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Abstract

The error correction model for seasonal cointegration is analyzed. Condi-
tions are found under which the process is integrated of order 1 and cointegrated
at seasonal frequency, and a representation theorem is given. The likelihood
function is analyzed and the numerical calculation of the maximum likelihood
estimators is discussed. The asymptotic distribution of the likelihood ratio test
for cointegrating rank is given. It is shown that the estimated cointegrating
vectors are asymptotically mixed Gaussian. The results resemble the results for
cointegration at zero frequency when expressed in terms of a complex Brownian
motion. Tables are provided for asymptotic inference.
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1 Introduction

This paper contains a systematic treatment of the statistical analysis of seasonal
cointegration in the vector autoregressive model. The theory started with the
paper by Hylleberg, Engle, Granger, and Yoo (1990) which gave the main results
on the representation and the single equation tests for cointegration at complex
frequencies. An analysis of seasonal cointegration of Japanese consumption was
given in Engle, Granger, Hylleberg, and Lee (1993). Seasonal cointegration
analysis is prompted by the empirical finding that the vector autoregressive
model often describe macro data quite well. The occurrence of unit roots in the
fitted process implies that it is non-stationary, and the occurrence of unit roots
at seasonal frequency implies a non-stationary seasonal variation. This again
implies the possibility of seasonal cointegration, and the phenomenon that the
seasonality drifts, such that "summer becomes winter”.

The paper on maximum likelihood inference by Lee (1992) sets the stage
for the analysis of multivariate systems. Unfortunately it does not treat all
aspects of asymptotic inference, and the test for cointegration rank is only
partially correct. The two papers by Gregoir (1993a,b) deal with a very general
situation of unit roots allowing for processes to be integrated of order greater
than 1 at any frequency, but do not treat likelihood inference.

The purpose of this paper is therefore to improve on the previous analysis
and discuss maximum likelihood estimation, calculation of test statistics, and
derivation of asymptotic distributions in the context of the vector autoregressive
model. In the process of doing so it is natural to give the mathematical theory of
the Granger representation, the error correction model, the role of the constant
term, and seasonal dummies. The basic new trick is the introduction of the
complex Brownian motion, which makes many calculations more natural and
greatly simplifies formulae for limit distributions. We focus mainly on complex
roots, since the case with roots at 1 is well known from the literature, see
Johansen (1996), and the situation with a root at -1 can be dealt with using
the same methods, see Lee (1992).

We consider the autoregressive model defined for an n—dimensional pro-
cess X; by the equations:
!

Xi =Y X ;+®D; + e, (1)
j=1
where we assume that the initial values Xj,..., X ;,; are fixed. When deriving

estimators and test statistics we also assume that ¢, are i.i.d. N, (0,€2), while
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the asymptotic results are proved under the assumption that the errors are i.i.d.
with finite variance and mean zero. This assumption can be further relaxed,
see Chan and Wei (1988), and the comments in Section 4. The deterministic
terms D; may contain a constant, a linear term, or seasonal dummies. Various
models defined by restrictions on the deterministic terms will be considered.
The properties of the process generated by (1) are as usual expressed in terms
of the characteristic polynomial

1
Alz) =1, =Y T2,
j=1

with determinant |A(z)|, and where I, is an n X n identity matrix.

The paper is organized as follows: in Section 2 the error correction model
for seasonal cointegration of processes that are integrated of order 1 at sea-
sonal frequency is discussed. The equations are solved in the form of a Granger
representation theorem, applying a general result about inversion of matrix
polynomials. This is applied to analyze the role of constant, linear term, and
seasonal dummies, see Franses and Kunst (1995). In Section 3 the Gaussian
likelihood analysis and calculation of maximum likelihood estimators in the
model with unrestricted deterministic terms, as well as in some models, defined
by restrictions of deterministic terms, is discussed. In Section 4 some technical
asymptotic results on the behavior of the process and product moments are
given. Section 5 contains asymptotic results for the maximum likelihood esti-
mator of the cointegrating vectors, and the likelihood ratio test for cointegration
rank at seasonal frequency.

In Appendix A a brief description of the (real) matrix representation of
complex matrices is given along with proofs of the technical results in Section
4. Finally, Appendix B contains tables of limit distributions of the likelihood
ratio tests for cointegrating rank for various models defined by restrictions on
the deterministic terms.

2 The representation theorem and the error

correction model

This section contains the necessary analytic results from the theory of real
polynomials A(z) with values in the set of n x n matrices. Theorem 1 gives
Lagrange’s expansion for a polynomial around arbitrary points and it is shown
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in Corollary 2 how this contains the formulation of an error correction model.
The basic result, however, is Theorem 3, which gives a necessary and sufficient
condition for the inverse matrix polynomial to have poles of order 1. In Theorem
4 this result is interpreted as a representation of the solution of the autoregres-
sive equations allowing for integrated processes and cointegration at seasonal
frequency, thereby generalizing Granger’s theorem for I(1) processes. The new
Granger representation theorem is applied to discuss the role of constant, linear
term, and in particular seasonal dummies. This section is concluded with some
examples of models for annual, semi-annual, and quarterly data.

2.1 Some notation

We are concerned with roots of the equation |A(z)| = 0, in particular unit roots,
for which |z| = 1. For a complex number z = €, the complex conjugate is the
same as the inverse, 7 = 271 = =% We use the notation 3* = 3, — i/} for the
adjoint matrix, where 35 and (3; are real matrices.

Let z,, be a root of |A(z)| = 0, such that A(z,,) has reduced rank. Then
there exists two complex matrices o, and (3, such that A(z,,) = a,5,,. Note
that since the roots may be complex, the matrices «,, and (3,, may be complex.
However, since the coefficients of A(z,,) are real, the roots and the corresponding
matrices o, and 3,, come in complex conjugate pairs.

Corresponding to s distinct complex numbers zq, ..., zs, we introduce the
polynomials

p(z) = [ (1= Zn2),
pﬂ(z) an;&g(l_gmz): 111(2327 Z%Zju
pkj(z) H:nyék,j(]‘_zmz) :#27%2)7 Z%Z]’,Zk.

2.2 The error correction model

The error correction formulation is a simple consequence of Lagrange’s expan-

sion of A(z) around the s+ 1 points z =0, 21, ..., 2.
Theorem 1 The polynomial A(z) can be expanded around the points 0, zy, ..., zs
as follows

A(z) =p(2) T+ ) A(zm)M + p(2)zA0(2),



where Ao(z) is a matriz polynomial.

Proof. The matrix polynomial

Z A(z ) —p(2)I,

pm zm)zm

is zero for z = 0, 21, ..., z;, and hence each of the entries can be factorized
into p(z)z times a polynomial. It follows that the difference can be written as
p(2)zAg(z) for some matrix polynomial Ay(z). W

An immediate consequence of this is the error correction formulation, see
Hylleberg, Engle, Granger, and Yoo (1990).

Corollary 2 Let z,...,zs be the unit roots of |A(z)| = 0, such that the ma-
trices A(zy) are of reduced rank: A(zpn) = —amfB,,, with o, and 3, complex
matrices of dimension n X rn, and rank rp,. If A(L)X; = ®D; + &, then X,

satisfies an error correction model:

p(D)X; = Yooy BB X, — p(L)Ag(L)LX, + @D + &
(2)
= S anmBL X = Ag(D)p(L) X, 1 + ®D; + &,

where we have introduced
pm (L)L

DPm(2m) Zm

xXm = X,.

The idea behind this formulation (see Theorem 4, and condition (4)),
is that X; is a non-stationary process and the p(L)X; is stationary, that is,
for any h = 1,2, ..., the distribution of (p(L)Xy, p(L)X¢ 1, ..., p(L)X¢yp) does
not depend on t. The processes Xt(m)(m = 1,...,s) are non-stationary but,
as we shall see below, the components of Xt(m) have the same common non-
stationary trends which are removed by the linear combinations ;. and 3, X t(m)
is stationary. Thus, the stationary ”differences” p(L)X; react to equilibrium
errors given by ﬁj;lXt(m) through the adjustment coefficients «,,,. The result can
therefore be formulated as cointegration of the (complex) processes Xt(m) , or if
expressed in terms of X, we find that the stationarity of ﬁ*Xt(m) = ﬁ*%Xt
can be expressed as a complicated cointegration relation between the process
X; and its lags (see section 2.5). This has been called polynomial cointegration
by Engle and Yoo (1991). Note also that a different set of roots gives rise to a

different error correction formulation.



2.3 Granger’s representation theorem

We define the derivative A(z,) of A(z) at z = z,,. If the polynomial |A(z)| has
a root at z = zg then A(z) is not invertible. We say that A(z)~! has a pole of
order k (k=0,1,...) at z = 2 if

lim (1 — =

Z—20 20

)FATH(2)

exists and is non-zero. We next prove a result that gives a necessary and
sufficient condition for the inverse function to have a pole of order 1 at the
point zp. This condition clearly requires A(zp) to be singular, but we also need
a condition on the derivative of A(z) at zy, which restricts the behavior of A(z)
in a neighborhood of zy. For any (complex) matrix ¢ of dimension n X r we
define ¢, as a full rank (complex) matrix of dimension n x (n — r), such that
dc; = 0. Note that (¢*); = (c1)*.

Theorem 3 Assume that the roots of |A(z)| = 0 satisfy |z| > 1+ 6 or z €
(21,...,25) with |z,| =1 for some § >0, and that A(z,) = —an,,. Then the
matriz polynomial A(z) is invertible on the disk |z| < 146, except at the points
(21,...,25) where A~1(z) has a pole. A necessary and sufficient condition for
the pole to be of order 1 is that

’a:lLA(zm)ﬂmJ_‘ 7é 07 m = 17 < S (3)

In this case, we get an expansion of A71(2) of the form

- 1
Ail(z) = Zle_—ZZ + CO(Z)v z 7é (zlv s 7ZS)7
m=1 m

where

lim (1 — Z2)A(2) ™" = O = —ZmBp1 (51 Al2m) B ) 01

and where Cy(z) has a convergent power series for |z| < 1+ 6. That is, Co(2)

has no poles and A~1(z) has poles of order 1. Moreover it holds that

@z pacy oL (), 2 £ ),

pm(zm)zm (1 — Zmz)

for some power series Cy,(2) convergent for |z| <14 6.
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Proof. The usual expression for the inverse of a matrix

_ Adj(A(z))
AN2) = 250 2 (2, 2)
[A(2)] 1
shows that A(z)~! has poles at the roots z = z1, ..., z since |A(zy,)| =0, m =

1,...,s. We want to show that the pole at z = z,, is of order 1 and has the

f
orm 1

(1-2z,2)
such that the continuous function Cy(z) defined by

Cm

Co(z) _ A(z)fl _ Zcm(l——lzmz)’ A 7§ (Zl, .. .,Zs),

has no poles in the disk |z| < 1+ 6, for some 6 > 0.

This is proved by investigating the functions in a neighborhood of each
of the poles and showing that, by subtracting the poles given in the sum, the
poles in A7!(z) are eliminated. Thus, we first focus on the root z = z; where
A(z1) = —af*, and we have left out the subscript to simplify the notation.

Consider therefore a value of z such that 0 < |z — 21| < e. From the
expansion

A(2) = A(21) + (2 — 21)A(21) + (2 — 21)? A1 (2),
where A;(z) is a remainder polynomial, it follows by multiplying by (o, )*
and (4,1/(1 — z12)3 ) that, since A(z) = —af",
A(z)
= (o00)'A() (8.0, %)
( —a*af*B 0 ) N ( @A)z —21)  —matA(n)B, ) for some

0 0 ajA(zl)ﬁ(z —21) —Z1OéjA(Z1)5L
+(z — 21)As(2),

remainder polynomial Ay(z). Here and in the following we often use such a no-

tation for a remainder term, when we expand a polynomial or a power series.
The function A(z) is a matrix polynomial and therefore has no poles. Further

A(z) = - ( araff' B matAz)f, )

0 zna’ A(z) B,

has full rank if and only if assumption (3) holds since
|A(z1)| = (=1)"|a*a| |8 Bl|z10L A(21) B, | # 0.
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In this case, A(z) is invertible for |z — 2| < e for some &, with the property
that 0 < e <r]£17151 |z, — 2|, and we find by the expansion

ANz) = A Nz) + (2 — 21) Ma(z),
that for z # z
A_l(z) = (ﬂv ﬁL 171212) A_l(z) (av O‘J-)*
= —Z=B (1 A(z)BL) 7 ) + My(2)
= 01 L + MS(Z)v

1—212

where (] is given in Theorem 3 and

Ms(z) = ((z — 21) B8, =B L21) Ma(2) (o, p )"

Here M;(2)is a convergent power series which is a notation for the remainder
term in the expansion of A~!(z). Hence A~%(z) — C;—~— = M;(z) has no pole

1-21z —
at z = z; and extends by continuity to the point z = z;.

The same argument can be used to remove the other poles from A~1(z)
and the theorem has been proved. M

The next result is a representation of the solution of the error correction
model (2). The equations (2) determine the process X, as a function of the
errors €; (i = 1,...,t) and the initial values of the process. We give the result
for the model without deterministic terms, and later formulate and apply the
result for the general case.

Theorem 4 Let X, satisfy A(L)X, = &, and let the equation |A(z)| = 0 have
roots outside the unit disk and at zq, ..., zs with absolute value 1, such that X;

18 non-stationary. Then
Alzm) = —amfB, m=1, ..., s,

where oy, and B3, are n X r,, matrices of rank r,, <n.

The processes p(L) Xy and pp, (L), X; can be made stationary by a suitable

choice of initial values, if and only if
‘a:uA(zm)ﬁmﬂ # 0. (4)

In this case, X; and Xt(m) can be given the representation
Xe=) CuznS™ + ) ZnAnt Y, (5)
m=1 m=1
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and

X; = Cnzt S 4 24 Ay + Y, (6)

where 8™ is given by
t
Sim) — Z 2 &5,
=0

and the random variables A,, depend on initial conditions such that (3;, A, = 0,

and finally Y; and Y;(m) are stationary processes.

Thus, the non-stationary process X; can be made stationary by the dif-
ference operator p(L) and, since ﬂ;Xt(m) is stationary, we call X, seasonally
m or at frequency 6,,, with cointegrating vectors 3,,.

Note that S{™ is not a random walk since AS™ = z¢ ¢, are independent but

cointegrated at z,, = €

not in general identically distributed. Note also the factor z!, in front of St(m)
gives a type of non-stationarity that is different from the usual unit root non-
stationarity. Finally note that since we allow for complex roots, the process
Xt(m) and the coefficients o, and 3,, are in general complex. Since, however,
the data and the coefficients in A(z) are real, the roots come in complex con-
jugate pairs. Hence a reduced rank condition at a complex root automatically
implies a reduced rank condition at the complex conjugate root. This will com-
plicate the statistical analysis below.

The difference between the results in Theorem 3 and Theorem 4 is that in
order to interpret Theorem 3 for stochastic processes, care has to be taken of
initial values in the representation (5) and (6) in order to translate the results
about the power series into results about the lag operator.

Proof. From Theorem 3 we find
P(2) Ly =Y Coupm(2) + p(2)Co(2)] A(2).
m=1

Expressed in terms of the lag operator L, defined by LX; = X; 1, the relation
applied to X; is, since A(L)X; = &,

pD)Xi =Y CopnlL)e + p(L)Yii t = 1,...,T. (7)
m=1

where Y; = Cy(L)e;. The right hand side is stationary, which shows that by
choosing the initial values X, ..., X 4,1, such that (7) is satisfied for t = 0, we
see that p(L)X; becomes stationary.



We want to solve equation (7) for X, by removing the polynomial p(L)
one factor at a time by summation. This will again involve the initial values.

Consider first the root z = z;. The definition of p(z) implies that

p(2) = (1 = 212)p1(2), pm(2) = (1 = 212)pma(2), m # 1,

and equation (7) is

(1_21[/) ( Zcmpml Clpl( )5157 t:O,l,...,T.

Solving these equations we find

t

_Zcmpml( €t—zl+ A+01p1( ) Z{é?j, t:(),l,...,T.
— =
(8)
Here A = p1(L)(X 1 —Y 1) = >0 _ Coupma(L)e 1 is the initial value of

m=1

the left hand side. Next notice that (1 — z,,L)zt = (1 — z,,21) 2% implies
pi(L)7 = pi(21)7,
such that result of the above calculations can be expressed as:

(D) (X, =Y — C1 280 — 2 A)) Zcmpm Jer, t=0,1,....T, (9)

with A; = Z1A/p1(z1). We next choose the initial value of X; to satisfy the
further restriction

pl(L)ﬁTXfl :pl 51Y 1~ Zﬂ1 mpml 5 1,

such that 7A = 0, and hence 7A4; = 0.
We then get from (8):

pl(L)ﬁTXt = pl(L)ﬁTth + Z ﬁTCmpml(L)gtv t= 07 17 cee aTv

since 37C; = 0. This shows that, with this choice of initial values, p; (L)5] X} is
a stationary process.

Equation (9) has the same form as the one we started with in (7), except
that the root z = 2; has been removed. In the same way we successively
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eliminate the roots by summation of the equation, each time subtracting a
term of the form CmenS,fm) + z! A, from the left hand side, and thereby prove
the representation.

Conversely if the assumptions are satisfied and p(L)X; is stationary, it has
the representation :

By expanding C(z) = Y2, C;z" around zi, . .., zs, we find

pm(L)
pm(zm)

p(L) X, = Z C(2m) e+ p(L)Co(L)ey,

for some convergent power series Cy(z). Hence
p(L)e = p(L)A(L) X, = A(L)[Y_ Clzm)——=

which shows that

8

AT z) =) Claw)

m=1

1
pm(zm)(l - Zmz)

+ 00(2).

Thus, all poles are of order one and by Theorem 3 and condition (4) holds. ®

The usual Granger representation of an /(1) process as a random walk
plus a stationary process is here replaced by a representation in terms of the
processes St(m). The representation captures the phenomenon that the variance
of an I(1) process is increasing. In the present case, we find that the increasing
part of the variance of Xt(m) is generated by C’menSt(m) , which contributes with
a variance of the form:

t
Cr 2t B[S ST 2L, Coy = CriZl, > 21 Bleic)] 2, 21, O = (t+ 1)CrQCs,.

1,5=0

The processes Xt(m) and Xt(n) are asymptotically uncorrelated in the sense
that, for n # m, the covariances are:

CnEz,, 5™ st cn
t
= Cnzl 2l Z 2, Eleic})ZC
i,j=0
t
= CwiZh2h Y 2,0%,Ch =72,z

=0

. 1 — (zmzn)t+1
" 1= zmZn

CQC:
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which remains bounded as t tends to oo, while the variances tend to oc.

Thus, the process is composed of many different processes St(m) each of
which has a variance that tends to infinity with ¢ in the directions given by 3,,, | .
In general one cannot expect that any given linear combination will eliminate all
the non-stationarity created by the processes St(m) . By applying the difference
filter p,,, (L) one eliminates all non-stationarity except at the frequency 6,,, where
a linear combination is needed to annihilate the matrix C,,.

Next Theorem 4 is applied to solve the autoregressive equations when they
contain deterministic terms.

Thus, assume that X; is the solution to the equations:
A(L)Xt = (I)Dt + Et,

where A(z) satisfies the conditions set out in Theorem 4. In this case:
P(L)X, =Y Crpm(L) (e, + ®Dy) + p(L)Co(L) (e, + 2 Dy),
m=1

with solution:
s S t s
X, =Y CuZt S+ Cuzl®> D+ 2 AL+,
m=1 m=1 7=0 m=1

where Y, — E (37,5) is stationary, and A,, depends on initial values such that
ﬁ,’;flm = 0. It is seen, that if D; = 1 then the deterministic term gives rise to
the trend z!, Z;:o 2l =7t (1 — 2t /(1 — z,,) which remains bounded, unless
zm = 1 in which case we get a linear trend in the process. Similarly, if D; = j
we find

t
s t+1 0 (1=2H
=t § : J _ m
- j—ojzm 1—zn (1= 2zm)*

which is a linear trend if z,, # 1 and a quadratic trend if 2, = 1. Thus, if
dD, = &y + Pt we get a quadratic trend from z,, = 1, which vanishes if
we choose o/, | ®; = 0. If &; = 0, we get a linear trend which vanishes when
al. | P9 = 0. The next sub-section discusses similar result for seasonal dummies.

2.4 The role of seasonal dummies

If we have data measured at frequency s per year, we often include seasonal
dummies to model the effect of a seasonally changing mean. We here consider
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data with unit roots at (some of) the seasonal frequencies 6,, = 2wim/s, (m =
1,...,3).

This is the situation if for instance we have quarterly data and have unit
roots in the process at z = +i and z = 1. We denote the roots of unity z,, (m =
1, ..., 8), and assume for simplicity here that z; = 1, 23, ..., 2z are roots of
the process, s < 5. The results are easily modified if this is not the case.

The seasonal dummies are defined by the § vector D;, with the property
that D; = D, ;. This is a difference equation with characteristic roots equal to
the roots of unity, and the solution is:

s
_ =t
= E Zp s
m=1

for some linearly independent s—vectors d,,,, which can be determined by the

1o
dy, = = 7 D,
§;Zm J

initial s values of D;

With this notation we find:

t+1 St+1

ZZJD sz szd (t+ 1)dp —i—Zﬁde—l

n#£m

Thus, the seasonal dummy generates a trend C,,®d,,z% ¢t in X, at the unit root
Zm (m=1,...,5). For z, # 1 this trend oscillates due to the factor z! , which
is probably unwanted in the description of data. The trend is removed by
assuming C,,®d,,, =0, or o | ®d,,, = 0, or ®d,, = a,,p},, for some p,, (1 X 74,).
This result was first proved by Franses and Kunst (1995).

We reparametrize the model by introducing the parameters ®,, = ®d,,.
The vectors d,,, come in complex conjugate pairs, which also holds for the new
parameters. The deterministic terms in the equation become:

dD, = Z D2
m=1

We now restrict ®,, (m =2,...,s), by ®,, = a,,p5, . In this way the oscillating
trends are avoided, while leaving open the possibility of a linear trend generated
by the unit root z = 1. If we also want to restrict this, we further assume that
ay ©; =0.

We conclude this section by a few illustrative examples.

12



2.5 Examples

Some examples of models for annual, semi-annual and quarterly data are given.

2.5.1 Annual data

If z = 1 is the only unit root in the process, then p(z) =1 — z and Xt(l) = X; 1.
Model (2) is the usual error correction model for 7(1) variables:

AX; =af X, 1+ ey,

where further dynamics and deterministic terms are left out.

2.5.2 Semi-annual data

If the unit roots are z = 41, then p(z) = (1 — 2)(1 + 2) = 1 — 22, and we find:

1+ L)L 1

Xt(l) _ %Xt = 5(Xt,l + X 9),
1-L)L 1

Xt(Q) — %Xt = E(Xt—l — Xt—Q)’

such that (2) becomes

1 1
X — X0 = 50415/1 (X1 + Xi0) + 5025,2()(}—1 — Xy 9) &y

The reason for considering this case is that interpretation is somewhat easier
than for quarterly models.

Consider for instance a process consisting of semi-annual income and con-
sumption. In this case, Xt(l) is just the annual average, and the model specifies
that this process is a non-stationary I(1) process which cointegrates, such that
annual consumption follows annual income in a stationary way through the
cointegrating coefficients ;. The process Xt(Q) , however, measures the varia-
tion within a year and the seasonal unit root at z = —1 implies that this process
has a seasonal non-stationarity. This means that when averaged within a year
it becomes stationary. The cointegrating vector (3, gives the linear combination
of annual variation of consumption and income which cointegrates.

Thus, not only the non-stationary yearly average but also the non-stationary
variation within a year have to move together according to the model.

13



In order to understand the type of non-stationarity induced by a unit root
at z = —1, consider the process

t 4

Xe= (1)’ = (=)' Y (—1)e; =Y (~1)ery,

j=0 j=0
which enters the representation theorem.

Since the normal distribution is symmetric, the process 8,52) is a random
walk, and the factor (—1)" changes the sign of every second term, which give
rise to the oscillating behavior that we see in seasonally varying processes. It is
obvious that differencing such a process will not give stationarity, whereas one

can obtain a stationary process by smoothing using a moving average %(Xt +
Xi 1)

Note that when the random walk SL@ is positive for an interval, then X;
oscillates systematically between positive and negative values, but when 8,5(2)
gets too close to zero, or a large draw of ; occurs, then it can change sign
with the result that the peaks of X; are shifted one period, such that ”summer
becomes winter”. This is a characteristic property of processes generated by
the seasonal error correction model. It is easy in the example to check the role
of constant, linear term, and seasonal dummies on the behavior of the process.

2.5.3 Quarterly data

Next consider quarterly data and unit roots at z = +1, +i. In this case:
p(z) =1 —=2)1+2)(1+iz)(1—iz) =1— 2%

The processes that are needed in the error correction model are

xM = HXy o+ X0+ Xy 5+ X, 4),
xP = WXy — Xy o+ X5 — X a),
XD = L(X 4 iXis — X — X ),
XM = (X =X — Xig + i Xi ).

The error correction model contains 4 terms, and we express them using real
variables, see also (15). If we let Xt(g) = X](g) + Z’XS) and Xt(4) = )_(t(g) =
th) — iXI(?) we find

1
X = (X2 = Xia),

1
Xy = —7 (X1 = Xis).
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The error correction model becomes

X — Xy = OélﬁiXt(l) + aQﬁ,QXt(Q)
+(04R5/R + ar87)(Xi—e — Xi—4)
+(04Rﬁlf - aIﬁIR) (X1 — Xi—3) + &,

where we have absorbed the factor ;11 into the coefficients, and for ease of notation
we let a3 = ag +iag, ay = as, B3 = Br +i8;, B, = Bs.

Note that the coefficient matrix to X;_o — X;_4 is rather complicated. It
need not even have reduced rank. The same parameters appear in the coefficient
to Xy_1 — X;_3. Thus, the type of polynomial cointegration obtained here is
difficult to interpret. It has been suggested to assume that ag3; — a7y = 0,
in order to simplify the equations (see Lee 1992), but it is seen that this is
a peculiar restriction on all coefficients, which is hard to interpret. If instead
(; = 0 then the equations contain the term

aRﬁIR(thz - th4) - a[ﬁ'R(th - ths) = (OéRL - OéI)ﬁIR(XtA - ths)-

This shows that X; is polynomially cointegrated. This has the advantage that
only one set of linear combinations of (1 — L?) X, appears, and the interpretation
is that B (X;—1 — X;_3) is either stationary or cointegrates with its own lag. If
also ay = 0, the equation contains a term of the form agf%(X; 2 — X; 4) with
the interpretation that X, , — X, 4 cointegrates with cointegrating vector 3.

The error correction model is different if the process only has roots at
z = 1,44, since then p(z) = (1 — 2)(1 +i2)(1 —iz) = (1 — 2)(1 + 22). In this
case,

1+ L2 1
Xt(l) = %L‘X} = E(Xt—l + X;_3),
1— L)(1—iL) 1 .
x® ( LX, = AX, 1 —iAX,
: 2(1— 1) L= g ) A T iAK),
1— L)(1+4L) 1 .
x® = ( LX, = ——(AX,_ | +iAX,_
t 2(1+14) t 2(1+i)( -1 +iAXi-),

where A =1 — L. We find the real and imaginary part as follows:
1 1
X = 700 Xe 0, Xj) = AKX,
where Ay, =1 — L2, The error correction model is:

Xi—Xia + X0 — Xi 3
= a8 (X1 4 Xy 3) + (OéRﬁlR + a3 As X, 1 + (apf; — arfR)A%X, 1 + &y
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In this section we have given a general version of Granger’s representa-
tion theorem which clarifies when we get a seasonally cointegrated solution to
autoregressive equations and when the solution is integrated of order 1 at sea-
sonal frequency. We also gave a discussion of trends generated by constant,
linear term, and seasonal dummies, and the restrictions needed to avoid them.
In the next section these results are applied to define the statistical models we
want to analyze.

3 The models for seasonal cointegration and

their statistical analysis

In this section the statistical model for autoregressive processes integrated of
order 1 at seasonal frequency which allows for seasonal cointegration is defined.
Various models defined by restrictions on the deterministic terms are given.
We discuss Gaussian maximum likelihood estimation and the formulation of
some hypotheses on the cointegrating ranks, the cointegrating vectors, and the
adjustment coefficients.

3.1 Statistical models defined by restrictions on deter-

ministic terms

The n—dimensional vector autoregressive model for seasonal cointegration is
defined by the equations:

s k
pL)X =" anB, XM + Y Tip(L) X j+ @D+, t=1,...,T. (10)

m=1 j=1
Here g, areii.d. N,(0,(2), and the parameters o, 8, (m =1, ..., s), I';(j =
L, ..., k), &, and Q are freely varying, except that the «,, and 3,, come in com-

plex conjugate pairs. We assume that D; consists of deterministic terms. Note
that the lag length is [ = k+ s since p(L) is an s’th order lag polynomial. The
dimension of a,,, and 3,, is n X r,,, and the initial values are fixed in the analysis
of the likelihood function.

If the roots of the process are also roots of unity, corresponding to a given
frequency s of the data, we can introduce seasonal dummies D, in the model.
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As seen in Section 2 they give rise to trends in the process and it was shown
how these can be avoided by restriction of the parameters. We decompose the
parameter ® as ®D; = an:l ®,,z!  and assume that @, = a,,pk,, for some
matrix p,, of dimension 1 X rp,,, (m=1,..., s).

In this case:

k 5
+ ZPjP(L)Xt—j -+ Z (I)mztn + Et,
j=1 m=s+1
where {zs.1,...,25} are the roots of unity which are not unit roots of the
process.

If instead we allow for a linear trend, we do not restrict at zero frequency
but use the model

s * 5 m)
L)X = XV +Y o ( O ) ( X;t > (12)
m=2

m m

k 8
+Y Tp(D) X+ @14 Y Pl + e
j=1

m=s+1

In these two last models the parameters specified are varying freely, with
the only restriction that the parameters a,,, (,,, and ®,, come in complex
conjugate pairs. Note how the roots of unity that do not correspond to unit
roots in the process enter with unrestricted coefficients ®,, (s < m < §), and
do not give rise to trends in the process. Thus, consider for instance the terms
with m = s+ 1 and m = s + 2, in (12). Let 2,41 = Zoyn = € and &, =

b, 9 = Pp 4 1Py, say. The corresponding terms in the regression are:
(I)S-HZ};—H + ®8+22£+2 = 2(<I)R COS(tQ) + (I)[ 51n(t9))

Thus, the regression will include the extra regressors cos(tf) and sin(t6), with
unrestricted coefficients. This term will not generate a trend since

t
E i =i
Zmzs+1
i=0

is bounded, whenever the index m corresponds to the roots in the characteristic
polynomial, that is, m < s < s+ 1.

17



3.2 Some algorithms for estimation

The statistical analysis of (10) leads to a non-linear regression problem since the
coefficients «,, and 3, enter through their product. We here discuss estimation
of the model without restrictions on deterministic terms and mention in the end
of this subsection how to modify the algorithm if the deterministic terms are
restricted, as in models (11) and (12).

Since the cointegration model (10) does not restrict the matrices I'; and
®, we can concentrate the likelihood function with respect to these and define
residuals Ry, RgT), and R.; by regression of p(L)X;, Xt(m), and e, on D, and
lagged values of p(L)X;. Thus, we get the equation:

Ry =Y o, RYY + Rey. (13)

m=1

An algorithm for estimating this model (see Boswijk 1995), is the follow-
ing: for fixed 3 coefficients the model is a linear regression model that deter-
mines the o/s and 2 by regression of n variables Ry, on Y > _ rp, variables
ﬂ’l‘R%) ey ﬁ;RgT) For fixed values of a and €2, however, we have a linear re-
gression model in the (3 coefficients which can be estimated by generalized least
squares. This determines a switching algorithm, which in each step increases
the likelihood function, but the second step involves vectorizing 3,, so we need
a total of n > " _ r,, regressors.

Another algorithm can be based on first and second derivatives of the
likelihood function and an application of the Gauss Newton algorithm. This
algorithm also involves a large number of variables in general.

Finally, we describe an algorithm which is slightly simpler, and which
can be proved to give estimators which are asymptotically equivalent to the
maximum likelihood estimators, since the regressors X,"" are asymptotically
uncorrelated, in the sense that

T
723" XX L0, 2, # 2,

=1
see Corollary 7.

The idea of the algorithm is that when focussing on one frequency we can
concentrate out the other regressors by ignoring the constraint of reduced rank
at these other frequencies, see Lee (1992). It is an interesting consequence that
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if one performs a usual cointegration analysis for the unit root z = 1 we get
consistent estimators, even though there may be seasonal cointegration. Fur-
thermore we can make valid asymptotic inference using the results given later.
Thus we can for instance test hypotheses on the coefficient of the cointegrating
vector with asymptotic y? tests. What breaks down completely of course is the
interpretation, since 3’ X; is not stationary.

We illustrate the situation of a complex root, since the real roots 1 and
—1 are easily handled in a similar way.

Consider therefore the situation where, say, z; = € and z, = e~ are two
complex roots with 0 < 6 < 7. Note that A(e?) = A(e=*) and X? = XV For
notational reasons we use o and (3 without subscripts now and let o; = o, 3; = (3

which in turn implies ay = @&, , and 3, = 3. Thus we write the model equation
(13) as

Ry = of' Ry +aB RY + Y 0B, R + Ra. (14)
m=3

We concentrate with respect to RﬁT), where m # (1,2), that is, we remove
the restriction of reduced rank at zs, ..., zs. This gives residuals Uy, Uy, and
U.; and we find the equations

U = afUy+af Uy + Uy
= 2Real[(ag +iar)(Bg —i8;) (Urt +iUr)] + U
= 2[(arfy + B U + (arB; — asfB%)Un) + U

= 2(ag,—ary) ( g]j _ﬁif ) ( git ) + Uq (15)

v URt
= Uea
P ( U >+ t

where & = 2(ag, —a;), and we use the matrix notation e, and 3 for matrices
with complex structure:

() (2
&y QR Br Br

In Appendix A the matrix representation of complex numbers and matri-
ces is explained. This representation is noted throughout by boldface. Since
the roots come in complex pairs the sum » > . amﬁ;Xt(m) is real, such that
both Uy, and U, are real. The statistical problem appears to be a reduced rank

regression problem, at least if n > 2r;, but the matrix @3 is not unrestricted
since, by construction, it must have complex structure.
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In order to express the partially maximized likelihood function we intro-
duce the product moments

T I
_ U U
Sll = T 1 E ( U];Z ) ( U]jz ) , (271 X 277/),
t=1

—~ (U
S 3 G AT

T
Sy = T U€t< ) , (nx2n).
— Ur

Finally, we define 811,0 = Sn - 5108(}]1801.

For fixed value of 3 we can concentrate the likelihood function with respect
to the parameters & = 2(ag, —ay) and 2 and find, apart from a constant factor,
18'S11.08]

Ll;a%x(ﬁ) = Q| = |So0 — S B(B'S1B) ' B S| = |500|W- (16)

This minimization cannot be solved as an eigenvalue problem since the 2n X
2r matrix B has complex structure while Si; and St do not have complex
structure.

We can minimize (16) by an iterative procedure using the Gauss Newton
algorithm or we can use the idea of switching between (&, 2) and 3 as in (15).
Applying the switching algorithm here only involves 2nr; parameters from the
cointegrating relations and a similar number from the adjustment coefficients.

Finally, the maximum likelihood estimator can be calculated iteratively
as follows. For fixed values of 3,, ..., 3, we concentrate the likelihood function
with respect to as, ..., as. Then the equations have the form (15) and we apply
the switching algorithm to determine o and 3. Next fix 3,3, ..., [, and re-
peat the procedure as above until convergence. In this way one can, by focussing
on one frequency at a time, reduce the dimension of the matrices involved in
the regressions.

If instead we consider the problem of reduced rank at # = 0 or 7 then
we get the product moments as before but now with Xt(l), say, corrected for
all the other components. In this case all residuals are real and the matrices
S11, 501, and Spy are all of dimension n X n, and the problem can then be solved
by reduced rank regression, see Lee (1992).
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Finally we can use the same ideas to estimate models (11) and (12) with
the various restrictions on deterministic terms. The coefficients ®; with j > s,
and possibly j = 1, can be concentrated out in the preliminary regression, and
in the reduced rank regressions we just replace Xt(l) by the extended variables
Xe(tl) = (Xt(l)/, zt)', see (11) and (12), such that the residuals U in (15) are based
upon the variable
( X(l)/ (M o !
Rt »cos(0t), X;,”, —sin(6t))’,

and the cointegrating coefficient is

Br —Bi

( B ) _ Pr —Pr
P Br  Br
Pr  Pr

In summary the analysis is: in model (11), we concentrate out the coefficients
®;, j > s, using regression. The switching algorithm is then applied to the
residuals from the extended variables X" = (X™’ 2t ). In model (12) we
eliminate ®; by regression and do not extend the variable Xt(l) .

The algorithm has been programmed in Gauss, see Schaumburg (1996)

and RATS, see Dahl Pedersen (1996).

3.3 Hypotheses of interest

The first hypothesis of interest is the test for reduced rank at complex frequency.
This requires maximization of the likelihood function under model H(r), that
is, the assumption of reduced rank r at the complex frequency 6 as discussed
in the previous subsection. We then compare the maximum with the maximum
obtained from the unrestricted VAR, which corresponds to » = n. Thus, the
test statistic is

—2log Q(H(r)|H(n)) = Tlog (M> .

18"S118]|S11.0|

Other hypotheses of interest are hypotheses on the cointegrating coeffi-
cients B. The most interesting perhaps is the hypothesis that 3 is real, since
without this simple structure the interpretation becomes rather tedious. This
hypothesis is formulated by Lee (1992), and in the present notation becomes

(1)
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Note that due to the non-identification of 3 we can equivalently formulate
this hypothesis as 3p = [3;. Finally, we consider the assumption that

a:<O‘OR Of;) (18)

which allows for a simple interpretation, see the examples in sub-section 2.4.
Maximization of the concentrated likelihood function (16) under any of these
restrictions again requires an iterative algorithm. By comparing the obtained
maxima with and without restrictions (17) and (18) we obtain the likelihood
ratio test statistic. Prior hypotheses about the structure of the cointegrating
relations are tested by the likelihood ratio test, by suitably modifying the max-
imization algorithm.

The asymptotic results that allow these procedures to be applied in prac-
tice are given in the next sections.

4 Asymptotic results

This section deals with some technical results on asymptotic behavior of various
processes and product moments. The proofs are given in Appendix A. We as-
sume throughout that the processes are generated by autoregressive equations
without deterministic terms and that the ¢ are i.i.d. with mean zero and vari-
ance ). We start with the sums St(m) and then find the limiting behavior of
Xt(m) and finally investigate Si1,S10, S00, and S.; which are based on residuals
from the regression (15).

The limit distribution of the St(m) is found in Chan and Wei (1988) who
show the following result:

Lemma 5 If ™ = S Ze; and zy, = exp(ify,), then

j=0 ~m

1 4(m) w m . m L7 0<97n<7T
T3S0 2 b (W; )(u) + iW} >(u)) = 6, W, 5m:{ 1ﬁ o o

(19)
where Wém) and Wl(m) are independent Brownian motions with variance matrix
Q, if 0, # (0,m). For 0, € {0,7}, W,, is a Brownian motion with variance
matrix 2. Moreover these Brownian motions are independent for different values
of O,,.
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Another result that follows from their calculations is the following.

Theorem 6 ForT — oo :

T 1

723" S™8I 2 6ub / W Wdu, (20)
t=1 0
T 1

TN Sz e S / Wi (dW?). (21)
t=1 0

If further f(t) is a complex function such that F(t) = >_._, f(i) is bounded,
then

-2 Z S(m)f n)* (22)

The non-stationary component of X\™ is 2 5™ and the results of Lemma

5 and Theorem 6 translate into results about product moments involving Xt(m) .

Corollary 7 The asymptotic properties of the process and product moment ma-

trices are given by

T2 70 X0 2 8, Con Wi (1) (23)
T- ZX’“)X e 820 / W, W duC?,, (24)
t=1
T
T2y XM x50, (25)
t=1
T
T12X§m>'w52c /W (dW,)*, (26)

where 6., and W, are given in Lemma 5, and C,, in Theorem 3.

Next we find the asymptotic properties of the product moment matrices
Soo, S10, S11, and Si.. These are defined in terms of residuals Uy, Uz, and U
which in turn are defined in terms of Xl(%lt), X I(i ), and p(L)X; corrected for Xt(m) ,

m % (1,2).

23



In the following we let z; = €, 0 < 6 < 7, and use the notation St(l) =
sWy s x = xW 4 ixP and ¢ = ¢ +icM. With the matrix
representation of the complex processes, see Appendix A, we find:

1 1 1 1 1 1
XIt XRt CI CR SIt SRt
27)

such that the complex representation
_ 1
Xt(l) = C’lSﬁ)lzf + OP(TQ),

in matrix notation becomes
< _ [ Cy o sW o st cos(t0) sin(t0) \ oy
L 01(1) C’g) Sﬁ) Sgt) —sin(td)  cos(t0) P '
From this we find by multiplying from the right by (1,0)’, that

Xz(zlt) B (1) cos(th)
( XI(;) = G185 — sin(t0) +op(T

Define the o—field F; as

N

).

Fi= o {p(D) X, p(L) X B X7, m £1,2),

that is, the o-field generated by the stationary processes in the model except

those that are derived from Xl(%lt) and X I(z ). Note that F;is generated by variables

)

before time ¢, since Xt(m depends on lagged X;.

We define the variances and covariances

p(L) X

Yoo X
v X(l) _ 00 03 )
ar /6/ ( Rt ) f't |: Zﬁo Zﬁﬁ

Lemma 8 The following identities hold

Yos = G¥gs, (28)

Yoo = &' Lgpar + Q, (29)
N3s058050 = &'Q7Y (30)
)

2551 - z/gﬁl.o + ZQg,Ozgozgola =0. (31
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Theorem 9 Asymptotic properties of product moment matrices defined from
Xt(l), corrected for Xt(m) (m # 1,2), and lagged values of p(L)X; are given by

w 1 !
T_ISH — ch/ W1W'1duC'1, 0<0< T,
0

w 1 [ L,
Sl€—>501/ Wl(dwl)l< 0 >,0<9<7T,
0

W= ( Wi W ) .

where
W{(l) W}({l)

Note that S is 2n x 2n but does not have complex structure. The limit
of T71S;1, however, has complex structure as do the matrices C; and Wi.
Note also that the W process appearing in Theorem 9 is the complex valued
Brownian motion W; from Lemma 5 in the matrix representation of complex
processes.

5 Asymptotic inference on rank and cointegrat-

ing relations

The main result about the estimator 3 is that it is asymptotically mixed Gaus-
sian such that asymptotic inference on its coefficients can be conducted in the
x? distribution. The test statistic for hypotheses on the rank at seasonal fre-
quency has a limit distribution, which is similar to the usual one at frequency
zero, when expressed in terms of the complex Brownian motion.

5.1 The asymptotic distribution of B

Although it is necessary to apply numerical algorithms for calculating B, we
can use the derived expression for the likelihood function (16) to obtain the
asymptotic distribution of the maximum likelihood estimator. This is done by
exploiting the fact that ,B must be a solution to a set of first order conditions
for maximizing (16).

The parameter 3 is not identified unless normalized in some way. This
normalization can be accomplished by defining 3, = 3(b’3)~! for some b (2n x
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2r) of complex structure with the property that @b has full rank, and let
a, = af'b, such that o = a;B3;,. For the analysis in the following it is
convenient first to normalize the estimator on the true value 3 and choose
b=p8=73(88)"1. We thus define 3 = 3(8'8) !, and note that

B(B-B)=0.

Thus, we only have to investigate the limit of TB/L(B —3). Results are given for
the model without deterministic terms and later it is mentioned how they are
modified for models (11) and (12). The result is given for the case of a complex
frequency, since the result for the case § = w can be proved exactly as for the
case 0 = 0, which is well known in the literature, see Johansen (1996).

Theorem 10 In the model with no deterministic term the asymptotic distribu-

tion of the estimator B is consistent and asymptotically mized Gaussian:

18,5 -p) =L FFdu] ! / CE(avY.

where

F = /BIJ_ClWIa

and
V= (a’Qfla)_la’Qflwl.

We have here used the complex matrixz notation:

Q: Q 0 o= ap —Oy ’B: ﬁR _ﬂl .
0 Q ay  ag Br Br
Since the upper left hand corner and the lower right hand corner of the
matrix T,B/L (B — B) are identical, there is some redundancy built into the no-
tation. Note that F and V are independent. With the present notation the

results appear as the usual ones for the case of a unit root z = 1, see Johansen
(1996).

Proof. The proof that the maximum likelihood estimator is consistent can
be given along the same lines as the proof of consistency in Johansen (1997).
It is here pointed out that since the cointegration model is a sub-model of a
Gaussian regression model, it is possible to find an upper bound of the likelihood
function outside a neighborhood of the true value. This is then applied to prove
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consistency. In the following we assume that B exists and is consistent. It
~/ -~ ~/ -~
follows that ﬂ 511,6 £> 2@3, ,6 511.0,6 £> Egg.o and SOO £> 200. From

The concentrated likelihood function is given by

18'S11.00]

+ TlOg |500|.

We expand the likelihood function around B applying the result

log |(z + h) A(x + h)| = log |2’ Az| + 2tr{ (2’ Az) '’ AL} + O(|R|?).  (32)

This gives the first order condition

tr{[(B/SMB)leSM - (B,SM.OB)ABISH.O]}I} =0,

for all h of complex structure. Hence

[(B'51.8)7'B'S11 — (B'S11.08) 7 B S110] = 0, (33)

where [...]¢ denotes the complexified matrix, see Appendix A. We first find the
weak limit for the matrix in (33) before it is complexified. Multiplying from the
right by B, , which has complex structure, we find

(’./SHB)_}BISnﬁ%I— (B:Sn.oé)_lélsn.oﬁ}l _
=[(BSup)! _.,gﬁ Si1.08) 1B S1uBL + (B S11.08) 18 S1055 So1BL
= [Eﬁgl - 255.0]6 SuB, + 255.02ﬁ025015015¢ +op(1).

From (15) we find
SuB. = &858, + S48, = a(8—B)SuB. + a3 518, + S48,

Inserting this above we find

Bas — Tgso+ ZE;.OZQOZ_aold]BlsnﬂL
+2§ﬁl.02ﬁ02501~[54(ﬁ —_B)IBLB/LSnﬁL + S8, ]
= V/Q—l[&(lg - /B)IIBLIB/J_‘Sll/BJ_ + SEI/BJ_]a

since the first term is zero by (31), and the coeflicient simplifies by (30). The
weak limit of this is

1 /! 1 !
01 {aB;O— / FF du+=(I,,0) / (dWl)F’},
4 0 2 0
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where F = @ C, W, and B is the weak limit of T8’ (8 — 3). Thus, the limit
of (33) becomes

1 1 1 1 c
{5/9—1543{)01 / FF'du — /07! (I, 0) / (dWl)F’] = 0.
0 0

We still have to simplify this result before we can solve the equation for B..
Since B/ fol FF'du and [, (dW,)F’ have complex structure, the first order con-
dition (33) is equivalent to
1u/—va/ ! / 1ul—l c ! /I
1 [¥Q7'a] "B, [ FFdu-— 3 [ (1,,,0)] (dW1)F' =0,
0 0

where ['Q71d]¢ = 2a/Q'a and [¢/Q71(1,,,0)]° = &’Q 7L, and
Q0
- (22)
1 -1
B, = ( / FF’du) / F(dV),
0 0

where V=W/Q la(d/Q la) . &
Next we give a result for the estimator of B normalized on a matrix b,

that is, 3, = B(b'B)~".

This shows that

Theorem 11 Let B be the cointegrating vector at seasonal frequency, normal-
ized by B3'b =I,.. In the model with no deterministic terms, Bb 1§ consistent

and asymptotically mized Gaussian:

PN

1
T(B,~ ) * (I~ BY)8,[ [ FFau™ [Favy, (30
0
where
F = /BlCIW17
V= (/Q'a) 'a/Q'W,.
The asymptotic conditional variance matrix is
1
(I = 8598, | FFdu] 16, (I -b8) © (@' ') 1, (35)
0
which by Theorem 9 is estimated consistently by

T(Iyn — Byb) By (485, 11851 )7 By (I — bBy) © (&, 'a,)™1. (36)
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Thus linear and non-linear overidentifying hypotheses on the coefficients
of the just identified vector B, can be tested asymptotically by construction of
t—ratios using (36) as variance matrix.

Proof. The proof of (34) follows from Theorem 10 by the expansion
By = (In = BBB) D) (B = B)(BB) ™ + Or(IB = BI).

The proof that (35) is a consistent estimator follows from Theorem 9. W

If instead we consider the models (11) or (12) we get much the same
results. A detailed study will show that the estimated cointegrating vectors Bm
are T' consistent but their extension p,, is only T% consistent. This gives some
difficulties in the formulation, but the end result is that one can treat the full
extended vector as asymptotically Gaussian with a variance matrix given by
(36), see Harbo et al. (1998) for the details in the case of zero frequency.

5.2 Test for cointegrating rank

This section contains a test to determine the rank r of 3 at the seasonal fre-

quency z; = e?. We here concentrate on deriving the result for testing at

strictly complex frequencies, which yields a result similar to the usual test but
involving complex Brownian motions. The results for # = 7 can be found in
Lee (1992). We focus on the model without deterministic terms and give the
results for the other cases without proof.

Theorem 12 In the model with no deterministic terms we assume that the
cointegrating rank at complex seasonal frequency is r. The asymptotic distribu-
tion of the likelihood ratio test statistic for the hypothesis of r < n cointegrating

relations is asymptotically distributed as

%tr{ /0 (BB /O BBdu ! /0 BB}, (37)
where B is standard complex Brownian motion of dimension 2(n — r)
o ()
The distribution is tabulated by simulation in Table 1.

29



Proof. From (16) the maximized likelihood function for n = r is

S11.0]

Ll:u%x - S . 38
’ 00’ ‘811’ ( )
The likelihood ratio test statistic is then
Q@ ()| () = 21 S0l
|S11.0/|8 S118
Now choose B | orthogonal to B and use the identities
(B.B.)115ull(B. B,
= !(ﬂ‘_,llﬁ)isll(ﬂ,ﬂ{)'!
_ BSuB BSuBy
B .SuB B, 5uBy
~ ~| |~ ~ ~ ~ [~/ ~\—1 - ~
— |8'51B||BL5uB, — BLsuB (B'suB)  B'suB,
= B,SHB‘ B/LSM,@BJ_) )
and a similar one for the matrix S, to prove the expression
BLSH.OBBL)
—2log Q(H(r)|H(n)) = —Tlog "0 ———— (39)

BlSn.BBL‘ |

The idea of the proof is to derive the asymptotic distribution of (39) by
noting that it is a function of 3, for which the distribution is derived in Theorem
11.

From the consistency of B and Bl, it follows from Theorem 9 that

~ ~ w 1 1 1 1
T_I/Blsll_B/BL — ZL/B/J‘CI/ WlwllducllﬁL - ZL/ FFldU7
0 0

and the same result holds for IB,J_SH.OBBJ_‘ Thus, the ratio in (39) tends to 1,
and from (32),

g QUMM ~
= —T'log|l2, — (BLSH.BBL)71ﬁL510.BS&;3501.,3BL|
=tr {(TABLSH.BBJ_)71BL510.BS&;@501.BBJ_} + op(1).
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In order to determine the limit of this quantity we first consider

Soo.p = S0 — 5013(3/5113)713l510
= oo — BosNa5Bg0 = Q + G5as6" — Los¥55 500 = Q.

Next consider
Blﬁm.@ = [?_/L/Slo - BlS}}IB(BI:S:HB)ABISw
=B85 +5L5115u — B.51B T35 + op(1)
=03 51 — ﬂLSn(ﬂ B)a +op(1)
= ﬁlsle /BJ_SlllBJ_IBJ_(IB ﬂ)a +op(1).

From Theorems 9 and 10 we find that this converges towards

L [LRaWY) (%) LT RAW)Q (o' la) 1

) fo F(dW')(l2, — Qila(alﬁfla)fla/) ( % )

=3 fO dW, OLJ_(QLQQJ_) lalﬂ ( I(;’L > .

Thus,
e ) ! 1
/BJ_SIO,B 00[3 Olﬁ/BL 2A :F(d‘ﬂfl)]\f/ov (dWI)F§7

where M is given by

M=a,(d Qa) ' Q ( L ) Q! ( Ln ) Qa, (o, Qo) ),

0 0
such that
1
M = 50@(alQaL)’lalQQ_lﬂaL(a’LQaL)’lal
1
=ja(aQa) o),
since

Ln ot LA = lﬂfl.
0 0 2
The asymptotic distribution is then given by
—2log Q(H(r)[H(n))

. [ /O 1 FF’du] h /0 CEAW )M /O (W)
— tr] Uol FF’du} B /OlF(dw’l)Mc /Ol(dwl)F’},
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since both the matrices fol FF'du and fol F(dW) have complex structure. Com-
bining the results we find that

—2log Q(H(r)|H(n)) > %tr{ /0 l(dB)B’) { /0 1 BB’du] = /O 1 B(dB')},

where
B :(alﬂaL)*%a’LWr
|

By choosing to express the result in terms of the complex Brownian motion
we find that, apart from the factor %, the result looks like the result for the real
case, see Johansen (1996), for z = 1, and Lee (1992) for the case z = —1.
The result given in (37) corresponds to formula (3.35) in Lee (1992). The
calculations, in Lee (1992), of the likelihood ratio statistics (3.34), however, are
not correct and there is an error in the proof giving the asymptotic properties.
The choice of ¢, cannot be made as stated just below (A.42). The resulting
formula for the limit distribution is, however, correct.

Finally consider the test for cointegration rank at complex frequency when
there are deterministic terms in the model.

Theorem 13 In model (11) the asymptotic distribution of the test statistic for
the hypothesis of r < n cointegrating relations at complex seasonal frequency is

asymptotically distributed as

%tr{ /0 1(dB)H'( /0 1 HH'du) ! /0 1 H(dB')},

where B is standard complex Brownian motion of dimension 2(n —r) and H =
(B', I)". The limit distribution is tabulated in Table 2.

Note how the properties of the extended process (Xt(m)', zt ) are reflected
in the extended Brownian motion H.

Finally in model (12), which allows for a linear trend in the process, we
find the same result but with the definition of H changed.

Theorem 14 In model (12) the asymptotic distribution of the test statistic for
the hypothesis of r < n cointegrating relations at complex seasonal frequency is

asymptotically distributed as

ot [ (B H / HH ) / “H(B)),
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where B is standard complex Brownian motion of dimension 2(n —r) and H =

(B'— B, LL).

Again the process H reflects the properties of the extended process, but
this time Xt(m) is corrected for its average corresponding to fitting an unre-
stricted constant in the equations. Note that the average of zf, (for z, # 1)
tends to zero so that B — B is extended by I, as before. The limit distribution
is tabulated by simulation in Table 3.

The proofs of Theorems 13 and 14 are similar to the proof of Theorem 12,
and are not given here.

Appendix A
A 1. Complex matrices and real matrices with complex structure

Complex number z = a + b can be represented by the matrix
a —b
7 =
b a )’
in the sense that this representation preserves linear operations and also complex
multiplication, that is, if
(a+ib)(c+id) =e+if,

()G )=

We represent a complex n x ¢ matrix F' = A+ 1B by the real 2n x 2¢ matrix F

()

We say that F' is complex, but that F has complex structure. Throughout we

then

use boldface to denote real matrices with this complex structure. Note that if
F* = A" —iB’ then F* has representation

o A BN_(A-BY\,
“\-p a4)"\B A4)"
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We consider the transformation of a 2n X 2¢ matrix to a matrix of complex
structure given by

A B . 1 A B N 0 -1, A B 0 I,
C D 2 C D 1, 0 C D -1, 0
1L A+D B-C\ (A BY
2\ C-B A+D) \C D)~

We introduce the transformation

0 —I
In: " )
2 (In 0)

with the property that Z3, = —1Is, and Z,,’ = —Z,. For a 2n x 2q matrix M we
then have 1
M€ = 5 (M +IQnMI2q/) ,

and if M has complex structure then Z,,MZ,,’ = M, such that M = M°. If M
is any 2n X 2¢ matrix and h (2¢ x 2n) has complex structure then

1 1

(Mh)* = o (Mh+Tp,MhZ;,) = o (Mh + T, M, T hT,,)
1
= (M +To,MZ))h =M°h,

Finally, notice that if ¢r{Mh} = 0 for all h with complex structure, then
M¢ = 0, since

tr{Mh} = tr{(Mh)‘} = tr{Mh} =0,
for all h with complex structure implies that M¢ = 0.

A 2. Asymptotics

This appendix contains brief proofs of some of the technical results stated
in Section 4.

Proof of Theorem 6. The first result (20) follows by the continuous map-
ping theorem and the second (21) by noting that AS’t(n) =zley.

The third result (22) follows by a partial summation. Let |A|*> = tr{A*A}
for a complex matrix, and let ¢ = sup, |F(t)|. Then

7250 8™ f(t) s
=T2Y 0 ST(F(t) — F(t —1))S™"
=T 25 STUF)S™ - T2 (S + AS™ ) F(E— 1) (S + AS™)*
=728 p(T) st — 12T St — 1)AS™
—T2 T AST R —1)ST — T2 AST R —1)AS™”
(40)
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The first term is written as
(T 28T F(T) (T 25) 5 0,

since F'is bounded and T_%S:(Fm) converges weakly. The second and third terms
are evaluated as follows:

EIT 250, SF(t—1)AS™
<7 o, BIST | B|AST™
<eT 230t €0(T 7).

Thus, the second and third term tend to zero, and the last term is evaluated as

T 2E| 30, ASE(E— DAS"™|
<2y E]AStm)]E]AS,f”)*] € O(T™).

|
Proof of Corollary 7. The relation (23) follows from (19). The relation

T ZX’“)X”)* T ZztzC SIS 4 op(1),

shows that the asymptotic behavior of the product moments depends on the

boundedness of
_ (Zm Zn)T+1

ot
zZh 2t = &
men 1—Z,2n

WM%
(e}

which remains bounded if z,, # z,. Thus, for z,, # z, the product moment will
converge to zero, whereas for z,, = z, we get the limit stated, which proves (24)
and (25). The result (26) follows from (21). [

Thus, the reason that the mixed moments tend to zero is not that Xt(m)

and X" are asymptotically independent (which they are) but the factor z!, 2.
which appears in the summation. The factor z!, comes from the representation
of X{™ and also implies that the limit of 71 > | X{™&/ does not involve the
limit of 7% Y1, &, but rather the limit of 7-2 3. 7% ;.

Proof of Lemma 8. From the model equations

X -
(L)X, = &' (X >+Zamﬂ xm™ +erp )Xo + e,

It m=3 j=1

it follows by taking conditional variances and covariances given the lagged values
of p(L)X; and the remaining linear combinations ﬁ;Xt(m), that (28) and (29)
hold.
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In order to prove (30) we write it as
S0 = Y500/ Q™ Soo,

and introduce the normalized vector

(NI

Dl

u=Q724%5;.
After some reductions, applying ¥z, = aXgg, the relation (30) reduces to
= (I, — ' (I, + wu') tu)u/ (I, + u'),
which follows from the identity
W (I, + vwu')lu = (W) (I, + w'u) ™t
Next we multiply in (31) by X350 and ¥4 and find
Sap.0 — Yas + SpoXag Sog =0,

which is zero by the definition of ¥gga.. [

Proof of Theorem 9. We first give a result for product moments of Xt(m)

and Xt(n) corresponding to complex roots z,, and z, :

r (m )\
n,m) X X
T M =T 2§ (X?; > <X€;)>
It It
T
N :08(t0,,) cos(tl,)  — cos(tl,,) sin(t6,,)
=T 2 m COS( nt ! 1).
Z_:Cmst’l ( — sin(t6,,,) cos(t6,,) sin(t6,,) sin(t6,,) Stz Cutor(l)

The matrix in the middle is

1 ( cos((0p, — 0,,)t) + cos((0,, + 0,,)1) sin((0,, — 0y,)t) — sin((6,, + 6,,)1) )
2\ sin((0, — 0,,)t) —sin((0, + 0,)t)  cos((0m — 0,)t) — cos((0, + 6,,)t)

which remain bounded when summed unless 6,, = 6,,, in which case the matrix

1710 +1 cos(2tl,,)  —sin(2t0,,)
2\ 0 1 2 \ —sin(2t0,,) —cos(2t6,,) )’

where the last term is bounded when summed.

equals

Hence T~ M{"™ converges to zero if n # m and for n = m has the same
limit as
1 m m w
5T QZC simsimrer X —C / W, W' duC,.

t=1
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Similarly we find that for z,, complex:

X(m)

m _ T

M™ = T T ( Xg;) )ag
It

cos(Omt)

= LS (g ) on()
In

= sl sasy () vor()

2 1C,, [} W (dW,,) ( Ig ) .

If either z,, or z, are real, similar results can be proved. Finally, we want

the results for the product moment matrices constructed from the residuals U,.
It is clear that the limit of the product moments of XI(%T) and Xgn) are not
influenced by the preliminary regression on the lagged values of p(L)X}, since
these are stationary. The matrix Sj; is Mﬁ’l) corrected for the other processes.
Since the mixed moments T~ M{7"™ converge to zero, the limit of 715, is the
same as that of TflMS’l). Similarly the limit of Ml(;) is the same as that of
Sie. |

Appendix B
Tables

In this Appendix the asymptotic distributions of the likelihood ratio test
statistics for cointegrating rank at complex frequency are tabulated. The limit
distributions all have the form

b oo [ [ ] [ sy ()

where B is a 2(n — r)—dimensional complex Brownian motion, and H is some
process derived from B depending on the model for the deterministic terms.

The Brownian motion B is approximated by a 400 - step random walk
and the statistic is calculated 100,000 times.

The approximation formulae used are as follows. Let B = (B, B})' denote
a 2(n—r)-dimensional Brownian motion, and let (¢,),-, be a sequence of 2(n—r)-
dimensional i.i.d. Nag—ry(0, I5;—y)) variables, then

1 T t 1
ey (X)) = [ oo
t=1 \ k=1 0
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and
Br —
= ( Pr O
B; Bg
The extension of the process Xt(m) with 2! gives rise to a complex Brow-
nian motion B extended by I,

Br —B;

B\ | B Bg
( I ) B 1 0
0 1

If the model has an unrestricted constant the processes X = (Xt(m)', zt ) s
corrected for a constant. Note that %Zle cos(0,,t) — 0, such that limit be-
comes

BR_BR —B[—I—B[

B-B\ | B/ —-B, Bp—Bp
I, - 1 0
0 1
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Table 1: Quantiles of the limit distribution (42) (H = B) for cointegrating rank

at seasonal frequency for model (10) with no determinstic terms. The number

of simulations is 100,000 and the random walk has 400 steps.

pr 001 005 010 0.50 0.75 080 0.85 0.90 0.95 0975 0.99
1 0.0228 0.114 0.234 1.50 295 341 399 480 6.20 7.57 9.45
2 421 574 6.73 114 146 155 16.6 181 204 226 25.3
3 16.3 194 21.3 292 341 355 37.0 39.1 423 453 489
4 36.3 41.1 438 54.8 615 63.2 653 679 72.0 757 80.3
5 64.1 705 742 883 96.6 93.7 101 105 110 114 119
6 99.6 108 112 129 139 142 145 149 155 160 166
7 143 153 158 178 190 193 196 201 207 213 220
8 194 205 211 235 248 251 255 260 268 274 282
9 252 265 272 299 313 317 322 327 336 343 352
10 318 333 341 370 387 391 396 402 411 419 429
11 391 408 417 449 467 472 47T 484 494 503 513
12 472 490 500 535 555 560 566 573 584 594 605
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Table 2: Quantiles of the limit distribution (42) (H = (B', I)") for cointegrating
rank at seasonal frequency for model (11) with restricted seasonal dummies and
constant. The number of simulations is 100,000 and the random walk has 400
steps.

pr 001 005 01 05 075 08 08 09 095 097 0.99

222 321 390 739 100 10.8 11.7 129 149 16.8 19.3

—

2 123 149 165 232 276 288 30.2 320 349 376 409
3 302 344 37.0 469 53.0 54.6 56.5 59.0 629 66.3 70.3
4 56.0 619 653 784 86.0 8.0 904 935 982 102 107
5 89.6 972 101 118 127 129 132 136 141 146 152
6 131 140 145 164 175 178 182 186 192 198 205
7 180 191 197 219 231 235 239 243 250 257 265
8 236 249 255 281 295 299 303 308 317 324 332
9 300 314 322 350 366 370 375 381 390 398 407
10 372 387 396 428 445 449 455 461 471 480 490
11 451 468 477 512 531 536 542 549 560 570 580
12 537 556 566 604 624 630 636 643 655 666 678
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Table 3: Quantiles of the limit distribution (42) (H = (B’ — B/, I)") for coin-
tegrating rank at seasonal frequency for model (12) with restricted seasonal
dummies and unrestricted constant. The number of simulations is 100,000 and

the random walk has 400 steps.

pr 001 005 01 05 07 08 08 09 095 0975 0.99

1 206 377 510 139 237 270 314 375 484 594 74.6
2 15.0 199 233 43.7 627 684 758 &86.3 104 123 146
3 391 481 543 888 118 127 138 153 179 204 237
4 744 889 986 149 190 201 216 237 270 304 348
5 122 143 156 225 278 293 312 338 381 421 475
6 181 209 227 316 383 401 425 457 508 556 622
7T 234 289 312 422 503 526 554 591 651 712 790
8 338 383 410 544 639 666 699 743 813 881 969
9 435 489 524 680 792 822 80 910 992 1070 1170
10 546 609 648 832 960 995 1040 1100 1190 1280 1390
11 668 742 788 997 1140 1180 1230 1300 1400 1500 1630
12 804 888 941 1180 1340 1390 1440 1510 1630 1740 1880
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