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1 Introduction

Understanding the movements and being able to make accurate forecasts of the term structure
of interest rates is crucial amongst bond portfolio management, monetary policy and debt
policy. Mainly because accurate forecasts allow more effective forms of hedging and because
the understanding of the interest rate movements increases the control on the shape of the
yield curve. The latter is important for central banks when setting the short rate or for
governments when determining the maturity of the debt that will be issued. The importance
of yield curve forecasting, together with the fact that the Euro Swap market has become one
of the largest and most liquid markets in the world, makes forecasting the Euro Swap curve
very exciting.

The main contribution of this work is to evaluate the performance of a Principal Com-
ponent forecast model when forecasting the Euro Interest Rate Swap curve for different time
horizons. Specifically, it will be compared with the results of tough competitor models such
as the Nelson Siegel, the Yield regression model, and the naive Random Walk hypothesis. In
addition, first difference adaptations of the original models will be postulated and evaluated.

Due to the very high persistence of the yields, the naive ’no change’ model, also known
as the Random Walk, is very successful at forecasting the term structure. However, evidence
exists that the current term structure contains information about future term structures. As
an example, Duffee (2002) states that long-maturity bond yields tend to fall over time when
the slope of the yield curve is steeper than usual. Next to this internal evidence, the success
of, for example, Taylor rules, has demonstrated a strong connection between the yield curve
and the observable macro variables. Although the evidence is there and many improvements
have been made during the past decade, none of the researchers have succeeded yet in finding
a single model that consistently outperforms the Random Walk for all forecast horizons and
for all maturities.

In what follows next, we will summarize a selection of the term structure forecast papers
that are important references to this work. We have structured them according to their core
discussion points, in chronological order.

In 2002 Duffee (Duffee, 2002) reports that the popular ’completely’ affine/linear term
structure models do not perform well at forecasting. He discovers that this poor result is
caused by the models’ fundamental assumption that the market price of the risk is a fixed
multiple of the variance of the risk. By relaxing this assumption, Duffee creates a new model
that seems to outperform the Random Walk. In this new ’essentially’ affine model, the market
price of risk is no longer a fixed multiple of the variance of risk, but a linear combination of
the state vector. Duffee names this model ’essentially’ affine, because only the variance of the
market price of risk loses its linearity in relation with the state vector.

In 2003 Ang and Piazzesi (2003) derive a no-arbitrage affine/linear term structure model,
in which the state vector contains both observable macro factors and unobservable latent
factors. Ang and Piazzesi are able to forecast the term structure by assuming that the
dynamics of the state space vector are driven by a Gaussian VAR process. This paper is
very original because it demonstrates a way to include macro variables directly into the term
structure model. Important results of the paper are that the no-arbitrage restriction improves
the forecast results and that macro factors explain up to 85% of the movements in the short
and middle parts of the yield curve. In a one month ahead forecast exercise, their Macro
model seems to beat the Random Walk.

Moench (2008) follows a similar procedure to Ang and Piazzesi. He also uses the com-
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bination of no-arbitrate affine/linear model and a VAR of the state vector to forecast the
interest rate term structure. Differences lie within the state vector. Moench uses the short
term interest rate and the first four principal components of a large panel of macroeconomic
time series. He justifies the use of factors by proving that the Fed’s monetary policy is better
simulated with a Taylor rule based on macro factors, instead of macro variables. In relation to
forecasting the term structure, Moench reports that relative to the Random Walk, his model
reduces RMSE up to 50% at the short end of the term structure and still up to 20% at the
long end.

In 2006 Diebold and Li (2006) break from the traditional affine forecast models and opt
for a dynamic variation of the Nelson-Siegel exponential model. To avoid over-fitting, they
estimate the dynamics of the Nelson-Siegel factors with an autoregressive model. Their results
are promising and they justify the break from the traditional affine models by promoting the
simplicity and usability of their model. In particular, at long forecast horizons, the Diebold
and Li model appears to be more accurate than benchmark models. In a follow-up paper
Diebold et al. (2006) extend the original Diebold and Li model by including real activity,
inflation and the monetary policy instrument. This time, they use a VAR to model the
dynamics. With this set up, the authors are able to study the dynamic connection between
macro variables and the term structure. They find a stronger effect form macro variables on
future movements in the yield curve and than for the reverse.

Although Diebold and Li (2006) develop a one-step state space estimation approach, they
did not perform any out-of-sample forecast with this technique. This was only explored by Yu
and Zivot (2011) who estimate the term structure for Treasury and corporate bonds for nine
different ratings. Their findings indicate the one-step estimation using the Kalman Filter as
the model for for high-yield bonds at short-term horizons forecast. Possibly, this result is due
to the instability of parameter estimation in speculative ratings. Another interesting incursion
in more volatile markets can be found in Vicente and Tabak (2008) who compares affine term
structure models with the Diebold and Li model for the Brazilian Economy. Their results
suggests that the parsimonious dynamic Nelson Siegel model has a superior performance for
rates of up to three months and at 12 month-ahead forecasts.

In 2008, Christensen et al. (2009) wrote a paper in which they develop an arbitrage free
version of the Nelson Siegel model. Next to getting better results than for the original Diebold
an Li set-up, the algorithm of this new no-arbitrage model, is much faster than other affine
no-arbitrage approaches.

Although many researchers report outperforming the Random Walk, none of them prove
the consistency of their model. In 2007 de Pooter et al. (2007) set up a showdown between
the Random walk, the original Nelson Siegel model (with and without macro factors) and the
no-arbitrage models (with and without macro factors). They use U.S. Treasury zero-coupon
bond data. Interestingly, the authors are not able to select the best model. Mainly because
the forecast accuracy of each model is inconsistent over time. Their answer to making a
better model, lies in determining logical combinations of all of the models. More specifically,
they combine forecast models with a weighting scheme that is based on relative historical
performance. Results are now consistent and highly accurate, especially for longer maturities.
In relation with the macro factors, the authors notice a positive effect on out-of-sample
forecasting.

Another attempt to use model selection is made by Blaskowitz and Herwatz (2009). The
importance of their paper to the current lies in the fact that the authors also implement
the combination of a principal component yield curve model and an autoregressive model
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(AR). In addition, they too study the Euribor Swap Term Sturcture (Daily rates). Their
adaptive technique consists of first creating a pool of models, by changing the time window,
the number of principal components and the lags in the AR, next evaluating past performance
of all of the models in the pool and finally selecting the best model to make the future
forecast. They conclude that the adaptive approach offers additional forecast accuracy in
terms of directional accuracy and big hit ability over the Random Walk and the Diebold and
Li approach. However, the Root Mean Squared forecast Errors (RMSE) are not compared.

Next to disagreement in model selection, authors also do not yet agree on how to extract
the macro factors. In 2008 Exterkate (2008) addresses this area. He evaluates the effect of
different macro extraction techniques on the forecast performance of a Nelson Siegel model
combined with a factor augmented VAR. Exterkate studies the effect of grouping macro
variables before factor extraction and the effect of a technique called thresholding. The latter
selects the macro variables with the highest forecasting potential. Exterkate reports a positive
effect from both techniques. Next to this small victory, Exterkate has to report that including
macro factors did not improve his forecast results compared to the original Diebold and Li
setup. Additionally, he is not able to reproduce results that were previously achieved.

In 2008, Duffee (2008) investigates whether imposing no-arbitrage helps when using the
term structure to forecast future bond yields. He does this by testing a no-arbitrage and an
unrestricted three factor discrete-time Gaussian model, in practice and with a Monte Carlo
simulation. In addition, Duffee also investigates the Diebold and Li model that imposes
specific analytical functions onto the factors. After testing, Duffee concludes that both in
practice and in simulation, imposing no-arbitrage does not improve forecasting performance.
Imposing different restrictions, like Diebold and Li, does have a negative result on the fore-
casts. Duffee explains that the irrelevance of the no-arbitrage restrictions comes directly from
the fact that in any n-factor affine model, yields are linear functions of a constant and n other
yields. Deviations from this linear equation are so small that its parameters can be estimated
with minimal uncertainty even without imposing no arbitrage cross-equation restrictions.

Important lessons to be learned from the literature review: First, Duffee (2008) proves
that, for a three factor discrete-time Gaussian model, the imposition of no-arbitrage onto the
factors does not improve the forecasts. Second, de Pooter et al. (2007) shows that including
the factors of macro variables into the factor transition equation has a positive result on the
forecasts for all of his models.

This work will exploit the first of these results. We will use an unrestricted factor model,
based on the principal components of the interest rate data, together with an autoregres-
sive transition equation. In the next section, we will specify the autoregressive principal
component model of the term structure in detail.

Another lesson is that, surprisingly, while there is an extensive well known literature of
forecasting term structure U.S. bonds, the literature is relatively scarce for Euro markets.
Therefore our paper also contributes to fill this gap.

The paper is structured as follows. The next section contains the methodology that has
been used to make our yield forecasting exercise. Section three is devoted to the data that
has been used. In the fourth section we will present and discuss the results. We conclude in
section six.
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2 Methodology

Tests have shown that naive (vector) autoregressive models of the yields do not make use
of the internal structure of the data when forecasting and that they produce bad forecast
accuracy compared to the Random Walk (de Pooter et al., 2007). On the other hand, some
models impose restrictions that do give better forecast results. Most of these successful
models, impose restrictions on the parameters of a general linear yield curve model:

Yt = A+BXt + εt (1)

Xt = Γ1Xt−1 + . . .+ ΓlXt−l + ηt ηt ∼ ℵ (0, 1) (2)

The first equation models the yield curve, the second its dynamics. In this equation, Yt =
[y1t, . . . , ymt]

′ is the yield vector at time t, m denotes the number of maturities, Xt =
[x1t, . . . , xnFt]

′ is the state vector and l denotes the number of lags that are included in
the transition equation. Concerning the errors, in this work, εt will be called the approxima-
tion error, while ηt will be called the regression error. This general model assumes that each
yield is a linear combination of nF factors from the state vector Xt. All yield curve models
that we will discuss in this section are created by imposing a different constraint on A, B, Γ
and the number of factors nF in Xt.

The main focus of this section is to explain how to specify equations (1) and (2) in case of
the principal component model. Next, we will discuss the implementation of the model and
finally, we will present a summary of all the models that are used in this work.

2.1 Principal Component Model of the Term Structure

Principal component analysis (PCA) is defined as a linear transformation of a number of
correlated variables into a smaller number of uncorrelated variables called principal com-
ponents. Basically, making a principal component analysis comes down to computing the
eigenvalues/eigenvectors of the covariance/correlation matrix of the variables.

The idea behind principal component analysis is to determine the linear combination of
variables that has the highest variance. This linear combination of variables forms a new
variable that is called ’component’ or ’factor’ (xit = α′iYt) and the coefficients of the linear
combination are called loadings (αi).

The whole principal component algorithm can be summarized by making an eigenvector
analysis on the data covariance matrix:

Σ = var(Y ) = B′PCΛBPC

Xt =
(
α1 α2 ... αm

)′
Yt = B′PCYt (3)

With BPC being the eigenvector matrix of Σ and Xt = [x1t, x2t, ..., xmt]
′ being the factor

matrix. The yields are now presented as a linear combination of a state vector, remember
equation (1) with A = 0 and B = BPC .

Remember that the principal component factors are independent and are extracted from
the data in a natural way. If the no-arbitrage condition lies within the data, it does not
need to be imposed when forecasting (Duffee, 2008). Also note that Xt still has the same
dimension as the yields Yt. In the next section we will discuss why and how it is possible to
reduce the dimension of Xt.



2 METHODOLOGY 5

Inverting equation (3) 1 and then splitting up Xt is particularly helpful to understand how
and why principal components can be used to reduce the dimensionality of the data. Let’s
also look at a regression equation of the factors onto the yields:

Yt = B1PCx1t +B2PCx2t + . . .+BmPCxmt (4)

Yt = Γ0 + Γ1x1t + Γ2x2t + ...+ Γmtxmt + εt (5)

Due to equation (4), regression(5) will explain all of the variance in Yt. In addition all
coefficients will be estimated as Γ0 = 0 and Γi = BiPC , for all i different than 0. The
potential to reduce the number of variables in this equation lies in the fact that the principal
components are independent (orthogonal). This means that omitting a variable does not
cause bias on the other coefficients and that each factor contributes a specific independent
part to R2.

If a factor is truly important depends on the required model accuracy. We implement three
automatic factor selection methods: the Kaiser criterium, next the Scree plot and finally the
mean square error, for more details see (Field, 2009). When implementing these methods, we
get values ranging from 2 to 3. For calculations we choose 3 factors because this is common
in literature (nF = 3). Following factor analysis standard procedures, we estimate factors
with zero mean and unit variance.

It is also possible to apply linear transformations onto the loadings to improve their
economical interpretation. Imagine that the loadings span a subspace in the data space, then
any set of vectors that can also span that subspace are equivalent to the loadings, without
loss of accuracy. In general the idea is to look for vectors that have more economical meaning
than the current loadings. For this work we have tested the varimax rotation on the three
principal factors of the term structure. The results are not shown because the rotation of the
loadings did not enhance their economical interpretability.

2.2 Out-of-sample forecasting

Imagine having a time series X = [x1, . . . , xn] on which you want to apply a forecast model
to make out-of-sample forecasts. The first step to achieve ’testable’ out-of-sample forecasts
is to divide X into an in-sample part Xin = [x1, . . . , xm] and an out-of-sample part Xout =
[xm+1, . . . , xn].

The transition equation is fully specified when the forecast step h and the number of lags
l are known. For an autoregressive equation, we get the following in-sample regression:

xt+h = β1 + β2xt + ...+ βl+2xt−l + ηt ηt ∼ ℵ (0, 1) for t = l + 1 : m− h

For this regression to be in-sample, both the left hand side and the right hand side of this
equation need to be in-sample, hence the domain of t. The next step is to use the coefficients
of this equation to make an out-of-sample forecast. There are many ways to do this, but in
this work we only use in-sample observations of Xin to make the out-of-sample forecast with
the following equation:

x̃t+h = β1 + β2xt + ...+ βl+2xt−l for t = m− h+ 1 : m

Note that the number of out-of-sample forecasts (domain of t) depends on the considered
time step. We retain the forecast based on the latest in-sample observations xm+h.

1Eigenvectors are orthogonal so B′PCBPC = Im
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Consecutive out-of-sample forecast are made by moving the history. In this work, we
estimate the model with a ’rolling’ history and with an ’increasing’ history. A ’rolling’ his-
tory has a fixed length and moves through time e.g. history1 = (x1, . . . , xm), history2 =
(x2, . . . , xm+1),. . . An ’increasing’ history has an increasing length in time e.g. history1 =
(x1, . . . , xm), history2 = (x1, . . . , xm+1),. . . For each history, the principal components are
calculated, regressed and used for one out-of-sample forecast as described. Note that this
process is quite time consuming.

One of our main tasks will be to model the h-step out of sample of the transition equa-
tion. Most of the authors use a (vector) auto regressive model to forecast the factors. In
our forecasting exercise, we will achieve the h-step out-of-sample forecasts evaluatimg four
variations:

Direct Regression (Scheme 1)

xit+h = β1 + β2xit + ...+ βl+2xit−l + ηt ηt ∼ ℵ (0, 1) for i = 1 : nF

With l the number of lags and nF the number of factors that are included in the model.
Direct Differenced Regression (Scheme 2)

δhxit+h = xit+h − xit
δhxit+h = β1 + β2δhxit + ...+ βl+2δhxit−l + ηt ηt ∼ ℵ (0, 1) for i = 1 : nF

With l the number of lags and nF the number of factors that are included in the model.
Iterative Differenced Regression (Scheme 3)

∆xit = xit − xit−1

δhxit+h = xit+h − xit =
∑

j=it+1:it+h

∆xj

∆xit+h = β1 + β2∆xit + ...+ βl+2∆xit−l + ηt ηt ∼ ℵ (0, 1) for i = 1 : nF

With l the number of lags and nF the number of factors that are included in the model.
Indirect Differenced Regression (Scheme 4)

δhxit+h = xit+x − xit
∆xit = xit − xit−1

δhxit+h = β1 + β2∆xit + ...+ βl+2∆xit−l + ηt ηt ∼ ℵ (0, 1) for i = 1 : nF

With l the number of lags and nF the number of factors that are included in the model.
Scheme 3 and 4 have been implemented because in theory, AR models were developed to

forecast stationary series. As will be seen in the results section, the yields and some of the
factors are only stationary after taking the first difference.

It is now time to quantify the error of the forecast exercise. We discuss the performance
of a specific model and then the relative performance between nested models.

Performance We use the Root Mean Square forecast Error (RMSE) to determine the
accuracy of the forecast model.

RMSEout−of−sample =

√√√√∑t=m−h+1:n−h

(
Yt+h − Ỹt+h

)2

lhistory
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Note that in literature the RMSE is the most used evaluation technique. Other evaluation
technique, such as the directional accuracy and the big hit ability (Blaskowitz and Herwatz,
2009) are not tested in this work.

Relative Performance When more than one model is used, it is quite natural to want to
rank them according to their forecast accuracy. For nested models West and Clark (2007)
have developed a specific statistic based on the squared errors:

ft+h = (Yt+h − Ỹ1t+h)2 −
(

(Yt+h − Ỹ2t+h)2 − (Ỹ1t+h − Ỹ2t+h)2
)

with Ỹ1t+h being the estimation of the nested model and Ỹ2t+h being the estimation of the
more general model. In order to know if the general model is significantly better than the
nested model, just regress ft+h on a constant for the out-of-sample domain and check if a is
significantly larger than zero. In this work, we use the P-value of the t-statistics to evaluate
the relative performance of all models with the Random Walk. Models with a P-value lower
than 10% are assumed to be significantly better than the Random Walk.

2.3 Summary of the models

This section describes the Principal Component Forecast model and the comparison models:
the Diebold and Li model, the Yield Regression model and the the Random Walk model.
Next follows a brief description these four methods

2.3.1 Principal Component Forecast Model

In this work we use five adaptations of the principal component forecast model called: PC
AR, PC REG, DPC AR, DPC VAR and DPC REG. Note that due to the fact that transition
scheme 3 yielded the best results, only this scheme will be presented for the differenced models.

PC AR

Yt+h = Bt,PCXt+h + Ȳt + εt

xit+h = β1 + β2xit + ...+ βl+2xit−l + ηt ηt ∼ ℵ (0, 1)

With BPC being a specific set of eigenvectors of the covariance matrix of the data, Ȳt being the
mean of the in-sample time series of Yinsamp, h being the forecast step and l being the num-
ber of lags. According to equation (1), the principal component model imposes restrictions
A = Ȳt and B = BPC . These restrictions come naturally from the eigenvalue/eigenvector
decomposition of the covariance in the data.

PC REG

yjt+h = β1 +
∑

i=1:nF

(βi2xit + ...+ βil+2xit−l) + ηt ηt ∼ ℵ (0, 1) for j = 1 : m

With m being the number of maturities of the yields.



2 METHODOLOGY 8

DPC (V)AR

Yt+h = Yt + (Yt+h − Yt) = Yt +
∑

j=t+1:t+h

(Yj − Yj−1) = Yt +
∑

j=t+1:t+h

∆Yj

∆Yt+h = Bt,PCXt+h + ∆Y t + εt

xit+h = β1 + β2xit + ...+ βl+2xit−l +

 ∑
j=1:nF

(αj1xjt + . . .+ αjkxjt−k)

+ ηt

ηt ∼ ℵ (0, 1) for i = 1 : nF and j 6= i

DPC REG

Yt+h = Yt + (Yt+h − Yt) = Yt +
∑

j=t+1:t+h

(Yj − Yj−1) = Yt +
∑

j=t+1:t+h

∆Yj

∆Yt+h = β1 +
∑

i=1:nF

(βi2xit + ...+ βil+2xit−l) + ηt ηt ∼ ℵ (0, 1)

2.3.2 Diebold and Li Model

The 2006 Diebold and Li (2006) forecast model is a three factor dynamic Nelson Siegel model
that imposes exponential restrictions on parameter B of equation (2).

NS AR The famous model of Diebold and Li.
yt(τ1)
yt(τ2)

...
yt(τN )

 =


1
1
...
1

C1t +


1−e−τ1λt
τ1λt

1−e−τ2λt
τ2λt
...

1−e−τNλt
τNλt

C2t +


1−e−τ1λt
τ1λt

− e−τ1λt

1−e−τ2λt
τ2λt

− e−τ2λt

...
1−e−τNλt
τNλt

− e−τNλt

C3t +


εt(τ1)
εt(τ2)

...
εt(τN )



Yt = BNSXt + εt

xit+h = β1 + β2xit + . . .+ βl+2xit−l + ηt ηt ∼ ℵ (0, 1) for i = 1 : 3

Some important facts about the Diebold an Li model: First, λt is a fourth parameter that
determines the speed of decay of the elements in the coefficient B. Although this parameter
may vary with time, Diebold and Li give it a fixed value based on the data. In this work
λt is fixed at the value that gives the highest R2 for the OLS regression of the Neslon Siegel
equations. The R2 of the OLS have been calculated for λt = (0.02 : 0.001 : 0.07).Second,
all loadings are time independent. This enhances the speeds of out-of-sample forecasting
dramatically. Third, the original transition equation is auto-regressive even though the Nelson
Siegel factors are not independent and even though some have a unit root. Note that the
transition equation has changed into a VAR. Due to the fact that the purpose of this work is
not to test transition equations, we will continue to use an autoregressive transition equation.

2.3.3 The Yield Regression

In order to test the real contribution of the PCA/NS structure in the data, we have also
included an autoregressive model of the yields and of the 1st difference of the yields.
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Y REG Regression of the yield levels.

yit+h = β1 + β2yit + ...+ βl+2yit−l + ηt ηt ∼ ℵ (0, 1) for i = 1 : m

With y being a yield and m the number of maturities.

DY REG Regression of the 1st difference of the yield levels.

Yt+h = Yt + (Yt+h − Yt) = Yt +
∑

j=t+1:t+h

(Yj − Yj−1) = Yt +
∑

j=t+1:t+h

∆Yj

∆Yt+h = β1 + β2yit + ...+ βl+2yit−l + ηt ηt ∼ ℵ (0, 1) for i = 1 : m

2.3.4 The Random Walk

This model assumes that the best way to forecast future yields is to look at their current
value:

Yt+h = Yt + ηt ηt ∼ ℵ (0, I)

With h being the forecast step. Due to the fact that interest rates have very high autocorrela-
tions, the Random Walk is a good benchmark model. Remember that de Pooter et al. (2007)
report that separately none of the models they tested consistently outperforms the Random
Walk. In the results section, it will become clear that for the Euro Interest Rates Swaps, ηt
is not a ℵ (0, I) process.

3 Data

Forecast literature has mainly dealt with the U.S. treasury market because of the U.S. mar-
ket dominance and because of its relatively large historical database. Nevertheless, in 2003
Remolona and Wooldridge (2003) point out that with a total outstanding amount of 26.3
trillion euro at the end of June 2002, the Euro Interest Rate Swap market has become one
of the largest and most liquid financial markets in the world. The total outstanding amount
of US-dollar interest rate swap instruments was slightly smaller, with 26.2 trillion euro. In
2009, the Euro Interest Rate Swap market stays the most liquid with an outstanding amount
of 115 trillion dollar (Packer and Mesny, 2009). As a consequence the swap yield curve is
becoming a benchmark yield curve in Euro financial markets against which even government
bonds are now often referenced.

Euro Interest Rate Swap data The Euro Interest Rate Swap data consists of monthly
last price Euribor continuously compounded rates for maturities of 1, 3, 6 and 12 months and
of monthly last price continuously compounded Euro Interest Rate Swap rates for maturities
of 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 30 years. Euro Interest Rate Swap can be seen as a long term
extension of the Euribor rates. Moreover, they represent the fixed rate that settles a variable
rate when engaging into an Interest Rate Swap. All rates have been retrieved with Bloomberg
for the period of January 1999 until January 2009. Figure 1 illustrates the evolution of all
Euro Interest Rates Swaps over the full sample period.

When looking at this figure, it is important to notice that the level of the short rate (lowest
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Figure 1: Left: EVOLUTION OF THE EURO SWAP RATES. Right: EVOLUTION OF
THE MONTLY DIFFERENCE OF EURO SWAP RATES

line on the left figure) seems to follow an almost seasonal path due to the internet bubble of
2000-2001 and the financial crisis 2008-2009. In addition, yields seem to have a negative trend,
especially the ones with a higher maturity. Both of these effects disappear when looking at
the monthly differences. In the next section of this work the yield curve and its behavior in
relation with forecasting will be discussed in more detail.

4 Results

This section is structured as follows: first, the Euro Interest Rate Swaps will be examined
from a forecast perspective. Specifically stationarity and AR order will be examined. Next,
the components will be examined from this perspective and finally, the out-of-sample forecast
models will be compared against each other for a forecast horizon of 1 and 12 months.

4.1 The Euro Interest Rate Swaps

Due to the fact that autoregressive models have been developed for stationary series, the
two main goals of this subsection are: first to find out which of the series are stationary and
next to use the Auto Correlation Function (ACF) and the Partial Auto Correlation Function
(PACF) to determine the order of the autoregressive model. Let’s start with stationarity.

Augmented Dickey Fuller tests are a common tool to evaluate the stationarity of a series.
Before applying these tests, the user must specify the ADF model on either having an inter-
cept, a trend, or both. For the case of the yield levels, we assume that yield series do not
have a trend, but that they have an intercept. We make this assumption based on two facts.
First, comparing the mean with the standard deviations of the levels, leads to the conclusion
that the mean is different from zero. Secondly, comparing the mean and standard deviation
of the 1st difference, leads to the conclusion that there is no trend. When testing the 1st
differences of the levels for stationarity, we assume the 1st differences neither to have a trend,
nor to have an intercept. The evolution of the yield levels and their 1st differences, presented
in figure 1, confirm these assumptions. The results of the Augmented Dickey Fuller tests can
be found in table 1 and lead to the conclusion that all yields are I(1), namely that their 1st



4 RESULTS 11

difference is stationary.

Level µ̂ (%) σ̂ (%) ρ̂(1) PACF ADF ∆Level µ̂ (%) σ̂(%) ACF PACF ADF

Euribor 1m 3,197 0,922 0,962 1 -1,741 ∆ 1m -0,011 0,220 1,2 1 -3,876
Euribor 3m 3,289 0,973 0,972 1,-2 -1,820 ∆ 3m -0,008 0,204 1,2,3 1 -4,668
Euribor 6m 3,340 0,980 0,972 1,-2 -1,804 ∆ 6m -0,006 0,204 1,2,3 1 -4,805
Euribor 12m 3,443 0,985 0,969 1,-2 -2,209 ∆ 12m -0,005 0,219 1,2,3 1 -5,478
Eurswap 24m 3,604 0,891 0,953 1,-2,5 -1,736 ∆ 24m -0,006 0,237 1,3 1,-4 -7,512
Eurswap 36m 3,767 0,828 0,950 1,-2 -1,812 ∆ 36m -0,004 0,232 1 1 -7,829
Eurswap 48m 3,913 0,781 0,947 1,-2 -1,836 ∆ 48m -0,004 0,224 1 1 -8,050
Eurswap 60m 4,036 0,747 0,948 1,-2 -1,837 ∆ 60m -0,003 0,213 1 1 -8,117
Eurswap 72m 4,149 0,724 0,951 1,-2 -1,785 ∆ 72m -0,003 0,202 1 1,3 -8,195
Eurswap 84m 4,251 0,710 0,954 1,-2 -1,731 ∆ 84m -0,003 0,191 1 1,3 -8,176
Eurswap 96m 4,340 0,698 0,957 1,-2 -1,695 ∆ 96m -0,003 0,182 1 1,3 -8,162
Eurswap 108m 4,416 0,686 0,958 1,-2 -1,623 ∆ 108m -0,002 0,176 1 1,3 -8,346
Eurswap 120m 4,480 0,676 0,960 1,-2 -1,592 ∆ 120m -0,002 0,170 1 1,3 -8,353
Eurswap 180m 4,706 0,661 0,964 1,-2 -1,118 ∆ 180m -0,003 0,158 1 1,3 -8,716
Eurswap 240m 4,812 0,657 0,965 1,-2 -0,929 ∆ 240m -0,005 0,150 1 1 -8,829
Eurswap 360m 4,844 0,663 0,959 1,-2 -0,592 ∆ 360m -0,009 0,152 1 1 -8,875
5% ADF -2,886 5% ADF -1,944

Table 1: EURO SWAP STATISTICS, period 29/01/1999-28/01/2009. The numbers in the
ACF and PACF column denote the lags of the significant spikes in the correlogram, their
signs denotes the sign of the spikes. The Augmented Dickey Fuller tests (ADF) were made,
based on the assumption that yields have no trend and that their 1st difference has no trend
and no intercept. The series are assumed to be stationary if the t-statistic is smaller than the
5% t-statistic (bold ADF column).

To determine the order of the autoregressive model, the Auto Correlation function (ACF)
and the Partial Auto Correlation function (PACF) provide a lot of information. Technically,
the ACF provides information about the correlation between the series and its lagged series,
while the PACF provides information about the incremental autocorrelation added by an
additional lag. Therefore, it is the highest significant lag in the PACF that provides the order
of the Auto Regressive process (AR). Column ACF and PACF in table 1 indicate the lags of
the significant spikes and their sign in the Autocorrelation and the Partial Autocorrelation
function of the levels of the yields and their 1st difference. Note that in case of the levels, the
PACF has a spike at 1 and -2. The negative sign for the spike at lag 2 implies that the level
of the yields can be explained by the 1st difference of the yields:

Yt = aYt−1 − bYt−2 + εt = (a− b)Yt−1 + b(Yt−1 − Yt−2) + ηt (6)

In case of the 1st difference model, (a − b) in equation (6) is restricted to be 1. Figure 2
compares the RMSE of a Yield Regression model in level and 1st difference. This figure
confirms the hypothesis that the level model mimics the 1st difference model, even though
the less restricted level model performs slightly better.
Now that the yields have been investigated, let’s investigate their factors.

4.2 Components

Another way of looking at a yield series, is to look at them as a sum of other series, com-
ponents. In this work components are determined with the Principal Component and the
Nelson Siegel method. In what follows next, we will first define the criterium that has been
used to determine the number of components, than discuss stationarity and AR order of the
components and finally, discuss the cross correlation between the components.
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Figure 2: Left: RMSE EURO SWAP CURVE FORECAST. Right: EURIBOR3M forecast.
Forecast horizon 1 month, in-sample history 29/01/1999 - 29/12/2004, increasing history.

4.2.1 Number/Importance of components

Even though various criteria exist to automatically determine the number of components that
are required to simulate the yield curve, we have used a different criterium when forecasting.
The criterium is based on comparing the forecast accuracy of the Random Walk model with

Figure 3: RMSE EURO SWAP CURVE FORECAST. Left: Comparison of Random Walk
and Random Walk of components. Right: Comparison of Random Walk and Random Walk
of Nelson Siegel components. Forecast horizon 1 month, in-sample history 29/01/1999 -
29/12/2004, increasing history.

the forecast accuracy of a Principal Component model and a Nelson Siegel model that assumes
that the factors follow a Random Walk:

Yt+h = Bt,PCXt+h + Ȳt + εt

xit+h = xit + ηt ηt ∼ ℵ (0, 1) for i = 1 : nF

Figure 3 illustrates the effect of the number of components on the RMSE when making an
out-of-sample forecast. Apparently, for the case of the Euro Interest Rate Swap curve, the
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Random Walk Neslon Siegel model does not lead to a good approximation of the Random
Walk of the yields. Moreover, the Random Walk Principal Component model only makes a
good approximation of the Random Walk, when considering 6 components. The reason that
6 components have to be used, is because the data set is made up out of Euribor rates and
Euro Rate Swaps.

Even though 6 components, may seem like a lot a components, not all components have a
similar importance. In order to identify the importance of these components, an idea about
the loadings might be helpful. Table 2 presents the loadings of the 1st six components of the
Euro Interest Rate Swaps.

LEVEL f1 f2 f3 f4 f5 f6 df1 df2 df3 df4 df5 df6

1 month -0,82 -0,36 0,20 0,06 0,05 0,02 -0,11 -0,17 0,05 0,06 0,00 0,00
3 months -0,87 -0,41 0,13 -0,01 0,00 -0,03 -0,13 -0,15 0,02 -0,03 0,01 -0,03
6 months -0,89 -0,41 0,05 -0,03 -0,03 0,00 -0,15 -0,13 0,01 -0,03 0,00 0,00

12 months -0,91 -0,38 -0,05 -0,05 -0,04 0,03 -0,19 -0,10 -0,01 -0,03 -0,01 0,03
24 months -0,86 -0,15 -0,15 0,06 -0,03 0,00 -0,23 -0,01 -0,06 0,01 -0,02 0,00
36 months -0,81 -0,03 -0,14 0,03 0,00 0,00 -0,22 0,01 -0,05 0,01 -0,01 0,00
48 months -0,77 0,06 -0,12 0,01 0,01 -0,01 -0,22 0,03 -0,04 0,01 0,00 -0,01
60 months -0,73 0,12 -0,09 0,00 0,02 -0,01 -0,21 0,04 -0,02 0,01 0,01 -0,01
72 months -0,70 0,17 -0,06 -0,01 0,02 0,00 -0,20 0,04 -0,01 0,00 0,01 -0,01
84 months -0,67 0,22 -0,03 -0,01 0,02 0,00 -0,18 0,05 0,00 0,00 0,01 0,00
96 months -0,65 0,25 -0,01 -0,02 0,02 0,00 -0,17 0,05 0,02 0,00 0,01 0,00

108 months -0,63 0,27 0,01 -0,03 0,02 0,00 -0,17 0,05 0,02 0,00 0,01 0,01
120 months -0,61 0,29 0,03 -0,03 0,01 0,00 -0,16 0,06 0,03 0,00 0,01 0,01
180 months -0,56 0,35 0,08 -0,03 -0,01 0,00 -0,14 0,06 0,05 -0,01 0,00 0,00
240 months -0,52 0,38 0,11 0,00 -0,03 0,00 -0,13 0,06 0,06 -0,01 -0,01 0,00
360 months -0,49 0,42 0,13 0,06 -0,06 0,00 -0,12 0,06 0,06 0,00 -0,03 -0,01

Table 2: LOADINGS EURO SWAP COMPONENTS. Loadings of the principal components
of the yields and of the 1st difference of the yields.

Due to the fact that all component series have unit variance, the importance of a component
for a specific yield is directly related to the size of its loading. As an example, the 60
months Euro Interest Rate Swap level, is mainly influenced by the 1st component, while
the 360 months Euro Interest Rate Swap level is influenced by both the 1st and the 2nd
component. On average, it is the eigenvalues that reveals the importance of their related
components. For the components of the yield levels, for example, the eigenvalues reveal that
the 1st component explains 84.2%, the 2nd 13.7% and the 3rd 1.6% of the variance in the
yield levels. So, basically, it is the accuracy with which the 1st and the 2nd component can
be forecasted that determines the accuracy of the yield forecast. Component 3, 4, 5 and 6
will improve the accuracy of the forecasts, by reducing the approximation error (εt), as can
be seen in figure 3 and by having cross correlation with the 1st and the 2nd component. This
will be discussed later.

In the next section, when discussing stationarity and AR order, we will only discuss 3
components for simplicity. Later, in the forecast exercise, we will include all 6 factors.

4.2.2 Stationarity and AR order

Similar to the yields, an Augmented Dickey Fuller test can be used to check the stationarity
of the components and the ACF and PACF functions can be used to determine the order
of the Auto Regressive models. Table 3 presents the results of such analysis. Please note
that when calculating the ADF statistics, levels are assumed to have an intercept, while 1st
differences are assumed not to have an intercept.
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Level µ̂ (%) σ̂ (%) ρ̂(1) PACF ADF ∆Level µ̂ (%) σ̂(%) ACF PACF ADF

f1 (PC) 0,000 1,000 0,962 1,-2 -1,593 ∆f1 (PC) 0,007 0,233 1,3 1 -6,849
f2 (PC) 0,000 1,000 0,962 1,-2 -1,511 ∆f2 (PC) 0,002 0,273 1 1 -8,152
f3 (PC) 0,000 1,000 0,863 1 -2,995 ∆f3 (PC) 0,015 0,510 -4 -4 -10,343

f1 (∆PC) 0,000 1,000 1 1 -7,260
f2 (∆PC) 0,000 1,000 1 1 -6,570
f3 (∆PC) 0,000 1,000 -4 -4 -5,868

β1 (NS) 5,085 0,703 0,972 1 -0,802 ∆β1 (NS) -0,006 0,703 3 3 -10,451
β2 (NS) -1,850 1,074 0,972 1,-2,-4 -2,518 ∆β2 (NS) -0,004 1,074 1,3 1,3 -6,791
β3 (NS) -1,201 1,286 0,870 1 -2,987 ∆β3 (NS) 0,016 1,286 -4 -4 -10,161
λ (NS) 0,041 λ (NS) 0,041
5% ADF -2,886 5% ADF -1,944

Table 3: EURO SWAP COMPONENT STATISTICS over the period 29/01/1999-28/01/2009.
Note: The numbers in the ACF and PACF column denote the lags of the relevant spikes in
the correlogram, their signs denotes the sign of the spikes. The Augmented Dickey Fuller
tests (ADF) were made, based on the assumption that levels have no trend and that their
1st difference has no trend and no intercept. The series are assumed to be stationary if the
t-statistic is smaller than the 5% t-statistic (bold ADF column).

Note that the Nelson Siegel method of the 1st difference of the yields is equal to the 1st
difference of the Nelson Siegel components of the level of the yields. This is not the case for
the principal components, hence the extra rows for the principal components in table 3.

Dickey Fuller results in table 3 lead to the conclusion that f1 and f2, β1 and β2 are not
stationary, while f3, β3 are stationary. As discussed before, forecast improvements will mainly
be due to a more accurate forecast of component 1 and 2. Similar to the yields, those two
factors have an AR2 behavior in level and an AR1 behavior in 1st difference as can be seen
in table 4.

RMSE (%) RW AR1 AR2 AR3 AR4 DAR1 DAR2 DAR3 DAR4

f1 (PC) 0,254 0,254 0,216 0,217 0,210 0,219 0,220 0,215 0,213
f2 (PC) 0,276 0,289 0,276 0,276 0,286 0,267 0,267 0,277 0,276
f3 (PC) 0,543 0,527 0,530 0,535 0,546 0,552 0,561 0,569 0,518
β1 (NS) 0,152 0,154 0,154 0,155 0,153 0,153 0,153 0,151 0,151
β2 (NS) 0,278 0,283 0,256 0,258 0,258 0,255 0,258 0,262 0,262
β3 (NS) 0,640 0,620 0,623 0,624 0,627 0,650 0,656 0,663 0,608

Table 4: RMSE EURO SWAP COMPONENT FORECAST. Forecast horizon 1 month, in-
sample history 29/01/1999 - 29/12/2004, increasing history.

In contrast with the yields, component 1 and 2 are forecasted with more accuracy when using
the 1st difference of the components and 1 lag, compared to using the levels and 2 lags. For
the 3rd component, differencing is not necessary and does not yield a better result.

4.2.3 Cross Correlation

Remembering what Duffee (2002) states: ’the long-maturity bond yields tend to fall over
time when the slope of the yield curve is steeper than usual’, it is natural to check wether our
components have an impact on each other. Table 5 presents the cross correlations of the 1st
difference of the Euro components.
It seems, that both the component 1 and 2 have cross correlations with each other and with the
other components. Moreover, component 4 and 5 seem to influence component 1. Including
them in the forecast model should yield better forecast results.



4 RESULTS 15

i 0 1 2 3 4 5 6 7 8 9 10 11 12

df1, df2(−i) 0,00 0,10 0,05 -0,11 -0,12 -0,08 -0,06 0,07 -0,08 -0,03 0,04 -0,05 -0,02
df1, df3(−i) 0,00 0,02 0,19 0,12 -0,07 -0,06 -0,10 -0,12 -0,06 -0,04 -0,02 0,04 0,00
df1, df4(−i) 0,00 -0,13 0,08 0,02 0,00 -0,07 -0,04 0,00 0,05 0,02 -0,03 -0,06 0,00
df1, df5(−i) 0,00 0,26 0,33 0,01 0,10 0,11 -0,04 -0,09 -0,02 -0,14 -0,03 0,08 -0,06
df1, df6(−i) 0,00 0,16 -0,10 0,06 0,11 -0,08 -0,04 0,13 0,00 0,04 0,08 0,12 0,08
df2, df1(−i) 0,00 0,24 0,36 0,29 0,21 0,14 0,06 -0,10 0,01 0,10 0,10 0,15 0,13
df2, df3(−i) 0,00 -0,02 -0,13 0,22 0,15 -0,01 0,03 -0,14 -0,13 0,07 -0,05 0,13 0,06
df2, df4(−i) 0,00 0,26 0,03 -0,09 -0,06 -0,08 -0,01 0,18 0,04 -0,13 -0,10 -0,03 0,00
df2, df5(−i) 0,00 0,08 0,18 0,28 0,22 0,08 0,15 0,00 -0,16 -0,09 -0,15 -0,10 0,03
df2, df6(−i) 0,00 0,01 -0,02 0,00 0,12 0,01 0,12 -0,03 0,04 0,08 0,09 0,04 0,00

Table 5: Cross correlation of the components of the 1st difference of the EURO SWAP
CURVE. Significant cross correlation are bold.

4.3 Forecasting the Euro Interest Rate Swaps

This subsection consists of three parts. First, the additional parameters to fully specify a
forecast model will be discussed. Next, a 1-step ahead forecast exercise will be achieved and
finally, a 12-step ahead forecast will be evaluated and discussed.

Figure 4: RMSE EURO SWAP CURVE FORECAST. Left: Comparison of Rolling and
Increasing Time window. Right: Comparison of short and long history, increasing time
window used. Forecast horizon 1 month, 6 components, out-of-sample forecast: 28/01/2005-
28/01/2009

4.3.1 Parameters of the forecast models

When forecasting, the importance of the size of the in-sample history is twofold: firstly, the
autoregressive models use it to regress their coefficients, secondly, the principal component
models use it to determine the principal components.

Figure 4 illustrates the effect of the size of the in-sample history on the accuracy of
the forecast. Forecast results tend to be more accurate for large in-sample histories that
increase through time. This is probably due to the fact that for short in-sample histories the
Auto Regressive coefficients and Principal Component loadings change a lot when the history
moves through time. In what follows, forecasts will be based on a large in-sample history
that increases when moving through time.
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4.4 Forecasting the Euro Interest Rate Swap curve

In this subsection the forecast accuracy of all of the different forecast models will be evaluated
for a 1-step ahead and a h-step ahead forecast.

4.4.1 1-step ahead forecasts

Significant Auto Correlations and Cross Correlations above suggest that a model that includes
those effects would outperform the Random Walk. Table 6 illustrates the RMSE and the Clark
and West p-values of the forecast exercise. As suspected, the multivariate 1st difference models

Root Mean Square out of Sample Error (%)
Maturity RW Y REG DYREG PC AR PC REG DPC AR DPC REG DPC VAR NS AR

1 month 0,281 0,283 0,270 0,276 0,208 0,249 0,239 0,239 0,349
3 months 0,256 0,257 0,199 0,259 0,188 0,219 0,197 0,198 0,228
6 months 0,253 0,254 0,193 0,254 0,177 0,213 0,196 0,196 0,225

12 months 0,259 0,260 0,207 0,259 0,187 0,217 0,204 0,203 0,274
24 months 0,256 0,256 0,232 0,270 0,240 0,236 0,228 0,229 0,342
36 months 0,241 0,241 0,223 0,247 0,228 0,225 0,213 0,212 0,290
48 months 0,227 0,227 0,213 0,230 0,214 0,212 0,196 0,196 0,251
60 months 0,212 0,211 0,199 0,213 0,200 0,198 0,179 0,180 0,223
72 months 0,199 0,198 0,188 0,199 0,188 0,186 0,165 0,165 0,202
84 months 0,188 0,188 0,179 0,189 0,182 0,176 0,156 0,155 0,187
96 months 0,179 0,179 0,170 0,179 0,175 0,168 0,146 0,145 0,175

108 months 0,172 0,172 0,165 0,171 0,171 0,162 0,141 0,140 0,165
120 months 0,167 0,168 0,161 0,166 0,167 0,158 0,136 0,136 0,159
180 months 0,155 0,156 0,151 0,151 0,162 0,148 0,129 0,129 0,158
240 months 0,150 0,151 0,145 0,151 0,159 0,144 0,128 0,127 0,171
360 months 0,162 0,164 0,157 0,168 0,161 0,155 0,138 0,140 0,222

Clark and West P-value
Maturity RW Y REG DYREG PC AR PC REG DPC AR DPC REG DPC VAR NS AR

1 month NaN 0,948 0,254 0,089 0,041 0,069 0,066 0,066 0,986
3 months NaN 0,880 0,058 0,911 0,049 0,042 0,048 0,047 0,073
6 months NaN 0,839 0,046 0,719 0,043 0,038 0,054 0,054 0,195

12 months NaN 0,842 0,042 0,497 0,058 0,036 0,059 0,058 0,624
24 months NaN 0,643 0,026 0,955 0,202 0,062 0,045 0,054 0,999
36 months NaN 0,505 0,049 0,934 0,291 0,063 0,071 0,063 0,999
48 months NaN 0,461 0,074 0,901 0,288 0,063 0,051 0,052 0,995
60 months NaN 0,454 0,088 0,718 0,302 0,065 0,050 0,049 0,922
72 months NaN 0,478 0,103 0,507 0,311 0,075 0,048 0,046 0,663
84 months NaN 0,538 0,113 0,590 0,375 0,084 0,050 0,046 0,455
96 months NaN 0,575 0,114 0,539 0,415 0,094 0,049 0,047 0,358

108 months NaN 0,618 0,123 0,317 0,480 0,115 0,050 0,050 0,271
120 months NaN 0,655 0,136 0,293 0,483 0,127 0,053 0,054 0,227
180 months NaN 0,780 0,185 0,219 0,659 0,182 0,057 0,055 0,636
240 months NaN 0,896 0,109 0,650 0,692 0,194 0,084 0,083 0,990
360 months NaN 0,958 0,152 0,884 0,483 0,192 0,123 0,135 0,962

Table 6: RMSE AND C&W P-VALUE EURO SWAP CURVE. Forecast horizon 1 month,
6 components, out-of-sample forecast: 28/01/2005-28/01/2009, first history: 29/01/1999-
29/12/2004, increasing history, λ = 0.041 for NS model, 1 lag. Bold West and Clark (2007)
p-values denote a significant forecast improvement relative to the Random Walk at 10% level.

provide more accurate forecasts of the yields. The Clark and West p-values indicates that
the DPC VAR and the DPC REG model outperform the Random Walk significantly for all
maturities. Moreover, on average, the DPC REG and DPC VAR model have a 16,7% lower
RMSE than the Random Walk. Note that their results are almost equal, which implies that
the PCA within the yields is very strong. In addition, the use of the PCA structure provides
more accurate forecast results than the simple Auto Regressive models of the yields (Y REG
and DY REG).

4.4.2 h-step ahead forecast

The story for h-step ahead forecasts is a little different, because several schemes exist to make
an h-step out-of-sample forecast. In this work, we have implemented the following schemes:
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direct regression (scheme 1), Direct Differenced Regression (scheme 2), Iterative Differenced
Regression (scheme 3) and Indirect Differenced Regression (scheme 4).

The schemes are discussed in detail in section 2. Concerning the 1st and 2nd scheme, we
deal with the regression of non-stationary series. For the 3rd and 4th scheme, the series are
stationary. Table 7 presents the RMSE for a 12-step ahead forecast with a Yield Regression
model.

RW Y REG DYREG DYREG DYREG
Maturity (/) (S # 1) (S # 2) (S # 3) (S # 4)

1 month 0,961 0,904 1,256 1,152 1,188
3 months 1,009 1,009 1,324 1,136 1,191
6 months 0,996 1,018 1,344 1,157 1,224

12 months 0,984 1,018 1,383 1,211 1,283
24 months 0,909 0,825 1,316 1,176 1,236
36 months 0,815 0,696 1,229 1,094 1,146
48 months 0,749 0,607 1,163 1,036 1,080
60 months 0,690 0,542 1,094 0,975 1,012
72 months 0,639 0,497 1,035 0,922 0,956
84 months 0,601 0,470 0,990 0,883 0,912
96 months 0,566 0,453 0,948 0,845 0,872

108 months 0,539 0,441 0,914 0,815 0,839
120 months 0,519 0,435 0,886 0,790 0,813
180 months 0,472 0,441 0,809 0,726 0,743
240 months 0,469 0,470 0,766 0,697 0,709
360 months 0,507 0,528 0,736 0,690 0,694

Average 0,714 0,647 1,075 0,957 0,994

Table 7: RMSE EURO SWAP CURVE. Forecast horizon 12 month, 6 components, out-of-sample forecast: 29/12/2005-28/01/2009,
first history: 29/01/1999-29/12/2004, increasing history, 1 lag.

According to this table, level models give more accurate forecast results than the 1st difference
models. The third scheme seems to be the most accurate for the methods using differenced
yields. A reason for the different performance could lay in the fact that only the levels have
Auto Correlation at higher lags (table 1).

Finally, table 8 presents the results of a 12-step out-of-sample forecast for all of the models
that have been developed in this work. According with the results of table 7, level models
have used the 1st scheme and differenced models have used the 3rd scheme. Level Yield
Regression models and Principal Componenents auto-regressive model seem to perform the
best. Unfortunately, the more accurate forecast results might be due to the sample history
that has been studied. Yield levels are not stationary, so it is not certain that future forecasts
of the yields will be as accurate as the forecasts in the sample period (January 1999 - January
2009). For this, we should also consider the possibility of using the differenced principal
components models that have the best forecasting performance at short maturities.
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Root Mean Square out of Sample Error (%)
RW Y REG DYREG PC AR PC REG DPC AR DPC REG DPC VAR NS AR

Maturity (/) (S # 1) (S # 3) (S # 1) (S # 1) (S # 3) (S # 3) (S # 3) (S # 1)

1 month 0,961 0,904 1,152 1,055 1,697 0,910 0,973 0,828 2,127
3 months 1,009 1,009 1,136 1,234 1,826 0,960 1,051 0,901 2,238
6 months 0,996 1,018 1,157 1,326 1,920 0,963 1,030 0,951 2,312

12 months 0,984 1,018 1,211 1,406 1,984 0,970 1,015 1,012 2,368
24 months 0,909 0,825 1,176 1,178 1,812 0,939 0,935 1,030 2,248
36 months 0,815 0,696 1,094 0,946 1,619 0,868 0,836 0,969 2,046
48 months 0,749 0,607 1,036 0,745 1,450 0,829 0,770 0,924 1,846
60 months 0,690 0,542 0,975 0,594 1,312 0,782 0,708 0,872 1,664
72 months 0,639 0,497 0,922 0,478 1,198 0,740 0,655 0,820 1,507
84 months 0,601 0,470 0,883 0,401 1,107 0,710 0,613 0,782 1,375
96 months 0,566 0,453 0,845 0,362 1,030 0,680 0,577 0,744 1,267

108 months 0,539 0,441 0,815 0,347 0,961 0,657 0,549 0,714 1,176
120 months 0,519 0,435 0,790 0,350 0,912 0,637 0,528 0,689 1,104
180 months 0,472 0,441 0,726 0,433 0,772 0,589 0,481 0,618 0,893
240 months 0,469 0,470 0,697 0,521 0,740 0,569 0,476 0,585 0,808
360 months 0,507 0,528 0,690 0,631 0,766 0,581 0,513 0,588 0,765

Clark and West P-value
RW Y REG DYREG PC AR PC REG DPC AR DPC REG DPC VAR NS AR

Maturity (/) (S # 1) (S # 3) (S # 1) (S # 1) (S # 3) (S # 3) (S # 3) (S # 1)

1 month NaN 0,156 0,965 0,948 0,989 0,010 0,996 0,028 1,000
3 months NaN 0,499 0,990 1,000 0,999 0,006 0,994 0,030 1,000
6 months NaN 0,643 0,999 1,000 1,000 0,036 0,986 0,193 1,000

12 months NaN 0,698 1,000 1,000 1,000 0,250 0,973 0,716 1,000
24 months NaN 0,077 1,000 1,000 1,000 0,860 0,920 0,997 1,000
36 months NaN 0,019 1,000 0,997 1,000 0,962 0,901 1,000 1,000
48 months NaN 0,006 1,000 0,463 1,000 0,992 0,909 1,000 1,000
60 months NaN 0,003 1,000 0,020 1,000 0,997 0,911 1,000 1,000
72 months NaN 0,003 1,000 0,001 1,000 0,999 0,922 1,000 1,000
84 months NaN 0,005 1,000 0,001 1,000 0,999 0,921 1,000 1,000
96 months NaN 0,009 1,000 0,001 1,000 1,000 0,936 1,000 1,000

108 months NaN 0,016 1,000 0,003 1,000 1,000 0,955 1,000 1,000
120 months NaN 0,027 1,000 0,008 1,000 1,000 0,968 1,000 1,000
180 months NaN 0,172 1,000 0,295 1,000 1,000 0,997 1,000 1,000
240 months NaN 0,517 1,000 0,761 1,000 1,000 0,998 1,000 1,000
360 months NaN 0,838 1,000 0,965 1,000 0,995 0,986 0,994 1,000

Table 8: RMSE EURO SWAP CURVE. Forecast horizon 12 month, 6 components, out-of-sample forecast: 29/12/2005-28/01/2009,
first history: 29/01/1999-29/12/2004, increasing history, λ = 0.041 for NS model, 1 lag. Bold West and Clark (2007) p-values denote a
significant forecast improvement relative to the Random Walk at 10% level.

5 Conclusion

This work contributes to the literature by in two ways: first, the set-up of the Principal
Component forecast model has been discussed in detail. Second, the out-of-sample RMSE
of the Principal Component forecast model has been compared against the RMSE of the
Nelson-Siegel forecast model, the Random Walk and the Yield Regression forecast models.

The study of the set-up of the Principal Component forecast model has lead to the fol-
lowing conclusions:First, the number of the components can be determined with the use of a
Principal Component forecast model that assumes the components to follow a Random Walk.
With this technique, 6 components are required to model the Euro Interest Rate Swap curve.

Second,The loadings and the eigenvalues help to determine the importance of each of the
components on the forecast accuracy. The two first components have the most impact when
forecasting the Euro Interest Rate Swap curve.

Third, ACF and PACF diagrams are helpful to determine the order of the Auto Regres-
sive transition equation. Fourth, including components with Cross Correlation improves the
forecast results. For the Euro Interest Rate Swap curve, components 3, 4 and 5 influence the
1st and the 2nd component. Finally, longer in-sample histories that increase through time
improve forecast results.

Comparing the different models for a 1-step and a 12-step out-of-sample forecast, leads to
the following conclusions:First, for the 1-step out-of-sample forecasts, DPCREG and DPC-
VAR models are the most accurate. These models are based on the stationary 1st difference of
the yields and make use of their Principal Component structure. Specifically, these methods
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use ACF, PACF and Cross Correlation between the components to achieve superior forecast
results.

Second, For the 12-step out-of-sample forecasts, the level Yield Regression forecast model
and the Principal Component regression leads to the best results. These results are similar to
the ones found by Yu and Zivot (2011) where a yields level model outperforms dynamic Nelson
Siegel models and other competitors for corporate bonds with A and A- ratings. However,
those optimistic results might be due to the sample history that has been studied. Yield levels
are not stationary, so it is not certain if future forecasts of the yields will be as accurate as
the forecasts in the sample period. Therefore, the second best forecasting performance of the
principal components differenced models can be a more robust choice.

A probable extension of this work could be the inclusion of Macro factors into the transi-
tion models. More specifically, for the Euro Interest Rate Swap curve, the cross correlation of
the Macro factors with the 1st component (Level) and the 2nd component (Slope) could lead
to an improvement of the short term forecast results. This could be achieved, by including
the Macro variables into the Principal Component structure, or by including them as external
factors in the transition equations. Another possible extension would be the investigation of
the stability of the level Yield Regression and the level Principal Component models for the
long term forecast.
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