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Abstract

This paper studies the relationship between horizontal product di¤erentiation and
the welfare e¤ects of third-degree price discrimination in oligopoly. By deriving lin-
ear demand from a representative consumer�s utility and focusing on the symmetric
equilibrium of a pricing game, we characterize the conditions relating to such de-
mand properties as substitutability and complementarity for price discrimination to
improve social welfare. In particular, we show that price discrimination can improve
social welfare if �rms�brands are substitutes in a market where the discriminatory
price is higher and complements in one where it is lower, but welfare never improves
in the reverse situation. We verify, however, that consumer surplus is never improved
by price discrimination; welfare improvement by price discrimination is solely due to
an increase in the �rms�pro�ts. This means that there is no chance that �rms su¤er
from a �prisoners�dilemma,� that is, �rms are better o¤ by switching from uniform
pricing to price discrimination.
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1 Introduction

Product di¤erentiation is one of the main reasons why �rms can enjoy market power; it

enables them to sell products that are no longer perfect substitutes. For example, Coca

Cola and PepsiCo sell similar types of soda, though it is arguable that they di¤er in

taste. Each �rm thereby attracts some consumers over another. It is often the case that

�rms�di¤erentiation of their products leads consumers to value the variety. Examples of

complementary products abound and include such products as beer and breakfast cereal.

If �rms have some control over the price that consumers pay, they naturally want to

take advantage of it. Third-degree price discrimination is one marketing technique that is

widely used in imperfectly competitive markets. In third-degree price discrimination, the

seller uses identi�able signals (e.g., age, gender, location, and time of use) to categorize

buyers into di¤erent segments or submarkets, each of which is given a constant price per

unit. Behind the recent trend toward third-degree price discrimination is rapid progress

in information-processing technology, notably including the widespread use of the Internet

in the past two decades.1

This paper examines the welfare e¤ects of oligopolistic third-degree price discrimina-

tion, explicitly considering product di¤erentiation as a source ofmarket power and strategic

interaction. In a story related to the example in the �rst paragraph, the New York Times

once reported (October 28, 1999)2 that Coca Cola was testing a vending machine that

would automatically raise prices in hot weather. Although the article triggered nation-

wide controversy and Coca Cola had to abandon the project as a result, the plan could

have changed the regime of uniform pricing to one of regional price discrimination in the

soda market. How would the resulting change a¤ect consumer welfare and �rms�pro�ts?

In other words, is third-degree price discrimination is good or bad? Answering this ques-

tion is important because it helps antitrust authorities to evaluate price discrimination in

two important characteristics of market: oligopoly and product di¤erentiation.

In this paper, we focus on horizontal product di¤erentiation to consider substitutability

1See Shy (2008) concerning how advances in the information technology have made ��ne-tailored�pricing
tactics more practicable for sellers.

2http://www.nytimes.com/1999/10/28/business/variable-price-coke-machine-being-tested.html (re-
trived January 2011)
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as well as complementarity.3 By deriving linear demand from a representative consumer�s

utility and focusing on the symmetric equilibrium of a pricing game, we characterize the

conditions relating to such demand properties as substitutability and complementarity re-

quired for price discrimination to improve social welfare. In particular, we show that price

discrimination can improve social welfare (especially) if brands are substitutes in a market

where the discriminatory price is higher and complements in the market where it is lower,

but never when the reverse situation holds. We verify, however, that consumer surplus is

never improved by price discrimination: welfare improvement from price discrimination

is solely due to an increase in �rms�pro�ts. This means that there is no chance that �rms

su¤er from �prisoners� dilemma,�; that is, �lms are better o¤ switching from uniform

pricing to price discrimination.

Since Pigou�s (1920) seminal work, the central question in the analysis of third-degree

price discrimination is about its welfare e¤ects: what are the e¤ects of third-degree price

discrimination on consumer surplus and Marshallian social welfare (the sum of consumer

surplus and �rms�pro�ts)? In the literature, however, little has been reported about the

welfare e¤ects of oligopolistic third-degree price discrimination since the publication of a

seminal paper by Holmes (1989), which analyzes the output e¤ects of third-degree price

discrimination in oligopoly, but not the welfare e¤ects.4 On the other hand, the welfare

e¤ects of monopolistic third-degree price discrimination are relatively well known. Since

the work by Robinson (1933), it has been well known that when all submarkets are served

under uniform pricing,5 price discrimination must decrease social welfare unless aggregate

output increases. This implies that an increase in aggregate output is a necessary condition

3With horizontal product di¤erentiation, some consumers prefer product A to B while others prefer B
to A. On the other hand, vertical product di¤erentiation captures the situation where all consumers agree
on the ranking of products. See, for example, Belle�amme and Peitz (2010, Ch.5) for further discussion of
its distinction.

4See Armstrong (2006) and Stole (2007) for comprehensive surveys of price discrimination with imperfect
competition. In contrast to Holmes� (1989) focus on a symmetric Nash equilibrium (where all �rms
behave identically), an important work by Corts (1998) relaxes the requirement for symmetry to show that
asymmetry in �rms�best response functions is necessary for unambiguous welfare e¤ects (when prices drop
in all markets, the result is unambiguous welfare improvement, and when these prices jump, the result is
unambiguous welfare deterioration). Our focus on a symmetric equilibrium is based on the assumption
that all �rms agree in their ranking in pricing (see Stole (2008) for details), and is motivated by our
recognition that this situation is more natural than the asymmetric cases in many examples of third-price
discrimination.

5Under uniform pricing, �rms may be better o¤ by refusing supply to some submarkets. See, for
example, Hausman and MacKie-Mason (1988) regarding this issue.
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for social welfare to be improved by third-degree price discrimination.6 In particular,

price discrimination necessarily decreases social welfare if demands are linear because

aggregate output remains constant.7 The welfare consequences of oligopolistic third-degree

price discrimination, however, remain largely unknown. It is therefore important to study

oligopolistic third-degree price discrimination, because only a small number of goods are

supplied by monopolists in the real world and an increasing number of �rms use price

discrimination for their products and services.

This paper investigates the relationship between product di¤erentiation and change

in social welfare associated with the regime change from uniform pricing to price discrimi-

nation when all submarkets are open under uniform pricing.8 To model price competition

with product di¤erentiation, we adopt the Chamberlin-Robinson approach (named by

Vives (1999, p.243)): a �representative�consumer (i.e., a virtual individual that is an ag-

gregation of an in�nitesimal number of identical consumers) is assumed to value the variety

of goods. In this paper, we consider the (fully parameterized) linear demand structure to

obtain an explicit solution as well as an explicit condition for all submarkets to be open

under uniform pricing. The bene�t of this speci�cation is that we do not have to simply

assume such endogenous events as a market opening. In addition, while Holmes (1989)

assumes substitutability of products, our formulation allows inclusion of complementarity

in a welfare analysis.

One important di¤erence between monopoly and oligopoly is that in a monopoly, the

price elasticity of demand in each submarket has a one-to-one relationship with the optimal

discriminatory price: the larger the price elasticity, the lower the discriminatory price is.

In oligopoly, however, this may not be the case because strategic interaction a¤ects the

6Aguirre, Cowan, and Vickers (2010) o¤er a comprehensive analysis, �nding su¢ cient conditions relating
the curvatures of direct and indirect demand functions in separate markets. While they allow nonlinear de-
mand functions, they, like many researchers, restrict an endogenous event: all markets are simply assumed
to be open. Cowan (2007) o¤ers a similar analysis by restricting a class of demand functions.

7For example, Schamalensee (1981), Varian (1985), Schwartz (1990), and Bertoletti (2004). In contrast
to these studies, Adachi (2002, 2005) shows that, when there are consumption externalities, price discrimi-
nation can increase social welfare even if aggregate output remains the same (see Ikeda and Nariu (2009)).
Ikeda and Toshimitsu (2010) show that if quality is endogenously chosen, price discrimination necessarily
improves social welfare.

8 In a similar study, Dastidar (2006) considers the welfare e¤ects of third-degree price discrimination
in oligopoly by focusing on symmetric Nash equilibrium, as this paper does. In comparison to Dastidar�s
(2006) study, ours explicitly takes into account such demand properties as substitutability and comple-
mentarity to characterize the conditions under which price discrimination improves social welfare.
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pricing decision of each �rm. In particular, the price elasticity that a �rm faces in a

discriminatory market is generally di¤erent from the elasticity that the �rms as a whole

(i.e., in a collusive oligopoly) face. In this paper, we show that in equilibrium this ��rm-

level� price elasticity has a simple expression in terms of product di¤erentiation. More

speci�cally, it is veri�ed that, as in Holmes (1989), in equilibrium the �rm-level price

elasticity decomposes into �market-level� and �strategic-related� elasticity (the precise

meanings are given in the text). The latter elasticity simply coincides with the degree of

product di¤erentiation.9 It is observed from numerical and graphical analysis that this

�strategic�elasticity plays an important role in the determination of discriminatory prices

and social welfare. One bene�t of using linear demands is that we can evaluate welfare

without the complications associated with demand concavity/convexity.

The rest of the paper is organized as follows. The next section presents a model and

preliminary results. Section 3 presents the welfare analysis. Section 4 concludes the paper.

Technical arguments are relegated to the Appendix.

2 The Model

In this section, we �rst set up the model and then provide the preliminary results necessary

for the welfare analysis in the next section.

2.1 Setup

Firms produce (horizontally) di¤erentiated products and compete in price to sell their

products (directly) to consumers. A �rm sells only one type of product, which can therefore

also be interpreted as a brand. Markets are partitioned according to identi�able signals

(e.g., age, gender, location, and time of use).10 The quali�er �horizontally�denotes that

�rms di¤erentiate by targeting consumer heterogeneity in taste rather than quality. For

simplicity, we assume that all �rms have the same constant marginal cost, c � 0. Resale

among consumers must be impossible, otherwise some consumers would be better o¤

9Our analysis below shows that Holmes�(1989) decomposition also holds for the case of complementarity
with linear demands in the speci�cation of our paper.
10There are no interdependencies between separate markets. Layson (1998) and Adachi (2002) study

the welfare e¤ects of monopolistic third-degree price discrimination in the presence of interdependencies.
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buying the good at a lower price from other consumers (arbitrage).

Following Robinson (1933) and most subsequent papers in the literature, we sup-

pose that the whole market is divided into two subgroups: �strong�and �weak�markets.

Loosely put, a strong (weak) market is a �larger�(�smaller�) market.11 Consumer pref-

erence in market m 2 fs; wg (s denotes (the set of) the strong markets and w the weak

markets) is represented by the following quasi-linear utility function:

Um(q
A
m; q

B
m) � �m � (qAm + qBm)�

1

2

�
�m[q

A
m]
2 + 2mq

A
mq

B
m + �m[q

B
m]
2
�
,

where jmj < �m denotes the degree of horizontal product di¤erentiation in market m,

qjm is the amount of consumption/output produced by �rm j for market m (j 2 fA;Bg),

and �m > 0.12 Notice that this speci�cation allows the cross-partial derivative to be

expressed by just one parameter: @Um=@qAm@q
B
m = �m. If m > 0, the goods in market

m are called substitutes. On the other hand, they are called complements if m < 0.

If m = 0, they are independent. Notice that the direction of the sign is associated

with the usual de�nitions of complementarity/substitutability: when the �rms�goods are

substitutes (complements), the marginal utility from consuming an additional unit of the

good purchased from one �rm is lower (higher) when a consumer consumes more units of

the good from the other �rms. Note that the lower the value of m, the more di¤erentiated

�rms�products are.13 The ratio m=�m 2 (�1; 1) is interpreted as a (normalized) measure

of horizontal product di¤erentiation in market m (see Belle�amme and Peitz (2010, p.65)).

As we see in Section 3, m=�m plays an important role in interpreting the equilibrium

prices under price discrimination.

Utility maximization by the representative consumer yields the inverse demand func-

tion for �rm j in each market m, pjm(q
j
m; q

�j
m ) = �m � �mq

j
m � mq

�j
m . The demand

11More precisely, following the literature, we de�ne a strong (weak) market as one in which the price is
increased (decreased) by price discrimination. Notice that this de�nition is based on an �equilibrium�result
from optimizing behavior (either in monopoly or oligopolistic pricing). Appendices A1 and A2 show the
parametric restrictions by which a market is strong or weak in the model presented below.
12More precisely, we assume that the utility function has a quasi-linear form of Um(qAm; q

B
m) + q0, where

q0 is the �composite�good (produced by the competitive sector) whose (competitive) price is normalized
at one. Thus, there are no income e¤ects on the determination of demands in the markets that are focused,
validating partial equilibrium analysis. This quadratic utility function is a standard one that justi�es linear
demands (see Vives (1999, p.145), for example). Here, symmetry between �rms is additionally imposed.
13 In the case of independence in market m (m = 0), each �rm behaves as a monopolist of its own brand.

Hence, the results from studies of monopolistic third-degree price discrimination with linear demands apply.
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functions in market m are thus given by8>>>><>>>>:
qAm(p

A
m; p

B
m) =

�m
�m + m

� �m
�2m � 2m

pAm +
m

�2m � 2m
pBm

qBm(p
A
m; p

B
m) =

�m
�m + m

+
m

�2m � 2m
pAm �

�m
�2m � 2m

pBm.

(1)

Notice here that the symmetry in �rms�demands, qAm(p
0; p00) = qBm(p

00; p0). As stated

above, we follow Holmes (1989) and many others to focus on a symmetric Nash equilibrium

where all �rms set the same price in one market.14 With little abuse of notation, let

qm(p) = qAm(p; p). For a simpler exposition, there are two �rms and two discriminatory

markets. These numbers can be arbitrary and the results presented below hold as long as

we focus on a symmetric Nash equilibrium.

Social welfare in market m is de�ned by

SWm(q
A
m; q

B
m) � Um(qAm; qBm)� c � (qAm + qBm)

and thus the aggregate social welfare is given by

SW (fqAm; qBmgm) �
X
m

SWm(q
A
m; q

B
m).

We measure social e¢ ciency by this aggregate social welfare. We can also de�ne

aggregate consumer surplus by

CS(fpAm; pBmgm) �
X
m

CSm(p
A
m; p

B
m)

where consumer surplus in market m is

CSm(p
A
m; p

B
m) � Um[qAm(pAm; pBm); qBm(pAm; pBm)]� pAmqAm(pAm; pBm)� pBmqBm(pAm; pBm),

and denote aggregate corporate surplus (pro�t) by

�(fpAm; pBmgm) �
X
m

X
j

(pjm � c)qjm(pAm; pBm)

so that the aggregate social welfare is divided in the following way:

SW (fqAm(pAm; pBm); qBm(pAm; pBm)gm) = CS(fpAm; pBmgm) + �(fpAm; pBmgm).
14See Corts (1998) for interesting issues that arise from the asymmetric equilibrium.
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We consider two regimes, uniform pricing (r = U) and price discrimination (r = D):

under uniform pricing, �rms set a common unit price for all separate markets. Under price

discrimination, they can set a di¤erent price in each market. Throughout this paper, we

restrict our attention to the case where all markets are served under both regimes.

Because the pro�t of �rm j 2 fA;Bg is given by

�j(pAs ; p
B
s ; p

A
w; p

B
w) �

X
m

(pjm � c)qjm(pAm; pBm),

we know that under symmetry, the symmetric equilibrium price under uniform pricing,

p�, is given by

[qs(p
�) + qw(p

�)] + (p� � c)
�
@qAs (p

�; p�)

@pAm
+
@qAw(p

�; p�)

@pAm

�
= 0, (2)

while the equilibrium prices in market m under price discrimination, p�m, are determined

by the following �rst-order condition:

qm(p
�
m) + (p

�
m � c)

@qAm(p
�
m; p

�
m)

@pAm
= 0: (3)

Again, one caveat here is the well-known problem in the literature concerning third-

degree price discrimination: under uniform pricing, when a market is su¢ ciently small,

it may not be served by either �rm. While many papers in the literature simply assume

that all markets are open under uniform pricing, we provide a more speci�c structure in

the next subsection to guarantee this and to proceed further the analysis.

Note also the di¤erences between Corts�(1998) study and this paper. Let BRjm(pkm) �

argmaxpj (p
j � c)qjm(pj ; p�jm ) be �rm j�s best response function in market m under price

discrimination, given �rm k�s price in marketm, pkm. Corts (1998) makes four assumptions

concerning the pro�t functions and the best response functions. In our settings, Assump-

tions 1-3 in Corts (1998) are all satis�ed.15 However, Assumption 4 in Corts (1998), which

in this paper is denoted by

BRjm(p
�j) > BRj�m(p

�j)

does not necessarily hold. In this sense, our model speci�cation puts fewer restrictions on

the economic fundamentals than Corts�(1998) study does.

15Assumption 1 in Corts (1998) ensures the uniqueness of the best response, Assumption 2 strategic
complementarity, and Assumption 3 stability.
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2.2 Solutions and Preliminary Results

As an innocuous normalization, we set the constant marginal cost to zero, c = 0.16 Given

that
@qAm(p

A
m; p

B
m)

@pAm
= � �m

�2m � 2m
from (1) and that qm(p) = (�m � p)=(�m + m) is the symmetric demand function, the

equilibrium discriminatory prices are (from (3))

p�m =
�m(�m � m)
2�m � m

and from (2) the equilibrium uniform price is

p� =
(�w � w)(�s � s)[(�w + w)�s + (�s + s)�w]
(2�w � w)(�2s � 2s) + (2�s � s)(�2w � 2w)

( � p�(;�;�))

under the regime of uniform pricing (where  � (s; w), � � (�s; �w) and � � (�s; �w))

if both markets are open. Appendix A2 shows that the weak market must be su¢ ciently

large for neither �rm to have an incentive to deviate to close it. It must also be small

enough for the strong market to remain strong (i.e., the equilibrium prices under price

discrimination are higher than under uniform pricing; see Footnote 10). Thus, we restrict

the relative size in intercepts, �w=�s 2 (�w=�s; �w=�s). These upper and lower bounds

are functions of  and �, and their precise expressions are given in Appendix A2.17

Notice that @p�m=@m = ��m�m=(2�m�m)2 < 0, which implies that as m becomes

larger the discriminatory prices decreases. In addition, the uniform price and the discrim-

inatory prices converge to the marginal cost because limm"�m p
�
m = 0 = limm"min(�m) p

�

for all m. In contrast to the case of monopoly with linear demands, the di¤erence in equi-

librium aggregate output caused by regime change is not necessarily zero (see Appendix

A1).

16Notice the innocuousness of the zero marginal cost assumption: it is equivalent to assuming a constant
marginal cost if prices and consumers�willingness to pay are interpreted as the net cost (interpreting it as
�m � c as �m).
17The �weak� market is smaller than the �strong� market in the sense that the marginal utility

@Um(q
A
m; q

B
m)=@q

j
m at (qAm; q

B
m) = (0; 0) is greater in the strong market.
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3 Welfare Analysis

This section consists of two subsections. The �rst subsection presents analytical proper-

ties that are useful for welfare analysis. We then investigate the welfare e¤ects of price

discrimination in the second subsection.

3.1 Analytical Properties

In symmetric equilibrium, social welfare under regime r 2 fD;Ug is written as

SW r = 2(�sq
r
s + �wq

r
w)� (�s + s)[qrs ]2 � (�w + w)[qrw]2

where qDm = qm(p
�
m) and q

U
m = qm(p

�) are the equilibrium quantities in market m under

the regimes of price discrimination and of uniform pricing, respectively (see Appendix

A1 for the actual functional forms). Let �SW � be de�ned by the equilibrium di¤erence

SWD � SWU . It is then given by

�SW � = �SW �(;�;�)

� 2
�
�s(q

D
s � qUs ) + �w(qDw � qUw )

�
�(�s + s)

�
qDs � qUs

� �
qDs + q

U
s

�
� (�w + w)

�
qDw � qUw

� �
qDw + q

U
w

�
= �q�s [2�s � (�s + s)(qDs + qUs )] + �q�w[2�w � (�w + w)(qDw + qUw )],

where �q�m � qDm� qUm. It is further shortened, and thus we have the following proposition

(see the proof in Appendix A3):

Proposition 1. The equilibrium di¤erence �SW � = �SW �(;�;�) is given by

�SW �(;�;�) = �
X

m2fs;wg

�p�m
�m + m

� (p�m + p�),

where �p�m � p�m � p�.

This expression has the following graphical interpretation. Figure 1 shows the re-

lationship between �p�m and �q�m. As Appendix A1 demonstrates, we have �p�m =

�(�m + m)�q�m. This relationship can be interpreted as the situation where in symmet-

ric equilibrium any �rm faces the �virtual� inverse demand function, pm = �m � (�m +

9



Figure 1: Equilibrium Changes in Quantity and Price in Market m (for any �rm)

m)qm, in market m (notice the di¤erence from the original inverse demand function,

pjm(q
j
m; q

�j
m ) = �m � �mq

j
m � mq

�j
m ). The welfare change in market m is depicted by

the shaded trapezoid in Figure 1 (in this example, it is a welfare gain). Thus, its size is

calculated by the sum of the upper and bottom segments (p�m + p
�) multiplied by height

(�q�m = ��p�m=(�m + m)), divided by two. Noting that two identical �rms exist in

market m, we have ��p�m(p�m + p�)=(�m + m) as a welfare change in market m.

If it is positive (when �p�m < 0), then it is a welfare gain. Similarly, if it is negative

(when �p�m > 0), then it is a welfare loss. Other things being equal, the greater the value

of m, the gentler (and hence more elastic) the equilibrium inverse demand curve becomes.

Complementarity between the brands makes the equilibrium inverse demand curve steep,

and substitutability makes it gentle.

We have the following property of the price elasticity. A simple calculation leads to

the following lemma:

Lemma 1. Let the price elasticity of demand in market m in equilibrium be de�ned by

"m(p
�
m) �

�����dqm(p�m)dp�m

p�m
qDm

���� ,
where qm(p�m) = (�m � p�m)=(�m + m). Then, the equilibrium price elasticity of demand

is expressed by

"m(p
�
m) = 1|{z}

market elasticity

+

�
�m
�m

�
| {z } .

cross-price elasticity

(4)
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Notice that "m(p�m) is a constant, and does not depend on either q
D
m or even the inter-

cept, �m. This decomposition is a special result of Holmes�(1989, p.246) general result:

�rm-level elasticity is the sum of the market elasticity and the cross-price elasticity.18

The market elasticity of demand is a unit-free measure of responsiveness of the �rms

as a whole. However, strategic interaction distinguishes it from the elasticity on which

each �rm bases its decision making: the cross-price elasticity measures of how much each

�rm �damages�the other �rm in equilibrium. In our model, strategic interaction is created

by the very fact that �rms (horizontally) di¤erentiate their products or services. Notice

that the market elasticity is exactly one as in the case of a one-good monopoly with a

linear demand curve (remember that price elasticity of demand is one when the marginal

revenue curve crosses the constant marginal cost curve (i.e., the horizontal axis)).

As we mention in Section 2, the ratio m=�m 2 (�1; 1) is interpreted as the normalized

measure of horizontal product di¤erentiation in market m. The cross-price elasticity in

Holmes (1989) is simply expressed by the negative of the ratio alone. From (4), we have

the relationship, "m(p�m) S 1 if and only if m R 0. That is, if the brands are complements
(m < 0), then the �rm-level elasticity in equilibrium is greater than one, meaning that a

one percent price cut by one �rm creates more than a one percent increase in its demand,

and thus an increase in revenue (hence in pro�t). On the other hand, a less than one

percent increase in demand follows if the brands are substitutes (m > 0). These facts

imply that complementarity (resp. substitutability) in market m keeps the equilibrium

prices relatively high (resp. low).

As to changes in equilibrium aggregate output, �Q� (see Appendix A1 for the deriva-

tion), it is shown that if the aggregate output is not increased by price discrimination,

then social welfare deteriorates, as veri�ed by Bertoletti (2004) in the case of monopolies

with linear and nonlinear demands (see Appendix A4 for the proof).19

Proposition 2. Social welfare must be decreased by price discrimination if a change in

aggregate output is not positive (i.e., �Q� � 0) �SW � < 0).

18Holmes (1989) shows the decomposition under the assumption of symmetric demands between �rms:
it also holds o¤ equilibrium. The term �market elasticity� is borrowed from Stole (2007) (Holmes (1989)
originally called it the �industry-demand elasticity�).
19Bertoletti�s (2004) result is a generalization of the well-known result of Varian (1985) and Schwartz

(1990) who state that �Q� < 0) �SW � < 0.
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Given that market s is strong (�s=�w > �s=�w), we have the following relationship:

�Q� R 0, s
�s
R w
�w
,

which is a special case of Holmes�(1989) result that includes nonlinear demands. Holmes

(1989, p.247) shows that a change in the aggregate output resulting from price discrimina-

tion is positive if and only if the sum of the two terms, the �adjusted-concavity condition�

and �elasticity-ratio condition�, is positive. As its name implies, the �rst term is related

to the demand curvature, and in our case of linear demands, it is zero. The second term

is written as

cross-price elasticity in market s

market elasticity in market s
� cross-price elasticity in market w

market elasticity in market w
,

which is equivalent to s=�s � w=�w from Lemma 1. The result that the output change,

�Q�, can be positive in oligopoly is in sharp contrast with the case in monopoly where

the output change is always zero with linear demand. In the next subsection, we explore

the possibility of �SW � > 0 in the di¤erentiated oligopoly.

However, a positive change in social welfare is solely due to an improvement in the

�rms�pro�ts. This is because a change in aggregate consumer surplus is always negative.

Let �CS� be de�ned by the equilibrium di¤erence between aggregate consumer surpluses

under price discrimination and under uniform pricing (CSD � CSU ). We then have the

following result (see Appendix A5 for the proof).

Proposition 3. Price discrimination always deteriorates aggregate consumer surplus (i.e.,

�CS� < 0 for all exogenous parameters).

3.2 Welfare-Improving Price Discrimination

We now explore the possibility of �SW �(;�;�) > 0. After some calculus, we have the

following statement:

Proposition 4. �SW �(;�;�) > 0 if and only if

�w
�s

>
Lw
Ls
;

where Li � (2�i�i)(�j�j)((2�i�i)2(�j�j)2(�j+j)+(�2i �2i )(2�j�j)(2�i(�j�

j)� (�i � i)j)); i = w; s, j 6= i.
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To further interpret this equation and explore the possibility that�SW �(;�;�) > 0,

we now reduce the number of the parameters. More speci�cally, we assume that �s = 1 >

�w > 0. This is because price discrimination never improves welfare if �s = �w (the

formal proof is available upon request). Thus, �s=�w > 1 is necessary for social welfare

to improve.

In the following analysis, we �rst consider the case of symmetry in product di¤er-

entiation in the strong and weak markets (s=�s = w=�w). We then allow asymmetric

product di¤erentiation. To do so, we �rst construct an intuitive argument why price dis-

crimination improves social welfare. Given the equilibrium discriminatory price is higher

(lower) than the uniform price in the strong (weak) market, we know that (note that,

�q�m = ��p�m=(�m + m))

�SW � > 0, �q�w � (p� + p�w) > �q�s � (p� + p�s).

For the latter inequality to hold, (1) �q�w or (p
�+p�w) is su¢ ciently large, and/or (2) j�q�s j

or (p� + p�s) is su¢ ciently small. Figure 2 shows the asymmetry between the strong and

the weak markets. Notice that the upper segment of the trapezoid of the welfare loss in

the strong market and the bottom segment of the trapezoid of the welfare gain in the weak

market have the same length (p�). Thus, the larger j�q�s j, the larger (p� + p�s) is. On the

other hand, the larger �q�w, the smaller (p
� + p�w) is. Hence, the smaller j�q�s j, the better

it is for welfare improvement, while �q�w should not be too small or too large.

3.2.1 The Case of Symmetric Product Di¤erentiation

Let the situation be called symmetric product di¤erentiation if the measures of horizontal

product di¤erentiation coincide in the two markets (i.e., s=�s = w=�w). In this case,

the two markets are homothetic in the sense that the only di¤erence in the two markets is

in the intercepts of the inverse demand curves. It is shown that if s = w and �s = �w,

then �Q� = 0 (see Appendix A1). This means that j�q�wj = j�q�s j. Because p�s is greater

than p�w (which comes from the assumption �s > �w), the loss in the strong market is

always larger than the gain in the weak market. We thus have the following proposition:

Proposition 5. In the case of symmetric product di¤erentiation, social welfare is never

improved by price discrimination (i.e., �SW � < 0 for all exogenous parameters).

13



Figure 2: Asymmetry between the Strong and the Weak Markets

We therefore need to consider the case of s�w 6= w�s, which is called asymmetric

product di¤erentiation, to study the possibility that �SW � > 0.

3.2.2 The Case of Asymmetric Product Di¤erentiation

To simplify the analysis, we assume that �s = �w. By so doing, we are able to focus on

the e¤ects of (s; w) on social welfare. More speci�cally, we allow s and w to di¤er,

letting � � �s = �w to avoid unnecessary complications (Appendix A6 gives an analysis

with s = w to show the e¤ects of �s = �w on social welfare). We present numerical

and graphical arguments on the domains (s; w) that make �SW
� > 0 for �xed values

of (�w; �s; �w).

Figure 3 depicts the region of �SW � > 0 with �w = 0:85 and � = 1:0 (the shaded

area).20 Consider �rst the case of substitutable goods (s > 0 and w > 0). Remember

from Proposition 2 that for the total social surplus to be improved by price discrimination

it is necessary that �Q� > 0 , s=�s > w=�w, that is, s > w in this speci�cation.

Substitutability in the strong market must be larger than that in the weak market for a

welfare improvement. Remember that the slope of the equilibrium demand in the strong

market �(�s + s) is steeper than that in the weak market. This is associated with a
20 It is veri�ed that all of the model parameters in the analysis below satisfy the restriction conditions

provided in Appendix A2.
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Figure 3: The Region of �SW � > 0 for the Case of �w = 0:85 and �s = �w = 1:0

larger increase in output in the weak market rather than a decrease in output in the

strong market. Why is there a bottom right boundary of the region for �SW � > 0? It

derives from the restriction that market s and w are strong and weak markets respec-

tively: �w=�s < �w=�s(;�) (the details are available upon request). In the unshaded

southeastern area, this inequality does not hold. That is, p�s < p
� < p�w in equilibrium. In

other words, market s and w are actually �weak�and �strong�markets, respectively. In

this area, the substitutability in the actual strong market (market w) is lower than that

in the actual weak market (market s), i.e., w < s. As mentioned earlier, �SW
� > 0

only if the actual strong market is more elastic. Therefore, �SW � < 0 in the unshaded

southeastern area.

Notice that price discrimination never improves social welfare in the second quadrant

(s < 0 < w). That is, if the two brands are complementary in the strong market

(s < 0) while the �rms sell substitutable goods in the weak market (w > 0), then price

discrimination necessarily deteriorates social welfare. This result seems to hold for other

parameter values because �SW � � 0 if �s = �w and s = w: in the northwestern region

separated by s = w, social welfare would be negative. The intuitive reason is that

15



complementarity in the strong market makes the price change caused by discrimination

more responsive, which creates more ine¢ ciency, while substitutability in the weak market

makes the price change less responsive. The latter positive e¤ect is not su¢ ciently large

to outweigh the former negative e¤ect.

On the other hand, it is possible that price discrimination improves social welfare if

the �rms� brands are substitutes in the strong market (s > 0) and are complements in

the weak market (w < 0). Figure 3 also shows that the combination of a high degree of

complementarity in the weak market and a low degree of complementarity in the weak

market (i.e., jwj larger than jsj) is suited to welfare gain. This result is as expected:

strong complementarity in the weak market keeps the discriminatory price low enough to

o¤set the loss from the price increase in the strong market. However, it has been veri�ed

that consumer surplus is never improved by price discrimination (Proposition 3).

Analytical arguments for these results are provided as follows. Fix w 2 (�1; 1),

and notice that �SW � = 0 if (s; w) satis�es �w=�s(;�) = �w=�s. This equality is

rewritten as

�w
�s

=
(�s � s)(2�w � w)
(�w � w)(2�s � s)

, s =
�s[2(�s � �w)�w � (�s � 2�w)w]
(2�s � �w)�w � (�s � �w)w

� s.

Substituting s into @�SW
�=@s, we have the following result:

@�SW �

@s

����
s=s

< 0:

Thus, we have the following proposition:

Proposition 6. There exists 0s such that �SW
� > 0 for s 2 (0s; s).

In other words, given the values of w and s that satisfy �w=�s(;�) = �w=�s, a

slight decrease in s enhances �SW
�. This is consistent with the result in Figure 3.

Lastly, we focus on one case of asymmetric product di¤erentiation. Table 1 shows the

result for the case of �w = 0:85 and �s = �w = 1:0. The �rst case, where the two brands

are substitutes in the strong market while they are complementary goods in the weak

market, has smaller changes in both prices and output than the second case has. Social
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(s; w) =

(0:1;�0:1) (�0:1; 0:1)
p� 0:4588 0:4663

p�s (�p
�
s=p

�) 0:4737 (3%) 0:5238 (12%)
p�w (�p

�
w=p

�) 0:4452 (�3%) 0:4026 (�14%)
�q�s (�q

�
s=q

�
s(p

�)) �0:0615 (�3%) �0:0640 (�11%)
�q�w (�q

�
w=q

�
w(p

�)) 0:0150 (3%) 0:0578 (17%)
�SW � 0:0009 �0:0131
�CS�s �0:0145 �0:0646
�CS�w 0:0120 0:0481
��� 0:0034 0:0034

�Q� 0:0014 �0:0061

Table 1: Asymmetric Product Di¤erentiation (�w = 0:85 and � = 1:0)

welfare is improved by price discrimination in the �rst case. The price di¤erentials in the

latter case are greater: what happens after the regime change from uniform pricing to

price discrimination is that while competition in the weak market becomes �ercer due to

substitutability, complementarity softens the competition to increase discriminatory price

in the strong market.

4 Concluding Remarks

In this paper, we study the relationship between horizontal product di¤erentiation and

the welfare e¤ects of third-degree price discrimination in oligopoly with linear demands.

By deriving linear demands from a representative consumer�s utility and focusing on sym-

metric equilibrium in a pricing game, we characterize conditions relating to such demand

properties as substitutability and complementarity for price discrimination to improve so-

cial welfare. In particular, we show that price discrimination can improve social welfare

(especially) if �rms�brands are substitutes in the market where the discriminatory price

is higher and are complements in the market where it is lower, but it never improves in

the reverse case. We verify, however, that consumer surplus is never improved by price

discrimination: welfare improvement by price discrimination is solely the result of an in-

crease in the �rms�pro�ts. Accordingly, this means that there is no chance that �rms

will su¤er from �prisoners�dilemma�, that is, �rms are better o¤ switching from uniform
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pricing to price discrimination.

In the present paper, we focus only on symmetric equilibrium of the pricing game to

gain analytical insight. In particular, the equilibrium amount of output is common for

all �rms under either uniform pricing or price discrimination. This limitation would be

particularly unappealing if one wished to compare the equilibrium predictions from our

model with empirical data.21 This and other interesting issues await future research.

Appendices

A1. Changes in Equilibrium Prices and Quantities by Price Discrimina-
tion

Equilibrium quantities produced by each �rm under price discrimination in market m are

qm(p
�
m) =

�m�m
(2�m � m)(�m + m)

,

where the denominator is positive because jmj < �m.

Under uniform pricing, if both markets are open (see Appendix A2 for the veri�cation

of market opening), then tedious calculation shows that the equilibrium uniform price is

p� =
(�m � m)(�m0 � m0)[�m(�m0 + m0) + �m0(�m + m)]

�U
; (A1)

where m 6= m0 (m;m0 2 fs; wg) and �U �
P
m6=m0(�2m � 2m)(2�m0 � m0). The denomi-

nator and the numerator are also found to be positive because jmj < �m. One can verify

that the equilibrium quantities under uniform pricing in market m 6= m0 are then given

by

qm(p
�) =

�m[�m(�
2
m0 � 2m0) + �m0(�2m � 2m)] + (�m � �m0)(�2m � 2m)(�m0 � m0)

(�m + m)�
U

.

(A2)

Now, let

�p�m � p�m � p� =
(�2m � 2m)[�m(�m � m)(2�m0 � m0)� �m0(�m0 � m0)(2�m � m)]

(2�m � m)�U

21Galera and Zaratieguia (2006) consider duopolistic third-degree price discrimination with heterogeneity
in constant marginal cost and show that price discrimination can improve social welfare even if the total
output does not change. This favors the low-cost �rm to cut its prices signi�cantly, and this cost saving
may overcome the welfare losses from price discrimination.
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be de�ned as the changes in the equilibrium prices resulting from a move uniform pricing

to price discrimination in each market. Thus, if we de�ne the strong (weak) market as that

where the equilibrium price increases (decreases) by price discrimination, then market m

is strong if and only if

�m >
(�m0 � m0)(2�m � m)
(�m � m)(2�m0 � m0)

�m0 .

This implies that, in contrast to the case of monopoly with inter-market dependencies (see

Adachi (2002)), the condition on the intercepts, �m > �m0 , is not exactly the necessary

and su¢ cient condition for market m to be strong: if m0�m is much larger than m�m0

(note that either or both can be negative), then market m with �m > �m0 can be weak.

Of course, if �m = �m0 and m = m0 , then �m > �m0 is the necessary and su¢ cient

condition for market m to be strong.

Turning our attention to output, we have

�q�m � qm(p
�
m)� qm(p�) (A3)

= �(�m � m)[�m(�m � m)(2�m0 � m0)� �m0(�m0 � m0)(2�m � m)]
(2�m � m)�U

: (1)

as the equilibrium changes in output resulting from a more from uniform pricing to price

discrimination for each �rm in strong and weak markets, respectively. It is then veri�ed

that �p�m and �q
�
m are related in the following way:

�p�m = �(�m + m)�q�m, (A4)

so that we have qm(p�m) > qm(p
�) if and only if p�m < p

�. One can also derive the change

in equilibrium aggregate output:

�Q� � �q�s +�q�w =
(�ws � �sw)[�s(�s � s)(2�w � w)� �w(�w � w)(2�s � s)]

(2�s � s)(2�w � w)�U
,

which does not necessarily coincides with zero, as opposed to the case of monopoly with

linear demands.

Now, although market m is strong even if �m = �m0 as long as (�m � m)(2�m0 �

m0) > (�m0 � m0)(2�m � m), we assume that �m 6= �m0 . This is because if �m = �m0 ,

then we have

�Q� = � �m(�m0m � �mm0)2

(2�m � m)(2�m0 � m0)�U
� 0,
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�p�m =
�m(�

2
m � 2m)(�mm0 � �m0m)

(2�m � m)�U

and most importantly, �SW �, the di¤erence in social welfare under price discrimination

and under uniform pricing (introduced in Section 3), can never be positive (the formal

proof is upon request). Thus, unequal values of intercepts of the two markets are necessary

for price discrimination to improve social welfare. Hence, for markets s and w to be strong

and weak, respectively, it is necessary for the weak market to be su¢ ciently small:

�w
�s

< min

�
(�s � s)(2�w � w)
(�s � s)(2�w � w)

; 1

�
.

The reason why this is not a su¢ cient condition is that we must verify the parameter

restrictions for market w to be su¢ ciently large to be open under uniform pricing. We

verify them in Appendix A2.

For later use (Appendix A3), we also calculate the sum of a �rm�s output under

uniform pricing and the under price discrimination in each market m 2 fs; wg:

qm(p
�
m) + qm(p

�) =
�m(3�m � m)

(�m + m)(2�m � m)
� p�

�m + m
: (A5)

A2. Market Opening under Uniform Pricing

Remember that the symmetric equilibrium under uniform pricing in the main text and Ap-

pendix A1 is obtained, given that both markets are supplied by either �rm under uniform

pricing (qs(p�) > 0 and qw(p�) > 0). In this appendix, we obtain a (su¢ cient) condition

guaranteeing that in equilibrium each �rm supplies to the weak market under uniform

pricing. To do so, we consider one �rm�s incentive not to deviate from the equilibrium by

stopping its supply to the weak market.

Suppose �rm j supplies only to the strong market, given that the rival �rm supplies

both markets with the equilibrium price, p� (see Appendix A1). Let �rm j�s price when

deviating from the equilibrium price under the uniform pricing regime be denoted by p0.

Then, when �rm j closes the weak market, its pro�t is written by22

e�(p0; p�) = p0 � qjs(p0; p�)
22Given p�, the upper bound of p0 such that qjs(p

0�) � 0 is larger than that such that qjw(p0�) � 0 if and
only if �s > (�w � w)(2�s � s)�w=((�s � s)(2�w � w)). That is, for any p0 such that qjw(p0�) � 0,
qjs(p

0�) � 0. In other words, given p�, the strong market opens if the weak market does. The upper
bound of p0 such that qjs(p

0�) � 0 is (�s � s)�s + sp�. The upper bound of p0 such that qjw(p0�) � 0 is
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Figure 4: Pro�t when Deviating from the Equilibrium Price under Uniform Pricing

where

qjs(p
0; p�) =

�s
�s + s

� �s
�2s � 2s

p0 +
s

�2s � 2s
p�:

Now, it is veri�ed that

arg max
p0 6=p�

e�(p�) = �s(�s � s)
2

+
s
2
p� ( � p00).

Note that �rm j�s pro�t function when it deviates to any price other than the equi-

librium price would not necessarily be (globally) concave because it would be kinked at

the threshold price where the weak market closes, as depicted in Figure 4.

(�w � w)�w + wp�. The former minus the latter is

[(�s � s)(2�w � w)�s � (�w � w)(2�s � s)�w](�s(�2w � 2w) + �w(�2s � 2s))
�s�w((�

2
s � 2s)(2�w � w) + (�2w � 2w)(2�s � s))

> 0.

21



If p00 attains the local maximum as in Panels (1) and (2) in Figure 4, then one needs to

solve for the restriction on the set of parameters guaranteeing that the equilibrium pro�t

when both markets are open

p�
�
�s � p�
�s + s

+
�w � p�
�w + w

�
is no smaller than the maximized pro�t when �rm j deviates to close the weak market

max
p0 6=p�

e�(p�).
It is, however, too complicated to obtain the set of parameters from this inequality.

Thus, we instead focus on the case that corresponds to Panel (3) in Figure 4. This gives

a su¢ cient condition for the weak market to open. Notice that by de�nition, p00 must

satisfy qjw(p00; p�) � 0, given p�. If this is violated, then it is the case of Panel (3) in Figure

4. It shortens to

�w >
(�s � s)[2(�w � w)(�2w � 2w)�s + (2�w � w)(�2s � 2s)�w]
(�w � w)[2(2�s � s)(�2w � 2w)�s + (4�s � s)(�2s � 2s)�w]

�s:

Together with the argument in Appendix A1, throughout the paper, we assume the

relative size of the intercept of the weak market satis�es �w=�s 2 (�w=�s; �w=�s), where
�w
�s

=
�w
�s
(;�)

� (�s � s)[2(�w � w)(�2w � 2w)�s + (2�w � w)(�2s � 2s)�w]
(�w � w)[2(2�s � s)(�2w � 2w)�s + (4�s � s)(�2s � 2s)�w]

,

and

�w
�s

=
�w
�s
(;�)

� min

�
(�s � s)(2�w � w)
(�w � w)(2�s � s)

; 1

�
.

These restrictions are su¢ cient for markets s and w to be actually strong and weak and

to be open under uniform pricing.

A3. Proof of Proposition 1 (Calculating �SW � as a Function of p�, p�s
and p�w)

By using equations (A1-A5), we can calculate

�SW � =
X

m2fs;wg
[2�m(qm(p

�
m)� qm(p�))� (�m + m)[qm(p�m)� qm(p�)][qm(p�m) + qm(p�)]]

22



=
X

m2fs;wg

�p�m
�m + m

[�2�m + (�m + m)(qm(p�m) + qm(p�))]

=
X

m2fs;wg

�p�m
�m + m

�
�2�m + (�m + m)

�
�m(3�m � m)

(�m + m)(2�m � m)
� p�

�m + m

��

=
X

m2fs;wg

�p�m
�m + m

�
��m(�m � m)

2�m � m
� p�

�

= �
X

m2fs;wg

�p�m
�m + m

(p�m + p
�):

A4. Proof of Proposition 2

Using the explicit forms for �p�m and for �Q
�(derived in Appendix A1), we have

�Q� = �2
�

�p�s
�s + s

+
�p�w

�w + w

�
,

which implies that �Q� � 0 if and only if

�p�s
�s + s

� � �p�w
�w + w

.

Now, suppose that �Q� < 0. Then, we have

�SW � = � �p�s
�s + s

(p�s + p
�)� �p�w

�w + w
(p�w + p

�)

� � �p�s
�s + s

(p�s + p
�) +

�p�s
�s + s

(p�w + p
�)

= ��p
�
s(p

�
s � p�s)

�s + s
(p�s + p

�) < 0.

A5. Proof of Proposition 3

We have

�CS� = �f(2�s � s)2(2�w � w)2[(�2s � 2s)(2�w � w) + (�2w � 2w)(2�s � s)]2g�1

�[�s(�s � s)(2�w � w)� �w(�w � w)(2�s � s)]

�f�s(�s � s)(2�w � w)

� [(�2s � 2s)(3�s � s)(2�w � w)2

+ (2�s � s)(�2w � 2w)(4�s�w � 4�sw + 2�s�w � s�w + sw)]
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� �w(2�s � s)(�w � w)

� [(�2s � 2s)(2�w � w)(4�s�w � 4�ws + 2�s�w � w�s + sw)

+ (2�s � s)2(�2w � 2w)(3�w � w)]g,

which can be seen as an increasing function of �w.

Remember from Appendix A2 that

�w < min

�
�s(�s � s)(2�w � w)
(�w � w)(2�s � s)

; �s

�
,

and it is veri�ed that

min

�
�s(�s � s)(2�w � w)
(�w � w)(2�s � s)

; �s

�
= �s

if �s�w + �sw > 0, and

min

�
�s(�s � s)(2�w � w)
(�w � w)(2�s � s)

; �s

�
=
�s(�s � s)(2�w � w)
(�w � w)(2�s � s)

otherwise. Noting the continuity, we show below that �CS� as an increasing function of

�w is negative for

�w = min

�
�s(�s � s)(2�w � w)
(�w � w)(2�s � s)

; �s

�
.

First, if �w = �s, then we have

�CS� = �f(2�s � s)2(2�w � w)2[(�2s � 2s)(2�w � w) + (�2w � 2w)(2�s � s)]2g�1

� �2s(�s�w + �sw)

� [(�2s � 2s)(2�w � w)(2�s�w + (�s � s)w)

+ (�2w � 2w)(2�s � s)(2�s�w + (�w � w)s)],

which is negative because �s�w + �sw > 0. On the other hand, if

�w =
�s(�s � s)(2�w � w)
(�w � w)(2�s � s)

,

then the term in the expression of �CS�,

f�s(�s � s)(2�w � w)

�[(�2s � 2s)(3�s � s)(2�w � w)2
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(; �s; �w) =

(0:3; 1:0; 0:75) (0:3; 0:75; 1:0) (�0:3; 1:0; 0:75) (�0:3; 0:75; 1:0)
p� 0:3582 0:3644 0:5235 0:5423

p�s (�p
�
s=p

�) 0:4118 (15%) 0:3750 (3%) 0:5652 (8%) 0:5833 (8%)
p�w (�p

�
w=p

�) 0:3188 (�11%) 0:3500 (�4%) 0:4958 (�5%) 0:4804 (�11%)
�q�s (�q

�
s=q

�
s(p

�)) �0:9412 (�8%) �0:0101 (�2%) �0:0596 (�9%) �0:0912 (�9%)
�q�w (�q

�
w=q

�
w(p

�)) 0:0375 (8%) 0:0111 (3%) 0:0615 (8%) 0:0884 (20%)
�SW � �0:0063 0:0005 �0:0022 �0:0123
�CS�s �0:0507 �0:0127 �0:0543 �0:0797
�CS�w 0:0384 0:0109 0:0419 0:0598
��� 0:0060 0:0023 0:0102 0:0076

�Q� �0:0037 0:0009 0:0019 �0:0028

Table 2: Substitutability versus Complementarity with �s 6= �w (�w = 0:85)

+(2�s � s)(�2w � 2w)(4�s�w � 4�sw + 2�s�w � s�w + sw)]

��w(2�s � s)(�w � w)

�[(�2s � 2s)(2�w � w)(4�s�w � 4�ws + 2�s�w � w�s + sw)

+(2�s � s)2(�2w � 2w)(3�w � w)]g

is simpli�ed to

2�s(�s � s)(2�w � w)(s�w � �sw)

�[(�2s � 2s)(2�w � w) + (�2w � 2w)(2�s � s)],

which is positive because s�w � �sw > 0, which implies that �CS� < 0 in this case.

A6. Welfare Analysis when m is Common

Let  � s = w. We allow �s and �w to di¤er and provide numerical analysis to con-

trast substitutability with complementarity for a �xed value of (�w; �s; �w), and graphical

arguments on the domains (�s; �w) for �SW
� > 0, with the value of (; �w) �xed.

Table 2 shows the result for the case of �w = 0:85. The �rst and the second column

corresponds to the case of substitutability ( = 0:3), while the third and the fourth

correspond to the case of complementarity ( = �0:3). The di¤erence between the �rst

and the second (the third and the fourth in the case of complementarity) columns is

25



whether the own slope of the inverse demand curve in the strong market is greater than

that in the weak market (i.e., �s > �w). Notice that price discrimination improves social

welfare only in the second case ((; �s; �w) = (0:3; 0:75; 1:0)). In this case, j�q�s j=q�s(p�) is

particularly small (2%), while �q�w=q
�
w(p

�), is also not too large (3%), in comparison with

the other three cases.

First, consider the case of substitutable goods ( > 0). Notice that when �s > �w, the

strong market has a higher value of price elasticity than the weak market (see equation (4)).

The equilibrium price in the strong market p�s, however, is at a higher level than in the case

of �s < �w (0:4118 vs. 0:3750). This seemingly paradoxical result is due to strategic e¤ects:

the �rms want to �cooperate�because they are afraid of retaliation when the market is

more price elastic. Now, if the market is �integrated�(i.e., uniform pricing is forced), then

the market price in the strong market is expected to drop to a larger extent than in the

case of �s < �w, because the strong market has a higher value of price elasticity (it is more

competitive) than the weak market when �s > �w. In Table 2, we see the price in the

strong market drop from 0.4118 to 0.3582 (�6%) when (; �s; �w) = (0:3; 1; 0:75), while

ps drops from 0.3750 to 0.3644 (�3%) when (; �s; �w) = (0:3; 0:75; 1:0). To summarize,

when the strong market is less price elastic, the regime of uniform pricing does not lower

the price in the strong market su¢ ciently. As a result, uniform pricing may harm social

welfare. In other words, price discrimination may improve welfare.

Even though the products are complements, a similar logic can apply to the prop-

erty of price discrimination. When the products are complements, the price changes and

the associated production changes are large due to the greater elasticity created by com-

plementarity. In fact, welfare loss is larger in the fourth case (where the strong market

has a higher value of price elasticity than the weak market does) than in the third case

(j�0:0123] > j�0:0022j). As to the changes in equilibrium aggregate output, it is positive

in our second and third cases but negative in the other two. These results are consis-

tent with Proposition 2: an increase in the aggregate output is necessary for welfare to be

improved by price discrimination, as in the case of monopoly.

The di¤erence between substitutability and complementarity is further investigated

graphically. Figures 5 and 6 depict the region of�SW � > 0 for the cases of substitutability
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Figure 5: Substitutability ( = 0:3) in the Case of �w = 0:85

( = 0:3) and of complementarity ( = �0:3), respectively (with �w = 0:85). Notice that

(�s; �w) = (0:75; 1:0) in Table 2 is contained in the shaded region of Figure 5. The

result for the case of substitutability is expected from the argument above. For the case of

complementarity, the combination of �high �s and low �w�works for welfare improvement,

the reverse of the situation in the case of substitutability. Notice that complementarity

makes the demand in each market more price elastic. With elasticity already su¢ cienty

high, a higher value of �s raises the uniform price, and thus the price change introduced

by price discrimination is reduced because of the high value of �s, reducing the ine¢ ciency

of price discrimination in the strong market.

In Figure 5, the white area around the top right corner violates the condition that

�s=�w > �s=�w. The violation means that the discriminatory price in the strong market

with �s is lower than that in the weak market with �w (note that �s > �w). In other

words, the discriminatory price at the market with a higher intercept (�s) is lower than

that in the market with a lower intercept (�w). Following the de�nition of a �strong�

market in Section 2, we now rede�ne the former as the �weak market� and the latter

as the �strong�market.�On this white area where �s < �w holds, the rede�ned �weak�

market with a higher intercept is more elastic than the rede�ned �strong�market with

a lower intercept. As mentioned above, when the �weak�market is elastic, the increase
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Figure 6: Complementarity ( = �0:3) in the Case of �w = 0:85

in quantity in the weak market is not high enough to o¤set the loss from the decrease

in quantity in the strong market; that is, �Q < 0. In fact, in this white area, price

discrimination deteriorates the total social surplus.

Lastly, it is veri�ed that consumer surplus is never improved by price discrimination

in the cases of (; �w) = (0:3; 0:85) and of (; �w) = (�0:3; 0:85). Thus, this and other

numeral results suggest that welfare improvement from price discrimination is solely due

to an increase in the �rms�pro�ts. In particular, it means that there is little or no chance

that �rms will su¤er from �prisoners�dilemma�; that is, �rms are mostly or always better

by switching from uniform pricing to price discrimination.

A7. Proof of Proposition 6

Substituting s into @�SW
�=@s, we have

@�SW �

@s

����
s=s

= �2(�s � �w)�w(�w � w)[�s�w + (�s � �w)(�w � w)]
3

�s�s(2�w � w)3M

where

M = (2�w � w)(�w + w)�2s

+�s�wf2�s(2�w � w)� (�w � w)(�w + w)g � 3�s�2w(�w � w)
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Notice that �s > �w, �w > w, �s�w + (�s � �w)(�w � w) > 0, and 2�w � w. It can

be shown that M is a concave function of �w. For �w 2 [0; �s], this function is locally

maximized at �w = 0 or �w = �s. When �w = 0, M = (2�w � w)(�w + w)�2s > 0.

When �w = �s, M = �2s(�s + �w)(�w + w) > 0. Therefore,

@�SW �

@s

����
s=s

< 0.

Thus, there exists 0s such that �SW
� > 0 for s 2 (0s; s).
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