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Summary. In sampling theory the large concentration of the population with respect to most

surveyed variables constitutes a problem which is difficult to tackle by means of classical tools.

One possible solution is given by cut-off sampling, which explicitly prescribes to discard part

of the population; in particular, if the population is composed by firms or establishments, the

method results in the exclusion of the “smallest” firms. Whereas this sampling scheme is

common among practitioners, its theoretical foundations tend to be considered weak, because

the inclusion probability of some units is equal to zero. In this paper we propose a framework

to justify cut-off sampling and to determine the census and cut-off thresholds. We use an

estimation model which assumes as known the weight of the discarded units with respect to

each variable; we compute the variance of the estimator and its bias, which is caused by

violations of the aforementioned hypothesis. We develop an algorithm which minimizes the

MSE as a function of multivariate auxiliary information at the population level. Considering the

combinatorial optimization nature of the model, we resort to the theory of stochastic relaxation:

in particular, we use the simulated annealing algorithm.

Keywords: Cut-off sampling, skewed populations, model-based estimation, optimal stratifica-

tion, simulated annealing

1. Introduction

Cut-off sampling is a procedure commonly used by national statistical institutes to se-

lect samples, but it is not easy to give a unique, clear-cut definition of the methodology.

Roughly speaking, the population is partitioned in two or three strata such that the units in

each stratum are treated differently; in particular, part of the target population is usually

excluded a priori from sample selection.
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The basic formulation (Hansen et al. 1953, pagg. 486-490, Särndal et al. 1992, pagg.

531-533), frequently employed in the field of price collection, is characterized by a threshold

such that the units above this threshold are included in the sample with probability one

and the units below the threshold are discarded, namely their probability of being included

in the sample is zero. In this case, as noted by Haan et al. (1999), the sampling variance

is zero by definition.

An alternative interpretation is proposed by Hidiroglou (1986), who considers a stratum

where, as before, all the observations are included in the sample, and a second stratum

where the units are not discarded but sampled.

Finally, the most general approach (the one adopted in this paper) considers three strata

whose units are respectively enumerated completely, sampled and discarded.

As pointed out by Sigman and Monsour (1995), this type of stratification is particularly

appropriate in business surveys, because businesses tend to have skewed distributions with

many small units and very few large units. Thus, size has a considerable impact on the pre-

cision of survey estimates, and failure to notice that such populations should be stratified in

the aforementioned manner may cause an underestimation of the population characteristics.

When the distribution of the selection variable is concentrated in few large establishments,

this methodology provides the investigator with a sample whose size is rather small but

whose degree of coverage is high.

The problem treated in this paper is a generalization of standard cut-off sampling.

Therefore, as usual in business surveys, we assume that the population of interest is posi-

tively skewed, because of the presence of few “large” units and many “small” units. If the

investigator is interested in estimating the total of the population, a considerable percentage

of the observations gives a negligible contribution to the estimate of the total. On the other

hand, the inclusion in the sample of the largest observations is essentially mandatory.

In such situations, practitioners often use partitions of the population in three sets: a

take-all stratum whose units are surveyed entirely (UC), a take-some stratum from which

a simple random sampling is drawn (US) and a take-nothing stratum whose units are

discarded (UE). In other words, survey practitioners decide a priori to exclude from the

analysis part of the population (for example, firms with less than five employees); however,

this choice is often motivated by the desire to match administrative rules (in this case, the

partition of firms in small, medium and large). This strategy is employed so commonly in

business surveys that its use is “implicit” and “uncritical”; the inferential consequences of

the restrictions caused to the archive by this procedure are mostly ignored.

The problem of finding the optimal take-all threshold, i.e. the partition of the population

in strata UC and US, is relatively straightforward both from the technical and from the

methodological point of view (Hidiroglou 1986). On the other hand, finding a criterion
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which assigns each unit to exactly one of the three strata tends to be considered as a

non-viable alternative, mainly because some inclusion probabilities are set equal to zero.

It follows that cut-off sampling is, in some sense, in an intermediate position between

probabilistic and non-probabilistic sampling schemes, a feature which is not appreciated by

experts in this field. As a result, in the literature there are very few papers concerning its

methodological foundations.

Nonetheless, in applications it is frequently used; it is the case, for example, of the

monthly survey of manufacturing performed by Statistics Canada (see, for example, Statis-

tics Canada 2001), which implicitly uses cut-off sampling, without paying too much atten-

tion to methodological implications: “The sampling frame for the Canadian Monthly Survey

of Manufacturing (MSM) is determined from the target population after subtracting estab-

lishments that represent the bottom 2% of the total manufacturing shipments estimate for

each province. These establishments were excluded from the frame so that the sample size

could be reduced without significantly affecting quality”. Similar procedures are also em-

ployed in surveys performed by other National Statistical Offices: cut-off sampling is widely

used but methodological aspects are not documented.

Two exceptions are the book by Särndal et al. (1992, pagg. 531-533), who are mostly

negative, and the paper by Haan et al. (1999), who present successful applications of cut-off

sampling in the field of consumer price indexes.

Finally, Elisson and Elvers (2001) performed a univariate analysis which compares cut-off

sampling with simple stratified sampling. They conclude that cut-off sampling is worth more

consideration and suggest to use it in applications; however, they find that the dimensional

variable which determines the cut-off threshold has a relevant impact on the results, so that

they stress that great care must be employed in choosing this variable. Moreover, they

point out the need for an appropriate model to estimate the fraction of population excluded

from the sample.

In any case, it is worth mentioning the practical advantages of cut-off sampling as

concerns the costs of a survey:

(i) building and updating a sampling frame for small business units could be too costly,

considering that the gain in efficiency of the estimators would probably be small;

(ii) excluding the units of the population which give little contribution to the aggregates

to be estimated usually implies a large decrease of the number of units which have to

be surveyed in order to get a predefined accuracy level of the estimates.

(iii) putting a constraint to the frame population and, as a consequence, to the sample,

allows to reduce the problem of empty strata which mainly affects the smallest firms.
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As of this issue, it is worth stressing that several empirical analyses showed that some

difficulties, such as the non-response rate, the natimortality of the economic units and

the errors of under- or over-coverage of the frame, become more relevant as the size

of the units gets small.

Given that practitioners are in favor of such partitions of the population and there are

technical reasons which justify their use, the basic question is: is it possible to consider

cut-off sampling as a valid sampling scheme? If the answer is positive, the issue is to define

a statistical framework for cut-off sampling.

In this work we try to develop an easily implementable solution to the problem of

the construction of the three strata UC , US and UE in a multipurpose and multivariate

setup. In other words, similarly to what happens in practical applications, we assume to

be interested in surveys with more than one target variable, using auxiliary information

contained in multiple variables.

The structure of the paper is as follows. In section 2 we will define an estimation model

which assumes, for each variable, the weight of the units excluded from the analysis to be

known and constant; however, this hypothesis is not, in general, under the control of the

investigator, so that this estimator is biased, and we will have to find the bias and the

mean squared error of the estimator. The model will be developed both for the estimation

of a total and for the estimation of a ratio of totals. Section 3 will be devoted to the

derivation of the sample size for the cut-off scheme, both when estimating a total and when

estimating a ratio, focusing on its optimization and, consequently, on the construction of

the optimal design. The problem will be tackled by defining the sample size as a function of

the partition UC , US and UE determined on the basis of multivariate auxiliary information

which will be assumed to be known for the whole population. Considering the combinatorial

nature of this problem, we will use the theory of stochastic relaxation and, in particular, the

Simulated Annealing (SA) algorithm. In section 4 we will show some empirical evidence

about the bias of the estimator when using data from surveys concerning slaughtering firms

in Italy. In the same section we will present the main results of the application of the

sampling scheme to this dataset. Finally, section 5 shall conclude the paper and point out

some open problems.

2. An estimator for cut-off sampling schemes

The problem of stratifying in two strata (take-all and take-some) and finding the census

threshold was first treated by Dalenius (1952) and Glasser (1962). The first author has found

the census threshold as a function of the mean, the sampling weights and the variance of

the population. Glasser (1962) derived the value of the threshold under the hypothesis of
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sampling without replacement a sample of size n from a population of N units. Hidiroglou

(1986) reconsidered this problem and provided both exact and approximate solutions under

a more realistic hypothesis: he finds the census threshold when a level of precision concerning

the mean squared error of the total is desired, without assuming a predefined sample size n.

It is worth noticing that he considers a case with only a take-all and a take-some stratum,

so that he develops a method for finding a “census threshold” (erroneously defined “cut-off

threshold” in the paper). However, all these authors limit their attention to a monopurpose

and univariate setup.

Hidiroglou’s approach will be followed in the present paper as well, but here we will

stratify the target population by means of a criterion which defines the belonging of each

observation to one of the three strata in a multipurpose and multivariate framework. The

solution of the problem is based on the identification of appropriate estimators for the

quantities in table 1.

Table 1. Estimators and error measures; b(·) is the bias function,

f and g are functions which shall be defined in the following

Stratum UC US UE

Estimator t̂C t̂S f(t̂C , t̂S)

Estimator MSE 0 var(t̂S) g(var(t̂S) + b2(t̂E))

2.1. Estimating a total

We start by considering the estimator of the total t̂yj
of the j-th surveyed variable (j =

1, . . . , J). This estimator is the sum of three independent components, corresponding re-

spectively to the take-all, take-some and take-nothing strata. Thus, omitting for simplicity

the index of the variables (the same way of reasoning can be applied to all the J vari-

ables once the belonging criterion mentioned above has been determined), we can write

t̂y = t̂C + t̂S + t̂E . As for the take-all stratum, it is clear that t̂C =
∑

k∈UC
yk. In the

take-some stratum, we use the classical π−estimator of the total tS =
∑

k∈US
yk:

t̂πS =
∑

k∈s

yk
πk

=
∑

k∈s

dkyk, (1)

which is the expansion formula known in the literature as Horvitz-Thompson estimator

(Horvitz and Thompson 1952). In (1), the πk’s are the inclusion probabilities, which are

assumed to be strictly positive; the same condition holds for the second-order probabilities

πkl, which are necessary for the computation of the variance of the estimator. The quantities
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dk = 1/πk are the direct weights of each unit k ∈ s, namely the original weights resulting

from the sampling scheme.

The sample s is a probabilistic sample drawn from the subpopulation US ; in the following

we will always assume that it is a simple random sample from US. According to the setup

of our problem, the Hidiroglou-type estimator t̂C + t̂S =
∑

k∈UC
yk +

∑

k∈s dkyk has to be

augmented by a model-based component which takes into account the discarded fraction of

the population, UE . As concerns this issue, we can write

tE = (tC + tS)δ, (2)

i.e., the total of the discarded population is a fraction of tC + tS . In (2) the quantity δ,

which is usually unknown, can be evaluated by means of external sources (i.e., the auxiliary

variables x); thus

δ̃ =

∑

k∈UE
xk

∑

k∈UC
xk +

∑

k∈US
xk
. (3)

For notational simplicity and without loss of generality, in the following we will always

assume that each auxiliary variable is the lagged target variable (in most cases, as well as in

the present application, it is the target variable as known from the last census): xk = yk,t−1.

Using these hypotheses we obtain the following identity:

t̂y = t̂C + t̂S + t̂E = (1 + δ̃)(t̂C + t̂S) = (1 + δ̃)

(

∑

k∈UC

yk +
∑

k∈s

dkyk

)

. (4)

The hypotheses introduced to obtain (4) are slightly different from Särndal et al. (1992,

pag. 532), who use a ratio estimator in the domain S as a “compensation” for the fraction

of population discarded. As we are concerned with a sampling design, in this paper we

find it more convenient to employ, as a starting point for the part of the population to be

sampled, the “neutral” Horvitz-Thompson estimator. However, it is worth pointing out

that there is no reason which prevents us from implementing, in the estimation procedure,

a second step: we could indeed use the auxiliary information ex post, in order to correct

t̂C and t̂S either by means of a ratio estimator or by means of a more general approach to

the use of auxiliary information such as the so called calibration estimators (Deville and

Särndal 1992). In addition to several desirable properties, calibration estimators possess a

very important feature, namely they reduce the bias arising from total nonresponses, which

would also appear when enumerating completely the subpopulation UC .

It is well known (see, for example, Särndal et al. 1992, pag. 531) that cut-off sampling

produces biased estimators. Using (4) and the independence of the three strata UC , US and
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UE, the Mean Squared Error of t̂y is given by:

MSE(t̂y) = var(t̂y) + b2(t̂y) = var(t̂C + t̂S + t̂E) + b2(t̂y) =

= var[(1 + δ̃)(t̂C + t̂S)] + b2(t̂y) = (1 + δ̃)2var(t̂C + t̂S) + b2(t̂y) =

= (1 + δ̃)2var(t̂S) + b2(t̂y) = (1 + δ̃)2var(t̂S) + b2(t̂E). (5)

In (5) we put b(t̂y) = b(t̂E) to stress that the bias, which represents the price to pay for

discarding part of the population, only depends on excluded strata. It is indeed clear that

δ̃ ∈ IR+ in (4) introduces a bias because the true ratio δ of the discarded to the completely

enumerated and sampled population is unknown and different from the estimated value δ̃

which is used in the current survey.

It is therefore crucial to concentrate on the bias b(t̂E). It is not difficult to see that:

b(t̂E) = E(t̂y) − ty = E(t̂C + t̂S + t̂E) − ty =

=
∑

k∈UC

yk +
∑

k∈US

yk + E[δ̃(t̂C + t̂S)] − ty =

= δ̃(tC + tS) − tE . (6)

Putting tE = δ(tC + tS), (6) can be conveniently rewritten as follows:

b(t̂y) = (δ̃ − δ)(tC + tS). (7)

From (7) it appears that the source of the bias of the estimator (4) is the mismatch between

the numerical value δ̃ used in the survey and the true value δ; in particular, the magnitude

of the bias is determined by the difference |δ̃ − δ|.

As will become clearer in the next section, (7) is a fundamental ingredient of the sample

design proposed here. In section 4 we will show some empirical evidence concerning the

functional form of the bias.

2.2. Estimating a ratio

Suppose now that the aim of the investigator consists in estimating not just a total but a

ratio of two unknown totals: R = ty/tz =
∑

U yk/
∑

U zk. The usual estimator (Särndal et

al. 1992, pag. 176-181) is a non-linear function of the two random variables t̂yπ, t̂zπ:

R̂ = f(t̂yπ, t̂zπ) =
t̂yπ

t̂zπ
.

In some applications, including conjunctural surveys, we are interested in the estimation of

the ratio R = ty,t/ty,t−1 or in the variation R− 1.
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When, as is the case in our setup, the sampling scheme used in US is simple random

sampling without replacement, the following identities hold:

n = fN ;

t̂yπ =
∑

s

yk
πk

=
∑

s

N

n
yk = N

∑

s

yk
n

= Nȳs;

t̂zπ = Nz̄s;

R̂ =
ȳs
z̄s
,

where f = n/N is the sampling fraction. The first-order Taylor expansion of R̂ (Särndal et

al. 1992, sect. 5.5) gives the following result:

R̂ ≈ R̂0 = R+
1

tz

∑

s

yk −Rzk
πk

= R+
1

tz
(t̂yπ −Rt̂zπ) =

= R+
1

tz

N

n

∑

s

(yk −Rzk) =

= R+
ȳs −Rz̄s

z̄U
, (8)

where z̄U = tz/N . In our setup the population is enumerated completely at the time

preceding t − 1, that is t − 2. We assume that at time t − 2 the cut-off design has been

implemented, so that a global sample of business units sampled and enumerated completely

for the survey at times t− 1 and t is available. Thus

R̂0 = R+
ȳs,t −Rȳs,t−1

ȳU,t−1
.

This estimator is approximately unbiased:

E(R̂) ≈ E(R̂0) = R.

As we take a linear (first-order) approximation of R̂, the approximation error is given by

the fact that we ignore the terms of order larger than one in the Taylor expansion (8); in

other words, the approximation error is given by the “nonlinear component” of R̂.

Following the same way of reasoning of the preceding subsection we get:

R̂0y = R̂0C + R̂0S + R̂0E = (1 + δ̃)(R̂0C + R̂0S);

MSE(R0y) = var(R0y) + b2(R̂0y) = (1 + δ̃)2[var(R̂0S) + b2(R̂0E)];

b(R̂0E) = (δ̃ − δ)(RC +RS).

As for the computation of var(R̂0S), we use the following approximation, again derived by

means of a Taylor expansion (Särndal 1992, pag. 178), and only valid in the case of simple
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random sampling without replacement in US :

var(R̂) ≈ var(R̂0) =
1

t2z
[var(t̂yπ) +R2var(t̂zπ) − 2Rcov(t̂yπ, t̂zπ)]. (9)

With a more general notation, (9) can be rewritten as

var(R̂) ≈ var(R̂0) =
1

z̄2

1 − f

n
(S2
yU +R2S2

zU − 2RSyzU),

where SyzU is the covariance between y and z in the population.

Following Hidiroglou’s (1986) terminology, the term (1− f)/n in the take-some stratum

takes the form:
1 − f

n
=

N − n(t)

(N − t)(n(t) − t)
. (10)

Thus, in our setup, (1 − f)/n can be rewritten as:

1 − f

n
=

N − n

(N −NC −NE)(n− nC)
.

The variance of R̂0S can be put in the form

var(R̂0S) =
1

ȳ2
US ,t−1

N − n

(N −NC −NE)(n− nC)
(S2
US ,t

+R2
SS

2
US ,t−1 − 2SUS ,yt−1yt

). (11)

With no additional information (such as, for example, a variance trend which could possibly

be extrapolated), when implementing the sampling design the only reasonable assumption

is that

S2
US ,t−2 = S2

US ,t−1 = S2
US,t

= S2
US
,

so that SUS ,yt−1yt
= ρUS ,yt−1yt

S2
US

, where ρUS ,yt−1yt
is the correlation coefficient of the

variables yt and yt−1 in the population. Plugging this result into (11) we finally have

var(R̂0S) =
1

ȳ2
US ,t−1

N − n

(N −NC −NE)(n− nC)
(1 +R2

S − 2ρUS,yt−1yt
RS)S2

US
.

In the next section we will use this variance to determine the optimal sample size.

3. The sample size for cut-off and optimal designs

3.1. Sample size when estimating a total

In the preceding section we showed that the MSE of the estimator of the total t̂y for cut-off

designs is equal to MSE(t̂y) = (1+ δ̃)2var(t̂πS)+b2(t̂y), where the first term is the variance

of the Horvitz-Thompson estimator used for estimating the total of the target variables in

the subpopulation US .
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The well-known expression for this variance in simple random sampling without replace-

ment (Särndal et al. 1992, pag. 46) is given by

var(t̂π) = N2 1 − f

n
S2, (12)

where S2 is the variance of the target variable. However, in our setup this formula needs

to be modified: the Horvitz-Thompson estimator is indeed only used in US , so that

var(t̂πS) = N2 (N −NC −NE)(N − n)

n− nC
S2. (13)

In (13) the variance S2 is equal to

S2
US

=
1

N −NC −NE − 1

∑

k∈US

(yk − µ)2,

where µ = µUS
= (1/(N −NC −NE))

∑

k∈US
yk.

In applications, the MSE is usually required to satisfy the following equality:

MSE(t̂y) = c2t2y, (14)

where c is the desired level of precision c for the estimator of the total. If we substitute for

MSE(t̂y) in (14) the second term on the right hand side of (5) we get:

(1 + δ̃)2var(t̂πS) + b2(t̂y) = c2t2y,

from which we easily derive the variance of the estimator:

var(t̂πS) =
(N −NC −NE)(N − n)

n− nC
S2 =

c2t2y − b2(t̂y)

(1 + δ̃2)
. (15)

We now focus on expression (15) in order to derive the total sample size. Here, the size is

defined to be “total” because it includes both the size of the stratum completely enumerated

and of the simple random sample without replacement from the stratum US. In the following

it obviously holds that nC = NC = N − NS − NE ; for notational simplicity, we first put

ψ = [c2t2y − b2(t̂y)]/(1 + δ̃)2. We have

(N −NC −NE)(N − n)

n− nC
S2 = ψ,

from which we get

(N −NC −NE)NS2 + nCψ = n(N −NC −NE)S2 + nψ.

Solving with respect to n we obtain

n =
(N −NC −NE)NS2 + nCψ

ψ + (N −NC −NE)S2
. (16)
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With some more algebra it is possible to obtain the following result, which is preferable

from a computational point of view:

n = N −
1

1
NS+NE

+ NS

NS+NE

S2

ψ

. (17)

3.2. Sample size when estimating a ratio

As in the preceding subsection, we start with a predetermined level of precision c concerning

the estimator of the ratio:

MSE(R̂0y) = c2R2
y. (18)

Following the same way of reasoning used before, we can rewrite (18) as

(1 + δ̃)2var(R̂0S) + b2(R̂0E) = c2R2
y,

so that

var(R̂0S) =
c2R2

y − b2(R̂0E)

(1 + δ)2
def
= ψ1.

Putting ψ2 = 1 +R2
S − 2ρUS,yt−1yt

RS , we get

N2
S

t̂2S,t−1

N − n

(N −NC −NE)(n− nC)
ψ2S

2
US

= ψ1.

Some straightforward algebra gives:

n

[

ψ1 + ψ2S
2
US

N −NC −NE

t̂2S,t−1

]

=
N −NC −NE

t̂2S,t−1

Nψ2S
2
US

+ nCψ1,

from which we obtain the optimal sample size:

n =
N(N −NC −NE)ψ2S

2
US

+ nC t̂
2
S,t−1ψ1

t̂2S,t−1ψ1 + ψ2S2
US

(N −NC −NE)
.

Finally, it is not difficult to show that the sample size n can be rewritten as follows:

n = N −
1

1
NS+NE

+ NS

NS+NE

ψ2

ψ1

S2

US

t̂2
S,t−1

.

3.3. Optimal partition

In (17) the sample size n depends on c, which is chosen a priori by the researcher, on

the bias b(t̂E), on the total ty and on the partition in the three strata. Notice that the

latter determines four additional quantities, namely δ̃, NS , NE and S2. Thus, if we denote

with Φ = {k1, k2, . . . , kN} (ki ∈ {C, S,E}) the generic element of the set Θ of the possible
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partitions of the population (whose cardinality is equal to 3N ), we conclude that n is a

function of Φ and write

n = n(Φ), (19)

because all the other quantities listed above are either chosen by the researcher or computed

using the auxiliary variables once a partition has been determined.

At this point it is quite clear that the problem consists in finding the partition Φ∗

which minimizes (19) given the desired level of precision c. In particular, as our aim is

the estimation of the totals tyj
of J variables by means of the same number J of auxiliary

variables (see section 2.1), the optimal sample size can be defined as follows:

n(Φ∗) = min

{

max
j=1,...,J

nj(Φ)

}

. (20)

The term maxj=1,...,J nj(Φ) in (20) means that the optimization concerns, at each iteration,

the largest of the sample sizes nj corresponding to each auxiliary variable. (20) is the for-

malization of a combinatorial optimization problem. The simulated annealing (Metropolis

et al. 1953, Kirkpatrick 1983, Geman and Geman 1984) is probably the best suited method

for solving (20). This algorithm, which belongs to the family of stochastic relaxation algo-

rithms, enjoys several desirable properties (see Casella and Robert 1999, sect. 5.2.3, for a

review); its implementation to the problem at hand can be summarized as follows.

(a) Choose an initial temperature T0.

(b) Stratify the population by means of a random uniform partition Φ0, that is, assign

to each of the N units of the population a label φ from the set {C, S,E}, where

P (φ = C) = P (φ = S) = P (φ = E) = 1/3. Let φ
(0)
i (i = 1, . . . , N) be these labels.

(c) Visit the i-th unit of the population and put φ
(1)
i = ξ, where ξ is a label drawn with

uniform probability from the set {C, S,E} and is the update of the label assigned to

the i-th unit at the 0-th iteration. Obviously, φ
(1)
j = φ

(0)
j ∀j 6= i, so that the vector of

labels φ(1) at the first iteration differs from φ(0) at most by one element.

(d) Let ∆(1) = n(Φ(1)) − n(Φ(0)). If ∆ < 0, put φ
(1)
i = ξ; otherwise, put φ

(1)
i = ξ with

probability exp{∆(1)/T0} or φ
(1)
i = φ

(0)
i with probability 1 − exp{∆(1)/T0}.

(e) Repeat step 3. and 4. (Nsub ×N) times, where Nsub is the number of sub-iterations

for each temperature T .

(f) Replace T0 with T1 = f(T0), where f(·) is a decreasing function which satisfies the con-

ditions of the annealing theorem (Geman and Geman 1984). The function originally

proposed by Geman and Geman (1984) was Tt+1 = f(Tt) = (log(1 + t)/ log(2 + t))Tt;

here we follow Sebastiani (2003) and use the so-called geometric temperature schedule

Tt+1 = f(Tt) = ρTt, with ρ ∈ (0, 1). The choice of f in applications has been the

object of a lot of interest and some controversial in the literature: see Ripley (1988),
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Stander and Silverman (1994), Winkler (1995) and Casella and Robert (1999, pag.

201), and the references therein. As for the numerical value of ρ, it is well known

that it has to be “large” enough to avoid a too rapid decrease of the temperature

and “small” enough to keep the computation time reasonably short. We performed

several experiments and found that ρ = 0.98 guarantees the best compromise.

(g) Repeat steps 3-6 until some convergence criterion is satisfied. We found it convenient

to stop the algorithm the first time that one of the following conditions is satisfied:

(i) in two successive iterations no labels are switched; (ii) niter = 300 iterations are

reached.

Notice that at step 7. the t-th iteration is just obtained by replacing (0) with (t) and

(1) with (t+ 1) in steps 3-6 above.

At convergence, the algorithm determines the optimal partition Φ∗, which minimizes the

total sample size n for a given precision level c.

4. A case study: the slaughtering monthly survey

In this section we will find the optimal design, according to the cut-off methodology de-

veloped so far, for the red meat slaughtering monthly survey performed by ISTAT (Italian

National Institute of Statistics). This survey foresees a stratified sampling, with a strati-

fication by kind of slaughter-houses and geographical division, for a total of 5 strata, two

of which with geographical references. Strata are the following: stratum 1 (always to-

tally observed), consisting of private with European Economic Community (EEC) stamp

slaughter-houses in the geographical division 1 or 2; stratum 2: consisting of private with

EEC stamp slaughter-houses in the geographical division 3, 4 or 5; stratum 3: private with

low capacity slaughter-houses (apart from geographical division); stratum 4: private in dero-

gation, public with EEC stamp and public in derogation (apart from geographical division)

slaughter-houses; stratum 5: public with low capacity slaughter-houses. Two dimensional

criteria that assign to stratum 1 those enterprises with more than 10000 sheep and goats or

more than 50000 pigs slaughterings act in the stratification too. On the average the sample

is of about 460 units for a population of 2211 units with the desired level of precision c set

to 5%.

Thus, our frame contains N = 2211 slaughter-houses for which we know four variables

enumerated completely in 1999, 2000 and 2001 (consider indeed that this census is performed

every year): they are respectively the total number of slaughtered (i) cattle, (ii) pigs, (iii)

sheep and goats and (iv) equines. We will first consider the complete dataset (for each of

the three years) in order to assess the behavior of the bias b(t̂E) and, in particular, to look

for possible regularities. Recalling that δ is defined as the ratio of the number of population
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units discarded to the number of population units sampled and enumerated completely, it

is indeed necessary to know, in order to evaluate empirically the bias, the complete list of

the lagged auxiliary variables.

The cut-off design proposed in this paper will then be implemented, with the aim of

setting up a monthly survey on slaughtering for the year 2002, using as auxiliary variables

only the data enumerated completely in 2001.

We start with a brief description of the archive at hand. The scatterplots of all the pairs

of the four variables in 2001 are shown in the above-diagonal graphs of figure 1; the graphs

below the main diagonal are the scatterplots of the logs of the same pairs of variables. The

same graphs for the years 1999 and 2000 are essentially identical and therefore are not

reported here.

The main evidence is that variables are essentially independent or, in some cases, neg-

atively correlated. Moreover, it is clear that slaughter-houses are strongly specialized and

that most firms are small (see the histograms on the main diagonal).

4.1. Bias assessment

In order to implement the design developed in the preceding sections, it is crucial to analyze

the bias b(t̂E) of the estimator t̂y given by (4), because the algorithm described in the

preceding section requires as an input a starting value for b(t̂E). We solved this problem

with the help of both empirical evidence concerning real data and simulations of auxiliary

variables with different skewness.

As for the real data, figure 2 shows some very interesting results. Here, we plotted

the absolute value of the bias b(t̂Ei
), where the quantity t̂Ei

is defined as the total of the

discarded population observed in 1999 and 2000, which in turn is given by the i smallest

observations of the population. In other words, the i-th point of the graph is the absolute

value of the bias corresponding to t̂Ei
, where Ei contains the i smallest observations of the

population.

The procedure used to estimate the bias works as follows. If a complete enumeration

of both the auxiliary variable x and the objective y (usually they are the same variable

relevant to two different periods) are available, they can be ordered on the basis of the

values of x:

x(1), . . . , x(N),

y(1), . . . , y(N),

where the (i) codes are such that x(i) ≤ x(i+1) for i = 1, 2, . . . , N − 1. Let now Cx,(i) and



A Framework for Cut-off Sampling 15

cattle

pigs

sheeps and goats

equines

Fig. 1. Scatterplots of the data.
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Cy,(i) be the respective cumulative sums:

Cx,(i) =

i
∑

j=1

x(j),

Cx,(i) =

i
∑

j=1

x(j),

and Ox,(i) and Oy,(i) be the corresponding countercumulative sums:

Ox,(i) = tx − Cx,(i) =

N
∑

j=i+1

x(j),

Oy,(i) = ty − Cy,(i) =

N
∑

j=i+1

y(j).

Thus, if i is used as a threshold, according to (6), the absolute value of the bias obtained

by using the estimator (4) can be written as:

|bi| =

∣

∣

∣

∣

Cx,(i)
Oy,(i)

Ox,(i)
− Cy,(i)

∣

∣

∣

∣

,

where the excluded part of the population is defined as Ei = {1, 2, . . . , i}.

The |bi| can be used either directly in the optimization algorithm or modelled to simplify

calculations and to obtain more stable results, i.e. not depending on particular discontinu-

ities in the frame data. In our experiment we found good fits for the simple linear regression

model:

|bi| = α+ βCx,(i) + ǫi. (21)

The fit becomes better if the tails of the ordered distributions are dropped out from the

analysis, but this is not a problem because in practical applications a threshold is usually

neither a very small nor a very large value.

The four graphs in figure 2, corresponding to each auxiliary variable, have been obtained

using respectively the complete 1999 and 2000 frame as a basis for the construction of the

cut-off design in 2001.

As expected, a larger temporal lag of the auxiliary information causes a significant

modification of the bias: the bias for 2001 is indeed always larger than the bias for 2000.

Moreover, from the graphs it appears that the function f which formalizes the relationship

between |b̂(tEi
)| and Cx,(i) is well fitted by the linear model (21).

We now apply our cut-off procedure in order to re-design the ISTAT red meat slaugh-

tering monthly survey; to this aim we will use, as auxiliary information, the aforementioned

frame for the year 2001. Thus, at each iteration of the algorithm and for each auxiliary
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Fig. 2. The relationship between |̂b(tEi
)| and Cx,(i).

variable, we substitute to the bias b(t̂E) which appears in the expression (16) for n(Φ(t)),

an estimate obtained via linear regression, i.e.:

|b̂i(tEi
)|j,2001 = α̂+ β̂Cj,2000(i), j = 1, . . . , 4, (22)

|b̂i(tEi
)|j,2001 = α̂+ β̂Cj,1999(i), j = 1, . . . , 4. (23)

Equations (22) and (23) actually give an estimate of the absolute value of the bias, but

this is not relevant because (16) only uses the square of this estimate. Detailed results are

displayed in tables 2 to 5 respectively for cattle, pigs, sheep and goats, equines.

Table 2. Cattle: estimates, standard errors, t-statistics and p-values for (22) and (23).

2001 vs 1999 (R2 = 0.9494) 2001 vs 2000 (R2 = 0.9662)

estimate t-stat p-value estimate t-stat p-value

α 5810(47.75) 121.7 < 0.0001 4621(106.6) 43.7 < 0.0001

β 0.0538(0.0003) 175.9 < 0.0001 0.1482(0.0007) 217.25 < 0.0001
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Table 3. Pigs: estimates, standard errors, t-statistics and p-values for (22) and (23).

2001 vs 1999 (R2 = 0.9541) 2001 vs 2000 (R2 = 0.96)

estimate t-stat p-value estimate t-stat p-value

α 3664(96.48) 37.98 < 0.0001 38930(118.1) 329.6 < 0.0001

β 0.2455(0.0019) 130.0 < 0.0001 0.3230(0.0023) 139.7 < 0.0001

Table 4. Sheep and goats: estimates, standard errors, t-statistics

and p-values for (22) and (23).

2001 vs 1999 (R2 = 0.8517) 2001 vs 2000 (R2 = 0.9158)

estimate t-stat p-value estimate t-stat p-value

α 25910(39.37) 658.09 < 0.0001 27740(26.53) 1045.31 < 0.0001

β 0.0713(0.0011) 66.88 < 0.0001 0.0661(0.0007) 92.04 < 0.0001

Table 5. Equines: estimates, standard errors, t-statistics and p-values for (22) and (23).

2001 vs 1999 (R2 = 0.9286) 2001 vs 2000 (R2 = 0.9169)

estimate t-stat p-value estimate t-stat p-value

α 1834(9.191) 199.56 < 0.0001 5488(15.21) 360.8 < 0.0001

β 0.6344(0.0107) 59.15 < 0.0001 0.9674(0.0177) 54.5 < 0.0001

The fit is extremely good in all cases; in particular, the values of the R2 goodness-of-fit

statistics are always large, which is not surprising if we consider that the variables used in

the regression are cumulative sums.

4.2. Sampling design

Let’s now finally turn to the results of the implementation of the cut-off design. Figure 3

shows the total optimal sample size as a function of the number of iterations of the simulated

annealing.

It is immediately evident that the “largest decrease” in the sample size takes place in

the first few iterations; the remaining iterations seem to provide us with just an adjustment

towards the global optimum. More precisely (see figure 4), starting from the third itera-

tion, the algorithm just moves some observations from UE to US; to these label-switching

operations correspond very small decreases of the total sample size.
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Fig. 3. Total sample size n = NC + nS as a function of the SA iterations.
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Table 6 gives some details about the implementation of the algorithm. The quantity NS

is the size of the stratum US ; the number of units actually sampled from this stratum can

be computed as n−NC ; for example, at the 147-th iteration (namely when the algorithm

converges) we sample n−NC ≈ 370 − 341 = 29 units.

Table 6. Results of the cut-off sampling as a function of selected iterations of SA.

Iter n NC NS NE # changes

1 855.30 738 736 737 -

2 425.97 366 865 980 3047

3 401.10 354 864 993 2233

4 398.80 355 817 1039 2039

5 396.30 358 833 1020 1941

6 393.70 359 792 1060 1952

7 393.70 358 820 1033 1861

8 390.70 356 795 1060 1873

9 391.80 357 781 1073 1825

10 390.70 353 811 1047 1797

20 381.10 347 808 1056 1385

30 374.80 342 835 1034 889

40 371.90 342 787 1082 548

50 370.44 340 788 1083 309

60 369.90 341 756 1114 174

100 369.60 341 754 1116 19

147 369.60 341 753 1117 2

The sampling scheme developed in this paper produces the partition of the population

shown in figure 5.

Each subplot of this figure gives the scatterplot of the fourth roots of the auxiliary

variables. The stratification is very clear-cut, with two strata (UC and UE) whose sizes are

much larger than US . The take-some stratum is nested into the take-nothing stratum, with

a sampling fraction equal to 4%: this means that in our application the sampling scheme is

very similar to a take-all/take-nothing design. According to the theoretical results derived in

the preceding section, such a small sampling fraction was indeed expected: considering the

large concentration of the population, stratum US contains mostly the firms for which the

values of all the four auxiliary variables are different from zero, namely the least specialized

ones.
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Fig. 5. Optimal partition of the population for each pair of auxiliary variables.
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Figure 6 is an enlargement of the first subplot below the main diagonal of figure 5.

This graph shows, besides the optimal partition in the three strata, the marginal kernel

densities. The variability of both auxiliary variables in US is rather low; it is worth noting

the importance of this result as this variability is the only one which affects the variance of

the estimator. Roughly speaking, the variance is mostly “dumped to” the eliminated and

completely enumerated strata, with the result that the variance in US is reduced.

The results presented here use a desired level of precision c = 1%; this value has also been

employed to perform the following comparisons, which show the considerable advantages of

our approach in terms of sample size corresponding to the predetermined level of precision.

Table 7 displays detailed results concerning some direct competitors of the cut-off design;
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in particular, table 7(a) shows the sample sizes corresponding to the Hidiroglou approach,

table 7(b) gives the sizes obtained stratifying the population with the K-means algorithm

(Rencher 2002, sect. 14.4.1a) used as a minimizer of the variance, and table 7(c) displays the

sample size corresponding to the ISTAT design introduced at the beginning of this section

but setting c = 1%. In the last row of table 7(a),NC is the size of the stratum UC obtained as

the union of the four strata enumerated completely with respect to each auxiliary variable

(reported in the first four rows of the table). This is one way of rendering Hidiroglou’s

approach, which is monopurpose and monovariate, comparable to our technique, which is

multipurpose and multivariate.

Table 7(a). Sample sizes using Hidiriglou’s approach

n NC NS

y1,2001: cattle 476.97 332 1879

y2,2001: pigs 301.03 246 1965

y3,2001: sheep and goats 291.29 229 1982

y4,2001: equines 227.11 180 2031

Union 744.26 663 1548

Table 7(b). Sample sizes using the K-means algorithm

Number of strata n

2 2193

3 2094

4 1800

5 1689

6 1259

7 1206

8 1145

9 990

10 649

Table 7(c). Sample size using the ISTAT approach

Number of strata n

5 866
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5. Conclusions

The goal of this paper consisted in proposing a framework for cut-off sampling where a

model-based estimator of the unobserved part of the population plays a crucial role in-

troducing a bias in the final estimates. The rationale for this proposal is based on the

assumption that often the population distributions is highly skewed with a huge number of

minor units whose weight on the population total is very small. We have discussed a formal

approach for combining estimation and optimal partition of the population in three strata:

census, sample and exclusion. We view this issue jointly with the multipurpose allocation

of sampling units in the case where multivariate partitioning variables are available.

We have used the Simulated Annealing algorithm to minimize the number of sampling

units necessary to satisfy a required precision expressed in term of MSE of the estimates

of both a linear function such as the population total and a non-linear function as the ratio

of a variable between two periods.

The results are encouraging: for example, for c = 1%, the sample size obtained using

the present approach is approximately 40 to 60% less than its direct competitors.

These outcomes also shed some light on the directions of future research in this field. In

particular, we believe that attention shall be focused on the bias of the estimator with the

purpose of tackling at least two issues:

• assess the robustness of the design with respect to variations of the functional form

of the bias function (which here was assumed to be linear);

• use the estimation of the bias used not only for finding the optimal sample size but

also for correcting the bias of the estimator used (whatever it is).

Finally, the last problem is related to the fact that the Simulated Annealing algorithm is

rather slow, so that the computational burden may become unbearable when the population

is large. Thus it would be the case of developing faster procedures as, for example, the

Besag’s (1986) Iterated Conditional Modes (ICM) algorithm.
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