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Summary. In sampling theory the large concentration of the population with respect to most
surveyed variables constitutes a problem which is difficult to tackle by means of classical tools.
One possible solution is given by cut-off sampling, which explicitly prescribes to discard part
of the population; in particular, if the population is composed by firms or establishments, the
method results in the exclusion of the “smallest” firms. Whereas this sampling scheme is
common among practitioners, its theoretical foundations tend to be considered weak, because
the inclusion probability of some units is equal to zero. In this paper we propose a framework
to justify cut-off sampling and to determine the census and cut-off thresholds. We use an
estimation model which assumes as known the weight of the discarded units with respect to
each variable; we compute the variance of the estimator and its bias, which is caused by
violations of the aforementioned hypothesis. We develop an algorithm which minimizes the
MSE as a function of multivariate auxiliary information at the population level. Considering the
combinatorial optimization nature of the model, we resort to the theory of stochastic relaxation:
in particular, we use the simulated annealing algorithm.

Keywords: Cut-off sampling, skewed populations, model-based estimation, optimal stratifica-
tion, simulated annealing

1. Introduction

Cut-off sampling is a procedure commonly used by national statistical institutes to se-
lect samples, but it is not easy to give a unique, clear-cut definition of the methodology.
Roughly speaking, the population is partitioned in two or three strata such that the units in
each stratum are treated differently; in particular, part of the target population is usually

excluded a priori from sample selection.
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The basic formulation (Hansen et al. 1953, pagg. 486-490, Séarndal et al. 1992, pagg.
531-533), frequently employed in the field of price collection, is characterized by a threshold
such that the units above this threshold are included in the sample with probability one
and the units below the threshold are discarded, namely their probability of being included
in the sample is zero. In this case, as noted by Haan et al. (1999), the sampling variance
is zero by definition.

An alternative interpretation is proposed by Hidiroglou (1986), who considers a stratum
where, as before, all the observations are included in the sample, and a second stratum
where the units are not discarded but sampled.

Finally, the most general approach (the one adopted in this paper) considers three strata
whose units are respectively enumerated completely, sampled and discarded.

As pointed out by Sigman and Monsour (1995), this type of stratification is particularly
appropriate in business surveys, because businesses tend to have skewed distributions with
many small units and very few large units. Thus, size has a considerable impact on the pre-
cision of survey estimates, and failure to notice that such populations should be stratified in
the aforementioned manner may cause an underestimation of the population characteristics.
When the distribution of the selection variable is concentrated in few large establishments,
this methodology provides the investigator with a sample whose size is rather small but
whose degree of coverage is high.

The problem treated in this paper is a generalization of standard cut-off sampling.
Therefore, as usual in business surveys, we assume that the population of interest is posi-
tively skewed, because of the presence of few “large” units and many “small” units. If the
investigator is interested in estimating the total of the population, a considerable percentage
of the observations gives a negligible contribution to the estimate of the total. On the other
hand, the inclusion in the sample of the largest observations is essentially mandatory.

In such situations, practitioners often use partitions of the population in three sets: a
take-all stratum whose units are surveyed entirely (Uc), a take-some stratum from which
a simple random sampling is drawn (Ug) and a take-nothing stratum whose units are
discarded (Ug). In other words, survey practitioners decide a priori to exclude from the
analysis part of the population (for example, firms with less than five employees); however,
this choice is often motivated by the desire to match administrative rules (in this case, the
partition of firms in small, medium and large). This strategy is employed so commonly in
business surveys that its use is “implicit” and “uncritical”; the inferential consequences of
the restrictions caused to the archive by this procedure are mostly ignored.

The problem of finding the optimal take-all threshold, i.e. the partition of the population
in strata Uc and Ug, is relatively straightforward both from the technical and from the

methodological point of view (Hidiroglou 1986). On the other hand, finding a criterion



A Framework for Cut-off Sampling 3

which assigns each unit to exactly one of the three strata tends to be considered as a
non-viable alternative, mainly because some inclusion probabilities are set equal to zero.
It follows that cut-off sampling is, in some sense, in an intermediate position between
probabilistic and non-probabilistic sampling schemes, a feature which is not appreciated by
experts in this field. As a result, in the literature there are very few papers concerning its
methodological foundations.

Nonetheless, in applications it is frequently used; it is the case, for example, of the
monthly survey of manufacturing performed by Statistics Canada (see, for example, Statis-
tics Canada 2001), which implicitly uses cut-off sampling, without paying too much atten-
tion to methodological implications: “The sampling frame for the Canadian Monthly Survey
of Manufacturing (MSM) is determined from the target population after subtracting estab-
lishments that represent the bottom 2% of the total manufacturing shipments estimate for
each province. These establishments were excluded from the frame so that the sample size
could be reduced without significantly affecting quality”. Similar procedures are also em-
ployed in surveys performed by other National Statistical Offices: cut-off sampling is widely
used but methodological aspects are not documented.

Two exceptions are the book by Sarndal et al. (1992, pagg. 531-533), who are mostly
negative, and the paper by Haan et al. (1999), who present successful applications of cut-off
sampling in the field of consumer price indexes.

Finally, Elisson and Elvers (2001) performed a univariate analysis which compares cut-off
sampling with simple stratified sampling. They conclude that cut-off sampling is worth more
consideration and suggest to use it in applications; however, they find that the dimensional
variable which determines the cut-off threshold has a relevant impact on the results, so that
they stress that great care must be employed in choosing this variable. Moreover, they
point out the need for an appropriate model to estimate the fraction of population excluded
from the sample.

In any case, it is worth mentioning the practical advantages of cut-off sampling as

concerns the costs of a survey:

(i) building and updating a sampling frame for small business units could be too costly,

considering that the gain in efficiency of the estimators would probably be small;

(ii) excluding the units of the population which give little contribution to the aggregates
to be estimated usually implies a large decrease of the number of units which have to

be surveyed in order to get a predefined accuracy level of the estimates.

(iii) putting a constraint to the frame population and, as a consequence, to the sample,

allows to reduce the problem of empty strata which mainly affects the smallest firms.
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As of this issue, it is worth stressing that several empirical analyses showed that some
difficulties, such as the non-response rate, the natimortality of the economic units and
the errors of under- or over-coverage of the frame, become more relevant as the size

of the units gets small.

Given that practitioners are in favor of such partitions of the population and there are
technical reasons which justify their use, the basic question is: is it possible to consider
cut-off sampling as a valid sampling scheme? If the answer is positive, the issue is to define
a statistical framework for cut-off sampling.

In this work we try to develop an easily implementable solution to the problem of
the construction of the three strata Us, Us and Ug in a multipurpose and multivariate
setup. In other words, similarly to what happens in practical applications, we assume to
be interested in surveys with more than one target variable, using auxiliary information
contained in multiple variables.

The structure of the paper is as follows. In section 2 we will define an estimation model
which assumes, for each variable, the weight of the units excluded from the analysis to be
known and constant; however, this hypothesis is not, in general, under the control of the
investigator, so that this estimator is biased, and we will have to find the bias and the
mean squared error of the estimator. The model will be developed both for the estimation
of a total and for the estimation of a ratio of totals. Section 3 will be devoted to the
derivation of the sample size for the cut-off scheme, both when estimating a total and when
estimating a ratio, focusing on its optimization and, consequently, on the construction of
the optimal design. The problem will be tackled by defining the sample size as a function of
the partition U, Ug and Ug determined on the basis of multivariate auxiliary information
which will be assumed to be known for the whole population. Considering the combinatorial
nature of this problem, we will use the theory of stochastic relaxation and, in particular, the
Simulated Annealing (SA) algorithm. In section 4 we will show some empirical evidence
about the bias of the estimator when using data from surveys concerning slaughtering firms
in Italy. In the same section we will present the main results of the application of the
sampling scheme to this dataset. Finally, section 5 shall conclude the paper and point out

some open problems.

2. An estimator for cut-off sampling schemes

The problem of stratifying in two strata (take-all and take-some) and finding the census
threshold was first treated by Dalenius (1952) and Glasser (1962). The first author has found
the census threshold as a function of the mean, the sampling weights and the variance of
the population. Glasser (1962) derived the value of the threshold under the hypothesis of
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sampling without replacement a sample of size n from a population of N units. Hidiroglou
(1986) reconsidered this problem and provided both exact and approximate solutions under
a more realistic hypothesis: he finds the census threshold when a level of precision concerning
the mean squared error of the total is desired, without assuming a predefined sample size n.
It is worth noticing that he considers a case with only a take-all and a take-some stratum,
so that he develops a method for finding a “census threshold” (erroneously defined “cut-off
threshold” in the paper). However, all these authors limit their attention to a monopurpose
and univariate setup.

Hidiroglou’s approach will be followed in the present paper as well, but here we will
stratify the target population by means of a criterion which defines the belonging of each
observation to one of the three strata in a multipurpose and multivariate framework. The
solution of the problem is based on the identification of appropriate estimators for the

quantities in table 1.

Table 1. Estimators and error measures; b(-) is the bias function,

f and g are functions which shall be defined in the following

Stratum Uc Us Ug

Estimator to fs f(fc, I?S)

Estimator MSE 0 var(ts) g(var(ts) + b*(tg))

2.1. Estimating a total

We start by considering the estimator of the total fyj of the j-th surveyed variable (j =
1,...,J). This estimator is the sum of three independent components, corresponding re-
spectively to the take-all, take-some and take-nothing strata. Thus, omitting for simplicity
the index of the variables (the same way of reasoning can be applied to all the J vari-
ables once the belonging criterion mentioned above has been determined), we can write
fy = {c +tg + tg. As for the take-all stratum, it is clear that {c = ZkeUc Yk- In the

take-some stratum, we use the classical m—estimator of the total tg = ZkEUs Yk

~ Yk
tﬂs—zﬂ—k = diys, (1)
k€Es kes
which is the expansion formula known in the literature as Horvitz-Thompson estimator
(Horvitz and Thompson 1952). In (1), the m’s are the inclusion probabilities, which are
assumed to be strictly positive; the same condition holds for the second-order probabilities

Tk, which are necessary for the computation of the variance of the estimator. The quantities
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di, = 1/, are the direct weights of each unit k € s, namely the original weights resulting
from the sampling scheme.

The sample s is a probabilistic sample drawn from the subpopulation Ug; in the following
we will always assume that it is a simple random sample from Ug. According to the setup
of our problem, the Hidiroglou-type estimator tc + tg = ZkeUc Yk + D pes dryr has to be
augmented by a model-based component which takes into account the discarded fraction of

the population, Ug. As concerns this issue, we can write
tE - (tC + tS)(Sa (2)

i.e., the total of the discarded population is a fraction of tc + tg. In (2) the quantity 9,
which is usually unknown, can be evaluated by means of external sources (i.e., the auxiliary

variables x); thus

D keuy Tk

5= .
2 keve Tkt Dkevs Tk

(3)

For notational simplicity and without loss of generality, in the following we will always
assume that each auxiliary variable is the lagged target variable (in most cases, as well as in
the present application, it is the target variable as known from the last census): z; = yp 1.

Using these hypotheses we obtain the following identity:

ty=tc+ts+ip=(1+0)(fc+1s)=(1+9) ( > ykJerkyk) : (4)

keUc kes
The hypotheses introduced to obtain (4) are slightly different from Sarndal et al. (1992,
pag. 532), who use a ratio estimator in the domain S as a “compensation” for the fraction
of population discarded. As we are concerned with a sampling design, in this paper we
find it more convenient to employ, as a starting point for the part of the population to be
sampled, the “neutral” Horvitz-Thompson estimator. However, it is worth pointing out
that there is no reason which prevents us from implementing, in the estimation procedure,
a second step: we could indeed use the auxiliary information ex post, in order to correct
tc and tg either by means of a ratio estimator or by means of a more general approach to
the use of auxiliary information such as the so called calibration estimators (Deville and
Sérndal 1992). In addition to several desirable properties, calibration estimators possess a
very important feature, namely they reduce the bias arising from total nonresponses, which

would also appear when enumerating completely the subpopulation Ue.
It is well known (see, for example, Sarndal et al. 1992, pag. 531) that cut-off sampling
produces biased estimators. Using (4) and the independence of the three strata Uc, Ug and
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Ug, the Mean Squared Error of fy is given by:

MSE(t,) = var(t,) + b*(t,) = var(tc + ts +tg) + b*(t,) =
var[(1 4 0)(fc + ts)] + b2(£,) = (1 + &)*var(ic + ts) + b2(t,) =

(14 0)%var(ts) + b2(,) = (1 + 6)>var(ts) + b2(ig). (5)

In (5) we put b(f,) = b(fg) to stress that the bias, which represents the price to pay for
discarding part of the population, only depends on excluded strata. It is indeed clear that
6e Rt in (4) introduces a bias because the true ratio ¢ of the discarded to the completely
enumerated and sampled population is unknown and different from the estimated value &
which is used in the current survey.

It is therefore crucial to concentrate on the bias b(fg). It is not difficult to see that:

b(ig) = E(t,) — t, = E(tc +ts +ip) —t, =
= > uk+ Yyt El(ic +1s)]) — t, =
keUc keUs

= d(tc +ts) — tu. (6)
Putting tg = 0(tc +ts), (6) can be conveniently rewritten as follows:
b(ty) = (0 = d)(tc + ts)- (M)

From (7) it appears that the source of the bias of the estimator (4) is the mismatch between
the numerical value § used in the survey and the true value d; in particular, the magnitude
of the bias is determined by the difference |6 — 4.

As will become clearer in the next section, (7) is a fundamental ingredient of the sample
design proposed here. In section 4 we will show some empirical evidence concerning the

functional form of the bias.

2.2. Estimating a ratio
Suppose now that the aim of the investigator consists in estimating not just a total but a
ratio of two unknown totals: R =t,/t. =Y, yx/ >y 2k- The usual estimator (Sérndal et

al. 1992, pag. 176-181) is a non-linear function of the two random variables fy,r, o

In some applications, including conjunctural surveys, we are interested in the estimation of

the ratio R = t,¢/t,,—1 or in the variation R — 1.
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When, as is the case in our setup, the sampling scheme used in Ug is simple random

sampling without replacement, the following identities hold:

n= fN;
b= D8 = T =N = Vi
. S Tk S n S n B
tin = NZs;
R:%a

Zs

where f =n/N is the sampling fraction. The first-order Taylor expansion of R (Sarndal et
al. 1992, sect. 5.5) gives the following result:

~ 5 1 ykfRZk_ 1 . o
RNRO—R+tZzS: - —R—f—tz(tyw Ri..) =

1N

=R+ EEZ(yk—Rzk) =

S

_S*R_s
:R+y,72

, 8
— (5)
where zZy = t./N. In our setup the population is enumerated completely at the time
preceding t — 1, that is ¢ — 2. We assume that at time ¢ — 2 the cut-off design has been
implemented, so that a global sample of business units sampled and enumerated completely

for the survey at times t — 1 and ¢ is available. Thus

A Ust — Rijs t—
RO - R + Ys,t _ Ys,t—1 )
Yu,t—1

This estimator is approximately unbiased:

As we take a linear (first-order) approximation of R, the approximation error is given by
the fact that we ignore the terms of order larger than one in the Taylor expansion (8); in
other words, the approximation error is given by the “nonlinear component” of R.

Following the same way of reasoning of the preceding subsection we get:
Roy = Roc + Ros + Rog = (14 8)(Roc + Ros);
MSE(Ry,) = var(Ro,) + b*(Roy) = (1 + 8)*[var(Ros) + b* (Rop)];
b(Rop) = (3 — 6)(Rc + Rs).

As for the computation of Var(Ros), we use the following approximation, again derived by

means of a Taylor expansion (Sarndal 1992, pag. 178), and only valid in the case of simple
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random sampling without replacement in Ug:

- - 1

var(R) =~ var(Ry) = t—Q[var(fy,r) + R*var(t,n) — 2Rcov(tyn, tor)]. (9)

With a more general notation, (9) can be rewritten as

. N 11—
var(R) ~ var(Rp) = —Tf(SSU + R2S?; — 2RS,.1),

where Sy, is the covariance between y and z in the population.
Following Hidiroglou’s (1986) terminology, the term (1 — f)/n in the take-some stratum
takes the form:

1—-f N —n(t)

n (N—=t)(n(t)—1t)

(10)
Thus, in our setup, (1 — f)/n can be rewritten as:

1—f N-—n

n (N = N¢ — Ng)(n—nc)’

The variance of ROS can be put in the form

1 N —n

var R =
(Fos) = = (N —Ne — Ne)(n o)

(S%S,t + R%S?Js,t—l - 25U87yt—1yt)‘ (11)

With no additional information (such as, for example, a variance trend which could possibly
be extrapolated), when implementing the sampling design the only reasonable assumption
is that

2 _ Q2 Q2 _ Q2
SUs,t—Q - SUs,t—l - SUs,t - SUs’

so that Sug .y, 1y. = pUqut—lytS?]Sﬂ where pyg y,_,y, 1S the correlation coefficient of the

variables y; and y;—1 in the population. Plugging this result into (11) we finally have

1 N —n

var R =
(Fos) = = (N —Ne — Ne)(n o)

(1 + R% - 2pUS7yt71thS)SIQJ5'

In the next section we will use this variance to determine the optimal sample size.

3. The sample size for cut-off and optimal designs

3.1. Sample size when estimating a total

In the preceding section we showed that the M SE of the estimator of the total fy for cut-off
designs is equal to MSE(f,) = (1+06)*var(f,s) +b(f,), where the first term is the variance
of the Horvitz-Thompson estimator used for estimating the total of the target variables in

the subpopulation Ug.
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The well-known expression for this variance in simple random sampling without replace-

ment (Sérndal et al. 1992, pag. 46) is given by

var(t,) = NQ#SQ, (12)

where S? is the variance of the target variable. However, in our setup this formula needs
to be modified: the Horvitz-Thompson estimator is indeed only used in Ug, so that

(N —N¢ — Ng)(N —n)

var(t.g) = N? p———

S2. (13)

In (13) the variance S? is equal to

1
S2 _ o 2
Us N_NC_NE_lkEZU(yk H’)?
S

where p = pyg = (1/(N = No — NE)) Y iev, Yk
In applications, the MSE is usually required to satisfy the following equality:

MSE(t,) = *t;, (14)
where c is the desired level of precision ¢ for the estimator of the total. If we substitute for
MSE(t,) in (14) the second term on the right hand side of (5) we get:

(14 0)%var(trs) + b2(,) = e,
from which we easily derive the variance of the estimator:

. (N=No—Ng)(N-n)_, At2-0b,)
var(trs) = p——— S° = O (15)

We now focus on expression (15) in order to derive the total sample size. Here, the size is
defined to be “total” because it includes both the size of the stratum completely enumerated
and of the simple random sample without replacement from the stratum Ug. In the following
it obviously holds that nc = No = N — Ng — Ng; for notational simplicity, we first put
¥ = 22 — b2(£,)]/(1 + 6)?. We have
(N —N¢ — Ng)(N —n)
n—nc

S? =1,

from which we get
(N — No — Ng)NS? + ncp = n(N — No — Ng)S? + ny.

Solving with respect to n we obtain

(N —=N¢— Ng)NS%+ney
"T TS (N—Ne—Np)S® (16)
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With some more algebra it is possible to obtain the following result, which is preferable

from a computational point of view:

1
n=N — il N & (17)

Ns+Ng + Ns+Ng ¢

3.2. Sample size when estimating a ratio
As in the preceding subsection, we start with a predetermined level of precision ¢ concerning

the estimator of the ratio:
MSE(Ro,) = ¢*R2. (18)

Following the same way of reasoning used before, we can rewrite (18) as

(14 6)%var(Ros) + b*(Rop) = C2R§,

so that .
~ 02R2 *bQ(ROE)def
Rog) = —4L— L= 0.
var(Ros) (170 (2
Putting ¥ =1+ R% — 2pUs,y, 1y s, We get
N2 N —n
5 Va2 Sh, = V1.

tA?S',t—l (N — NC — NE)(TL — nc)
Some straightforward algebra gives:

N—-No—Ng| N-—No—Ng
n wl + 1/12512]5 2 = 2
1511 151-1

Nsz?JS + ncy,

from which we obtain the optimal sample size:

_ N(N — Nc — Np)yaSir, + nety, 1
2, 1%1 +¥2SE (N — Nc — Np)

Finally, it is not difficult to show that the sample size n can be rewritten as follows:

1
n=N—

—.
1 + Ns %2 ASUS
Ns+Ng ' Ns+Ng 183, |

3.3. Optimal partition

In (17) the sample size n depends on ¢, which is chosen a priori by the researcher, on
the bias b(fg), on the total ¢, and on the partition in the three strata. Notice that the
latter determines four additional quantities, namely 5, Ng, Ng and S2. Thus, if we denote
with ® = {ky,ks,...,kn} (ki € {C, S, E}) the generic element of the set © of the possible
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partitions of the population (whose cardinality is equal to 3%), we conclude that n is a
function of ® and write
n=n(P), (19)

because all the other quantities listed above are either chosen by the researcher or computed
using the auxiliary variables once a partition has been determined.

At this point it is quite clear that the problem consists in finding the partition &*
which minimizes (19) given the desired level of precision ¢. In particular, as our aim is
the estimation of the totals ¢, of J variables by means of the same number J of auxiliary
variables (see section 2.1), the optimal sample size can be defined as follows:

n(®*) = min { max nj(q>)} . (20)

=1,
The term max;—1 .y n;(®) in (20) means that the optimization concerns, at each iteration,
the largest of the sample sizes n; corresponding to each auxiliary variable. (20) is the for-
malization of a combinatorial optimization problem. The simulated annealing (Metropolis
et al. 1953, Kirkpatrick 1983, Geman and Geman 1984) is probably the best suited method
for solving (20). This algorithm, which belongs to the family of stochastic relaxation algo-
rithms, enjoys several desirable properties (see Casella and Robert 1999, sect. 5.2.3, for a

review); its implementation to the problem at hand can be summarized as follows.

(a) Choose an initial temperature Tj.

(b) Stratify the population by means of a random uniform partition ®g, that is, assign
to each of the N units of the population a label ¢ from the set {C,S, E}, where
Plp=C)=P(¢p=S5)=P(¢p=E)=1/3. Let ¢\” (i =1,...,N) be these labels.

(c) Visit the i-th unit of the population and put (bgl) = ¢, where ¢ is a label drawn with
uniform probability from the set {C, S, E} and is the update of the label assigned to
the i-th unit at the 0-th iteration. Obviously, ¢§1) = (bgo) Vj # i, so that the vector of
labels qb(l) at the first iteration differs from ¢(0) at most by one element.

(d) Let AM = n(@M) —n(@®). If A < 0, put qﬁz(-l) = &; otherwise, put qﬁz(-l) = ¢ with
probability exp{ A1 /Ty} or ¢\ = ¢! with probability 1 — exp{AM /T}}.

(e) Repeat step 3. and 4. (Ngyup X N) times, where Ny, is the number of sub-iterations
for each temperature 7.

(f) Replace Ty with T7 = f(Tp), where f(-) is a decreasing function which satisfies the con-
ditions of the annealing theorem (Geman and Geman 1984). The function originally
proposed by Geman and Geman (1984) was T;11 = f(T3) = (log(1+t)/log(2 +t))T};
here we follow Sebastiani (2003) and use the so-called geometric temperature schedule
Tiv1 = f(Ty) = pTy, with p € (0,1). The choice of f in applications has been the

object of a lot of interest and some controversial in the literature: see Ripley (1988),
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Stander and Silverman (1994), Winkler (1995) and Casella and Robert (1999, pag.

201), and the references therein. As for the numerical value of p, it is well known
that it has to be “large” enough to avoid a too rapid decrease of the temperature
and “small” enough to keep the computation time reasonably short. We performed
several experiments and found that p = 0.98 guarantees the best compromise.

(g) Repeat steps 3-6 until some convergence criterion is satisfied. We found it convenient
to stop the algorithm the first time that one of the following conditions is satisfied:
(i) in two successive iterations no labels are switched; (ii) nitr = 300 iterations are
reached.
Notice that at step 7. the ¢-th iteration is just obtained by replacing (0) with (¢) and
(1) with (¢ + 1) in steps 3-6 above.

At convergence, the algorithm determines the optimal partition ®*, which minimizes the

total sample size n for a given precision level c.

4. A case study: the slaughtering monthly survey

In this section we will find the optimal design, according to the cut-off methodology de-
veloped so far, for the red meat slaughtering monthly survey performed by ISTAT (Italian
National Institute of Statistics). This survey foresees a stratified sampling, with a strati-
fication by kind of slaughter-houses and geographical division, for a total of 5 strata, two
of which with geographical references. Strata are the following: stratum 1 (always to-
tally observed), consisting of private with European Economic Community (EEC) stamp
slaughter-houses in the geographical division 1 or 2; stratum 2: consisting of private with
EEC stamp slaughter-houses in the geographical division 3, 4 or 5; stratum 3: private with
low capacity slaughter-houses (apart from geographical division); stratum 4: private in dero-
gation, public with EEC stamp and public in derogation (apart from geographical division)
slaughter-houses; stratum 5: public with low capacity slaughter-houses. Two dimensional
criteria that assign to stratum 1 those enterprises with more than 10000 sheep and goats or
more than 50000 pigs slaughterings act in the stratification too. On the average the sample
is of about 460 units for a population of 2211 units with the desired level of precision ¢ set
to 5%.

Thus, our frame contains N = 2211 slaughter-houses for which we know four variables
enumerated completely in 1999, 2000 and 2001 (consider indeed that this census is performed
every year): they are respectively the total number of slaughtered (i) cattle, (ii) pigs, (iii)
sheep and goats and (iv) equines. We will first consider the complete dataset (for each of
the three years) in order to assess the behavior of the bias b(f ) and, in particular, to look

for possible regularities. Recalling that ¢ is defined as the ratio of the number of population
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units discarded to the number of population units sampled and enumerated completely, it
is indeed necessary to know, in order to evaluate empirically the bias, the complete list of
the lagged auxiliary variables.

The cut-off design proposed in this paper will then be implemented, with the aim of
setting up a monthly survey on slaughtering for the year 2002, using as auxiliary variables
only the data enumerated completely in 2001.

We start with a brief description of the archive at hand. The scatterplots of all the pairs
of the four variables in 2001 are shown in the above-diagonal graphs of figure 1; the graphs
below the main diagonal are the scatterplots of the logs of the same pairs of variables. The
same graphs for the years 1999 and 2000 are essentially identical and therefore are not
reported here.

The main evidence is that variables are essentially independent or, in some cases, neg-
atively correlated. Moreover, it is clear that slaughter-houses are strongly specialized and

that most firms are small (see the histograms on the main diagonal).

4.1. Bias assessment

In order to implement the design developed in the preceding sections, it is crucial to analyze
the bias b(ig) of the estimator #, given by (4), because the algorithm described in the
preceding section requires as an input a starting value for b(fE). We solved this problem
with the help of both empirical evidence concerning real data and simulations of auxiliary
variables with different skewness.

As for the real data, figure 2 shows some very interesting results. Here, we plotted
the absolute value of the bias b(fg,), where the quantity ¢z, is defined as the total of the
discarded population observed in 1999 and 2000, which in turn is given by the ¢ smallest
observations of the population. In other words, the i-th point of the graph is the absolute
value of the bias corresponding to tg,, where E; contains the i smallest observations of the
population.

The procedure used to estimate the bias works as follows. If a complete enumeration
of both the auxiliary variable & and the objective y (usually they are the same variable
relevant to two different periods) are available, they can be ordered on the basis of the

values of x:

:L'(l),...,:C(N),

Yy, -5 YNy

where the (i) codes are such that x(;) < x4y fori=1,2,..., N — 1. Let now C, ;) and
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C

y,(i) be the respective cumulative sums:

Co i) = Y (),
j=1

Caii) = D7)
j=1

y be the corresponding countercumulative sums:

and Om,(z) and O

Y, (i

N
O,y =te = Co (i) = Z OF
j=i+1
N

Oyiy =ty —Cyy = Y Y(h)-
j=i+1

Thus, if 7 is used as a threshold, according to (6), the absolute value of the bias obtained

by using the estimator (4) can be written as:

3

Oy, (i)
|bz| = ‘Cm,(l A - C ,(7;
"0uy Y

where the excluded part of the population is defined as E; = {1,2,...,i}.

The |b;] can be used either directly in the optimization algorithm or modelled to simplify
calculations and to obtain more stable results, i.e. not depending on particular discontinu-
ities in the frame data. In our experiment we found good fits for the simple linear regression
model:

|bi| = o+ BC, i) + €. (21)

The fit becomes better if the tails of the ordered distributions are dropped out from the
analysis, but this is not a problem because in practical applications a threshold is usually
neither a very small nor a very large value.

The four graphs in figure 2, corresponding to each auxiliary variable, have been obtained
using respectively the complete 1999 and 2000 frame as a basis for the construction of the
cut-off design in 2001.

As expected, a larger temporal lag of the auxiliary information causes a significant
modification of the bias: the bias for 2001 is indeed always larger than the bias for 2000.
Moreover, from the graphs it appears that the function f which formalizes the relationship
between |b(tp,)| and Cy,() is well fitted by the linear model (21).

We now apply our cut-off procedure in order to re-design the ISTAT red meat slaugh-

tering monthly survey; to this aim we will use, as auxiliary information, the aforementioned

frame for the year 2001. Thus, at each iteration of the algorithm and for each auxiliary
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variable, we substitute to the bias b(fg) which appears in the expression (16) for n(®®),

an estimate obtained via linear regression, i.e.:

b ()| j,2001 = & + BC]’,Q()O()(Z')’ J=1,...,4, (22)
bi(te, )]j,2000 = & + BC]’,1999(Z‘), J=1,...,4 (23)

S

Equations (22) and (23) actually give an estimate of the absolute value of the bias, but
this is not relevant because (16) only uses the square of this estimate. Detailed results are

displayed in tables 2 to 5 respectively for cattle, pigs, sheep and goats, equines.

Table 2. Cattle: estimates, standard errors, ¢-statistics and p-values for (22) and (23).

2001 vs 1999 (R? = 0.9494) 2001 vs 2000 (R? = 0.9662)
estimate t-stat  p-value estimate t-stat  p-value
a  5810(47.75) 121.7 < 0.0001 4621(106.6) 43.7 < 0.0001

B 0.0538(0.0003) 175.9 < 0.0001 0.1482(0.0007) 217.25 < 0.0001
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Table 3. Pigs: estimates, standard errors, t-statistics and p-values for (22) and (23).

2001 vs 1999 (R? = 0.9541) 2001 vs 2000 (R?% = 0.96)
estimate t-stat  p-value estimate t-stat  p-value
a  3664(96.48) 37.98 < 0.0001 38930(118.1) 329.6 < 0.0001
8 0.2455(0.0019) 130.0 < 0.0001 0.3230(0.0023)  139.7 < 0.0001

Table 4. Sheep and goats: estimates, standard errors, t-statistics
and p-values for (22) and (23).

2001 vs 1999 (R? = 0.8517) 2001 vs 2000 (R? = 0.9158)
estimate t-stat p-value estimate t-stat p-value
a  25910(39.37) 658.09 < 0.0001 27740(26.53) 1045.31 < 0.0001
£ 0.0713(0.0011)  66.88 < 0.0001 0.0661(0.0007) 92.04 < 0.0001

Table 5. Equines: estimates, standard errors, ¢-statistics and p-values for (22) and (23).

2001 vs 1999 (R? = 0.9286) 2001 vs 2000 (R? = 0.9169)

estimate t-stat p-value estimate t-stat  p-value

o  1834(9.191) 199.56 < 0.0001 5488(15.21) 360.8 < 0.0001
4 0.6344(0.0107)  59.15 < 0.0001 0.9674(0.0177)  54.5 < 0.0001

The fit is extremely good in all cases; in particular, the values of the R? goodness-of-fit
statistics are always large, which is not surprising if we consider that the variables used in

the regression are cumulative sums.

4.2. Sampling design

Let’s now finally turn to the results of the implementation of the cut-off design. Figure 3
shows the total optimal sample size as a function of the number of iterations of the simulated
annealing.

It is immediately evident that the “largest decrease” in the sample size takes place in
the first few iterations; the remaining iterations seem to provide us with just an adjustment
towards the global optimum. More precisely (see figure 4), starting from the third itera-
tion, the algorithm just moves some observations from Ug to Ug; to these label-switching

operations correspond very small decreases of the total sample size.
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Table 6 gives some details about the implementation of the algorithm. The quantity Ng
is the size of the stratum Ug; the number of units actually sampled from this stratum can
be computed as n — N¢; for example, at the 147-th iteration (namely when the algorithm

converges) we sample n — N¢ ~ 370 — 341 = 29 units.

Table 6. Results of the cut-off sampling as a function of selected iterations of SA.

Iter n Nc Ns Ng  # changes

1 855.30 738 736 737 -
2 42597 366 865 980 3047
3 401.10 354 864 993 2233
4 398.80 355 817 1039 2039
5 396.30 358 833 1020 1941
6 393.70 359 792 1060 1952
7 393.70 358 820 1033 1861
8 390.70 356 795 1060 1873
9 391.80 357 781 1073 1825
10 390.70 353 811 1047 1797
20  381.10 347 808 1056 1385
30 374.80 342 835 1034 889
40 371.90 342 787 1082 548
50 370.44 340 788 1083 309
60 369.90 341 756 1114 174
100 369.60 341 754 1116 19
147 369.60 341 753 1117 2

The sampling scheme developed in this paper produces the partition of the population
shown in figure 5.

Each subplot of this figure gives the scatterplot of the fourth roots of the auxiliary
variables. The stratification is very clear-cut, with two strata (Uc and Ug) whose sizes are
much larger than Ug. The take-some stratum is nested into the take-nothing stratum, with
a sampling fraction equal to 4%: this means that in our application the sampling scheme is
very similar to a take-all/take-nothing design. According to the theoretical results derived in
the preceding section, such a small sampling fraction was indeed expected: considering the
large concentration of the population, stratum Ug contains mostly the firms for which the
values of all the four auxiliary variables are different from zero, namely the least specialized

ones.
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Figure 6 is an enlargement of the first subplot below the main diagonal of figure 5.
This graph shows, besides the optimal partition in the three strata, the marginal kernel
densities. The variability of both auxiliary variables in Ug is rather low; it is worth noting
the importance of this result as this variability is the only one which affects the variance of
the estimator. Roughly speaking, the variance is mostly “dumped to” the eliminated and
completely enumerated strata, with the result that the variance in Ug is reduced.

The results presented here use a desired level of precision ¢ = 1%; this value has also been
employed to perform the following comparisons, which show the considerable advantages of
our approach in terms of sample size corresponding to the predetermined level of precision.

Table 7 displays detailed results concerning some direct competitors of the cut-off design;
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in particular, table 7(a) shows the sample sizes corresponding to the Hidiroglou approach,
table 7(b) gives the sizes obtained stratifying the population with the K-means algorithm
(Rencher 2002, sect. 14.4.1a) used as a minimizer of the variance, and table 7(c) displays the
sample size corresponding to the ISTAT design introduced at the beginning of this section
but setting ¢ = 1%. In the last row of table 7(a), N¢ is the size of the stratum Ue obtained as
the union of the four strata enumerated completely with respect to each auxiliary variable
(reported in the first four rows of the table). This is one way of rendering Hidiroglou’s
approach, which is monopurpose and monovariate, comparable to our technique, which is

multipurpose and multivariate.

Table 7(a). Sample sizes using Hidiriglou’s approach

n N¢c  Ng

y1,2001: cattle 476.97 332 1879
Y2,2001: Pigs 301.03 246 1965
y3,2001: sheep and goats  291.29 229 1982
Y4,2001: equines 227.11 180 2031
Union 744.26 663 1548

Table 7(b). Sample sizes using the K-means algorithm

Number of strata n

2193
2094
1800
1689
1259
1206
1145
990
649

© 00 = O Ut = W N

—_
o

Table 7(c). Sample size using the ISTAT approach

Number of strata n

5 866
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5. Conclusions

The goal of this paper consisted in proposing a framework for cut-off sampling where a
model-based estimator of the unobserved part of the population plays a crucial role in-
troducing a bias in the final estimates. The rationale for this proposal is based on the
assumption that often the population distributions is highly skewed with a huge number of
minor units whose weight on the population total is very small. We have discussed a formal
approach for combining estimation and optimal partition of the population in three strata:
census, sample and exclusion. We view this issue jointly with the multipurpose allocation

of sampling units in the case where multivariate partitioning variables are available.

We have used the Simulated Annealing algorithm to minimize the number of sampling
units necessary to satisfy a required precision expressed in term of MSFE of the estimates
of both a linear function such as the population total and a non-linear function as the ratio
of a variable between two periods.

The results are encouraging: for example, for ¢ = 1%, the sample size obtained using
the present approach is approximately 40 to 60% less than its direct competitors.

These outcomes also shed some light on the directions of future research in this field. In
particular, we believe that attention shall be focused on the bias of the estimator with the

purpose of tackling at least two issues:

e assess the robustness of the design with respect to variations of the functional form

of the bias function (which here was assumed to be linear);

e use the estimation of the bias used not only for finding the optimal sample size but

also for correcting the bias of the estimator used (whatever it is).

Finally, the last problem is related to the fact that the Simulated Annealing algorithm is
rather slow, so that the computational burden may become unbearable when the population
is large. Thus it would be the case of developing faster procedures as, for example, the
Besag’s (1986) Iterated Conditional Modes (IC'M) algorithm.
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