fundamental in order to interpret the events of the
1970s and early 1980s, as opposed to the 1960s and early 1970s3, and is relevant as well
within the recent debate on the causes of the thriving macroeconomic performance over
the second half of the 1990s, giving rise to the hypothesis of the emergence of a New
Economy in the US and other advanced economies (see, for example, Gordon, 1998).

2.3 A basic framework: the accelerationist model

The basic economic framework, which represents the economic foundation of empirical
methods aimed at estimating potential output, is the so-called accelerationist model. This

3See for example the discussion in Layard et al. (1991, p.16-18).
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model is the result of several contributions, the most important ones being represented by
Phillips (1958), Okun (1962), Friedman (1968) and Phelps (1968) (for a historical review
see Espinosa-Vega and Russell, 1997).

Its main building blocks are the expectations-augmented Phillips curve, Okun’s law
and the natural rate of unemployment. In the background lies a model for the determina-
tion of potential output and the natural rate4. Layard et al. (1991) provide a derivation
of these blocks, which can be a useful reference to clarify the assumptions underlying
the accelerationist model. Here, we will only briefly review it and then mention various
extensions which have been successively proposed.

Firms, operating under monopolistic competition, set prices as a mark-up on expected
wages. The mark-up depends on the level of the unemployment rate and possibly on
other variables, such as the changes in the inflation rate (capturing price surprises) and
the capital-labour ratio (as a proxy for productivity). Wage setting is based on both
insider and outsider considerations. Thus, wages are set as a mark-up on expected prices,
with the mark-up depending on the same factors as for prices, plus other exogenous factors
such as union power, unemployment benefits, mismatch, and so forth. It is assumed that
expectations are formed assuming that inflation follows a random walk. The equilibrium
level of unemployment, or NAIRU5, derived under the assumption that expectations are
fulfilled, depends on the degree of price and wage stickyness, as well as exogenous supply
factors. On the basis of these building blocks, a trade-off relationship between the changes
in inflation and the deviations of unemployment from the NAIRU, known as Phillips curve,
can be derived.

Hysteresis effects can be introduced by assuming that wages and prices are set also
on the basis of the changes in the unemployment rate. Within this general framework
it is also possible to define a short-run NAIRU, as the level of unemployment consistent
with stable inflation during the current period. The short-run NAIRU is obtained as a
weighted average of the long-run NAIRU and the current unemployment rate, such that
the weight attached to the latter depends on the relative importance of the hysteresis
effect. As a consequence, the short-run NAIRU can be expected to be significantly more
volatile than the long-run one.

Okun’s law relates potential output to the natural rate of unemployment. Thus, it
allows to express the Phillips curve as a relationship between inflation and the output
gap.

The model is completed by specifying a production function, which relates output to
capital, labour and total factor productivity, and a demand equation, typically derived as
the reduced form of a simple IS-LM model.

Recent extensions of the model relate to the wage-price dynamics (see for instance
Blanchard and Katz, 1999), the specification of demand (see for example Rudebusch and
Svensson, 1999), nonlinearities (as suggested, among others, by Akerlof et al, 1996, Eisner,
1997, and Fair, 2000) and the open economy (Greenslade et al., 2000).

4Solow (2001, p. 285) for example defined “Growth theory as the theory of the evolution of potential output”.
5The NAIRU is commonly defined as the Non-Accelerating Inflation Rate of Unemployment, but it should

be more correctly referred to as the non-changing inflation rate of unemployment. It should also be noted that
some differences between the NAIRU, an empirical concept, and the natural rate of unemployment, as defined
by Friedman (1968) as a pure theoretical concept, exist -see for example Tobin (1997). However, we follow the
common approach of considering the former as the empirical counterpart of the latter.
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3 A review of the main econometric approaches

A first level of classification of the econometric approaches to the measurement of potential
output and the associated concept of output gap distinguishes between univariate and
multivariate approaches.

In a univariate framework the measurement problem reduces to the trend-cycle decom-
position of an indicator of aggregate economic activity, such as Gross Domestic Product
at constant prices. Letting yt denote such indicator (in logarithms), the issue is decom-
posing yt = POt + OGt, where potential output, POt, is the expression of the long run
behaviour of the series and OGt, denoting the output gap, is a stationary component,
usually displaying cyclic features.

However, the domain of the two concepts goes well beyond that of trends and cycles
in output, which renders their measurement intrinsically multivariate. The definitions
of the output gap as an indicator of inflationary pressure, given in section 2, and of
potential as the level of output consistent with stable inflation, make it clear that a
rigorous measurement can be operated at least within a bivariate model of output and
inflation, embodying a Phillips curve relationship.

Moreover, information on the output gap is contained in macroeconomic variables
other than aggregate output, either because those variables provide alternative measures
of the output gap, or because they are functionally related to it (the Okun’s law providing
one such example). For instance, when available, measures of capacity utilisation convey
further information on OGt, even though they have a more partial nature (they refer to
the manufacturing sector, rather than to the whole economy).

Another useful classification is according to the methodology used. A distinction can
be operated between unobserved components and observed components methods.

Unobserved components (UC) models have been widely used in the estimation of
potential output and the output gap: univariate approaches rely on the Harvey and Jaeger
(1993) trend-cycle decomposition of output and on the Hodrick and Prescott (1997) filter,
which has also a model based interpretation. An early example of a multivariate UC
model is provided by Clark (1989), who estimated a bivariate model of U.S. real output and
unemployment grounded on Okun’s law. Kuttner (1994) proposed a method for estimating
potential output and the output gap based on a bivariate model of U.S. real GDP and
CPI inflation. Gerlach and Smets (1999) focussed also on a bivariate model of output
and inflation, but the output gap generating equation takes the form of an aggregate
demand equation featuring the lagged real interest rate as an explanatory variable. Apel
and Jansson (1999) obtained system estimates of the NAIRU and potential output for the
U.K, U.S. and Canada, based on an unobserved components model of output, inflation
and unemployment rates. Scott (2000) estimates the output gap for New Zeland using a
trivariate system of output, unemployment and productive capacity. Other multivariate
approaches are based on extensions of the Hodrick and Prescott filter: Laxton and Tetlow
(1992) extended the penalised least squares criterion upon which the HP filter is based,
so as to incorporate important macroeconomic relationship that are expressions of the
output gap, such as the Phillips curve and the Okun’s law.

Observed components methods rely on the Beveridge and Nelson (1981) decomposition
and on structural vector autoregressive (VAR) models. The multivariate Beveridge and
Nelson decomposition has been used by Evans (1989) to estimate the potential and cyclical
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components of U.S. real GNP within a bivariate VAR model for the changes of GDP and
unemployment rate. The same system was considered by Blanchard and Quah (1989),
who proposed a permanent transitory decomposition based on the identification restriction
that demand shock have no permanent effect on output. Astley and Yates (1999) use a
structural VAR model to estimate the output gap within a five variable system for the
U.K. economy composed of quarterly log changes of oil prices, retail prices, real GDP,
unemployment rates and capacity utilisation rates. St-Amant and van Norden (1997) use
the same approach for the Canadian economy.

4 The production function approach

The production function approach is among the most popular methods of measuring po-
tential output among statistical agencies, being currently employed by the OECD (see
Giorno et al., 1995), the IMF (De Masi, 1997) and the CBO (1995). It is also the rec-
ommended approach by the EU Economic Policy Committee6. Its rationale is to obtain
potential output from the trend levels of its structural determinants, such as productivity
and factor inputs. A technology is used to appropriately weight the components. Contex-
tually and consistently with the definition of PO, a Phillips type of relationship between
inflation and OG complements the measurement model.

The production function approach defines realised output (Yt) as a combination of
actual factor inputs, usually labour and capital, and total factor productivity (TFPt).
Assuming for simplicity that technology has a Cobb-Douglas representation exhibiting
constant returns to scale, the aggregate production function takes the form:

Yt = TFPt(LtHt)α(CtKt)1−α, (1)

where α is the elasticity of output with respect to labour. Labour input is defined as
total hours worked (employment, Lt, times hours worked per head, Ht), and capital
input, measured by the capital stock Kt, as derived from a perpetual inventory method,
adjusted for the degree of capacity utilisation, Ct, taking values in the interval (0,1].

Total factor productivity is not directly observable and it is usually derived as the
so-called Solow residual from a growth accounting framework. This derivation is con-
ventionally based on the notion that under perfect competition α is coincident with the
labour share of output, and it can be estimated by the empirical average labour share
obtained from the national accounts (0.65 for the Euro Area).

Assuming that all inputs are at their potential, i.e. equilibrium, non-inflationary levels,
potential output, Y (p)

t , can be written as a weighted geometric average of potential factor
inputs, characterised by the superscript (p)

Y (p)

t = TFP(p)

t (L(p)

t H (p)

t )α(C(p)

t K(p)

t )1−α.

The contribution of capital is equal to Kt, since, at potential, capacity utilisation takes
the value C(p)

t = 1 and K(p)

t = Kt. Potential hours worked, H (p)

t , denote average weekly

6See the EPC ”Report on Potential Output and the Output Gap”, Oct. 2001, available at the URL
http://europa.eu.int/comm/economy finance/epc/documents: ”...the production function approach can pro-
vide a broad and consistent assessment of the economic outlook as well as of macroeconomic and structural
policies. It highlights how the various factor inputs and technical progress contribute to potential growth.”
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working hours plus, for instance, any structural component of overtime or of absences due
to illness. Potential employment, E(p)

t , can be decomposed into three determinants, as we
shall see shortly.

The information requirements are often too stringent; for instance, hours worked and
capacity utilisation might be unavailable, with the consequence that the available infor-
mation is unable to disentangle Ht and Ct from TFPt; as a result, the Solow’s residual
will typically display more cyclical variability than the latter.

The measurement model, however, can be restated in terms of the Solow’s residual.
Defining Ft = TFPtH

α
t C1−α

t , taking the logarithms of both sides of (1) and denoting yt, lt
and kt respectively the logarithms of output, employment and capital stock, we can write:

yt = ft + αlt + (1− α)kt (2)

Although in the sequel we will continue to refer to ft as total factor productivity, it must
be recognised that ft = ln Ft.

All the variables on the right hand side of the equation 2 are decomposed additively
into their potential and transitory components:

ft = f (P )

t + f (T )

t , lt = l(P )

t + l(T )

t , kt = k(P )

t ; (3)

this breakdown enhances the extraction of information about the business cycle; in par-
ticular, ft is highly procyclical, whereas the capital stock contributes only to potential,
being fully permanent7.

Employment has three determinants, as can be seen from the identity:

lt = nt + prt + et,

where nt is the logarithm of total population, prt is the logarithm of the labour force
participation rate (LFPR), and et is that of the employment rate. The determinants are
in turn decomposed into their permanent and transitory components:

nt = n(P )

t , prt = pr(P )

t + pr(T )

t , et = e(P )

t + e(T )

t , (4)

and, accordingly, we obtain the permanent-transitory decomposition of lt:

l(P )

t = nt + pr(P )

t + e(P )

t , l(T )

t = pr(T )

t + e(T )

t . (5)

The idea is that population dynamics are fully permanent, whereas labour force partici-
pation and employment are also cyclical. Moreover, since et = ln(1 − Ut) ≈ −ut, where
Ut is the unemployment rate and ut denotes its logarithms, we can relate the output gap
to cyclical unemployment and potential output to structural unemployment.

7 This may be questionable, if one reflects on the statistical data generating process of the capital series.
Given an initial estimate, K0, the stock at time t is obtained as Kt = (1 − δ)Kt−1 + It where It denotes
investments and δ is the depreciation rate; provided that the investment series is cyclical, the cycle in Kt

is a weighted infinite moving average the investment cycle with weights provided by (1 − (1 − δ)L)−1. This
provides a simple example of a pseudo-integrated cycle, that we will introduce later in section 8.4. However,
the current implementation of the perpetual inventory method adopted by statistical agencies differs from the
stated formula in that the moving average is truncated at the average life of capital goods.
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Putting together the definitions (2)-(5) we achieve the required decomposition of out-
put into potential and gap:

yt = POt + OGt

POt = f (P )

t + αl(P )

t + (1− α)k(P )

t ,

OGt = f (T )

t + bl(T )

t ,

(6)

where e.g. potential output is the value corresponding to the trend values of factor inputs
and ft, whereas the output gap is a linear combination of the transitory values.

Finally, in agreement with the notion that potential output is the level of output that
is consistent with stable inflation, the measurement model is augmented by a Phillips
curve relationship. The latter relates the changes in the nominal price or wage inflation
rate (∆pt) to an indicator of excess demand, typically the output gap (OGt), and a set of
exogenous supply shocks, such as changes in energy prices and terms of trade; a standard
specification is the following:

φ(L)∆pt = θ(L)OGt +
∑

k

δk(L)xkt + επt, επt ∼ WN(0, σπ), (7)

where θ(L) and δk(L), k = 1, . . . , K, are polynomial in the lag operator L, xt denotes a
set of exogenous supply shocks and φ(L) is an autoregressive (AR) polynomial.

There are three determinants of inflation in equation (7): inertia, taking the shape
of autoregressive effects, demand, entering via the a lag polynomial of the output gap,
and supply due to changes in energy prices and terms of trade. For this reason Gordon
(1997) labels (7) as the triangle model. If the AR polynomial has a unit root, that is
φ(1) = 1, then, if supply shocks are switched off, there exists a level of the output gap
(here identified as zero) that is consistent with constant inflation.

Usually, the permanent levels of the variables contributing to PO and OG are estimated
separately by a variety of ad-hoc filters, among which the HP filter (OECD), the split-
trend method (IMF) or a segmented trend with break points occurring at peaks (CBO).
For instance, f (P )

t is estimated by the univariate HP filter applied to the series yt − αlt −
(1− α)kt; transitory levels are obtained as a residual. See Giorno et al. (1995), de Masi
(1997) and CBO (1995) for further details.

In this paper we adopt a system approach based on (2)-(6) and (7), according to
which all the contributions are estimated simultaneously by a multivariate unobserved
components model that incorporates the fundamental macroeconomic relationships among
the variables.

Within the model based approach we can provide a more thorough assessment of the
uncertainty surrounding the estimates of PO and OG, and address question such as the
significance of the latter for inflation. These issues will be addressed in section 9.

5 Data and Overview

The time series used in this paper are listed below (more information is provided in the
Appendix):
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Series Description Transformation
yt Gross Domestic Product at constant prices Log
kt Capital Stock at constant prices Log
lt Employment, Total Log
ft Solow’s residual (yt − 0.65lt − 0.35kt)
prt Labour Force Participation Rate Log
CURt Contribution of Unemployment Rate (−et) Log
nt Population Log
ct Capacity Utilisation (Survey based) Log
pt: Consumer prices index Log
ln COMPRt: Commodity prices index (both oil and non-oil) Log
ln NEERt: Nominal effective exchange rate of the Euro Log

Quarterly observations are available for the period starting from the first quarter of
the year 1970 and ending in the fourth quarter of 2001. All the series are non seasonal
except for pt and lnCOMPRt; some weak seasonal effect was also detected for the labour
market series, especially CURt, as discussed below. A plot of the series is available in
figure 1. The second panel shows that ft has a more pronounced cyclical behaviour with
respect to yt.

The contribution of the unemployment rate series (CURt) is defined as minus the
logarithm of the employment rate. If Ut denotes the unemployment rate, then CURt =
− ln(1−Ut) ≈ Ut is the first order Taylor approximation of the unemployment rate. The
approximation is quite good as can be seen overlaying the plots of Ut and CURt (the
leading term of the approximation error is -0.5U2

t , and this is never greater than 0.007)
and using the latter enables modelling the NAIRU without breaking the linearity of the
model. The consequences for the measurement model amount only to a change of sign in
(4)-(5).

The multivariate unobserved components models for the estimation of potential output
and the output gap, based on the production function approach outlined in the previous
section, are formulated in terms of the 5 variable system

Yt = [ft, prt, CURt, ct, pt]′, t = 1, . . . , T ;

regression effects were included to account for intervention variables and exogenous vari-
ables, namely lnNEERt and lnCOMPRt for the consumer prices equation. The information
set up to time t will be denoted by Ft.

Unit roots and stationarity tests support the univariate characterisation of yt, ft, prt

and CURt as I(1) series; prt and CURt are subject to a downward level shift in the fourth
quarter of 1992, consequent to a major revision in the definition of unemployment, which
imposed more severe requirements for a person to be classified as unemployed (dealing
in particular with the nature and the timing of job search actions), with the effect of
enlarging the population not economically active, and thus bringing down participation
and unemployment levels. To assess stationarity in the presence of a level shift in 1992.4
we referred to the Busetti and Harvey (2001) test, which lead to rejection of the null
hypothesis.

The logarithm of capacity utilisation in the manufacturing sector is slightly trending; in
particular, there is a downward movement at the beginning of the sample. As a matter of
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fact, the KPSS (see Kwiatowski et al., 1994) statistic testing against a RW with drift leads
to reject the stationary hypothesis for any reasonable value of the truncation parameter
of the nonparametric estimate of the long run variance. However, the no drift statistic is
not significant for low values of the truncation parameter. In line with this evidence, the
ADF test with a constant and a linear trend never rejects the unit root hypothesis, but
when only a constant is included it leads to a clear rejection of the null. This motivated us
to evaluate whether this dependence on the specification of the deterministic component
could be due to a break in the trend. For this purpose, we performed the trend stationarity
test unconditional on the location of the break proposed by Busetti and Harvey (2001);
this clearly suggests that we cannot reject stationarity when the trend is linear and subject
to a level shift and slope break occurring in 1975.1 (model 2b in the Busetti and Harvey
paper). This is the data point that provided the most favourable evidence for the null of
trend-stationarity when we allow for a break in the trend.

The series pt can be characterised as I(2); we addressed this issue by testing the
stationarity of the quarterly inflation rate, ∆pt; since the series displays seasonality, we
tested stationarity at the zero and the seasonal frequencies (annual and semiannual) using
Canova and Hansen (CH, 1995) test (without including an autoregressive term), with a
nonparametric correction for serial correlation. The statistic for stationarity at the zero
frequency is highly significant, taking values no smaller than 0.997 (the 5% critical value
is 0.461) for values of the truncation parameter between 0 and 10; if a linear trend is
included we need a high value of the truncation parameter (7) to accept the null. As for
seasonality, the CH statistics are never significant.

In the next sections we consider alternative estimates of PO and OG arising from uni-
variate, bivariate and multivariate unobserved component models. The latter are model-
based implementations of the production function approach. Once the models are cast in
the state space form the Kalman filter and the associated smoothing algorithms enable
maximum likelihood estimation and signal extraction; for a thorough exposition of the
state space methodology we refer to Harvey (1989) and Durbin and Koopman (2001). All
the computations were performed using using the library of state space function SsfPack
2.3 by Koopman et al. (2000), linked to the object oriented matrix programming language
Ox 3.0 of Doornik (2001), except for the univariate models dealt with in the next section,
for which estimation was carried out in Stamp 6.2. (Koopman et al., 2000).

6 Univariate estimates

This section deals with univariate UC decompositions of the logarithm of the Euro area
GDP into a trend component, µt, a cyclical component, ψt and additive noise, εt, which
are nested in the following model (see Harvey and Jäger, 1993):

yt = µt + ψt + εt εt ∼ NID(0, σ2
ε ),

µt = µt−1 + βt−1 + ηt, ηt ∼ NID(0, σ2
η)

βt = βt−1 + ζt, ζt ∼ NID(0, σ2
ζ )

ψt = ρ cosλcψt−1 + ρ sinλcψ
∗
t−1 + κt, κt ∼ NID(0, σ2

κ)
ψ∗t = −ρ sinλcψt−1 + ρ cosλcψ

∗
t−1 + κ∗t , κ∗t ∼ NID(0, σ2

κ)

(8)
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where ηt, ζt, εt, κt, and κ∗t are mutually independent. In the sequel we shall refer to µt

as potential output, POt = µt, and to ψt as the output gap, OGt = ψt, although in this
single equation framework there is no guarantee that the latter is a measure of inflationary
pressures.

The component µt is modelled as a local linear trend with an IMA(2,1) reduced form.
For σ2

ζ = 0 it reduces to a random walk with constant drift, whereas for σ2
η = 0 the trend

is an integrated random walk (IRW). The reduced form of the cycle is the ARMA(2,1)
process:

(1− φ1L− φ2L
2)ψt = (1− ρ cosλcL)κt + ρ sinλcκ

∗
t−1,

φ1 = 2ρ cosλc, φ2 = −ρ2. For λc ∈ (0, π) the roots of the AR polynomial are a pair of
complex conjugates with modulus ρ−1 and phase λc; correspondingly, the spectral density
displays a peak at λc, corresponding to a period of 2π/λc quarters.

Model (8) was estimated unrestrictedly and also imposing restrictions on the variance
parameters to enhance an I(1) trend, a smooth trend and the Hodrick and Prescott
(1997, HP henceforth) trend. Parameter estimates are reported in table 1, along with
the maximised log likelihood, the Ljung-Box statistics Q(P ) and the Doornik and Hansen
(1994) normality test.

The unrestricted model (Model 1) estimates a short run cycle with a period of about
three years, a damping factor close to 1, and with a very small disturbance variance;
the smoothed estimates of ψt, presented in figure 2, show that the component is a poor
representation of Euro Area business cycle. Also, underlying output growth (the smoothed
estimate of ∆µt), displayed in the second panel, is highly volatile.

Model 2 restricts σ2
ζ to zero; this representation is suggested by the stationarity of

∆yt, which is supported by the KPSS test. Naturally, nothing prevents that µt has richer
dynamics than a pure random walk with a drift, and in the next section we consider
a damped slope model according to which βt is a stationary first order autoregressive
process and µt is ARIMA(1,1,1). As in the previous case, no variation is attributed to
the irregular component, but the cyclical variability is much increased at the expenses of
the trend (see fig. 2). Notice that the frequency of the cycle is virtually zero, and the
estimated cycle has an AR(1) representation with parameter 0.91. The changes in the
trend fluctuate around a fixed mean with less variability than in the unrestricted case.

When a smoothness prior is imposed (Model 3, the trend is an IRW) a part of the
total variability is absorbed by the irregular component, and the changes in the trend are
fully represented by the slope component (∆µt = βt−1) which evolves very smoothly over
time. It would be a matter of an endless debate whether the resulting changes in potential
output are overly ”cyclical”. The fluctuations may reflect different facts: an interaction
of the trend and the cycle, or autonomous changes (one may ascribe the rise in underlying
growth in the second half of the nineties to the ”new economy”). Very little changes if
one further restricts σ2

ε = 0, apart from the fact that the cycle now absorbs the irregular
movements.

The last column (Model 5) refers to the restricted version of (8) which yields the
HP estimates of the trend. These amount to setting σ2

ε = 0, ρ = 0, so that ψt = κt ∼
NID(0, σ2

κ), σ2
η = 0, and σ2

ζ = σ2
κ/1600; hence, only the variance parameter σ2

κ is estimated
(this parameter is concentrated out of the likelihood function). Both the relatively low
value of the likelihood and the diagnostics strongly reject those restrictions. With respect
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to the previous two models (which also enforce a smoothness prior) the smoothed estimates
of the irregular component, εt, are characterised by more cyclical variability than those
of ψt and correspondingly, underlying growth is less variable.

As stated in section 3, univariate models provide a poor characterisation of the unob-
servable constructs we are deling with, and this makes us eager to pass promptly to the
multivariate framework. The main purpose of this section was to illustrate the kind of
model uncertainty that surrounds the estimation of PO and OG in the univariate frame-
work. We will return to the uncertainty issue in section 9. Model selection and hypothesis
testing constitute non standard issues and the reader is referred to Harvey (1989, ch. 5)
and Harvey (2001) for these topics and for recent advances; however, for the reasons
outlined above, we attach little relevance to the issue of selecting the best univariate
model.

7 A Bivariate Model of Output and Inflation

A bivariate model of output and inflation combines equation (8), generating the output
gap, OGt = ψt, and an equation relating inflation to it. We now discuss in some detail
the structural specification of the equation for pt. As the reduced form will show, it is a
generalisation of the Gordon’s triangle model of inflation accounting for the presence of
possibly stochastic seasonality in the price series.

The equation is specified as follows:

pt = lt + γt + δC(L) lnCOMPRt + δN (L) ln NEERt

lt = lt−1 + π∗t−1 + ηπt ηπt ∼ NID(0, σ2
ηπ),

π∗t = π∗t−1 + θπ(L)OGt + ζπt ζπt ∼ NID(0, σ2
ζπ);

γt = γ1t + γ2t,
γ1t = −γ1,t−2 + ω1t, ω1t ∼ NID(0, σ2

ω),
γ2t = −γ2,t−1 + ω2t, ω2t ∼ NID(0, σ2

ω);

(9)

it is assumed that the disturbances are mutually independent and independent of any
other disturbance in the output equation. Therefore, the only link between the prices and
output equations is the presence of OGt as a determinant of π∗t .

According to (9) the logarithm of the consumer price index is decomposed into a
seasonal effect, γt, an exogenous component driven by the nominal effective exchange rate
of the Euro and commodity prices, and the unobserved component lt, representing the
underlying level of consumer prices devoid of any seasonal and exogenous effects; it evolves
as a random walk with a slope component, π∗t , that represents the underlying quarterly
inflation rate. This is itself a nonstationary component whose evolution is driven by the
output gap and a disturbance term ζπt. Moreover,

• the exogenous variables enter the equation via the lag polynomials δC(L) = δC0 +
δC1L, and δN (L) = δN0 + δN1L. Note that δC(1) = δC0 + δC1 = 0 and δN (1) =
δN0 + δN1 = 0 imply long run neutrality of commodity prices and terms of trade,
respectively, with respect to inflation.

• The unobserved component π∗t measures underlying inflation, and is very close to the
notion of core inflation proposed by Quah and Vahey (1995) as that part of inflation
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that is driven by shocks that have no permanent impact on output. Apart from being
characterised by inertia in the form of a unit root, it depends dynamically on the
current and past values of the output gap, via the lag polynomial θπ(L) = θπ0+θπ1L.
No further lags will be needed in our applications.

• γt is a stochastic trigonometric seasonal component such that S(L)γt = θs(L)ω∗t ,
S(L) = 1+L+L2+L3, where θs(L) is an MA(2) polynomial whose coefficient can be
determined uniquely from the last three equations in (9); seasonality is deterministic
when σ2

ω = 0 in (9).

The reduced form of the equation (9) is:

∆∆4pt = S(L)θπ(L)OGt−1 + δC(L)∆∆4 ln COMPRt+
δN (L)∆∆4 ln NEERt + θ(L)εt

(10)

where θ(L)εt is the MA(4) reduced form representation of S(L)ζπ,t−1+∆4ηπ,t+∆2θs(L)ωt.
Notice that the S(L) filter applied to the contribution of the output gap avoids that the
response of inflation to the output gap displays a seasonal feature. Hence the structural
representation of Gordon’s triangle model has the effect of isolating the response of the
nonseasonal part of inflation with respect to the output gap.

When seasonality is deterministic (10) reduces to

∆2pt = θπ(L)OGt−1 + DSt + δC(L)∆2 ln COMPRt+
δN (L)∆2 ln NEERt + θ(L)εt

where DSt is a deterministic seasonal component and θ(L)εt is the MA(1) representation
of the process ζπ,t−1 + ∆ηπ,t.

Gordon (1997) stresses the importance of entering more than one lag of the output
gap in the triangle model, which allows to distinguish between level and change effects;
this follows from the decomposition θπ(L) = θπ(1) + ∆θ∗π(L). In our case θ∗(L) = −θπ1;
θπ(1) = θπ0 + θπ1 = 0 implies that the OG has no permanent effect on inflation (but only
transitory effects).

7.1 Estimation results

The unrestricted bivariate model (8)-(9) was estimated along with restricted version; these
aim at investigating the sensitiveness of the results to different specifications of the trend
in output and the leading or coincident nature of the output gap. The estimation results
are reported in table 2. Complying with the evidence arising from the Canova and Hansen
(1995) test the variance parameter of the seasonal component in (9) is always estimated
equal to zero and seasonality is deterministic.

The unrestricted model produces a smooth potential output estimate that is very
close to a deterministic trend: the estimated level disturbance variance is zero and the
slope variance is very small. As a result the variance of the output gap is larger than
that estimated by univariate models; its smoothed estimates are presented in figure 3.
The output gap makes a significant contribution to underlying inflation, as highlighted
by the estimates of the coefficients of θπ(L) and their standard errors. The null of long
run neutrality of OGt on inflation is strongly rejected by the Wald test of the restriction
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θπ(1) = 0, reported in table 2. However, the most relevant effect is the change effect,
which takes the value 0.146; the level effect, about 0.02, implies that if the output gap
stays at 2% for two years (this would represent a major expansionary pattern) this would
raise the inflation rate by 0.5 percentage points. Long run neutrality of lnNEERt and
ln COMPRt is also rejected.

The second specification enforces the restriction that the trend is a RW with drift
(σ2

ζ = 0 in equation (8)). The trend, loosely speaking, absorbs now more variability
and the output gap has lower amplitude. This is reflected in the higher estimates of the
coefficients in θπ(L).

We also considered a different specification of POt that is consistent with the I(1)
hypothesis and allows the permanent component in output to display richer dynamics
than a pure random walk with drift; this is Damped Slope model, according to which:

µt = µt−1 + m + βt−1

βt = φβt−1 + ζt, ζt ∼ NID(0, σ2
ζ )

(11)

where m is the constant drift and φ is the slope autoregressive parameter, taking values
in (-1,1). The resulting reduced form representation for µt is an ARIMA(1,1,1) process.
This model provides the best fit to the data, and differs from the Unrestricted model in
that PO growth is now evolving as an AR(1) process with AR coefficient equal to 0.84.

The Coincident specification is model (8)-(9) estimated unrestrictedly, but with the
contemporaneous rather than lagged value of underlying inflation entering the level equa-
tion, that is lt = lt−1 + π∗t + ηπt (compare with (9)); this modification allows the reduced
form model for ∆2pt to depend on θπ(L)OGt, so that the output gap is a coincident,
rather than leading, indicator of inflationary pressures. It seems difficult to discriminate
this specification from the Unrestricted one solely on the basis of the estimation results
presented in table 2, but the rolling forecast experiment of the next section will clearly
point out that the Unrestricted model provides more accurate inflation forecasts.

Finally, we present the bivariate model with the HP restrictions (σ2
ζ = 1600σ2

ε , σ
2
η = 0)

imposed on the stochastic formulation of the trend in output. Again, these restrictions
are strongly rejected, as the residuals show very rich autocorrelation patterns.

It is perhaps useful to stress that all the specification extract a cycle with a very long
period.

7.2 Comparitive Performance of Rolling Forecasts for Bi-
variate Models

The five bivariate models can be now compared on the basis of their accuracy in forecasting
inflation: if the output gap truly represents a measure of inflationary pressures, it must
help in predicting future inflation. We use a rolling forecast experiment as an out-of-
sample test of forecast accuracy. We assume that the variables to be forecasted are the
annual inflation rate, ∆4pt, and the quarterly rate, ∆pt, although we present results only
for the former, as the conclusions are unchanged.

For this purpose the sample period is divided into a pre-forecast period, consisting
of observations up to and including 1994.4. The 1995.1-2001.4 observations are used to
evaluate and compare the out-of-sample forecast performance of the various alternative
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models. Hence, starting from 1995.1, each of the models of the previous section is esti-
mated and 1 to 12 step-ahead forecasts are computed. Subsequently, the forecast origin is
moved one step forward and the process is repeated until the end of sample is reached; the
models is re-estimated each time the forecast origin is updated. The experiment provides
in total 28 one step ahead forecasts and 16 three years ahead forecasts. Out-of-sample
values for the exogenous variables were produced by the RW model for lnNEER and a
local linear trend model (specified as in 8, but with no cycle) fitted to the observations
from 1985 onwards for lnCOMPR.

We assess performance relative to the random walk model for quarterly inflation with
seasonal drift (RWSD model and exogenous effects:

∆2pt = DSt + δC(L)∆2 ln COMPRt + δN (L)∆2 lnNEERt + ξt, ξt ∼ NID(0, σ2). (12)

which constitutes our benchmark. We also consider the univariate model (this is referred
to as Univariate in this section) consisting of (9) without the output gap; this amounts to
replacing ξt by MA(1) errors, ξt + θξt−1, with negative MA parameter, in (12).

The results, reported in table 3 indicate that there is an overall tendency is to slightly
overpredict annual inflation, as indicated by the prevalence of negative mean forecast
errors (expressed in percentage points). The largest biases correspond to the Coincident
bivariate model. The mean square forecast errors, relative to the benchmark, clearly
point out that the greatest forecast accuracy is provided by the Unrestricted bivariate
model for forecast leads up to six quarters. For larger horizons, the bivariate models
cannot outperform the Univariate forecasts.

The results also tell that the strategy of plugging the Hodrick and Prescott cycle
estimates into the prices equation improves upon the Univariate model only at the one
quarter lead time.

The bottom line reports the root mean square error for the benchmark model and
points out that uncertainty is rather large: for instance, root mean square error of the
forecasts of the annual inflation rate one year ahead arising from the the bivariate unre-
stricted model amounts to 2 percentage points (4% for the benchmark).

8 Multivariate models implementing the Produc-

tion Function Approach

We consider multivariate unobserved components models for the estimation of potential
output and the output gap, implementing the PFA approach outlined in section 4, that
are formulated in terms of the 5 variables

[ft, prt, CURt, ct, pt]′, t = 1, . . . , T,

including regression effects and intervention variables and exogenous variables, namely
ln NEERt and lnCOMPRt for the consumer prices equation. The latter has already been
specified in (9), whereas for the permanent-transitory decomposition of the first four
variables we use different models, that will be presented in separate sections.

We set off with an explorative approach, specifying a system of seemingly unrelated
equations that is the multivariate analogue of (8), without assuming common cycles or
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trends (section 8.1). In section 8.2 we deal with a common cycle specification, with ct

defining the reference cycle, and discuss within this framework the hysteresis hypothesis
(section 8.3), according to which the cyclical variation affects permanently the trend in
participation rates and unemployment. We finally introduce the pseudo-integrated cycle
model, which provides an effective way of capturing the cyclical variability in the labour
market variables. The models are compared in terms of goodness of fit and the ability to
forecast annual inflation (section 8.5).

8.1 Seemingly Unrelated Time Series Equations

Gathering the first four variables in the vector yt = [ft, prt, CURt, ct]′, we adopt a
system of Seemingly Unrelated Time Series Equations (SUTSE) for estimating PO and
OG according to the PFA. The system provides the multivariate generalisation of the
decomposition (8), and is specified as follows:

yt = µt + ψt + ΓXt + εt εt ∼ NID(0,Σε),

µt = µt−1 + βt−1 + ηt, ηt ∼ NID(0,Ση)
βt = βt−1 + ζt, ζt ∼ NID(0,Σζ)
ψt = ρ cosλcψt−1 + ρ sinλcψ

∗
t−1 + κt, κt ∼ NID(0,Σκ)

ψ∗
t = −ρ sinλcψt−1 + ρ cosλcψ

∗
t−1 + κ∗t , κ∗t ∼ NID(0,Σκ)

(13)

All the disturbances are mutually uncorrelated and uncorrelated with those in equation
(9). Symbols in bold denote vectors; for instance, µt = {µit, i = 1, 2, 3, 4} is the 4 × 1
vector containing the permanent levels of ft, prt, CURt, and ct. The series display similar
cycles, ψt, that are such that the transmission mechanism of cyclical disturbances is
common (the damping factor and the cyclical frequency are the same across the series).
Common cycles arise when Σκ has reduced rank. The matrix Xt contains interventions
that account for a level shift both in LFPR and CUR in 1992.4, an additive outlier (1984.4)
and a slope change in capacity; Γ is the matrix containing their effects.

The output gap and potential output are then defined as linear combinations of the
cycles and trends in (13):

OGt = [1, α, −α, 0]′ψt, POt = [1, α, −α, 0]′µt + αnt + (1− α)kt;

the former affects the changes in underlying inflation as specified in (9), which completes
the model.

Model (13) features many sources of variation and needs to be restricted to produce
reliable parameter estimates. The first restriction we impose is that the irregular compo-
nent is present solely in the ft equation, that is εt = [ε1t, 0, 0, 0]′; this appears to is a mild
and plausible restriction. The second enforces the stationarity of ct around a deterministic
trend, possibly with a slope change, and amounts to zeroing out the elements of Ση and
Σζ referring to ct, and introducing a slope change variable in Xt. We experimented with
both cases in which ct is level stationary and stationary around a deterministic linear
trend with a slope change, but it the sequel we are going to report only the second case,
which produces better in sample fit and out of sample forecasts.

Next, we focus our attention on three constrained versions of the model (13)-(9), which
impose additional restrictions on the trend component; the first features RW trends with
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constant drifts (Σζ = 0), the second specifies the trend as an integrated random walk
(IRW), which amounts to setting Ση = 0; the third is the damped slope model (DSlope),
according to which the trends in ft, prt, and CURt are specified as:

µit = µi,t−1 + mi + βi,t−1

βit = φiβi,t−1 + ζit,
(14)

where mi is a constant, the damped slope parameter, φi, is specific to each series, and
the ζit’s are NID disturbances that may be contemporaneously cross correlated across the
series. The advantage of having different AR coefficients lies in the possibility of having
different impulse responses to trend disturbances.

Apart from the DSlope specification, the appealing feature of the SUTSE trend-cycle
decomposition is model invariance under contemporaneous aggregation, which means that
output has the same univariate time series representation as in (8).

We now highlight a few estimation results; full results and parameter estimates are
available from the authors. The best fit to the data is provided by the DSlope model,
according to the diagnostics presented in table 4. The normality statistics are never
significant for all the three specifications and are not presented; also, the coefficients
associated to OGt in the inflation equation are significant (for instance, in the IRW case
θ̃π0 = 0.21 and θ̃π1 = −0.16) and long run neutrality is rejected for all the specification.
Similar considerations hold for the effects of the exogenous supply shocks.

It can be noticed that all the SUTSE models fail to account for the cyclical dynamics
in ct, as pointed out quite clearly by the Ljung-Box statistic. Moreover, the RW specifica-
tion is seriously misspecified as far as CURt is concerned. The standardised Kalman filter
innovations corresponding to CURt display positive and slowly declining autocorrelations
and the Ljung-Box statistic calculated on the first eight autocorrelations is 93.91. The
likely reason is that the orthogonal RW trend plus cycle decomposition imposes that the
spectral density of ∆CURt is a minimum at the zero frequency, and, viewed from the fre-
quency domain perspective, the model seriously underestimates the variance components
around that frequency. Moreover, as we shall see later, the RW is characterised by a very
poor forecasting performance.

For the IRW specification the cycles have a period of about six years (λ̃c = 0.25) and
ρ̃ = 0.93. This is noticeably shorter than that estimated from the bivariate models in
section 7. Some interesting estimation results are revealed by the spectral decomposition
of the covariance matrices Σ̃ζ and Σ̃κ. For the former we have

Eigenvalues of 107 × Σ̃ζ 4.61 0.47 0.00 0.00
% of Total Variation 90.81 9.19 0.00 0.00

Eigenvectors
ft 0.01 1.00 0.05 0.00
prt 0.58 0.03 -0.81 0.00
CURt -0.81 0.04 -0.58 0.00
ct 0.00 0.00 0.00 1.00

which suggests the presence of only two sources of slope variation, the most relevant being
associated with prt and CURt and making them varying in opposite directions; the second,
orthogonal to the first and characterised by a much smaller size, affects only ft.
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As for the cyclical disturbances, the spectral decomposition of their covariance matrix
resulted:

Eigenvalues of 107 × Σ̃κ 554.91 43.23 15.02 5.52
% of Total Variation 89.69 6.99 2.43 0.89

Eigenvectors
ft 0.34 -0.91 -0.23 -0.00
prt -0.00 0.23 -0.91 -0.34
CURt -0.06 0.06 -0.34 0.94
ct 0.94 0.33 0.06 0.06

Hence, there is one source of cyclical variation that absorbs about 90% and can be identi-
fied with the cycle in ct; this enters ft with a positive loading and CURt with a negative,
although very small loading; the second source is less easily interpretable.

The DSlope specification gives results that are indistinguishable from IRW as far as
the estimation of OGt and POt are concerned; however, it is consistent with the single
unit root hypothesis for ft, prt and CURt; it is also noticeable that the autoregressive
parameter estimated for the slope in ft is not significantly different from zero, whereas
those for prt and CURt are positive and high (0.9 for both). The spectral decompositions
of the covariance matrices of the trend and cycle disturbances is analogous to that for IRW,
pointing out only two sources of trend variation and a major source of cyclical variation
accounting for 93% of total variation.

The smoothed components, along with the OG and POt estimates arising from the RW
and IRW specifications are shown in the figures 4 and 5, respectively. While the cycle in
ft is very similar, that in prt and CURt is much more variable in the RW case, whereas for
IRW case most movements in the two variables are permanent. This is so since the latter
allows the trend to move more rapidly and with greater persistence. Consequently, the
OG has smaller amplitude and the labour makes a larger contribution to potential output
growth.

8.2 Common Cycle Specification

The multivariate SUTSE models lended some support for the presence of a common
cycle that is driven by capacity; as a matter of fact, capacity utilisation is one of the
determinants of the series ft, along with hours worked and total factor productivity.
Consequently, we expect that a substantial part of its cyclical variation is common to
that in ct, which represent a survey based measure of capacity utilisation. Taking the
cycle in capacity as the reference cycle, we write

ct = m(t) + ψt,

where m(t) is a deterministic trend with a slope change in 1975.1, and

ψt = φ1ψt−1 + φ2ψt−2 + κt, κt ∼ NID(0, σ2
κ), (15)

acts as the common cycle; this has a second order autoregressive representation; for
estimation purposes we impose complex stationary roots expressing φ1 = 2ρ cosλc and
φ2 = −ρ2, where ρ and λc (representing the modulus and the phase of the roots of the
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characteristic equation), lie respectively in [0, 1) and [0, π]. This representation is similar
to the model for the stochastic cycle formulated in (8), but differs in that it is devoid of
the MA feature which characterises the latter, as can be deduced from the reduced form.
As a consequence (15) defines a slightly smoother cycle when λc is less than π/2. Its
typical spectral shape is plotted in the right panel of figure 7.

The transitory components in ft, prt and CURt are expressed as a linear combination
of the current and the lagged value of ψt:

ψit = θi(L)ψt, θi(L) = θi0 + θi1L,

where i = 1, 2, 3, indexes the three variables. Notice that OGt = ψ1t + αψ2t − αψ3t yields
again an ARMA(2,1) process, as in (8) and (13), with the difference that now the MA
polynomial is unrestricted.

A second cycle, orthogonal to ψt, was added with the explicit intent to capture the
residual cyclical variation, but it turned out to capture a seasonal stationary cycle in CURt;
this effect can be ascribed to underadjustment of the series for the individual countries
and disappears after the major revision in the series that took place in 1992.4.

The permanent components in ft, prt and CURt were specified as IRW and as I(1)
processes with a damped slope (DSlope) trends (see equation (14)); the results are very
similar and we will mostly refer to the former.

Selected estimation results are reported in table 5. The common cycle parameters
were φ̃1 = 1.74, φ̃2 = −0.84 and σ̃2

κ = 255 × 10−7. As in the SUTSE case this defines
a cycle with a smaller period compared to that estimated by bivariate models of output
and inflation. The fit is satisfactory, especially for the DSlope specification: residual
autocorrelation is low with only one significant autocorrelation at lag 1 for ct, which is
quite remarkable for that series. Again, we do not report the normality statistics, as
they were never significant. The variables load significantly on the common cycle (with a
lagged response for prt), but yet the bulk of the dynamics in prt and CURt are permanent,
as can be seen from the plot of the smoothed components in figure 6, which refers to the
IRW trend specification. As a consequence, labour makes a large contribution to potential
output growth and affects very little the output gap, which is largely dependent on the
transitory component of ft. This was also true for the SUTSE models with IRW and
DSlope trends, but with respect to those, the uncertainty surrounding the OG and PO
estimates is much reduced, which is a simple consequence of imposing a common cycle.

The bottom line of table 5 gives the estimate of the coefficients associated to the output
gap OG in the triangle model for inflation. The usual considerations apply: the output
gap makes a significant contribution, such that the change effect is considerable and the
level effect, although significant, has little impact on the long run path of inflation.

The table also reports the autoregressive coefficients of the damped slope model (14):
this is estimated as zero for ft, so that the trend is a RW with constant drift and it is
large and positive for prt and CURt, the evidence being that trend disturbances are more
persistent for the latter.

8.3 Hysteresis

As we have seen, the dynamics in prt and CURt are largely permanent. This phenomenon
is often referred to as hysteresis, although the term is attached different meanings. For
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unemployment it is used to signify the absence of any tendency to revert to the same mean
value after a shock. Accordingly, the natural rate of unemployment is time varying and
possibly highly persistent. This does not necessarily imply that the series is not affected
by the business cycle; it might be the case that the cyclical shocks modify permanently
the long run path.

We can investigate this issue by a modification of the common cycle model, according
to which the underlying cycle enters the trend equation rather than the levels of the series:

µit = µi,t−1 + ϑi(L)ψt + m + βi,t−1, i = 1, 2, 3,
β∗it = φiβi,t−1 + ζit, ζit ∼ NID(0, σ2

ζ,i)
(16)

where again i indexes the series ft, prt and CURt. According to (16) there are two iden-
tifiable sources of trend variation, the first associated to the cycle in capacity and an
independent source, modelled as a first order autoregression (DSlope) or a random walk
(I(2)), which arises by setting φi = 1,m = 0. The ζit’s are allowed to be contemporane-
ously correlated.

If ϑi(L) is a second order lag polynomial, then it admits the following decomposition:

ϑi0 + ϑi1L + ϑi2L
2 = ϑ(1)L + ∆θi(L)

where θi(L) = θi0 +θi1L, with θi0 = ϑi0 and θi1 = ϑi0 +ϑi1, so that we can extract a cycle
in the levels by writing:

yit = µ∗it + ψit, i = 1, 2, 3
µ∗it = µ∗i,t−1 + ϑi(1)ψt−1 + m + βi,t−1,

βit = φiβi,t−1 + ζit,
ψit = θi(L)ψt.

(17)

OG and PO are still defined as a linear combination of ψit and µ∗it, respectively, but will
no longer be orthogonal, unless ϑi(1) = 0, for all i, in which case the model is equivalent
to the common cycle model of section 8.2. Hence, the test of ϑi(1) = 0 can be used to
assess the hysteresis phenomenon. Model (17) is the Jäger and Parkinson (1994) hysteresis
model.

The estimation results, reported in table 6 lead to accept the hysteresis hypothesis for
CURt, whereas the results are mixed for prt, as they depend on the specification of the
slope component. Hysteresis is clearly rejected for ft, for which an orthogonal cycle can
be extracted. The trend-cycle decomposition of the variable does not differ much from
that resulting from the common cycle models, with prt and CURt contributing little to
OGt; as a matter of fact, the estimates of the loading on ψt implied by the estimates of
the ϑi(L) polynomials are remarkably similar to those displayed in table 5: for instance,
with respect to prt (I(2) case) we have θ̃i0 = ϑ̃i0 = −0.04 and θ̃i0 = ϑ̃i0 + ϑ̃i1 = 0.09. Only
for CURt the loading is slightly bigger, since θ̃i0 = −0.11, and θ̃i0 = 0.00.

8.4 Pseudo-Integrated Cycles

We have seen that one of the major problems is eliciting cyclical variability in the labour
variables. This may be due to the fact that the cycle in those series is more persis-
tent, albeit still stationary, than that in capacity. The idea is that cyclical information
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can be propagated to other variables according to some transmission mechanism which
acts as a filter on the driving cycle; to make this assertion more precise, we present the
representation of the cycle in the i-th variable (i = 1, 2, 3) that encapsulates it:

ψit = ρi cosλiψi,t−1 + ρi sinλiψ
∗
i,t−1 + θi(L)ψt + κit, κit ∼ NID(0, σ2

κ,i)
ψ∗it = −ρi sinλiψi,t−1 + ρi cosλiψ

∗
i,t−1 + κ∗it, κ∗it ∼ NID(0, σ2

κ,i)
(18)

where ψt is the cycle in capacity utilisation (or, more generally, a coincident index of busi-
ness cycle conditions), κit and κ∗it are idiosyncratic disturbances, mutually uncorrelated
and homoscedastic, ρi is a damping factor and λi a frequency in the range (0,π).

We refer to (18) as a pseudo-integrated cycle. Model (18) encompasses several leading
cases of interest:

1. If θi(L) = 0, (18) defines a fully idiosyncratic cycle with frequency λi, damping
factor ρi and disturbance variance σ2

κ,i.

2. If ρi = 0 and σ2
κ,i = 0 the i-th cycle reduces to a model with a common cycle, that

is ψit = θi(L)ψt, as in section 8.2.

3. If ρi = ρ, λi = λc and σ2
κ = 0 the i-th cycle has the representation (1− 2ρ cosλcL +

ρ2L2)2ψit = θi(L)κt, which defines a smooth cycle with a sharper peak at λc. Harvey
and Trimbur (2002) refer to it as a second order cycle, in the context of designing
band-pass filters in an unobserved components framework.

In general, according to (18), the i-th cycle is driven by a combination of autonomous
forces and by the common cycle; their impulse is propagated via an autoregressive mech-
anism. The corresponding spectral density can be bimodal or more spread around some
frequency. The right panel of figure 8 displays the spectral density implied for the CURt

series, for which λi = 0 and ρi = 0.91, so that

(1− ρiL)ψit = θi(L)ψt + κit.

The results from fitting multivariate PFA models with pseudo-integrated cycles and
alternatively IRW and DSlope trend are reported in table 7. For the IRW specification the
cycle driving that is pseudo-integrated in the ψit’s for ft, prt and CURt is

ψt = 1.73ψt−1 − 0.83ψt−2 + κt, κt ∼ NID(0, 254× 10−7),

and implies a spectral peak at the frequency 0.31 corresponding to a period of five years
(see figure 8). The specific damping factor, ρi is similar for prt and CURt and it is
substantially lower for ft; the estimated frequencies λ̃i resulted equal to zero, and the
idiosyncratic variation is small, the exception being σ̃κ,i for ft in the IRW case. The slope
disturbances, ζit, for the labour variables are now perfectly correlated and orthogonal to
those in ft; moreover, the AR coefficients in the DSlope specification are practically equal
to one. Therefore, the trend in prt and CURt is effectively an integrated random walk.

The two specifications differ only for the trend-cycle decomposition of ft: in the DSlope
case, the trend is a random walk with constant drift, and absorbs part of the variability
that IRW assigns to the cycle.

The individual components and the corresponding OG and PO growth estimates are
plotted in figure 8, which refers to IRW. As expected, the model is capable of extracting
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more cyclical variability from the series. Correspondingly, the PO growth estimates are
smoother; higher uncertainty, resulting in wider confidence bounds, is the price we have
to pay for enhancing smoothness.

The last row of table 7 reports the estimated loadings of underlying inflation on the
output gap; their relatively small size depends on the fact that the estimated output gap
has greater amplitude, i.e. it represents a greater portion of output, than it had for the
common cycle case; the Wald test for long run neutrality resulted 18.64, which is highly
significant.

8.5 Comparison of forecast performance and discussion

Table 8 reports the mean forecast error and the root mean square error, relative to that
of the benchmark model (12), resulting from the rolling forecast experiment exposed in
section 7.2, aiming at assessing the predictive accuracy of the various models implementing
the production function approach, the target variable being the annual inflation rate.

The models under scrutiny are the three SUTSE model with different trend specifi-
cations, and the two versions of common cycle, hysteresis and pseudo-integrated cycle
models that were discussed in the previous sections.

The main evidence is that the PFA models outperform the benchmark only at very
short forecast leads; it never outperforms the Unrestricted bivariate model of output and
inflation (compare with results in table 2).

Within the PFA approach it is difficult to discriminate the predictive accuracy of the
various alternatives, apart from the fact that the SUTSE model with RW trends seems to
be characterised by a decisively worse performance in terms of root mean square error, and
this has to be ascribed to the large forecasting biases which affect it. Moreover, specifying
I(2) trends improves slightly out of sample forecast accuracy, except for the hysteresis
case. While it is quite plausible that the SUTSE, Common Cycle and Hysteresis models
should perform similarly, as they imply similar OG estimates, drawing little information
on labour, it is noticeable that the pseudo-integrated model gives similar results.

In conclusion, the assessment of predictive accuracy leaves us uncertain as to the best
characterisation of key macroeconomic concepts such as potential output and the output
gap. In the next section we discuss how the uncertainty issue can be dealt with using
unobserved components methods.

Although the PFA approach cannot outperform a simple bivariate model of output
and inflation it reduces substantially the uncertainty in the estimates of the output gap
and enables the breakdown of potential output growth into the three determinants: the
Solow’s residual, capital and labour (growth accounting); figure 9 shows the contribution
of the three factors for the common cycle and the pseudo-integrated cycle models with
IRW trends, highlighting the differences between the two. One piece of evidence that is
robust is that the increase in PO growth in the last decade has to be ascribed to labour,
whereas the decline in the 70ies and the 80ies is due to decreasing rates of capital and
productivity growth.

The relatively poor performance of the PFA approach could be ascribed to two factors:
the first is the restrictive nature of the assumptions about technology: the approach is
based on a specific production function with constant returns to scale, that is however
amenable to statistical treatment, and we assumed that the elasticity of output with
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respect to labour was constant and equal to labour’s output share. We leave to future
research the issue of investigating alternative functional forms (at the cost of making the
model nonlinear) and estimating core technology parameters. The second can be discerned
from the plot of the estimates of OGt implied by PFA models: we have already stressed that
they are characterised by a much smaller period with respect to that implied by bivariate
models of output and inflation and, as a matter of fact, during the test period, starting
from 1995.1, the PFA estimates display three full cycles of comparable amplitude, of
which only the last (around the turn of the century) corresponded to effective inflationary
pressures. In conclusion, the PFA OGt estimates overemphasise the inflationary pressures
in 1994-1999, which is a period of deflation, as can be seen from the last panel of figure 3.

9 Reliability of Potential and Output Gap esti-

mates

In an unobserved components framework, smoothing algorithms provide the standard
error of POt and OGt, thereby allowing a direct assessment of their uncertainty. Under-
standably, there is great concern over this point for policy matters, and below we argue
that unobserved components methods can trace some crucial aspects of the uncertainty.

Orphanides and van Norden (1999) and Cambda-Mendez and Rodriguez-Palanzuela
(2001) propose the following taxonomy of the possible sources of uncertainty in estimating
latent variables, such as the output gap:

1. data revision

2. model uncertainty

3. parameter uncertainty

4. final estimation error

5. statistical revision

The first source deals with the uncertainty arising from revisions in the raw data due
to accrual of more information (this is thoroughly investigated in Orphanides and van
Norden, 1999), revision in quarterly estimates of national accounts due to distribution of
annual figures, seasonal adjustment and other infinite impulse response filters, changes in
the definition of macroeconomic aggregates.

The previous sections testify the kind of model uncertainty that the investigator faces
when estimating key macroeconomic latent variables: model assessment can be based on
the ability to forecast inflation, which however is one of the uses of the model; out of
sample forecasting performance is indeed a good test that is consistent with the notion
of the output gap as a measure of inflationary pressure. Nevertheless, the production
function approach reduces the uncertainty of the estimates and yields as a by product the
contribution of labour, capital and total factor productivity to potential output growth.

The uncertainty remains even if we restrict our domain to the models implementing
the PFA: the common cycle model, that is such that labour makes most of its contribution
to potential output, and the pseudo-integrated cycle model, according to which labour
contributes more substantially to the output gap, are virtually indistinguishable on the
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basis of their goodness of fit and forecasting performance. A smoothness prior on potential
output growth might be advocated to select the latter, but what if we do not want to
impose it?

As in forecasting, the uncertainty can be reduced by combining the estimates: the
optimal weights can be straightforwardly obtained if one knew the covariance matrix of
the estimates arising from different models, but this is of course not directly available, since
the models are estimated independently. For this purpose we make the following proposal:
suppose that ÕGjt = E(OGt|FT ,Mj) denotes the smoothed estimate of the output gap at
time t produced by model j (Mj); for each model j and each t, the algorithm known as
the simulation smoother (De Jong and Shepard, 1994) enables to draw repeated sample
from the distribution of OGjt conditional on the available series and Mj ; let us denote the

draws by ÕG
(k)
jt , k = 1, . . . , K. The replications can be used to estimate the covariance

matrix of the estimates arising from the different models, say V t, with (j, l) element:

vjl,t =
1
K

K∑

k=1

(
ÕG

(k)
jt − ÕGjt

) (
ÕG

(k)
lt − ÕGlt

)
.

The set of weights, summing up to one, that are used to produce the the combined estimate∑
j wjtÕGjt with minimal variance can be easily shown to be equal to:

wt =
1

i′V −1
t i

V −1
t i, (w′i = 1),

where i denotes a vector of ones.
The remaining sources can also be thoroughly assessed within the state space method-

ology. For an unobserved component the Kalman filter and smoother deliver the minimum
mean square linear estimate conditional on the available sample and the maximum likeli-
hood estimate of the parameters of the model, say θ̃; the latter is such that asymptotically
θ̃ ∼ N(θ, V θ), where V θ is the covariance matrix of the ML estimates.

Given a signal in macroeconomics, ςt, the fixed interval smoother thus provides E(ςt|FT , θ̃),
Var(ςt|FT , θ̃). We can account for parameter uncertainty by looking at the posterior mo-
ments of the signal unconditional on θ̃:

E(ςt|FT ) = Eθ̃[E(ςt|FT , θ̃)], Var(ςt|FT ) = Varθ̃[E(ςt|FT , θ̃)] + Eθ̃[Var(ςt|FT , θ̃)],

where the subscript stresses that the moments on the right hand side are evaluated
with respect to the distribution of θ̃. The unconditional moments can by evaluated
by stochastic simulation techniques, drawing a large number of independent samples
θ̃

(k) ∼ N(θ̃,V θ), k = 1, . . . ,K, and using the fixed interval smoother to evaluate the
moments of the signal conditional on the draws.

Our experience is that this source of uncertainty is overstated, to a certain extent.
For instance for the PFA model with common cycle and damped slopes of section 8.2 the
standard error of the OGt estimates around the middle of the sample conditional on the
maximum likelihood estimates is 0.0036, whereas the unconditional one (estimated on the
basis of 5000 replications) is 0.0039.

Finally, a thorough assessment of the role of revisions can be made in the state space
framework using a fixed point smoother (see De Jong, 1991). This could be used to
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establish, for instance, the percentage reduction in the estimation error variance due to
the accrual of additional information. A general rule is that smoother signals are prone to
higher revisions, and this suggests that the standard errors of the estimates will provide a
preliminary assessment of their relative importance. Smoothness of the signal is usually
at odds with its reliability, unfortunately, and this has to be brought in mind when
imposing smoothness priors on the components. Nevertheless, given the structure the
measurement model, the availability of future observations reduces the estimation error;
hence, in the absence of structural breaks, statistical revisions are sound and a fact of life,
i.e. a natural consequence of optimal signal extraction. However, the reliability of the
signal can be increased at the end of the sample if the observed series is extended with
forecasts that are more informative than the model’s forecasts.

10 Conclusions

This paper evaluated a system-based unobserved components model for estimating po-
tential output and the output gap for the Euro Area. As a benchmark we estimated two
types of unoserved components models that feature prominently in the literature. These
were a univariate decomposition of output into a trend and a cyclical component, and a
bivariate model of output and inflation where the two variables are linked via the output
gap. Against these benchmarks we fitted and validated multivariate unobserved compo-
nents models explicitly based on the production function approach. More specifically, we
estimated systems of five time series equations, namely for total factor productivity, the
labour force participation rate, the employment rate, capacity utilisation and the con-
sumer price index. The first four equations define the output gap, conditional on the
price equation which relates the output gap to underlying inflation according to a variant
of Gordon’s triangle model.

For both the benchmark models and the system-based multivariate models we tested
several specifications, encompassing a wide range of economic interpretation, by imposing
restrictions on the model parameters and by imposing priors on the cyclical and trend
components. In a number of cases we found it difficult to discriminate between the
different specifications solely on the basis of fit and estimation results. As a performance
indicator we therefore used the accuracy of the specifications in predicting inflation in a
rolling forecasting experiment. In addition, we looked at the uncertainty bands of the
estimates as a selection criterion.

Our findings are the following. Judging from the root mean square errors, the predic-
tive accuracy does not vary much between the individual specifications of the production-
function based model and can thus give not much guidance in selecting the best repre-
sentation of trend (potential output) and cycle (output gap) within the system approach.
At the same time, starting from a system of seemingly unrelated equations, this allowed
for incorporating restrictions that correspond to some of our economic priors without a
loss in forecasting accuracy. One such prior was the hypothesis of a common cycle driven
by capacity utilisation in the cyclically sensitive manufacturing sector, an additional one
was the hysteresis hypothesis according to which cyclical shocks may have a permanent
impact on the trends. The latter was found to be relevant for the labour market vari-
ables for which the bulk of the dynamics proved to be permanent. While not increasing
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forecasting accuracy, these restrictions tended to reduce the uncertainty surrounding the
potential output and output gap estimates. Given the problem that the different specifica-
tions tended to extract too little cyclical variability from, in particular, the labour market
variables we also tested a model specifications with pseudo-integrated cycles that proved
quite effective in enhancing the smoothness in potential output. The results from the
pseudo-integrated cycle specification were virtually indistinguishable from the common
cycle and hysteresis specifications in terms of goodness of fit and forecasting performance
and also generated a relatively smooth potential output series. Such smoothness would be
in line with the view that potential output growth represents the longer-term growth path
of the economy and is not expected to vary much between individual years, but the cost of
achieving this was a wider confidence bands around the estimates. In policy applications
this would imply a trade-off between possibly more plausible economic results and higher
uncertainty.

Compared with the benchmark models we found that the production-function based
model can compete with bivariate models of output and inflation only at a forecast lead
of one quarter, but performed increasingly worse once the forecast horizon started to
exceed one quarter. The unrestricted bivariate model of output and inflation always
outperformed the production function-based model. Finally, for horizons beyond two
years the bivariate models do not outperform a univariate model for the consumer price
index. In turn, the production function-based models implied lower uncertainty for the
estimates of the output gap.

Overall, the results confirm the economically trivial but statistically not always straight-
forward perception that more information reduces estimation uncertainty. In this respect
the bivariate models outperform univariate models and the production function based
models outperform the bivariate models. At the same time, forecasting accuracy speaks
in favour of the bivariate models. This shows that in applying these models, users such as
policy makers are faced with the trade off between higher forecast accuracy and lower un-
certainty. Overlaying this is a second trade-off, namely that between achieving estimates
of smoother potential output growth and incurring higher uncertainty surrounding these
estimates.

For policy makers, the production function based model has the advantage of being
grounded on economic theory and - due to the relative richness of included variables - of
facilitating the interpretation of perceived developments in potential output and output
gaps. This is all the more the case as it generates as a by-product estimates of a struc-
tural rate of unemployment and a measures of underlying inflation, both of which can
be assessed in terms of their economic plausibility. One way of remedying the relative
deficiencies of the production function model in terms of forecasting accuracy would be to
combine it with the estimates of the more successful models, using optimal weights, but
this is an area that we leave for future research.
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Appendix: Description of the data set

The database is quarterly, with the sample extending from the first quarter of 1970 to the
fourth quarter of 2001. As far as possible Euro area wide data were taken from official
sources such as Eurostat or the European Commission. Historical data for euro area-wide
aggregates were largely taken from the Area-Wide Model (AWM) database (see Fagan,
Henry and Mestre, 2001, for more details on the compilation of these data, spanning the
period from 1970.1 to 1998.4 for most series).

For some series, aggregates were compiled from data for the individual euro area
countries using various sources, mainly the databases from the BIS, the European Com-
mission and the OECD. Where a single source did not provide country data back to the
first quarter of 1970, series from different sources were joined after having been re-based
to a common base period. Moreover, where information was only available at an annual
frequency (such as for working-age population), data were converted into quarterly data
by means of an interpolation filter. Overall, therefore, the degree of harmonisation of the
Euro area-wide data tends to be lower for the earlier parts of the sample than for the later
periods.

Gross Domestic product at constant prices Seasonally adjusted. Eurostat data
from 1991.1 and own compilations for previous years.

Capital stock at constant prices Constructed from Euro area wide data on sea-
sonally adjusted fixed capital formation by means of the perpetual inventory method.
Data on fixed capital formation are Eurostat data from 1991 Q1 and own compilations
for previous years. Data on capital retirement constructed on the basis of a retirement-
to-capital ratio that gradually increases from 1.7% to 2.4% over the course of the sample.
Initial capital stock reflects an investment-to-capital ratio of 7.2% at the beginning of
1970.

Employment and Unemployment Seasonally adjusted. Eurostat data from 1991.1
and AWM data for previous years.

Solow’s Residual Calculated as a residual from growth accounting - real GDP minus
a weighted average of the contributions from capital and employment, based on the calcu-
lation of the average labour GDP share. The latter (denoted α in main text) is calculated
as compensation per employee times total employment over nominal GDP, averaged over
the sample period.

Employment rate Seasonally adjusted. Eurostat data from 1993 Q1 and AWM data
for previous years.

Working age population aged 14-65 years. Euro area wide annual data from the
European Commission AMECO database interpolated to quarterly data.
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Participation rate Calculated as the ratio of the labour force over the working age
population. The labour force is calculated from data on employment and unemployment.

Capacity Utilisation Seasonally adjusted rate of capacity utilisation in manufac-
turing. European Commission data from 1980.1 and own compilations (GDP-weighted
average of available national indices) for previous years. The coverage of country data in
the first half of the 1970s is somewhat less than 70% of the Euro area.

Consumer price index Not seasonally adjusted. Eurostat data from 1991.1 and own
compilations for previous years.

Nominal effective exchange rate of the Euro Eurostat data from 1991.1 and
own compilations for previous years.

Commodity price index (including oil) Eurostat data from 1991.1 and own
compilations for previous years.
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Figure 1: Plot of the time series used for the implementation of the Production Function
Approach.

Table 1: Parameter estimates and diagnostics for UC models of quarterly Euro Area GDP,
1970.1-2001.4. Variance parameters are multiplied by 107; (r) denotes a restricted parameter.

Model 1 Model 2 Model 3 Model 4 Model 5
Unrestricted σ2

ζ = 0 σ2
η = 0 σ2

η = σ2
ε = 0 HP

σ2
η 257.19 125.10 0 (r) 0 (r) 0 (r)

σ2
ζ 10.81 0 (r) 20.63 15.93 0.98

σ2
κ 6.88 208.70 91.87 191.46 1570.10
ρ 0.99 0.98 0.91 0.86 0 (r)

2π/λc 12.16 51.20 13.01 15.98 0 (r)
σ2

ε 0.00 0.00 43.52 0 (r) 0 (r)
loglik 645.08 639.88 644.01 643.11 534.86
Q(8) 2.27 20.15 1.62 3.42 250.43

Normality 11.01 9.93 10.97 12.80 38.36
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Figure 2: Univariate estimates of the output gap, ψ̃t|T , and of potential output growth, ∆µ̃t|T .
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Figure 3: Bivariate estimates of potential output (P̃Ot|T = µ̃t|T ), potential output growth

(400×∆µ̃t|T ), the output gap (ψ̃t|T ), and underlying inflation, (400× π̃∗t|T ), with 95% confidence
intervals.
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Figure 4: Multivariate Sutse model with RW trends. Smoothed components for the series and
estimates of OGt and potential output growth (with 95% confidence bounds).
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Figure 5: Multivariate Sutse model with IRW trends. Smoothed components for the series and
estimates of OGt and potential output growth (with 95% confidence bounds).
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Figure 6: Multivariate Common Cycle model with IRW trends. Smoothed components for the
series and estimates of OGt and potential output growth (with 95% confidence bounds).
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Figure 7: Typical spectral density of the process ψt = φ1ψt−1 +φ2ψt−2 +κt, with φ1 = 1.73 and
φ2 = −0.83 (left panel), and spectral density of the pseudo-integrated cycle ψit = ρiψi,t−1 +
ϑi(L)ψt + κit adapted to CURt (right panel).
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Figure 8: Multivariate PFA model with IRW trends and pseudo-integrated cycles. Smoothed
components for the series and estimates of OGt and potential output growth (with 95% confi-
dence bounds).
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Figure 9: Growth accounting: decomposition of potential output growth into the contribution
of the Solow’s residual, capital and labour.
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Table 2: Parameter estimates and diagnostics for bivariate models of quarterly Euro Area log
GDP (yt) and the logarithm of the consumer price index (pt), 1970.1-2001.4. Standard errors
in parenthesis.
∗ significant at the 5% level; ∗∗ significant at the 1% level.

Unrestricted σ2
ζ = 0 Damped Slope Coincident HP

yt Equation
σ2

η 0.00 189.26 0.00 - 0(r)
σ2

ζ 0.40 0(r) 10.80 4.86 0.60
φ - - 0.84 - -
m - - 0.006 - -
σ2

κ 299.08 145.78 271.09 257.72 966.40
ρ 0.96 0.96 0.94 0.92 0(r)
2π/λc 46.26 36.44 36.18 28.84 0(r)
σ2

ε 0.00 0.00 0.00 0.08 0(r)
pt Equation

σ2
ηπ 43.06 43.12 47.09 48.72 0.00

σ2
ζπ 11.11 5.24 5.01 3.98 9.90

σ2
ω 0 0 0 0 0

δC0 0.004 0.004 0.004 0.004 0.005
s.e (0.002) (0.002) (0.003) (0.002) (0.002)
δC1 0.004 0.004 0.004 0.004 0.005
s.e (0.002) (0.002) (0.002) (0.002) (0.002)
δN0 -0.019 -0.017 -0.019 -0.017 -0.020
s.e (0.009) (0.009) (0.009) (0.009) (0.009)
δN1 -0.029 -0.027 -0.030 -0.031 -0.029
s.e (0.010) (0.009) (0.009) (0.009) (0.009)
θπ0 0.163 0.260 0.193 0.155 0.336
s.e (0.028) (0.063) (0.038) (0.034) (0.034)
θπ1 -0.146 -0.228 -0.164 -0.104 -0.267
s.e (0.028) (0.057) (0.035) (0.033) (0.032)

Wald tests of restrictions
θπ(1) = 0 7.27∗∗ 4.11∗ 6.02∗ 14.56∗∗ 10.45∗∗

δC(1) = 0 5.43∗ 5.95∗ 6.07∗ 5.97∗ 7.19∗∗

δN (1) = 0 13.83∗∗ 11.77∗∗ 15.21∗∗ 15.27∗∗ 13.95∗∗

Diagnostics and goodness of fit
loglik 994.10 990.62 1001.81 992.77 874.22
Q(8) yt 9.07 12.11 6.09 3.96 261.12
Q(8) pt 5.41 5.83 5.66 6.34 18.80
Normality yt 8.19 7.01 5.64 9.74 16.63
Normality pt 2.68 4.36 2.54 7.24 5.47
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Table 3: Univariate and bivariate models of yt and pt: comparison of forecast performance in
the test period 1995.1-2001.4.

Mean error in percentage points
Forecast lead time

Models 1 qrt 2 qrts 3 qrts 4 qrts 5 qrts 6 qrts 7 qrts 8 qrts 12 qrts

RWSD -0.01 0.05 0.01 -0.02 -0.19 -0.35 -0.63 -0.64 -1.09
Univariate -0.01 0.03 -0.01 -0.10 -0.27 -0.46 -0.68 -0.76 -1.16
Bivariate Unrestricted -0.01 0.02 -0.04 -0.14 -0.26 -0.44 -0.65 -0.71 -1.14
Bivariate σ2

ζ = 0 -0.01 0.02 -0.06 -0.19 -0.38 -0.63 -0.95 -1.09 -1.94
Biv. Damped Slope -0.00 0.04 -0.00 -0.11 -0.27 -0.49 -0.75 -0.87 -1.52
Biv. Coincident -0.05 -0.07 -0.20 -0.41 -0.65 -0.94 -1.25 -1.40 -2.13
Biv. HP -0.06 -0.04 -0.11 -0.26 -0.41 -0.62 -0.84 -0.94 -1.39

Relative root mean square error
Forecast lead time

Models 1 qrt 2 qrts 3 qrts 4 qrts 5 qrts 6 qrts 7 qrts 8 qrts 12 qrts

RWSD 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Univariate 0.90 0.82 0.81 0.80 0.80 0.78 0.84 0.89 1.01
Bivariate Unrestricted 0.83 0.69 0.62 0.60 0.70 0.75 0.88 0.90 1.02
Bivariate σ2

ζ = 0 0.84 0.71 0.66 0.67 0.82 0.92 1.13 1.24 1.70
Biv. Damped Slope 0.83 0.70 0.65 0.63 0.74 0.80 0.96 1.03 1.34
Biv. Coincident 0.90 0.81 0.85 0.91 1.08 1.17 1.41 1.54 1.87
Biv. HP 0.84 0.80 0.81 0.80 0.86 0.86 0.98 1.06 1.21
Root MSE RWSD 0.02 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.03

Table 4: Likelihood and Ljung-Box statistics for multivariate SUTSE models
RW IRW DSlope

Log Likelihood
2702.11 2749.71 2778.23

Ljung-Box Statistic, Q(8)
ft 22.42 14.29 12.99
prt 16.00 9.14 8.78
CURt 93.91 17.62 16.21
ct 153.79 101.34 97.63
lnCPI 7.41 8.05 7.46
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Table 5: Parameter estimates and diagnostics for multivariate common cycle models
IRW DSlope

Log Lik. 2805.77 2833.20
θ̃i0 θ̃i1 Q(8) θ̃i0 θ̃i1 Slope Q(8)

ft 0.50∗ -0.20∗ 16.43 0.49∗ -0.19∗ 0.00 10.96
prt -0.04 0.07∗ 9.92 -0.04 0.07∗ 0.76∗ 3.67
CURt -0.06∗ -0.03 13.62 -0.06∗ -0.03 0.88∗ 12.68
ct 1 - 15.06 1 - - 15.32
pt 0.19∗ -0.14∗ 5.12 0.19∗ -0.14∗ - 5.16

Table 6: Parameter estimates and diagnostics for multivariate hysteresis models
I(2) DSlope

Log Lik. 2780.71 2820.69
ϑ̃i0 ϑ̃i1 ϑ̃i2 ϑ̃i(1) Q(8) ϑ̃i0 ϑ̃i1 ϑ̃i2 ϑ̃i(1) Slope Q(8)

ft 0.55∗ -0.79∗ 0.25∗ 0.01 17.24 0.55∗ -0.79∗ 0.26∗ 0.02 0.00 11.22
prt -0.04 0.13∗ -0.08∗ 0.01 23.33 -0.02 0.11∗ -0.07∗ 0.02∗ 0.27∗ 10.09
CURt -0.11∗ 0.11∗ -0.03∗ -0.03∗ 15.39 -0.10∗ 0.10∗ -0.02∗ -0.02∗ 0.90∗ 15.06
ct 1 - - - 15.10 1 - - - - 15.32
pt 0.16∗ -0.12∗ - - 6.75 0.16∗ -0.12∗ - - - 5.16

Table 7: Parameter estimates and diagnostics for multivariate PFA models with pseudo-
integrated cycles

IRW DSlope

Log Lik. 2816.79 2828.23
θ̃i0 θ̃i1 ρ̃i σ̃κ,i Q(8) θ̃i0 θ̃i1 ρ̃i σ̃κ,i Slope Q(8)

ft 0.42∗ -0.23∗ 0.34∗ 134 5.60 0.44∗ -0.21∗ 0.21∗ 0 0.00 9.77
prt 0.02∗ 0.01∗ 0.89∗ 7 10.42 0.01 0.01∗ 0.90∗ 0 0.99∗ 9.98
CURt -0.08∗ 0.04∗ 0.91∗ 7 12.12 -0.08∗ 0.04∗ 0.92∗ 8 0.98∗ 13.09
ct 1 - - - 15.10 1 - - - - 16.36
pt 0.04∗ -0.02∗ - - 6.75 0.04∗ -0.03∗ - - - 6.64
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