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Abstract

This paper considers committees of n players that vote by

(weighted) majority on policies that are binding for all members.

The voting mechanism is implemented before the players learn

their preferred policies. I derive a formula that measures ex-ante

welfare and utility of such a committee as a function of the vote

allocation. It will be shown that the simple one-player-one-vote

rule is welfare maximizing if every player has the same weight

in the social welfare function. For the case of di®erent welfare

weights numerical examples show that it might be optimal to in-

clude player with zero welfare weights in a committee.
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1 Introduction

Most decisions on policy issues are made by voting within committees,

e.g. parliaments or councils of supranational or national institutions (as

the EU council or central bank councils). The members of a commit-

tee represent usually some constituencies which consist of agents with

heterogenous preferences. Hence the committee members will have di-

verging interests as well. Moreover, the preferences are normally only

private information. The chosen policies, however, are in general binding

for everyone. Under these constraints, the design of a committee involves

two important problems. The ¯rst one is a problem of representation:

How should the members of a committee be elected. The second one,

which will be the focus of this paper, is the problem of mechanism design

within a committee: Under which rules should decisions be made? This

paper provides a welfare analysis of di®erent voting mechanisms available

for committees. Moreover, it derives conditions for the optimal design of

a committee.

In this paper I introduce a framework that uses an abstract formula-

tion of preferred policies which still delivers an explicit and simple welfare

analysis of voting in committees. Preferred policies are modelled as ran-

dom variables and the utility derived from a common policy is modelled

assuming a quadratic loss function. Modelling preferred policies as ran-

dom variables is a fruitful approach especially for an analysis focussing

on the constitutional stage in which the committee is introduced. There

a certain voting rule is implemented behind a veil of ignorance, i.e. be-

fore the preferences are known. Moreover, it is an appropriate technique

to study committees that vote every period over one policy and where

the interests of the di®erent players are determined (or at least strongly

in°uenced) by exogenous stochastic variables. An important example

is the determination of monetary policy as in the Council of the future

European Central Bank [see Brueckner (1997)]. The tool for comparing

di®erent committees in this framework is the expected value of an ad-

ditive social welfare function (SWF). I compare the results with other

simple non-voting mechanisms and with the outcome of a joint optimal

1



decision. The latter is shown to be unfeasible in this model.

The main advantage of the approach adopted in this paper is that

it directly measures expected utility of the players and social welfare as

a function of the voting mechanism. Hence di®erent mechanisms can

easily be ranked according to their welfare e®ects. Since the assumptions

needed for the results are fairly standard in economic analysis, this ap-

proach can be seen as an improvement on standard methods even if it is

more limited in its scope. The most common traditional analytical tools

for an analysis of voting in committees are power indices (PI)1, spatial

voting models2 and, more general, the theory of voting as part of the

social choice literature3. One main drawback of PI is that they measure

the in°uence on decisions and not the utility derived from the decisions.

Hence they are especially insu±cient for a welfare analysis when there

is voting over common policies. Spatial voting models analyze decisions

when preferences of the players are given and are hence not suitable if

one is interested in committees that work in a stochastic environment.

Moreover, as in social choice theory in general the focus is more on the

equilibrium decisions and less on their welfare e®ects, which is partly

due to the fact that this literature works primarily only with ordinal

preference relations.

The remainder of the paper is as follows. Section 2 presents the

general model of the preferences. For this environment the joint optimal

decision is characterized and it is illustrated why this decision is not

feasible. Two simple decision mechanisms (dictator mechanism and a

¯xed policy mechanism) are presented as benchmark cases. In section 3

a speci¯c voting mechanism is introduced. Due to the restriction on the

domain of preferences in this paper, this mechanism leads to the standard

median voter result for equilibrium policies. In section 4 I analyze how

expected social welfare depends on the vote allocation in the committee.

I develop a formula for the general case where the voting weights can

be di®erent across players. Moreover, I illustrate as well why PI are

1See Stra±n (1995) for a survey.
2See e.g. Enelow and Hinich (1984)
3See especially Miller (1995) and Moulin (1995).
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insu±cient for a welfare analysis of this type. Section 5 characterizes the

welfare maximizing vote allocation for di®erent SWF. I will show that if

every player has the same weight in the SWF, the vote allocation that

maximizes expected welfare is one where every player has one vote. In

the sequel I provide a complete analysis for small committees (up to 5

members) and an example for a large voting body. Hereby I illustrate

how an optimal vote allocation can be derived as well in the case where

the players have di®erent weights in the SWF. By example I show that

it might be welfare improving to include players in the committee who

have no weight in the SWF. Section 6 concludes the paper.

2 The Model

The committee consists of n-players that decide jointly on a one-dimensional

policy x 2 X ½ <. This policy is binding for every player. The deci-

sion of forming the committee is taken as exogenously given. Hence it is

implicitly assumed that the bene¯ts of deciding jointly on a policy are

(ex-ante) higher compared to the case of separate decisions.

The preferences of the members i 2 N over this policy are assumed

to be independently uniformly distributed random variables. Formally,

they are given by

xi » U [0; 1] 8i (A1)

E (xi xj) = E (xi)E (xj) 8j 6= i;

This assumption implies that all members are ex-ante identical with re-

spect to their preferred policies. Moreover it says that the preferences

are independent across players. The assumption of uniformity eases the

analysis considerably. The restriction of the distribution on the interval

[0; 1] is, however, without any loss of generality. In general the approach

in this paper can be extended to other distribution functions, that might

even di®er between players and be correlated. The advantage of the cho-

sen form is that it highlights the main welfare mechanisms of the voting

procedure and gives clear cut, easily understandable solutions.
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The time structure of the model is as follows. In period 0 the

distribution of the preferences of all players are common knowledge. The

decision mechanism is implemented in this period 0. In the following

period every player learns his own preference xi, which is assumed to be

private information. The players can communicate with each other, but

there is no mechanism that can enforce any kind of sidepayments. Then

the committee decides according to the chosen mechanism on the policy

x:

The ex-post utility of a player i 2 N is given by

Ui = ¡ (xi ¡ x)2 (A2)

This is a standard quadratic loss function, the utility loss increases more

than proportional in the distance between the own preferred policy and

the jointly chosen policy.4 In period 0, i.e. when the decision mechanism

is implemented, expected utility of a player is given by

E (Ui) = E
¡
¡ (xi ¡ x)2

¢
= ¡E

¡
x2i + x2 ¡ 2xix

¢
: (1)

It is easy to show that under (A2) the preferences xi can be normalized

on any interval without loss of generality as long as x is normalized in

the same way.

In the following I will consider additive social welfare functions

(SWF). In the general case the players might have di®erent weights in

the SWF. Ex-post welfare is then given as

W =
X
i2N

°iUi =
X
i2N

¡°i (xi ¡ x)2 ;
X
i2N

°i = 1; °1 ¸ °2 ¸ ::: ¸ °n ¸ 0:

(A3)

Expected welfare in period 0 is

E (W ) =
X
i2N

°iE
¡
¡ (xi;t ¡ xt)

2
¢
= ¡

X
i2N

°iE
¡
x2i + x2 ¡ 2xix

¢
(2)

4Some results in this paper depend quite crucial on this assumption. I belief that

a function with increasing marginal losses is more realistic than one with constant

marginal losses.
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The normalization of the welfare weights °i and the ordering of the play-

ers is made just for convenience. The most simple and standard case is

the one of an equally weighted SWF, i.e. °i =
1

n
8i. But for committees

as in the European Union it is reasonable to allow for di®erent weights in

order to incorporate the di®erent size of European countries. The SWF's

considered in this paper have the feature that only the committee mem-

bers and no constituencies choosing the members are taken into account.

This can be justi¯ed by assuming that members of the committee pursue

solely the homogenous interests of the people that choose them. Another

justi¯cation might be that the welfare e®ects of the selection mechanisms

are not part of the welfare e®ects of the committee decisions. This re-

striction is more natural if one considers the formation of supranational

institutions as the EU than if one considers the welfare e®ects of decisions

made in national parliaments.

As a benchmark case, consider ¯rst the solution for a social planner

whose only constraint is that the decisions are binding for every player.

Maximizing (A3) with respect to x shows that the joint optimal decision

x¤ equals the weighted mean, where the weights are the those of the

SWF. Formally,

x¤ =
X
i2N

°ixi (3)

Expected welfare in period 0 is given by the following lemma:

Lemma 1 The expected welfare of the joint optimal decision is

E (W ) = ¡
1

12

Ã
1¡

X
i

°2
i

!

Proof. Consider a new normalization of the preferences such that the

expected value of the preferred policy is equal to zero. Formally, x0
i
=

xi¡
1

2
8i. Note that this renormalization does not change the values of

the utility functions. We get

E
¡
x02
i

¢
=

Z 1

2

¡
1

2

x2dx =
1

12
(4)
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E
¡
x0
ix

0
j

¢
= E (x0

i)E
¡
x0
j

¢
= 0 8j 6= i (5)

E
¡
x02

¢
= E

µ³X
°ix

0
i

´2¶
= E

ÃX
i

°2i x
02
i +

X
i

X
j 6=i

°i°jx
0
ix

0
j

!

=
X
i

°2iE
¡
x02
i

¢
=

1

12

X
i

°2i (6)

E (x0
ix

0) = E

Ã
x0
i

X
i2N

°ix
0
i

!
= E

Ã
°ix

02
i +

X
j 6=i

°jx
0
ix

0
j

!
=

°i
12

(7)

From this it follows that

E (W ) = ¡
X
i2N

°iE
¡
x02
i + x02 ¡ 2x0

ix
0
¢

E (W ) = ¡
X
i2N

°i
1

12

Ã
1 +

X
i

°2i ¡ 2°i

!
= ¡

1

12

Ã
1¡

X
i

°2i

!

However, it is important to note that this solution is not feasible

in the model because we have private information about the preferences

and no enforceable contracts for sidepayment mechanisms. Since prefer-

ences are single-peaked, we can apply the standard result that the only

mechanisms that are strategy-proof (i.e. revealing the true preferences

is a dominant strategy) and respect voter sovereignty (i.e. no alternative

is a-priori excluded) are median voter schemes.5 Since the main focus of

this paper is the e±ciency of decision mechanisms, it is worth to investi-

gate brie°y (non voting) mechanisms that violate voter sovereignty.

The ¯rst one is the dictator mechanism. With this mechanism one

player chooses the policy regardless of the realized preferences of the

other players. It is obvious, that from the standpoint of e±ciency the

best dictator mechanism is the one where the most important player

(here player 1) decides, i.e. xd = x1. The following lemma describes the

expected welfare of this mechanism.

5See e.g. Barbera et al. (1993) or Ching (1997).
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Lemma 2 The expected welfare of the optimal dictator mechanism is

E (W ) = ¡
1

6
(1¡ °1)

Proof. Consider the same renormalization of preferences as in the proof

of lemma 1. Then

E (W ) = ¡

Ã
°1 ¢ 0 +

nX
i=2

°i
¡
E
¡
x02

i

¢
+ E

¡
x02

1

¢¢!
(8)

= ¡
1

6
(1¡ °1)

Note that in the case of an equally weighted SWF a random dictator

mechanism is one optimal dictator mechanism.

Another simple mechanism is a ¯xed policy mechanism, i.e. xf = x.

Obviously, the most e±cient ¯xed policy is x = E (xi) =
1

2
. In this case

the result is

Lemma 3 Expected welfare of the optimal ¯xed policy is E (W ) = ¡ 1

12
:

Proof.

E
¡
x2i
¢

=

Z
1

0

x2dx =
1

3
(9)

E (W ) = ¡
X
i2N

°iE

µ
x2i +

1

4
¡ 2xi

1

2

¶

= ¡
X
i2N

°i

µ
1

3
+

1

4
¡

1

2

¶
= ¡

1

12
(10)

Since voting is the most common decision mechanism within com-

mittees and sidepayments are excluded by assumption, I do not consider

mechanisms that might violate strategy-proofness or that rely on trans-

fers among the players. Instead I concentrate in the following on the

properties and welfare implications of di®erent voting mechanisms.
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3 The Voting Mechanism

The decision mechanism that I consider is voting among the member

with a weighted majority rule. The set of members (players) in the

committee is denoted by N . The voting game within a committee is

described by (d;w). The vector of voting weights (or simple the votes)

w =(w1; w2; :::wn) are chosen at the constitutional stage and remain ¯xed

over time. The value of d gives the decision (majority) rule, i.e. the

minimum number of votes required for a majority. A voting game is

usually characterized by its coalitional (or characteristic) function, i.e.

by a function v : 2N ! < that assigns to every coalition S µ N a value

as its worth. For a voting game (d;w) this function is given by

v (S) =

8<
:

1 if wS =
P
i2S

wi ¸ d

0 if wS =
P
i2S

wi < d
: (11)

The number of players in a coalition is denoted by s = jSj. A coalition

is called a minimum winning coalition (MWC) if there exist at least one

player whose exit would turn the coalition from a winning into a loosing

coalition. Formally6,

S is a MWC i® (v (S) = 1) ^ (9i j v (Sni) = 0) : (12)

In addition I make the following two assumptions

v (S) = 1 ) v (NnS) = 0 (13)

@ i j v (fig) = 1 (14)

The ¯rst assumption is a natural restriction for committees since it ex-

cludes that two distinct coalitions could implement di®erent policies at

the same time. The second one serves only for distinguishing a dictator

mechanism from a voting mechanism.7 The easiest decision rule, that will

6For simplicity I write Sni instead of Sn fig :
7In a simple voting game the condition

v (S) = 1 =) v (T ) = 1 8T ¶ S (15)

always holds. Occasionally any simple game ful¯lling (13) and (15) is called a com-

mittee, see e.g. Peleg (1984).
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play a major rule in the proceeding, is the simple majority rule without

possibility for a tie. In this case the voting game is constant-sum in its

coalitional function, i.e.

(v (S) = 1) , (v (NnS) = 0) ; or (wS ¸ d) ,
¡
wNnS < d

¢
. (16)

The voting mechanism itself is the following multi-stage game.

When the committee meets all players learned their preferences. More-

over there is a status-quo policy xq 2 X which is the policy valid until

the committee makes a ¯nal decision. There are in¯nitely many voting

rounds, indexed by ¿ . Each voting round occurs an in¯nitesimally small

cost c to every member8, which can be thought of as disutility from being

in the meeting. At the beginning of each meeting every player announces

simultaneously a policy xai that he wants to be implemented. In each vot-

ing round a randomly chosen member makes a proposal xpi . Then voting

takes place. Every player votes either 'yes' or 'no'9, formally

ai =

½
1 if 'yes'

0 if 'no'

If a majority votes 'yes', i.e.
P

aiwi ¸ d; this policy will be implemented.

If
P

aiwi < d; a new round starts and another randomly chosen player

(possibly the same) makes a proposal. This procedure continues until a

proposal can be implemented.

I ¯rst consider that d is the simple majority rule, i.e. I assume

(16) to hold. Under this condition it is straightforward to show that

the game has a unique stationary perfect equilibrium. In equilibrium

the preferred policy of the median voter is implemented without any

delay. The unique stationary perfect equilibrium is characterized by the

following proposition:

8Formally, 0 < c < " for any positive number ":

9Abstentions are regarded as 'no' votes.
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Proposition 4 Assume d is the simple majority rule. Then, in the

unique stationary perfect equilibrium every player announces his preferred

policy, every player proposes the preferred policy of the median voter (xm)

, this policy is implemented, and every player votes 'yes' if and only if a

proposal gives him a utility at least as high as in the equilibrium. Formally

xai = xi; xpi = xm 8i; x = xm

ai (x
p) =

½
1 if jxi ¡ xpj · jxi ¡ xmj

0 if jxi ¡ xpj > jxi ¡ xmj
8i:

Proof. see appendix

It should be noted that due to the single-peakedness of the pref-

erences the median voter theorem applies. Moreover, the implemented

policy does not depend on the status-quo policy xq: The introduction of

the announcement stage simply avoids time-consuming pairwise voting.

Evidently, there are possibly many variants of this voting mechanism

that ensure that the preferred policy of the median voter is the chosen

policy.

In principle, the voting procedure described above can be applied

as well to committees using a supra-majority rule. But in this case the

equilibrium depends on the status-quo policy. Moreover, it is possible

that multiple stationary perfect equilibria arise. The appendix contains

an example illustrating this point. The multiplicity results from the

fact that with a supra-majority rule the set of policies that cannot be

beaten (if players are rational) by an alternative is (generically) no longer

single-valued. To avoid this complication, I concentrate in the following

on voting games that ful¯ll condition (16).

4 Welfare and Vote Allocation

In this section I derive a formula that measures the welfare e®ects of

a committee. As mentioned above, I restrict the analysis to the case

that d is the simple majority rule. The welfare measure I use is the

expected value of the SWF in period 0; i.e. when the voting mechanism

10



is implemented. It is obvious that ex-post (i.e. after the preferences

become known) the optimal vote allocation is one that makes the player

as the median who is closest to the social optimum, i.e. in our model the

weighted mean. But state-dependent vote allocations are excluded from

the analysis for reasons of reality.

I start this analysis by regarding the expected utility of an individ-

ual player, computing expected welfare afterwards is relatively straight-

forward. We can rewrite (1) as

E (Ui) = ¡E
¡
x2
i

¢
+ E

¡
2xixm ¡ x2

m

¢
(17)

These values are functions of the distribution of the preferences and the

vote allocation, since these two together determine the distribution of

the (weighted) median.

Consider ¯rst any ordering of preferences

x(1) < x(2) < ::: < xm < x(m+1) < :::x(n);

where xm is the position of the median voter. The density function of

the median position for this given ordering is [cf e.g. Mood et al. (1974)]

fxm (x) =
n!

(m¡ 1)! (n¡m)!
[F (x)]m¡1 [1¡ F (x)]n¡m f (x)

The density function f (x) and the corresponding cumulative distribution

function are given by (A1). Hence we have

fxm (x) =
n!

(m¡ 1)! (n¡m)!
xm¡1 (1¡ x)n¡m (18)

From this we get the following three expression for the conditional ex-

pected value of xixm:

E (xixm j xi = xm) =

Z 1

0

x2fxm (x) dx

=
n!

(m¡ 1)! (n¡m)!

Z 1

0

x2xm¡1 (1¡ x)n¡m dx (19)

=
n!

(m¡ 1)! (n¡m)!

(m + 1)! (n¡m)!

(n+ 2)!

11



E (xixm j xi < xm) =

Z
1

0

Z
x

0

1

x
yxdy fxm (x) dx

=
n!

(m¡ 1)! (n¡m)!

1

2

Z
1

0

x2xm¡1 (1¡ x)n¡m dx (20)

=
n!

(m¡ 1)! (n¡m)!

1

2

(m+ 1)! (n¡m)!

(n+ 2)!

E (xixm j xi > xm) =

Z
1

0

Z
1

x

1

1¡ x
xydy fxm (x) dx

=
n!

(m¡ 1)! (n¡m)!

1

2

Z
1

0

¡
x + x2

¢
xm¡1 (1¡ x)n¡m dx (21)

=
n!

(m¡ 1)! (n¡m)!

1

2

·
(m + 1)! (n¡m)!

(n+ 2)!
+

m! (n¡m)!

(n+ 1)!

¸

I ¯rst consider the case that every player has exactly one vote and

that n is odd. In this case the position of the median is always the same,

i.e. m = n+1

2
: Thus equations (19) ; (20) and (21) simplify to

E (xixm j xi = xm) = E
¡
x2
m

¢
=

n+1

2

n+3

2

(n+ 1) (n+ 2)
=

n+ 3

4 (n+ 2)
(22)

E (xixm j xi < xm) =
n+ 3

8 (n+ 2)
(23)

E (xixm j xi > xm) =
1

2

µ
n+ 3

4 (n+ 2)
+

n+1

2

n+ 1

¶
=

n+ 3

8 (n+ 2)
+

1

4
(24)

The expected welfare of the voting mechanism where every player has

one vote is then given by the following proposition

Proposition 5 Expected social welfare of a committee ful¯lling A1,A2,A3

and (16) where every player has one vote and n is odd is

E (W ) = ¡
1

3
+

1

4

(n+ 1)2

(n+ 1)2 ¡ 1
(25)

Proof. Consider ¯rst expected utility for an individual player (17). We

have

E
¡
x2
i

¢
=

Z
1

0

x2dx =
1

3
: (26)
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For the remaining term we get

E
¡
2xixm ¡ x2

m

¢
=

8>><
>>:

E (x2
m
) = n+3

4(n+2)
if xi = xm

21
2

n+3
4(n+2)

¡ E (x2
m
) = 0 if xi < xm

21
2

³
n+3

4(n+2)
+ 1

2

´
¡ E (x2

m
) = 1

2
if xi > xm

(27)

Since every player has the same votes and all orderings are equally likely,

symmetry implies

prob (xi = xm) =
1

n
; prob (xi < xm) = prob (xi > xm) =

n¡ 1

2n
(28)

Hence we get

E (Ui) = ¡
1

3
+

1

n

n+ 3

4 (n+ 2)
+

n¡ 1

4n
= ¡

1

3
+

n+ 3 + (n¡ 1) (n+ 2)

4n (n+ 2)

= ¡
1

3
+

1

4

(n+ 1)2

(n+ 1)2 ¡ 1
(29)

E (W ) =
X

°iE (Ui) = ¡
1

3
+

1

4

(n+ 1)2

(n+ 1)2 ¡ 1

Comparing proposition 2 with the two benchmark mechanism, i.e. com-

paring (25) with (9) and (8) leads to the following two corollaries

Corollary 6 The one-player-one-vote rule gives strictly higher welfare

than the optimal ¯xed policy.

Proof.

¡
1

3
+

1

4

(n+ 1)2

(n+ 1)2 ¡ 1
> ¡

1

12

()
1

4

(n+ 1)2

(n+ 1)2 ¡ 1
>

1

4

()
(n+ 1)2

(n+ 1)2 ¡ 1
> 1

Corollary 7 The one-player-one-vote rule gives strictly higher welfare

than the optimal dictator mechanism if °1 <
3
2

(n+1)2

(n+1)2¡1
¡ 1:
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Proof.

¡
1

3
+

1

4

(n+ 1)2

(n+ 1)2 ¡ 1
> ¡

1

6
(1¡ °1)

() 1¡ °1 > 2¡
3

2

(n+ 1)2

(n+ 1)2 ¡ 1

() °1 <
3

2

(n+ 1)2

(n+ 1)2 ¡ 1
¡ 1

Now I turn to the more general case where the players might have

di®erent votes. Since there are far more permutations (n!) than possible

coalitions (2n¡1), it is convenient to determine expected utility not over

permutations but over coalitions. To see this point, consider one ordering

where player i is the median voter. Denote10

Sni = fj j xj < xig ; NnS = fk j xk > xig .

From equations (19)¡ (21) we know that for computing the conditional

expected utility the ordering among the players 'left' of player i as well

of those 'right' of player i do not matter. Thus there are (s¡ 1)! (n¡ s)!

permutations that have an identical e®ect on the expected welfare. More-

over, recall that under (A1) all of the n! permutations are equally likely.

Finally, we have from (11) that xi = xm ) v (S) ¡ v (Sni) = 1: With

these preliminary results in mind, expected welfare of a committee is

given by the following formula

Proposition 8 In a committee ful¯lling A1, A2, A3 and (16), expected

social welfare is given by

E (W ) = ¡
1

3
+
X
i2N

X
SÄ i

[v (S)¡ v (Sni)] (30)

·
(s + 1)! (n¡ s)!

(n+ 2)!
°i +

s! (n¡ s)!

(n+ 1)!
(1¡ °s)

¸

where °s =
P

i2S °i

10Note that the events xj = xi and xk = xi have zero probability.
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Proof. 1. We have

E
¡
x2i
¢
=

Z
1

0

x2dx =
1

3
: (31)

2. For the expected value of the squared median decision we have

E
¡
x2m

¢
=

X
i2N

X
SÄ i

[v (S)¡ v (Sni)]
(s+ 1)! (n¡ s)!

(n+ 2)!
(32)

3. The in°uence of a median on the terms 2E (xixm) is

2
X
SÄ i

[v (S)¡ v (Sni)]

·
(s+ 1)! (n¡ s)!

(n+ 2)!
1 +

1

2

(s + 1)! (n¡ s)!

(n+ 2)!
(s¡ 1)

+
1

2

µ
(s+ 1)! (n¡ s)!

(n+ 2)!
+

s! (n¡ s)!

(n+ 1)!

¶
(n¡ s)

¸
(33)

The ¯rst term within the last brackets gives the impact on the welfare

of the median himself, the second term the impact on other players in S

and the last term the impact on players outside S:

Combining these three expressions and multiplying them with the

social welfare weights gives

E (W ) = ¡
1

3
+
X
i2N

X
SÄ i

[v (S)¡ v (Sni)]

·
(s + 1)! (n¡ s)!

(n+ 2)!
(¡1 + 2°i + °s ¡ °i + 1¡ °s) (34)

+
s! (n¡ s)!

(n+ 1)!
(1¡ °s)

¸

= ¡
1

3
+
X
i2N

X
SÄ i

[v (S)¡ v (Sni)] (35)

·
(s + 1)! (n¡ s)!

(n+ 2)!
°i +

s! (n¡ s)!

(n+ 1)!
(1¡ °s)

¸

Using an indicator function for the membership of a player in a

coalition, i.e.

Ii;S =

½
1 if i 2 S

0 if i =2 S

15



and rearranging terms gives the following expression for the expected

utility of an individual player:

E (Ui) = ¡
1

3
+
X
SÄ i

[v (S)¡ v (Sni)]
(s+ 1)! (n¡ s)!

(n+ 2)!
(36)

+
X
j 6=i

X
SÄ j

[v (S)¡ v (Snj)] (1¡ Ii;S)
s! (n¡ s)!

(n+ 1)!

Formula (36) illustrates clearly why power indices (PI) are insu±-

cient to measure the welfare e®ects of these kind of models. In any sto-

chastic game where all permutations of ordered preferences are equally

likely, the Shapley-Shubik (1954) index of a voting game gives the proba-

bility that a player can enforce his preferred policy in the voting game.11

Formally, the Shapley-Shubik value Ái is given by

Ái =
X
SÄ i

[v (S)¡ v (Sni)]
(s¡ 1)! (n¡ s)!

n!
(37)

The comparison between (36) and (37) shows, that the Shapley-Shubik

value does not give the right e®ect of the decision of the median on himself

and neglects the e®ects on the other players. The fact that other people

receive nothing from the median decision, illustrates that the Shapley-

Shubik index might be appropriate for voting over private goods, but not

for voting over public goods like policies.12

5 Optimal Voting Games

In this section the conditions for a welfare optimal voting game are de-

rived. Since the attention is restricted to the simple majority rule, we

have to maximize E (W ) with respect to the votes. Formally, optimal

11See e.g. Owen (1995).
12For an early critic why standard PI are insu±cient for decisions on public-goods

see Barry (1980).
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voting games are here de¯ned as the solution of the following maximiza-

tion problem

max
(d;w)

E (W ) = ¡
1

3
+
X
i2N

X
SÄi

[v (S)¡ v (Sni)] (38)

·
(s+ 1)! (n¡ s)!

(n+ 2)!
°i +

s! (n¡ s)!

(n+ 1)!
(1¡ °s)

¸
s:t: (v (S) = 1) , (v (NnS) = 0)

I consider ¯rst the case in which each member of the committee has equal

weight in the SWF. Starting with the case that n is odd, the following

proposition shows that the very simple one-player-one-vote rule is welfare

maximizing.

Proposition 9 The vote allocation wi = 1 8i and d = n+1
2
maximizes

the expected welfare in a committee ful¯lling A1,A2,A3 and (16) if n is

odd and °i =
1
n

8i:

Proof. With °i =
1
n
equation (30) becomes

E (W ) = ¡
1

3
+
X
i2N

X
SÄ i

[v (S)¡ v (Sni)]

·
(s+ 1)! (n¡ s)!

(n+ 2)!

1

n
+

s! (n¡ s)!

(n+ 1)!

µ
n¡ s

n

¶¸

Hence expected welfare depends only on the size of coalitions. Equiva-

lently, expected welfare in any ordering of the players according to their

preferences is determined by the position of the median. This implies

that, if possible, all coalitions where v (S)¡ v (Sni) = 1, i.e. all MWC,

have the same size in the optimal vote allocation. From the fact that the

Shapley Shubik index sums up to 1 we get immediately that thenX
i2N

X
SÄ i

[v (S)¡ v (Sni)] =
n!

(s¡ 1)! (n¡ s)!

Hence the problem (38) reduces to

max
s

n!

(s¡ 1)! (n¡ s)!

·
(s+ 1)! (n¡ s)!

(n+ 2)!

1

n
+

s! (n¡ s)!

(n+ 1)!

µ
n¡ s

n

¶¸
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or even simpler

max
s

s (s+ 1) + s (n¡ s) (n+ 2) (39)

The FOC of this problem13 is

s¤ =
n+ 1

2

The voting game
¡
n+1

2
;1
¢
obviously guarantees that all MWC have ex-

actly n+1

2
members.

The proof leads immediately to a complete characterization of all

optimal vote allocations for the case in which n is odd.

Corollary 10 All optimal voting games in a committee in which n is

odd and °i =
1

n
8i and that ful¯lls A1, A2, A3 and (16) have the same

coalitional function as v
£
n+1

2
; 1

¤
.

The proof of proposition 4 leads as well to the characterization of

all optimal voting games for the case that n is even. Since in this case

the expression (39) is minimized at s = n

2
and s = n

2
+ 1; optimal voting

games are characterized by the following corollary

Corollary 11 In all optimal voting games in a committee ful¯lling A1,

A2, A3 and (16) with n even and °i =
1

n
all MWC are of size s = n

2
or

s = n

2
+ 1:

The case of di®erent weights in the SWF is analytically much more

di±cult to solve. The problem is that expected social welfare is neither

continuous nor monotonic in the voting weights. For small n a complete

characterization can be given, but for larger n the solution has to be

found numerically. For simplicity I focus in the following on the case in

which n is odd.

First insights can be found by checking the optimality of the bench-

mark cases. We know from corollary 1 that the ¯xed policy mechanism is

never optimal since the one-player-one vote rule leads to higher welfare.

Comparing (30) with (8) leads to the following corollary.

13Since the function is concave in s; the second order condition is ful¯lled as well.
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Corollary 12 A su±cient condition for a dictator mechanism to be sub-

optimal is °1 <
n

n+2
:

Proof. See appendix.

Further interesting results can be found by a complete characteriza-

tion of all possible di®erent values of (30) for a small number of players.

The appendix gives a complete treatment for the case that n = 5 and

d is the simple majority rule. Consider e.g. the following social welfare

weights: °
e=(0:48; 0:26; 0:26; 0; 0) ; i.e. player 4 and 5 do not count for

social welfare. In this case the vote allocation w5 = (3; 2; 2; 1; 1) leads

to a value of E (W ) = ¡0:065 which is higher than for any possible vote

allocation that assign no votes to players 4 and 5.14 To see this point,

assume that player 2 and 3 want a policy close to zero and player 1 wants

a policy close to 1. If player 4 and 5 prefer a policy around 1

2
; the chosen

policy with the vote allocation w5 is much closer to the joint optimal

policy than the equilibrium policy in voting games where w4 = w5 = 0.

Obviously, there are realizations where the inclusion of player 4 and 5 in

the committee is actually welfare reducing. This happens e.g. if

x4 = x5 = 0; x2 =
1

4
; x1 =

1

2
; x2 =

3

4
:

If player 4 and 5 have no votes the equilibrium policy would be close to the

joint optimum. The vote allocation w5; however, leads to the suboptimal

policy x = 1

4
: But for the social welfare weights °e the welfare reducing

e®ects of the vote allocation w5 are ex-ante smaller than the welfare

improving e®ects. The conclusion from this example is that there exist

committees where it is welfare improving to include players that have no

weights in the SWF since they might help to moderate policies.

For large committees it becomes tedious to compute all possible val-

ues of E (W ) : Thus the optimal solution can be better found by applying

an appropriate search algorithm. As mentioned above, the problem is

that E (W ) is neither continuous nor monotonic in the voting weights or

14The game v (51; 48;26; 26) = v (2; 1; 1; 1) gives E (W ) = ¡0:0667 and the dictator

mechanism gives E (W ) = ¡0:0866:
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the decision rule. In order to avoid that one ¯nds only local maxima of

E (W ) ; the use of multistage algorithms that use many starting points

should deliver the solution of the welfare maximization problem. As an

illustration, regard the 11-player committee with social welfare weights

given as

° = (0:312; 0:213; 0:186; 0:11; 0:056; 0:037; 0:031; 0:025; 0:018; 0:011; 0:002)

This example characterizes the ECB-Council of the future European

Monetary Union consisting of Germany, France, Italy, Spain, Nether-

lands, Belgium, Austria, Portugal, Finland, Ireland and Luxembourg.

The weights in the SWF are the importance measures as they are laid

down in the Maastricht treaty.15 The optimal vote allocation that I could

¯nd is

w = (414; 318; 291; 203; 127; 122; 115; 115; 99; 87; 68)

The relative votes in this allocation are

wP
wi

= (0:211; 0:162; 0:149; 0:104; 0:065; 0:062; 0:059; 0:059; 0:051;

0:044; 0:035)

The optimal vote allocation lies somehow in between the one-player-

one-vote rule and the rule w = °:16 Hence one might conclude from

this example that in the solution to the welfare maximization problem

di®erences in the welfare weights should be only partially taken into

account. Moreover, it is apparent that Luxembourg has a remarkable

in°uence in the voting game even though its in°uence on welfare is quasi

negligible. This indicates that there are potential bene¯ts of including

players with weights in the SWF of zero (or almost zero) not only in

small but as well in larger committees.

15See Brueckner (1997) for a model of voting and bargaining over monetary policy

in the ECB with public information of preferences.
16If one considers the Shapley-Shubik values of this game, we get

Á = (0:235;0:164; 0:154;0:101;0:056; 0:056; 0:051; 0:051; 0:048; 0:041; 0:041)
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6 Conclusion

In this paper it was shown that the expected welfare of a committee

where players with diverging interests decide on jointly binding poli-

cies can be expressed in a simple formula. It was shown that with an

equally weighted social welfare function the simple one-player-one-vote

rule is optimal. Hence the question of optimal mechanism design has

an easy solution in this case. For unequal welfare weights the problem

becomes more complicated but a numerical solution can always be pro-

vided. Moreover, it was shown that it is optimal in some cases to include

players in a committee whose weight in the SWF is negligible or even

zero. The analysis in this paper should not only lead to new insights for

an understanding of existing committees but may help as well for the

design of new committees.

As in many voting models, the assumption of single-peaked prefer-

ences is probably the most restrictive. Many committees, most notably

parliaments and the EU Council, decide about many policies that might

not correctly characterized by (multidimensional) single-peakness of pref-

erences. By bundling many decisions, these committees could eventually

moderate con°icts more e®ectively. But due to the problems arising from

bargaining costs and private information, jointly optimal policies are still

likely to be not feasible. Hence it remains an interesting theoretical and

empirical question whether a system of many (small) independent com-

mittees deciding each on single issues or a system of one central commit-

tee leads to socially more preferable policies.
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A Proofs

Proof of Proposition 1

This proof is basically a combination of the proof of the median

voter theorem and the proof of stationary subgame perfect equilibrium

in n-player bargaining games with random proposers (see e.g. Winter

(1992) for the latter).

Proof. First I de¯ne the median voter. Denote the set of players with

preferences 'left' resp. 'right' of player i with

Li = fj j xj · xi; j 6= ig ; Ri = fj j xj ¸ xi; j 6= ig

The median m is the player i who ful¯lls the conditionÃX
j2Li

wj < d

!
^

ÃX
j2Ri

wj < d

!
(40)

Then, note that in any stationary equilibrium the ¯nal decision is made

in the ¯rst voting round, since delay is costly. Next I show that the only

policy that can be implemented in equilibrium is xm:

8i 2 fLm [mg : xm º x̂ if xm < x̂

(wLm + wm > d) ) (x · xm) (41)

8i 2 fRm [mg : xm º x̂ if xm > x̂

(wRm + wm > d) ) (x ¸ xm) (42)

([41] ^ [42]) ) x = xm (43)

Since xm is the unique equilibrium policy, proposing this policy is a

strictly dominating strategy for every player, i.e. xpi = xm 8i:

For determining the voting strategies ai (x
p) ; I consider ¯rst the

strategies in equilibrium, i.e. ai (xm) : It is easy to see that ai (xm) = 1

is a weakly dominating strategy for all players. IfÃX
j 6=i

aj (xm)wj < d

!
^

ÃX
j 6=i

aj (xm)wj + wi ¸ d

!
; (44)

22



ai (xm) = 1 leads to a strictly higher payo® for player i. For all strategies

of the other players that do not ful¯ll (44), both (pure) voting strategies

result in the same pay-o®s. Hence in any trembling-hand perfect equilib-

rium we must have ai (xm) = 1 8i: To complete the characterization of

the voting stage, it remains to determine the out of equilibrium voting

strategies ai (x
p). Since every player accepts votes 'yes for xp = xm, sub-

game perfectness requires that he votes 'yes' for all proposals that give

him at least the same utility. Conversely, he votes 'no' when xp gives

him a lower pay-o® than the equilibrium policy.

Finally, it remains to proof that announcing the preferred policy is

the unique perfect equilibrium in the announcement stage. It is straight-

forward to show that xai = xi is a weakly dominating strategy. In case i

is the median voter, xam = xm is the unique best response given the equi-

librium strategies in the following subgames. If i is not the median voter,

there are two possible cases. Suppose (without loss of generality), that

xi < xm: Any xai < xm does not a®ect the following stages in the game.

Any xai > xm moves the (announced) median position to the right and

leads to a strictly lower pay-o® for player i. Since the announcements

are made simultaneously, xai = xi is the only trembling hand perfect

equilibrium strategy in the ¯rst stage.

Example for multiplicity with supra-majority rule

Consider a committee with three players that decide by unanimity,

i.e. N = 3; w = (1; 1; 1); d = 3: For the status-quo policy assume

xq = 0. Take the realizations

x1 =
1

3
; x2 =

1

2
; x3 =

3

4
:

Any policy x 2
£
1

3
; 2
3

¤
can be supported in a stationary perfect equilib-

rium. First note that x > 2

3
cannot be an equilibrium since player 1

would be worse o® than in the status-quo. Secondly, x < 1

3
cannot be an

equilibrium either since all players prefer a policy x = 1

3
: If player 1 uses

in the second stage the stationary strategy

a1 (x
p) =

½
1 if

¯̄
1

3
¡ xp

¯̄
· 0

0 if
¯̄
1

3
¡ xp

¯̄
> 0
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proposing and accepting the policy xp = 1

3
is the best response of player

2 and 3. Hence x = 1

3
is an equilibrium policy. On the other hand, if

player 3 uses in the second stage the stationary strategy

a3 (x
p) =

½
1 if

¯̄
3

4
¡ xp

¯̄
· 1

12

0 if
¯̄
3

4
¡ xp

¯̄
> 1

12

all players propose and accept the equilibrium policy x = 2

3
: With the

same kind argument it can be shown that all policies x 2
£
1

3
; 2
3

¤
can be

equilibrium policies.

Proof of Corollary 4

Proof. Take the di®erence between (8) and (30) for a voting game where

player 1 forms a winning coalition with any other single player, formally

v (f1; ig) = 1 8i 6= 1: The di®erence can be written as

dv = (1¡ °1)

·
3! (n¡ 2)!

(n+ 2)!
+

(n¡ 2) 2! (n¡ 2)!

(n+ 1)!
+

n!1!

(n+ 2)!

¸

+°1
(n¡ 1) 1! (n¡ 1)!

(n+ 1)!
¡ °1

·
2! (n¡ 1)!

(n+ 2)!
+

(n+ 1)!0!

(n+ 2)!

¸

¡ (1¡ °1)
1! (n¡ 1)!

(n+ 1)!

Simpli¯cation shows that

dv > 0

, 2n2 ¡ 2n > °1
¡
2n2 + 2n¡ 4

¢
, °1 <

n

n+ 2

Welfare in a 5-player committee

For the case that n = 5 and d is the simple majority without

possibility of a tie, there are only 6 di®erent voting games when the

votes are (weakly) ordered according to the social welfare weights °i:

They can be described by the following six vote vectors

w1 = (3; 3; 3; 0; 0) ;w2 = (3; 1; 1; 1; 1) ;w3 = (2; 2; 1; 1; 1)

w4 = (3; 2; 2; 2; 0) ;w5 = (3; 2; 2; 1; 1) ;w6 = (1; 1; 1; 1; 1) :
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These vote allocations lead to the following values for period 0 welfare.

W 1

0
= ¡

1

3
+

1

420
(112°1 + 112°2 + 112°3 + 84°4 + 84°5)

W 2

0
= ¡

1

3
+

1

420
(132°1 + 90°2 + 90°3 + 90°4 + 90°5)

W 3

0
= ¡

1

3
+

1

420
(114°1 + 114°2 + 100°3 + 100°4 + 100°5)

W 4

0
= ¡

1

3
+

1

420
(126°1 + 98°2 + 98°3 + 98°4 + 84°5)

W 5

0
= ¡

1

3
+

1

420
(120°1 + 106°2 + 106°3 + 92°4 + 92°5)

W 6

0
= ¡

1

3
+

1

420
(108°1 + 108°2 + 108°3 + 108°4 + 108°5)
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