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Abstract

This paper introduces the class of seasonal specific structural time series models, ac-

cording to which each season follows specific dynamics, but is also tied to the others by a

common random effects. This results in a dynamic variance components model that can

account for some kind of periodic behaviour, such as periodic heteroscedasticity, and is

tailored to deal with situations when one or a group of seasons behave differently. Trends

and non periodic features can be still be extracted and their nature is discussed. Multivari-

ate extensions entertain the case when cointegration pertains only to groups of seasons.

We finally show that a circular correlation model for the idiosyncratic disturbances yields

a periodic component that is isomorphic to a trigonometric seasonal component.
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1 Introduction

The paper deals with a class of models for seasonal time series in an unobserved compo-

nents framework, according to which each season follows specific dynamics but is also tied

to the remaining seasons by a common disturbance.

The emphasis is on the time domain representation, for which the season are at the

core of the modelling effort, rather than on the frequency domain, although the relation-

ships between the two approaches will also be discussed, when we deal with the circular

correlation model for the idiosyncratic or season specific disturbances.

In standard situations this class of models will produce nonperiodic difference station-

ary time series which admit the traditional decomposition into trends and a seasonal;

in general, it is particularly well suited for situations in which one or a group of sea-

sons behave differently. These are occurrences in which the constraint imposed by the

trend-seasonal decomposition, namely that the latter component has a mean of zero over

a number of consecutive observations equal to the seasonal period, is too binding. This

is illustrated with respect to Italian industrial production for which the seasonal trough

occurs in August, the traditional holiday period. If the August trough is particularly deep

it will drag down the trend and the measurement of the underlying growth in the series

will be affected. The rationale for introducing this class is that the information content of

the seasons differs with respect to the long run behaviour of the series and if a subgroup

is more variable (i.e. they behave more idiosyncratically), they should be appropriately

discounted in extracting a non periodic signal that expresses the overall tendency of the

series.

In a very extreme situation the value of the series in a particular season can be equal

or around some fixed value (e.g. a structural zero), as in the production of some strongly

seasonal items or in some historical demographic time series referring to periods of time

when marriages were prohibited by religious prescriptions, so that, even if some events are

observed, these hardly speak about the general dynamics of the series. In such cases the

zeros can be interpreted as missing values and this is equivalent to setting the variance of

the season to infinity.

2



The main results are presented with reference to the seasonal specific local level model,

according to which each season evolves as a random walk with no drift term (section

2). We show that a decomposition is admissible into a non periodic component and a

periodic component; in the definition of the latter the zero sum constraint is relaxed and

the consequences are discussed (section 3). Hence, seasonal specific models introduce

periodic features without affecting the possibility of extracting a non periodic signal, that

provides an indication of the long run dynamics in the series.

Subsequently, this basic representation is extended to allow for the presence of slopes

(section 4), yielding the so called seasonal specific local linear trend model. The latter is

illustrated with reference to the Italian index of industrial production (section 5).

Multivariate extensions are provided that can deal with peculiar forms of seasonal or

periodic cointegration that characterise only a subset of seasons. They move away from

the usual notion of seasonal cointegration, that is defined in the frequency domain, and

are illustrated with respect to a bivariate system of income and consumption in Sweden

(section 7). The example shows that the lack of full seasonal cointegration can be explained

mainly with the behaviour of the fourth quarter. Finally, section 8 presents some other

extensions, dealing with circular correlation among the seasonal specific disturbances, and

establishes the connection with the frequency domain representation of seasonality.

2 Seasonal Specific Local Level Model

Let us consider a time series, yt, t = 1, 2, . . . , T, observed with periodicity s, and let

j = 1, . . . , s, index the season to which the t-th observation refers. The seasonal specific

local level model is formulated as follows:

yt = µjt + εjt, j = 1, · · · , s,
µj,t+1 = µjt + ηjt,

ηjt = ηt + η∗jt.

(1)

According to (1) the seasons are characterised by a specific level, µjt, evolving as a random

walk, driven by idiosyncratic disturbances, η∗jt, and a common disturbance term, ηt, which
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bounds up their dynamics. The level is observed with superimposed noise, εjt, which

may also have an error component structure, εjt = εt + ε∗jt, with ε∗jt representing the

idiosyncratic noise, and εt a source common to all the seasons. We assume throughout

that all the disturbances are mutually independent, though the idiosyncratic ones, η∗jt and

ε∗jt, may be correlated across the seasons (see section 8).

The seasonal specific local level model is closely related to the form-free seasonal factor

dynamic linear model of West and Harrison (1997), with the relevant difference that it is

further extended to allow for a common disturbance driving all the seasons and accounting

for a uniform correlation among them.

Stacking the seasonal specific levels into the s × 1 vector, µt = [µ1t, . . . , µst]′, the

corresponding state space representation is:

yt = x′tµt + εjt, t = 1, . . . , T,

µt+1 = µt + iηt + η∗t Var(η∗t ) = N

where the vector x′t = [0, . . . , 0, 1, 0, . . . , 0] selects the relevant season and is characterised

by the periodic property xt = xt−s; i is an s× 1 vector of ones.

The measurement equation simply states that the observations arise from periodically

sampling an s×1 random walk, plus a noise component. In the remainder we will assume

for simplicity that εjt = εt ∼ NID(0, σ2
ε ), i.e. there is no seasonal idiosyncratic noise.

Typically, N will be a diagonal matrix, although we can allow for correlated idiosyncratic

disturbances, and a structured form for parameterising the correlation among the seasons,

known as circular correlation, will be discussed in section 8; of course the model would

not be identifiable if N spanned the space of ii′.

Model (1) is such that ∆syt, where ∆s = 1− Ls is the seasonal differencing operator,

is periodically stationary (see Hipel and McLeod, 1994, for a review of periodic time series

models), as ∆syt = ηt−1 + η∗j,t−1 +∆sεt, where the right hand side is a zero mean periodic

moving average process of order s. When the variance of the idiosyncratic disturbances is

constant across the seasons, ∆syt is stationary in the usual sense, i.e. there is no periodic

effect.

Traditional models of seasonality (see Proietti, 2000) assume that N lies in the nullity
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of i. For instance, in the Harrison and Stevens (1976, HS henceforth) seasonal model it

is proportional to the matrix Is − ii′/s. In the next section we discuss the possibility

of extracting periodic and a non periodic signals, highlighting the similarities and the

differences with more traditional decompositions into trends and seasonals.

3 Orthogonal decomposition into periodic and non-

periodic components

When N lies in the nullity of i, yt the seasonal specific levels can be decomposed into

a common level component, and a purely seasonal component, which arise respectively

from the orthogonal projection of µt on the subspaces spanned by i and Is − s−1ii′.

We show that a non periodic component, describing the long run evolution of the series

devoid of periodic features can be extracted in the more general framework provided by

(1) when N is non singular. In particular, we can decompose µt into an overall non

periodic (NP) component and a periodic (P) component, which allows to rewrite (1) as

follows:
yt = µ̄t + γ̄t + εt,

µ̄t = w′µt,

γ̄t = x′tγt, γt = (Is − iw′)µt.

(2)

Here µ̄t denotes the NP component, whereas γ̄t is the periodic one; both are defined in

terms of weighted linear combinations, respectively of rank 1 and s − 1 of the vector

containing the seasonal specific levels µt.

The NP component results from the contemporaneous aggregation of µt with weights

provided by:

w =
N−1i

i′N−1i
, w′i = 1; (3)

by definition, the elements of w sum up to one. The transition equation for µ̄t is estab-

lished by multiplying both sides of that for µt by w′ and noticing w′i = 1:

µ̄t+1 = µ̄t + ηt + w′η∗t . (4)
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Hence the NP component is a univariate random walk driven by two sources of variation:

the common disturbance ηt and a weighted average of the disturbances specific to each

season; its size is thus

Var(∆µ̄t+1) = σ2
η + w′Nw = σ2

η + (i′N−1i)−1.

Writing µt = iw′µt + (I − iw′) µt, and defining γt = (Is − iw′) µt, the periodic

component, γ̄t = x′tγt, is generated by systematically sampling the singular multivariate

random walk:

γt+1 = γt + ωt, ωt =
(
I − iw′) η∗t ,

with disturbance covariance matrix

Ω = Var(ωt) = N − ii′

i′N−1i
,

that is singular, since

Ωw = 0,

as it is easily checked. Finally,

Cov(ωt, ηt + w′η∗t ) = 0,

so that NP and P define orthogonal components.

Hence, result (2) is based on an oblique projection of µt using the projection matrices

iw′ and Is − iw′.

As we have seen, the NP component is defined as a weighted average of the season

specific trends, so that if N is diagonal, more variable seasons will be downweighted; as

a matter of fact, the weights will be inversely related to the variance of the idiosyncratic

disturbances.

We have used the term periodic component rather than seasonal component since, in

situations like those illustrated in section (5), S(L)γ̄t, where S(L) = 1 + L + · · ·+ Ls−1 is

the seasonal summation operator, is not a zero mean MA(q) process, with q ≤ s− 2, as it

holds for traditional seasonal models (see Proietti, 2000). This point is further discussed

in section 3.1.
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The traditional trend-seasonal decomposition where the trend is defined as a simple

average of the seasonal specific random walks, µ̄t = i′µt/s, is also an option, but this will

lead to correlated components. The P component would be a genuine seasonal component,

with the property S(L)γ̄t ∼ MA(q), which arises as a consequence of Ωi = 0, but the

resulting trend would be more variable than that implied by the decomposition (2); this

is so because the contribution of the seasonal specific disturbances to the variance of the

changes in the NP component would be s−2i′Ni, rather than (i′N−1i)−1, and it is easy

to demonstrate that the former is greater when N is not a scalar matrix. Consider for

simplicity the case in which N is diagonal: (i′N−1i)−1 is the harmonic mean of the

elements of N scaled by 1/s, whereas s−2i′Ni is the arithmetic mean scaled by the

same factor, 1/s. It is well know that the former is always dominated by the latter so

s−2i′Ni ≥ (i′N−1i)−1. According to the orthogonal decomposition (2), a disturbance

that is idiosyncratic to a specific season is projected along the subspace i, spanning the

space of the trend common to all the seasons, in the direction w, rather than orthogonally.

If N = σ2
η∗Is, the model is in fact a variant of the basic structural model (BSM,

Harvey, 1989), according to which the series is decomposed into a random walk trend and

a seasonal component with a Harrison and Stevens (1976) representation. As a matter

of fact, w = 1
s i and Ω = Is − s−1ii′. Note, however, that the unweighted average the

idiosyncratic disturbances η∗t enters the trend equation: µ̄t+1 = µ̄t + ηt + s−1i′η∗t , with

disturbance variance σ2
η +σ2

η∗/s. Therefore, the seasonal specific model is strictly slightly

different from the BSM because of the presence of this feature, although the periodic

component is a pure seasonal component and is orthogonal from the non periodic one

which can be called a trend by all means. In the BSM with HS seasonality the seasonal

disturbances are produced in a space orthogonal to the trend (see also the discussion at

the end of section 5).

When N is a rank zero matrix the model collapses to a local level model with deter-

ministic seasonality; in effect, we can write: µt = iµ̄t + µθ, where µθ is a s × 1 vector

orthogonal to i and µ̄t+1 = µ̄t + ηt is the trend common to all the seasons.

The orthogonal decomposition was defined assuming a non singular matrix N . How-
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ever, some degeneracies can be easily accommodated. Assume, for instance, that N is

a diagonal matrix with some zero elements, e.g. σ2
η∗j = 0 for some j. In this case the

non zero weights correspond to the zero elements in the diagonal of N ; genuine informa-

tion about the NP component is provided by those seasons in which only the common

disturbance enter the transition equation. For instance, if N = diag(0s1 , σ
2Is2) then,

w = [is1/s1,0]′, where is1 is an s1 × 1 vector of ones. In the extreme case when only

one season belongs to the first group, the NP component is defined only in terms of this

season, since it is revealed in that season.

3.1 Mean Correction and Seasonality

As we saw in the previous section, when w = s−1i, γ̄t is a seasonal component in the

usual sense since Ωi = 0, and the seasonal sums S(L)γ̄t are a zero mean MA(q) process

with q ≤ s− 2. This is in general no longer true for the orthogonal NP-P decomposition,

for which w 6= s−1i, since N is not necessarily a scalar matrix; in the general case, the

matrix Ω lies in the nullity of w, rather than i. Assuming that wj (modulo s) denotes

the element of w associated with the j-th season, that the P process has started at time

t = 1, and defining the weighted moving average of s consecutive terms

wj(L)γ̄t = wj γ̄t + wj−1γ̄t−1 + · · ·+ wj−s+1γ̄t−s+1,

the periodic component is such that wj(L)γ̄t is a zero mean periodic MA(q) process,

q ≤ s − 2. On the contrary, the process S(L)γ̄t has a mean of (s−1i − w)′µ1, which is

not necessarily equal to zero. Correspondingly, the NP component will be generated by

(4) with starting value w′µ1 and in a situation in which the weights are different for each

season, this will produce a component which, loosely speaking, passes through the seasons

having larger weights.

To correct for this situation we may add (s−1i−w)′µ1 to the non periodic component

and subtract it from the periodic one to yield components that comply with the common

definition of trends and seasonals, although it must be stressed that S(L)γ̄t does not have

a finite MA(q) representation (although it is stationary around a zero mean).
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4 Seasonal specific local linear trend model

The seasonal specific local level model discussed above is not suitable for a range of

macroeconomic time series displaying upward or downward trends. A stochastic slope

component needs to be brought into the equations describing the seasons’ dynamics,

giving the seasonal specific local linear trend model:

yt = x′tµt + εt, t = 1, . . . , T,

µt+1 = µt + βt + iηt + η∗t , η∗t ∼ NID(0, Nη)

βt+1 = βt + iζt + ζ∗t , ζ∗t ∼ NID(0, N ζ)

(5)

according to which the seasonal trends are represented by random walks with stochastic

drifts. Again the seasonal specific slopes are driven by a common disturbance, ζt, and

a disturbance specific to the season, ζ∗jt, j = 1, . . . , s. The observation at time t arises

from sistematically sampling (via the selection vector xt) a vector IMA(2,1) process with

common and idiosyncratic variance components. The reduced form of the model is such

that ∆∆syt is a periodic stationary moving average process of order s + 1; if the specific

variances are all equal, then a non periodic model arises.

Model (5) has presumably too many sources of variation, but it may sensibly restricted

to provide a suitable representation for seasonal economic time series: if for a scalar and

positive q we can express N ζ = qNη (homogeneity), then there exists a unique orthogonal

decomposition into a non periodic component (with local linear representation) and a

periodic one (with seasonal slopes):

yt = µ̄t + γ̄t + εt,

µ̄t = w′µt,

µ̄t+1 = µ̄t + β̄t + ηt + w′η∗t ,

β̄t+1 = β̄t + ζt + w′ζ∗t ,

γ̄t = x′tγt, γt = (Is − iw′)µt,

γt+1 = γt + β∗t + ωt, ωt = (I − iw′) η∗t ,

β∗t+1 = β∗t + ω∗t , ω∗t = (I − iw′) ζ∗t ,

(6)

where w is given as in (3), with N replaced by Nη.
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The slope will only be featured by the NP component when N ζ = 0, which under

homogeneity arises for q = 0. The model with common slopes will be plausible for most

macroeconomic time series (see the illustration in the next section). In such case the

decomposition is like (6) but with β∗t = 0 (no seasonal slopes) and

µ̄t+1 = µ̄t + βt + ηt + w′η∗t , βt+1 = βt + ζt.

If further Nη = σ2
η∗Is, we recover the variant of the basic structural model (BSM, see

Harvey, 1989) with w = s−1i, so that the non periodic component is a local linear trend,

which is shocked also by an unweighted average of the seasonal specific disturbances, η∗jt,

and the periodic one is the HS seasonal component, such that Ωi = 0.

5 Illustration: Italian Industrial Production

Our first illustration concerns the Italian monthly Industrial production series available

from the period 1960.1-1999.7 (Source: OECD Statistical Compendium). The series,

plotted in figure 1, displays a strong seasonal feature with two relevant seasonal troughs

occurring in August and December, related to institutional factors, namely holidays.

We can think of systematically sampling the series so as to build 12 yearly time series,

one for each month; each individual time series could be modelled as a local linear trend

(plus noise), but it would be linked to the others due to a common disturbance source,

with the effect of making them vary together, so that a weighted combination of them is

devoid of long run dynamics. We also would expect that the idiosyncratic component is

stronger in August and December, allowing these seasons to drift away somewhat from

the other months.

The seasonal specific local linear trend model (5), with no idiosyncratic slope distur-

bances (N ζ = 0) and idiosyncratic homoscedastic disturbances (Nη = σ2
η∗Is) was fitted

using Ox 3.0 (Doornik, 2001) and the library of state space algorithms Ssfpack by Koop-

man et al. (1999). The estimated parameters are: σ̂2
ε = 1399 × 10−7, σ̂2

η = 2476 × 10−7;

σ̂2
η∗ = 329 × 10−7; σ̂2

ζ = 0; the value of the maximised log-likelihood is 859.86. The

standardised Kalman filter innovations suffer from excess kurtosis, resulting in a highly
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significant Bowman and Shenton normality test statistic (133.40), whereas the portman-

teau test statistic computed on the first 12 residual autocorrelations, Q(12) = 14.89, is

not significant.

If we allow the variance of the idiosyncratic disturbance to be greater in August and

December we get the following results: σ̂2
ε = 1515 × 10−7, σ̂2

η = 2411 × 10−7; σ̂2
η∗ =

11 × 10−7, for all seasons excluding August and December; σ̂2
ηA∗ = 3110 × 10−7, for

August; σ̂2
ηD∗ = 681× 10−7 for December; σ̂2

ζ = 0. Notice that the slope is constant and

common to all the seasons. This extension provides a substantial improvement in the

fit: the log-likelihood is 966.34 (hence the test of the hypothesis that the idiosyncratic

variances are constant is strongly rejected according to the likelihood ratio statistic) and

the normality test statistic is substantially reduced (20.62), though it is still significant;

moreover, Q(12)=13.30.

We now define the NP component as w′µ̃t|T , where µ̃t|T denotes the smoothed esti-

mates of the vector of seasonal specific trends and 100w′ = [9.98i′7, 0.04, 9.98i′3, 0.16]; the

P component is correspondingly defined as x′t(Is − iw′)µ̃t|T . The rationale of the de-

composition is that, given the weighting pattern, the NP component is almost completely

unaffected by the values of the series of August and December.

The different variability of the seasons can also be accommodated by the basic struc-

tural model with seasonal heteroscedasticity as in Proietti (1998), which is specified as

follows:
yt = µt + γt + εt, εt ∼ NID(0, σ2

ε )

µt+1 = µt + βt + ηt, ηt ∼ NID(0, σ2
η)

βt+1 = βt + ζt, ζt ∼ NID(0, σ2
ζ )

γt = x′tγt,

γt+1 = γt + ωt, ωt ∼ NID(0,Ω),

where Ω lies in the null space of i,

Ω = D − Dii′D
i′Di

and D is a diagonal matrix which has constant values except for August and December.
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Figure 1: Italian Industrial Production, 1960.1-1999.7. Original series in logarithms, non peri-

odic component and trend component extracted by the BSM with seasonal heteroscedasticity.
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When this model is fitted to the series we get the following results: σ̂2
ε = 1444× 10−7,

σ̂2
η = 2341 × 10−7; the diagonal elements of D are d̂ = 96 × 10−7 for all the months

excluding August and December, d̂A = 57.189 for August; d̂D = 248×10−7 for December;

σ̂2
ζ = 0. Moreover, Q(12)=16.72, the Bowman and Shenton test statistic is 25.08, and the

log-likelihood is 930.93, so, although the models are not nested, the seasonal specific one

yields a higher likelihood.

Figure 1 compares the trend extracted by the two competing models; the difference lies

in the fact that the BSM with seasonal heteroscedasticity retains the zero sum constraint

for the seasonal component so that if August is more variable all the remaining months

adjust to this and the greater variability is smeared on the other seasons; correspondingly

the trend is dragged down in the middle of the sample due to the behaviour of August. In

the seasonal specific model the zero sum constraints, loosely speaking, applies only with

respect to the 10 seasons excluding August and December. If a mean correction is applied,

along the lines of section 3.1, the same considerations hold since this would produce only

a constant downward shift along the vertical axis. Notice that the differences are not fully

accounted by this vertical shift: in 1973-74 the series tend to get closer due to a less deep

August trough.

6 Multivariate Seasonal Specific Models

Multivariate generalisations are relatively straightforward. We can devise a system of

seemingly unrelated time series equations according to which each of the univariate time

series is represented as a seasonal specific structural time series model and the disturbances

are contemporaneously correlated.

For simplicity, we focus on a bivariate time series, (y1t, y2t) and on the seasonal specific

local linear trend (SSLLT) model with no idiosyncratic slopes, for which ykt, k = 1, 2, is
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represented as:

ykt = x′tµkt + εkt, εkt ∼ NID(0, σ2
kε),

µk,t+1 = µkt + iβkt + iηkt + η∗kt, η∗kt ∼ NID(0, Nk)

βk,t+1 = βkt + ζkt, ζkt ∼ NID(0, σ2
kζ)

(7)

where εkt, ηkt, η
∗
kt, ζkt are mutually uncorrelated at all leads and lags, Nk is a diagonal

matrix and each of the disturbances are contemporaneoulsly correlated with the cor-

responding disturbance in the other series; we shall denote the correlation coefficients

respectively by ρε = Corr(ε1t, ε2t), ρη = Corr(η1t, η2t), ρζ = Corr(ζ1t, ζ2t), and finally

ρη∗j = Corr(η∗1,jt, η
∗
2,jt), j = 1, . . . , s.

Any linear combination of the two series will also have a SSLLT representation; how-

ever, if for some j the idiosyncratic disturbances are perfectly correlated, that is ρη∗j = ±1,

there is a common single source of seasonal specific disturbances in season j and there

exists a linear combination that has no idiosyncratic feature corresponding to those sea-

sons. As a consequence, the non periodic component that can be extracted from that

linear combination will depend solely on that season, where it is fully revealed. In the

homoscedastic case, if ρη∗,j = 1 for all js then the series are seasonally cointegrated in the

usual sense (a linear combination displays only deterministic seasonality).

7 Illustration: Income and Consumption in Swe-

den

This illustrations refers to a bivariate data set consisting of quarterly real per capita

income and non-durables consumption (logarithms) in Sweden analysed by Franses (1996,

pp. 202-207) as a case study in periodic cointegration, and available for the period 1963.1-

1988.4.

The results from fitting the univariate SSLLT model with no slope idiosyncratic dis-

urbances (N ζ = 0) are reported in the first two columns of table 1. As far as income

is concerned, the LR test of the hypothesis that the seasonal specific level disturbances
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ηjt∗, j = 1, 2, 3, 4, are homoscedastic is not significant, and the second column of the table

reports the parameter estimates for the restricted model. The model provides a good fit,

apart from a significant negative residual autocorrelation at lag 8.

As for consumption, a plot of the seasonal factors extracted by the basic structural

model fitted in STAMP 6 (Koopman et al., 2000) showed that the second and the third

quarter are less variable for the consumption series. The likelihood for the homoscedastic

model (σ2
ηj∗ = σ2

η∗) is 269.98 whereas that for the model with σ2
η1∗ = σ2

η4∗ and σ2
η2∗ = σ2

η3∗

is 272.77. The LR test of the hypothesis that all idiosyncratic variances are equal is 5.77

which leads to reject the null of homoscedastic disturbances (p-value=0.02); although

the evidence for heteroscedasticity is not overwhelming, the fact that the idiosyncratic

variance is relatively small in the second and third quarters underlies the fact that the non

periodic component is almost perfectly revealed in this seasons, which is reflected in the

optimal weighting pattern for the extraction of the NP component, which is approximately

w = [0, 1/2, 1/2, 0].

Each component series has 7 sources of disturbances which may be correlated or even

common across the two series. We now fit the bivariate seasonal specific model (7), which

allows for contemporaneous correlation so that each series has a seasonal specific local

linear trend representation, but each disturbance in the model for income is correlated

only with the corresponding disturbance in consumption.

The first model we entertain is the homoscedastic model with the idiosyncratic vari-

ances σ̂2
ηj∗ that are constant across j both for income and consumption and with common

correlation coefficient, ρη∗ ; if this parameter was equal to ±1 the series would be season-

ally cointegrated, i.e. a linear combination would display only deterministic seasonality.

The maximum likelihood estimates of the correlation parameters resulted ρ̂η∗ = 0.27,

ρ̂η = 0.46, ρ̂ζ = 1.00, ρ̂ε = 0.18, so that only the slopes are driven by a common distur-

bance. The value of the maximised likelihood is 483.48. Notice that the common slope

disturbances are perfectly correlated, but there is no seasonal cointegration.

In order to explore the possibility that lack of cointegration is due to a subset of

seasons, we consider the same homoscedastic model, but allowing the correlation of the
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Table 1: Income and Consumption in Sweden, parameter estimates and diagnostics for univari-

ate and bivariate seasonal specific local linear trend models (variance parameters are multiplied

by 107). Q(p) is the univariate or multivariate portmanteau test statistic for residual autocorre-

lation, based on the first p autocorrelations, and Norm. is the Bowman and Shenton normality

test.

Univariate Bivariate I Bivariate II

Income Cons. Income Cons. Income Cons.

σ̂2
η 759 251 σ̂2

η 644 179 754 180

ρ̂η 0.41 0.47

σ̂2
η1∗ 1154 125 σ̂2

η1∗ 1095 97 832 179

ρ̂η1∗ 0.82 0.95

σ̂2
η2∗ 1154 2 σ̂2

η2∗ 1095 97 832 28

ρ̂η2∗ 1.00 1.00

σ̂2
η3∗ 1154 2 σ̂2

η3∗ 1095 97 832 28

ρ̂η3∗ 1.00 1.00

σ̂2
η4∗ 1154 125 σ̂2

η4∗ 1095 97 832 179

ρ̂η4∗ -0.29 -0.38

σ̂2
ζ 2 2 σ̂2

ζ 7 3 6 3

ρ̂ζ 1.00 1.00

σ̂2
ε 273 731 σ̂2

ε 540 720 935 692

ρ̂ε -0.27 -0.06

log Lik 207.41 272.77 log Lik 487.34 489.81

Q(4) 0.56 0.67 Q(4) 6.17 6.33

Q(8) 12.86∗ 2.63 Q(8) 26.46 24.45

Norm. 1.57 7.12∗ Norm. 8.53 7.17
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idiosyncratic level disturbances, ρη∗j , to vary with the season. The results are reported

in table 1 under the header ”Bivariate I”. It is noticeable that the specific disturbances

of the second and third quarter are common, those of the first quarter are strongly and

positively correlated, whereas for the fourth quarter they are negatively correlated. This

is perhaps not surprising since the seasonal effect associated with the fourth quarter has

been declining over time for the consumption series and the same did not occur for income.

The fact that the fourth quarter is mainly responsible for the lack of seasonal cointe-

gration is confirmed by the second bivariate model that was estimated; this differs from

the previous only for the idiosyncratic variances of the consumption equation, which are

allowed to be different for the second and third quarter in accordance to the univariate

findings.

The irregular component is not a negligible source of variation for both series, as

the likelihood ratio test of the hypothesis σ2
ε = 0, k = 1, 2 confirms (see Harvey, 1989,

ch. 5), but the estimated correlation coefficient is not significantly different from zero.

The common level disturbance is positively and significantly correlated across the series,

whereas the slope variations are perfectly and positively correlated. The statistics Q(P )

for the bivariate models refer to the bivariate portmanteau test based on the first P

crosscovariance matrices and are not significant.

Figure 2 displays the smoothed estimates of trend and seasonal component, with a

mean correction for the consumption series conducted according to section 3.1. The

estimates of the seasonal component point out quite clearly that the two series behave

quite differently in the fourth and the first quarter. In particular, the seasonal effect of

the fourth quarter shows a marked decline in the last part of the sample period.

8 Other extensions and relation with trigonomet-

ric seasonality

Up to now we have entertained the case when N (or Nη) is a diagonal matrix. Can

we allow for some correlation among the seasons and what is a plausible model for this
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Figure 2: Income and consumption in Sweden: series with trends and seasonal components

extracted by bivariate model II.
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correlation? Since the seasons can be represented on a circle, a circular correlation model

would be a relevant option; this implies, e.g. that the correlation among any two adjacent

seasons is the same and can be made operational specifying N as a circulant matrix. A

circulant is a Toeplitz matrix in which njk is a function of j − k modulo s; each column

of N is equal to the previous column rotated downwards by one element.

Let P be the permutation matrix:

P =




0s−1 Is−1

1 0′s−1


 ,

characterised by the orthogonality property: P−1 = P ′, and assume that the number of

seasons is even.

The matrix N can be written as a linear combination of the powers of P and their

transpose (P 0 = Is):

N = σ2
η∗


Is +

s/2−1∑

k=1

ρk(P k + P k′) +
1
2
ρs/2(P

s/2 + P s/2′)


 , (8)

where ρk denotes the correlation between any two seasons that are k time units apart. As

shown in Anderson (1971, Theorem 6.5.3),

1
2
(P k + P k′) = HΣkH

′,

where H is the s× s orthonormal matrix (H ′H = HH ′ = Is)

H =
1√
s




1
√

2 cos 2π
s

√
2 sin 2π

s

√
2 cos 4π

s · · · −1

1
√

2 cos 2π
s 2

√
2 sin 2π

s 2
√

2 cos 4π
s 2 · · · 1

...
...

...
... · · · ...

1
√

2 cos 2π
s (s− 1)

√
2 sin 2π

s (s− 1)
√

2 cos 4π
s (s− 1) · · · 1

1
√

2 cos 2π
s s

√
2 sin 2π

s s
√

2 cos 4π
s s · · · −1




and Σk = diag(1, cos 2π
s k, cos 2π

s k, cos 4π
s k, . . . , cosπk). Hence, it follows that the spectral

decomposition of the N matrix is N = HΣH ′, with

Σ = Is + 2
∑s/2−1

k=1 ρkΣk + ρs/2Σs/2

= diag(σ0, σ1, σ1, σ2, σ2, . . . , σs/2−1, σs/2−1, σs/2).
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It should be noted that positive definiteness of Σ imposes constrains on the coefficients

ρk; for instance, for ρk = 0, k > 1, ρ1 can take values in [-0.5,0.5].

Now, since s−1/2i is the eigenvector of N corresponding to the characteristic root

σ1 = 1+2
∑

k ρk +ρs/2, the vector of weights of the orthogonal decomposition, defined by

(3), is w = s−1i, as N−1i = σ−1
0 i and the denominator is sσ−1

0 ; the periodic component

is the purely seasonal component γ̄t = x′tγt, γt+1 = γt + ωt, with Ω = H̃Σ̃H̃
′
, where H̃

is the s × (s − 1) matrix obtained deleting the first column of H and Σ̃ is the diagonal

(s− 1)× (s− 1) obtained deleting the first row and column from Σ.

The trigonometric representation of the seasonal model is obtained as follows:

γ̄t = z′tτ t, τ t+1 = τ t + κt,

with z′t = x′tH̃ and Var(κt) = Σ̃. The vector τ t measures the time variation in the

coefficients associated to s/2 trigonometric cycles defined at the seasonal frequencies λj =

2πj/s, j = 1, . . . , s/2, where all the cycles are scaled by
√

2 except the last (defined at π).

The time series properties of seasonal specific models with circular correlation are such

that the autocorrelation function does not vary with the season. To introduce periodic

effects need to break the circular structure of the N matrix, e.g. allowing the ρk’s to vary

with the season or introducing heteroscedastic idiosyncratic disturbances. When the N

is a scalar matrix, the periodic component is a HS seasonal component and this is equiv-

alent to a trigonometric model of seasonality with Σ̃ = Is−1. This follows immediately

elaborating results in Proietti (2000).

The just established equivalence between circular correlation and trigonometric sea-

sonals highlight the connection between frequency and time domain methods for dealing

with seasonal time series. In the latter the ultimate object of interest are the seasons,

whereas in the former attention focusses on how fundamental and harmonic cycles com-

bine to yield an overall seasonal pattern. For instance, a trigonometric seasonal model for

which attributes the same disturbance variance at all frequencies corresponds to a model

in which the seasonal specific disturbances are homoscedastic and uncorrelated across the

seasons.
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9 Illustration: Consumer Price Index for Women

Apparel

This section illustrates how a suitable specification of the N matrix can handle seasonal

features that are dealt with in the frequency domain. The series under investigation is the

U.S. consumer price index for women apparel goods, for the period 1970.1-2000.8, made

available electronically by the Bureau of Labor Statistic.

The main stylised fact is the presence of 2 cycles per year, the first concerning apparel

goods for the spring-summer season (February-July), the second those for the autumn-

winter season (August-January). A situation like this is smartly accommodated by a

trigonometric model of seasonality such that most of the variation is attributable to the

cycle defined at the frequency π/3.

In fact the BSM with trigonometric seasonality with different variances for the funda-

mental frequency and harmonics produces an excellent fit; basically only the fundamental

and the first two harmonics are needed. It is less easy to interpret the trigonometric

cycles at π/6 and π/2, but there may be two explanations for their significance: first

and foremost they are a consequence of aggregation of several apparel item which have

a similar but not exactly synchronous seasonal behaviour (2 cycles per year); at a more

disaggregated level there are series (for instance women footwear) where only the cycle at

π/3 is needed. Secondly, the autumn-winter season in some years can start in September

rather than in August or end in February rather than in January, and so forth. In general,

we must admit that each seasonal cycle need not have a particular interpretation in terms

of an identifiable economic mechanism; as a matter of fact, harmonics also serve to allow

for asymmetries in the overall seasonal cycle.

It is also possible to verify that in this situation X-12-Arima underadjusts the cycle

at π/3 so the SA series displays some seasonal feature that is pronounced at the end of

the 80’s.

Provided that we know what a sensible model for the series is, we know ask what

pattern of correlation among the seasons is capable of interpreting this strong feature of

21



the series. Of course we expect that N = σ2
η∗Is is not suitable since this would yield

an equivalent trigonometric model with all the cycles receiving the same weight. We also

could estimate the 7 parameter (ρk, k = 1, . . . , 6, and σ2
η∗) of the circular model but we

want to achieve parsimony imposing a pattern on the ρk coefficients.

In order to achieve this we can explore the following parameterisations:

1. First order circular correlation model: ρk = φρk−1, ρ0 = 1, k ≤ 6

2. Second order circular correlation model: ρk = φ1ρk−1 + φ2ρk−2,

ρ0 = 1, ρ1 = φ1/(1− φ2), k ≤ 6

by which the pattern of the ρk’s is parameterised in terms of one and two coefficients,

respectively. The first order model is inadequate for our series since a positive value for

φ will emphasise the fundamental frequency and a negative one the π frequency; in fact

it would give σ1 > σ2 > · · · > σ6 for φ positive and the inequality is reversed for φ

negative, whereas we know that σ2, the variance associated to the cycle at π/3, should be

the dominating parameter.

The second order model can produce this as we show by fitting the following seasonal

specific model:

yt = x′tµt + εt, t = 1, . . . , T,

µt+1 = µt + βt + iηt + η∗t , Var(η∗t ) = N ,

βt+1 = βt + iζt, Var(ζt) = σ2
ζ .

with Var(ηt) = σ2
η, and N is specified as in (8) with ρk = φ1ρk−1 + φ2ρk−2.

The estimated parameters are (log-likelihood = 1105): σ̂2
ε = 0; σ̂2

η = 541 × 10−7;

σ̂2
η∗ = 30 × 10−7; σ̂2

ζ = 2 × 10−8; moreover, φ̂1 = 0.91 and φ̂2 = −.72, which imply the

following pattern for the ρk’s:

ρ1 = 0.53, ρ2 = −0.24, ρ3 = −0.60, ρ4 = −0.38, ρ5 = 0.09, ρ6 = 0.35;

this is perfectly sensible since the cycle at π/3 implies a positive correlation at leads and

lags of six months and a maximum negative correlation three months apart.

The implied trigonometric disturbance variances are the diagonal elements of the ma-

trix K̃, which result:
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Figure 3: U.S. CPI for Women Apparel: smoothed estimates of components arising from the

seasonal specific local linear trend model with second order circular correlation.
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Figure 3 presents the smoothed estimates of the components of CPI women apparel,

where the trend is defined as w′µ̃t|T = 1
s i′µ̃t|T ; and the seasonal as x′t(Is − s−1ii′)µ̃t|T .

The estimates of the seasonal component show the fact that the spring-summer season

becomes more and more prominent during the 80ies and the 90ies.
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10 Conclusions

This paper has introduced a class of unobserved components models for seasonal time

series that hinges on the breakdown of variation sources into sources specific to a particular

season and common sources affecting all the seasons. The relative size of the idiosyncratic

disturbances can make one season drift away persistently from the other seasons.

Seasonal specific models are periodic, that is they imply first and second order moments

that vary with the seasons, but we showed that we can meaningfully extract a non periodic

process that is close to the notion of a trend in a seasonal time series; this process is

driven by the common disturbance and a suitable weighted average of the idiosyncratic

disturbances; the weights discount the more variable seasons, as they are less informative

on the overall dynamics. An orthogonal periodic component can also be extracted and

the paper has pointed out how it departs from traditional models of seasonality.

When seasonal specific disturbances are homoscedastic, the traditional decomposition

into orthogonal trend and seasonality is obtained, the only difference being that the trend

is driven by the common disturbance and a simple arithmetic average of the idiosyncratic

disturbances. The same holds if we assume a circular correlation structure for them, in

which case we have shown that the seasonal component has an isomorphic trigonometric

representation, such that the relative importance of the fundamental frequency and the

harmonics vary as a function of the circular correlation parameters.

Multivariate extensions are possible and we showed how they can entertain the idea

that subsets of season are subject to the same influences, so that partial seasonal cointe-

gration takes place with respect to particular seasons: the bivariate example concerning

income and consumption in Sweden served to illustrate the fact that income and con-

sumption cointegrate in the second and third quarters, but not in the first and the fourth

quarters.

Overall the class of models proposed introduces periodicity without affecting the possi-

bility of extracting signals that are an expression the long run behaviour. Therefore, they

furnish a reasonable comprimise between increasing model complexity in the presence of

strong seasonal effects, and preserving the decomposability of the time series.
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