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Macroeconomic Fluctuations and the Firms�
Rate of Growth Distribution: Evidence from

UK and US Quoted Companies.

Emiliano Santoro
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Abstract

We �t the asymmetric Subbotin distribution introduced by Bottazzi
and Secchi (2003) on UK and US data on quoted companies, in order
to detect sources of asymmetries in the transmission of aggregate shocks,
and cyclical patterns of higher moments of the �rms�rate of growth dis-
tribution over the business cycle. We support the evidence provided by
Higson et al. (2002, 2004) of a negative correlation between the rate of
growth of GDP and the standard deviation and skewness of the distribu-
tion. Kurtosis exhibits a procyclical pattern. Furthermore, we provide an
explanation of the emergence of these stylised facts based on the evidence
that the left tail of the distribution is more responsive to macroeconomic
�uctuations than its right counterpart. The evidence points to �nancial
factors as one of the main drivers of the observed pattern.

JEL: C16, E32, G30
Keywords: Subbotin Distribution, Corporate Growth, Business Cy-

cle, Financial Fragility
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Introduction

The �industrial organization� literature on the demography of �rms1 has fo-
cused for a long time on the �static� cross-sectional features of variables such
as �rm-speci�c rate of growth and size, without considering properties such as
stationarity and stability of the distributions describing these variables. Most of
the theoretical and empirical e¤orts in this �eld were devoted to the assessment
of the theoretical proposition known as Gibrat�s law (1931). Gibrat�s law states
that growth rate of �rms does not depend on �rms�size (Gibrat�s law in weak
form). Gibrat�s original aim was to explain the skewed distributions arising in
several contexts, such as income, wealth and �rms�size in manufacturing indus-
tries. Gibrat started from the observation that his data �t well with a lognormal
distribution. To generate such a form, he assumed that a �rm�s absolute growth
were a normally distributed random variable, whose mean was proportional to
its size. This means that the �rms speci�c rate of growth is a gaussian random
variable with mean independent of the �rm�s current size (the so called Law
of Proportionate E¤ect). The Law of Proportionate E¤ect suggests that the
process of �rm growth produces levels of market concentration that increase
over time, as the variance in the lognormal distribution becomes asymptotically
in�nite.
Gibrat�s law has been subjected to a wide empirical scrutiny during the 1950s

and 1960s, leading to controversial results and interpretations. We brie�y trace
the most signi�cant contributions to the description of the statistical properties
of the �rms�rate of growth distribution. Simon (1955) extended the intuition
behind the Law of Proportionate E¤ect to a broader class of skewed distrib-
utions, including Pareto, Yule and Lognormal, and generated a literature on
stochastic models whose main advantage consisted in relaxing Gibrat�s Law.
The introduction non negligible rates of entry and exit and the hypothesis of
constant returns to scale allowed to overcome the occurrence of in�nite variance
in �rms� size, generating skewed distributions in steady state. The empirical
literature has found some support for Simons�s approach2 . It must be pointed
out however that this class of theoretical models has a purely stochastic nature,
not relying on any economic explanatory variables. Following Sutton (1997),
two main statistical regularities can be identi�ed in the size-growth relation-
ship. The �rst one is based on the link between Size and Growth and points
out that the probability to survive increases with �rm size and the proportional
rate of growth of a �rm (or plant) conditional on survival is decreasing in size.
The second statistical regularity, which is in opposition to the Law of Propor-
tionate E¤ect, is widely recognised as the Life Cycle3 : for any given size, the
older the �rm (or plant), the smaller the proportional rate of growth and the

1See Steindl (1968), Geroski (1995), Sutton (1997) and Caves (1998) for comprehensive
reviews of the literature.

2Hart and Prais (1956), Simon and Bonini, (1958), Mans�eld (1962), Ijiri and Simon (1964,
1977) can be considered the most signi�cative contributions in this strand of literature.

3The Life Cycle approach �nds in Jovanovic (1982) one of its main advocates.
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greater its probability of survival. Over time, pro�ts convey new information
about the level of e¢ ciency of a �rm relative to its competitors: consiquently,
�rms can decide to exit the market if they learn of their relative ine¢ ciency.
Put together, the two mechanisms imply that large �rms are likely to have a
lower rate of growth but a greater probability to survive.
Several empirical studies have found evidence of a negative relationship be-

tween growth rates and �rm�s size4 . Consistent with the assumption of decreas-
ing returns to scale, these studies have shown that small �rms tend to grow
faster than large �rms. This implies a mean reversion e¤ect on �rm size, which
introduces an overall limit on the variance of the size distribution, as �rm size
converges in the long run towards an optimal level. In interpreting this ev-
idence, however, Geroski (2000) argues that the negative correlation between
growth and �rm size is negligible and that it could be due to methodological
and data limitations. Geroski points out that most studies that test Gibrat�s
Law do so through cross-section analyses, and do not allow for heterogeneity in
the �rm speci�c growth. More recent empirical studies adopting heterogeneous
panel techniques have delivered mixed results5 . In opposition to the empirical
evidence produced by these early studies, we aim at identifying a characteristic
pattern in the evolution of the �rms�rate of growth distribution, by considering
the asymmetric impact of aggregate shocks.
Only a few empirical studies have analysed the dynamic properties of the

distribution of the rates of growth, with particular attention to its stability.
Remarkably fruitful contributions have been provided by Bottazi and Secchi
(2003), who have programmed the routine that will be adopted for our empirical
exercises. Marsili et al. (2004) focus on the most basic assumptions of Gibrat�s
Law, without testing the derived propositions, and investigating whether the
distribution of the rates of growth can be �tted by a Gaussian, and if the
distribution may be considered invariant over time and across sectors. The
authors examine the static and dynamic properties of the distribution of the
rates of growth, using sales data on dutch �rms from 1978 to 1997. They
claim that their analysis contributes to the existing research along three main
directions. First, they �t a general form of the Subbotin distribution, allowing
for asymmetric shapes at the tails, to establish whether there is structure in
the distribution of the rates of growth. Second, they look at the evolution
of the distribution of the rates of growth over time by carrying out a time
series analysis of the Subbotin parameters. Third, they examine whether these
previous patterns hold at di¤erent levels of aggregation, by looking at total
manufacturing, and at four di¤erent manufacturing industries. The authors
claim that each of these industries may be at di¤erent stages of the Industry

4See Evans (1987a, b), Hall (1987), Dunne and Hughes (1994), Hart and Oulton (1996).
5Goddard et al. (2002) �nd that the evidence against the Law of Proportionate E¤ect is

stronger when applying heterogeneous panel estimation techniques than when applying cross
sectional analysis.Geroski et al. (2003), working with a panel of UK �rms over 30 years,
observe no signi�cant tendency for �rm size to converge to some optimum level and found no
persistent di¤erences across �rms. Geroski et al. (2003) conclude that if any mean reversion
e¤ect is to be found, it is at best weak.
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Life Cycle and that it is important to take into consideration the possibility
that each of them experiences di¤erent processes of growth. In the present
analysis we adopt a similar perspective in order to establish a link between the
literature on industrial demography and the study of the business cycle from
the cross sectional point of view, which has been recently enriched with the
evidence provided by Higson et al. (2002, 2004) and Battacharjee et al. (2004).
Furthermore, a signi�cative di¤erence with previous studies catalogued in the
industrial demography literature, will consists in the fact that our analysis will
provide empirical evidence arising from large datasets of quoted companies.
A di¤erent perspective is assumed in the study of the dynamic pattern of the

�rms�rate of growth distribution pursued by Higson et al. (2002 , 2004), who
focus their analysis on the determinants of shifts and changes of the shape. The
evidence provided by Higson et al. (2002, 2004) suggests that the distribution
is highly sensitive to macroeconomic shocks. These studies have identi�ed a
number of interesting stylised facts regarding the cross sectional dynamics of
the business cycle, using both UK and US data on quoted �rms6 . In partic-
ular, macroeconomic �uctuations provide a better predictor of the dynamics
of the cross sectional distribution of growth rates than �rms�intrinsic charac-
teristics such as age, size or industry, while the residual, idiosyncratic compo-
nent accounts almost for all the variance and the skewness of the distribution.
Higher moments of the cross sectional distribution �uctuate at business cycle
frequencies, displaying countercyclical skewness and standard deviation and a
pro-cyclical kurtosis. The analysis of the percentiles of the cross section shows
that aggregate shocks are propagated with varying intensity to �rms growing
at di¤erent rates. The choice of the percentile time-series analysis is due to
the fact that the authors deal with unbalanced panels. However, even with a
complete dataset it would be di¢ cult to characterize each �rm in terms of in-
variant position in the range of growth. Relying on these considerations, for
each period the cross sectional sample is classi�ed in percentiles, thus obtaining
hundred time series of percentiles. For each of these time series the following
regression is run:

(1� �1kL� �2kL2)gkt = �0k + (�1k + �2kL)�t
where k denotes the kth percentile, L is the lag operator, gkt is the rate of

growth of the kth percentile at time t and �t is the continuous rate of growth of
the aggregate GDP. The estimated coe¢ cients �1k and �2k capture the marginal
response of the percentile rate of growth to aggregate growth. The estimated
coe¢ cients for the hundred percentiles are then plotted on the same graph. This
empirical exercise shows that the marginal response increases monotonically up
to the 25th percentile, declining monotonically thereafter. The evidence that
the peak of �(i) is reached at a lower than mean growth rate can explain, from a
statistical point of view, why countercyclical skewness is observed. Both rapidly

6Studies focusing on the tent-shaped distribution generally observe a stable distribution
(Bottazzi et al. (2002)), although analysis has been limited to a relatively short time period.
Over a long time period, there is empirical evidence of a change in the distribution.
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growing and declining �rms are substantially insulated from the macroeconomic
variation, being less responsive to business �uctuations than �rms lying in the
middle range of the rate of growth. During contractionary phases the central
mass of the distribution shifts closer to the negative end, generating a positive
tail and hence a counter-cyclical skewness. Opposite evidence holds during
phases of expansion.
Furthermore, Battacharjee et al. (2004) draw similar conclusions from the

analysis of the impact of the interest rate spread on the cross sectional dis-
tribution of rates of growth: the monetary transmission mechanism (MPTM
hereafter) mainly a¤ects �rms in the middle range of the rate of growth. The
authors argue that the credit view of the MPTM could provide an explanation
of the facts highlighted, arguing that �rms growing in the middle range are
likely to rely more on external �nance and hence are more a¤ected in terms of
production and investment decisions by marginal changes in the cost of external
�nance. This new evidence is somehow in contrast with the traditional credit
view of the MPTM, which predicts that the impact of monetary decisions prop-
agated through the credit market (both for the lending and the balance sheet
channel) should have a greater e¤ect on smaller �rms, which are likely to rely
more on external �nance.

1 Recent Evidence on the Static Properties of
the Firms�Rate of Growth Distribution

The Law of Proportionate E¤ect implies that if the rates of growth are iden-
tically and independently distributed, the distribution of the �rms�size tends
asymptotically to a lognormal.Given the premises characterizing Gibrat�s law it
follows that the distribution of �rms�rates of growth is Gaussian. More recent
empirical studies in industrial demography have detected two empirical regu-
larities which are so widespread across countries and persistent over time to be
characterized as universal laws:

� the distribution of �rms size is right skew and can be �tted by a Power
Law (or Zipf) probability density function7 ;

� the growth rates of �rms output and countries�GDP follow a Laplace
distribution.

The Zipf�s law is the discrete counterpart of the Pareto continuous distrib-
ution (power law). It links the probability to observe the dimension of a social
or natural phenomenon with rank greater than, say, zi, to the cumulative fre-
quency. Roughly speaking, a discrete random variable Z is said to follow a Power
Law (also known as Rank-Size, or Pareto-Levy) distribution, if its cumulative
distribution function takes the form

7See for instance Axtell (2001) and Ga¤eo et al. (2003).
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Pr(Z � zi) =
�
zi
z0

��

with zi � z0, � > 0, where z0 is the minimum e¢ cient size and � is the
scaling exponent or shape parameter.
Stanley et al. (1996), Amaral et al. (1997) and Bottazzi and Secchi (2003)

have found that the growth rate of �rms output yi follows, instead of a normal
distribution, a Laplace distribution:

L(yi; b) =
b

2
exp(�byi)

where b > 0 is the scale parameter.
To explain this evidence, the literature has followed two lines of research.

The �rst one focuses only on the statistical properties of the link between the
distribution of the state variable (represented by �rms�size) and that of the rates
of growth. For instance, Reed (2001) shows that independent rates of change
do not generate a lognormal distribution of �rms�size if the time of observation
of �rms variables is not deterministic but is itself a random variable following
approximately an exponential distribution. In this case, even if Gibrat�s law
holds true at the individual level, �rms� variables will converge to a double
Pareto distribution.
The second line of research stresses the importance of non-price interactions

among �rms hit by multiplicative shocks, hence building on the framework put
forward by Herbert Simon and his co-authors during the 1950s and 60s. As
a matter of example, Bottazzi and Secchi (2003) obtain a Laplace distribution
of �rms�growth rates within Simon�s model, just relaxing the assumption of
independence of �rms�growth rates. In the present analysis, following Marsili
et al. (2004), we will test the stability of the �rms� rate of growth distribu-
tion, by �tting an asymmetric Subbotin density, whose symmetric counterpart
encompasses the Laplace and the Gaussian densities as particular cases.

1.1 The Asymmetric Subbotin Distribution

Empirical analyses aimed at assessing the Law of Proportionate E¤ect have
shown that the postulated Normal distribution of the rates of growth barely
describes the fatness of the tails. For this reason researchers have turned their
attention to a class of fat-tailed distributions, such as the Subbotin or Expo-
nential Power Distribution, introduced by Subbotin (1923). The fuctional form
of the symmetric8 Subbotin distribution is characterised by three parameters,
a position parameter m (which is at the same time the mean, the median and
the mode of the density), a scale parameter a (describing the spread or width of

8This distribution was introduced by Subbotin (1923) and popularized by Box and Tiao
(1962, 1964, 1973), who used it in robustness studies (see also Tiao and Lund (1970), Swamy
and Mehta (1977), West (1984), and more recently Osiewalski and Steel (1993)).
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the density) and a shape parameter b (which is inversely related to the fatness
of the tails) and is described by

f(x; a; b;m) =
exp(� 1

b

��x�m
a

��b)
2ab1=b�(1 + 1=b)

(1)

The symmetric Subbotin distribution enconpasses the Gaussian and the
Laplace (or double exponential) distributions as special cases: for b = 2 it
boils down to the Gaussian and for b = 1 to a Laplace, while for b �! 1 the
distribution tends to a Uniform. The lower b, the fatter the tails: hence the
distribution is platikurtic for b > 2 while it is leptokurtic for b < 2: this prop-
erty will turn out to be central in our analysis. This symmetric version of the
Subbotin density has all central moments of odd order equal to zero. Following
Bottazzi and Secchi (2003), the central moment of order 2l reads as

M2l =
h
ab1=b

i2l �((2l + 1)=b)
�(1=b)

(2)

Particular interest will be attached in the subsequent analysis to the excess
Kurtosis exhibited by the �tted distribution: in the symmetric case the index
reads as follows

k =
�(1=b)�(5=b)

[�(3=b)]2
(3)

It is relatively straightforward to check that @k=@b < 0 for b > 0: this
aspect will turn out to be particularly important for our analysis on the dynamic
pattern of higher moments of the distribution.
The asymmetric Subbotin density extends the family described above by

considering di¤erent values for the parameters a and b in the two halves of the
density. Its functional form depends on �ve parameters: a positioning parameter
m, two scale parameters al and ar respectively for the values below or above
m, and two shape parameters bl and br characterizing, respectively, the lower
and upper tail of the density. The following factorisation has been introduced
by Bottazzi and Secchi (2003)

P (X) =

� exp(�(x�m)=a)bl 1
bl

A x < m
exp(�(x�m)=a)br 1

br

A x > m

where

A = alb
1
bl

l �

�
1 +

1

bl

�
+ arb

1
br
r �

�
1 +

1

br

�
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This parameterisation is particularly attractive due to the fact that parame-
ters describing the main features of either side of the distribution will turn out
to be useful to capture the relative responsiveness of declining and of growing
�rms to macroeconomic shocks.

1.2 Data

As already pointed out, the present analysis will focus on two datasets on UK
and US, the same adopted in Higson et al. (2002, 2004).
As regards UK, four sources have been considered to build the necessary

panel: the Cambridge/DTI databank, the London Share Price Database (LSPD),
EXSTAT and DATASTREAM. The Cambridge/DTI databank is a data-set on
�rms�balance sheeet that dates from 1948. Companies were included only if:
they were admitted to the o¢ cial list of the stock exchange; they were indepen-
dent companies or company groups; they operated mainly in the UK; and their
principal activity was manufacturing, distribution, construction, or transport
and certain services. EXSTAT and DATASTREAM, dating from 1970, are data-
sets that collect published company accounts data for UK quoted companies, as
well as members of the Times 1000 list of large UK companies. These databases
were expanded to include smaller quoted �rms in 1975�76. The combination of
databases was used to construct the underlying UK quoted population. This
yielded 43,612 company years of data over the period 1967�97. The number of
reporting companies averaged 1400 a year, ranging from a maximum of 1844 in
1969 to a minimum of 1284 in 1992.
The unique source for the US data is instead represented by the COMPUS-

TAT database of quoted companies accounts, over the 1951-1999 period.

1.3 Descriptive Statistics

Tables 1 and 2 report the descriptive statistics of the rates of growth for UK
and US and the relative number of �rms for each year. Annual rates of growth
have been obtained by considering total sales as a proxy for the size of the �rm9 .
The number of �rms in the sample is approximately constant for UK, ranging
from a minimum of 1453 in 1968 to a maximum of 1800 in 1998, while for the
US we observe a minimum of 1032 in 1951 and a maximum of 7000 in 1995 and
1996.

Insert Table 1 and 2 abouthere

Insert F igure 1 and 2 about here

In line with Higson et al. (2002, 2004), the moments of the empirical distrib-
ution display characteristic correlations with business cycle �uctuations: Figure

9To exclude outliers, the sample is truncated and the results reported are based on growth
rates lying between the range �40%.
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1 and 2 plot each of the higher moments of the distributions against the rate of
growth of GDP for UK and US respectively: mean and kurtosis display a cyclical
pattern, while standard deviation and skewness are counter-cyclical. Further-
more, it is possible to observe that the samples we are considering for both UK
and US allow to consider a large part of the relative GDP�s, since the empirical
mean of the rates of growth closely tracks the rate of growth of aggregate GDP
in both cases.
Furthermore, the tables report the Cramer-von Mises test10 , which compares

the empirical distribution and the speci�ed theoretical distribution function, the
Normal in the speci�c case: statistics reported in bold are those associated to
a p-value below 0:1. A substantial instability of the parameters is evident from
this preliminary analysis.
The distribution for both UK and US appears to be rather unstable over

time: the result is at odds with previous studies, where a substantial stability
has been highlighted11 : however we claim that no studies so far have adopted
a dataset spanned on a temporal dimension suitable for analysing the dynamic
behaviour of higher moments of the distribution. Higson et al. (2002, 2004) have
applied a mixture of parametric and non-parametric methods for the study of
the cross sectional dynamics of the business cycle, but never imposing any struc-
ture on the data under scrutiny. Marsili et al. (2004) have followed a di¤erent
route, by �tting the asymmetric12 Subbotin density on data on Netherlands over
a rather long time period (1968-1997): however the analysis has not focused on
the links between the dynamics of the distribution of the rates of growth and
macroeconomic �uctuations, being mainly oriented to the analysis of the dy-
namics within di¤erent industries, in consideration of the possible occurrence
of asynchronous Industry Life Cycles. In the present work we try to establish
a link for the two approaches, relying on the availability of large datasets in
both the dynamic and the cross sectional dimensions and exploiting the possi-
bility to estimate an asymmetric distribution that enconpasses as special cases
the two main benchmarks considered by the theoretical literature on industrial
demography, namely the Gaussian and the Laplace densities.

2 Results

In this section we report the results of the estimation of the �ve parameters
asymmetric Subbotin function and of the subsequent dynamic analysis aimed

10This test is similar to a Kolmogorov-Smirnov test, but instead of using the maximum
di¤erence between two cdf�s, it uses the integrated di¤erence between them, weighted by the
pdf of the null hypothesis distribution.
11See Marsili et al. (2004).
12 It must be pointed out that Marsili et al. (2004) have �tted the four paraeters assymmetric

Subbotin density, which allows for asymmetry just in the tails parameters (b). In the present
work we will adopt the �ve parameters version, allowing for asymmetry also in the scale
parameters (a). The choice is justi�ed by the fact that the joint evidence on scale and tail
parameters on either side of the distribution allows to give an explanation of the dynamic
pattern observed in the empirical moments with respect to the rate of growth of GDP.
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at deepening our knowledge of the mechanisms generating the characteristic cor-
relations betweeen higher moments of the empirical distribution of the rates of
growth and the business cycle. The approach, which consists in �tting the dis-
tribution function to the empirical data and to analyse the dynamic properties,
in terms of stability and stationarity, has been widely exploited by other studies.
The novelty in this paper, largely made possible by the fact that in this context
we are coping with an asymmetric distribution, will be determined by the fact
that we will relate the estimated parameters to a measure of the business cycle,
namely the rate of growth of the GDP, in order to observe how macroeconomic
�uctuations impact on �rms lying on either side of the distribution.
Table 3 and 4 report the estimated parameters for UK and US (with the re-

spective descriptive statistics), which are plotted in Figure 3 and 4 respectively.

Insert Table 3 and 4 about here

Insert F igure 3 and 4 about here

Most of the times the shape parameters bl and br lye within the range [1; 2],
even though it must be pointed out that for both UK and US the estimated pa-
rameters never seem to match the two benchmarks discussed above. The right
shape parameter seems to be constantly bigger than the left counterpart both
for UK and US. In the UK case we observe an average bl of 1:377 and an average
br of 1:734, while for US bl averages to 1:167 and br to 1:727. Relying on the
estimated parameters we can envisage in both UK and US an estimated density
characterised by a high degree of asymmetry, which has a right hand side closer
to a Gaussian, and better approximated on the left hand side by a Laplace.
Figure 5 and 6 plot the shape and the scale parameter of each side against
their counterparts: clearly the resulting points do not accumulate along the 45�

degrees line, con�rming the presence of a remarkable degree of asymmetry. Fur-
thermore, estimates of the tail parameters exceed the Gaussian benchmark in
correspondence of periods of macroeconomic "turbulence", although increments
of bl and br above the threshold of 2 are not synchronised: in the case of UK
the estimated bl exceeds the threshold in 1975 and 1980-81, while the estimated
br exceeds 2 in 1973, 1986-89 and 1997-98. As regards US, estimated bl has its
periods of maximum in 1974 and 1981, while estimated br exceeds the threshold
in 1972-7, 1983-1987 and 1993-1998. As it is possible to infer from this obser-
vation, the estimated br appears to be somewhat more persistent in both cases
and the intuition is con�rmed from the analysis of the autocorrelation function
presented in Tables 5 and 6.

Insert Table 5 and 6 about here

Insert F igure 5 and 6 about here
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The same observation applies to the estimated scale parameters and to the
mean: all the parameters display a remarkable variability, particularly for UK.
In both cases the left hand side of the distribution, described in the present
context by bl and al, appears to display more variability. It is also possible
to observe that both the scale parameters and the left shape parameter for
US clearly exhibit a deterministic upward sloping trend, while the mean of the
estimated density exhibits a downward sloping trend, which will be taken into
consideration in the analysis of stationarity. The upward trend in the shape
parameters is consistent with the kurtosis of the empirical distribution (Figure
2), which stabilizes during the last part of the sample at a low level. An upward
sloping trend in the shape parameters, although bounded in the range [1; 2],
could be interpreted as the sign that the density is moving from the Laplace
towards the Gaussian benchmark.
Table 7 and 8 report the correlations among the estimated parameters.

Insert Table 7 and 8 abouthere

As regards UK, a strong positive correlation between the tail and the scale
parameter of each side (around 0:90 in both sides) can be observed. A moderate
negative correlation (�0:43) is observed both between the two tail parameters
and the two scale parameters (�0:16). The mean growth rate parameter displays
a low correlation with both the scale parameters and the left tail parameter,
while it appears to be almost uncorrelated with the right tail parameter.
Shifting the attention to US estimates, it is possible to observe that the

strong positive correlation between scale and tail parameters on either side is
observable also in this case (around 0:90 also in this case). The tail parameters
appear to be uncorrelated while the scale parameters have in this case a positive
correlation (0:48). Scale and tail parameters of either side have in this case a
negative correlation with the mean rate of growth.

2.1 Dynamic Analysis

In this subsection we study the dynamic properties of the estimated parameters
of the asymmetric Subbotin distribution. From the observation of the autocor-
relation functions (AC) reported in Table 5 and 6 it is possible to observe that
in the case of UK some form of autocorrelation, probably up to the �rst order,
is present in br and ar, while the left counterparts appear to be moderately
correlated with their own �rst order lags. In the case of US autocorrelation is
present in all the series but bl, which does not appear to be serially correlated.
We now turn to the evidence delivered by the partial autocorrelation functions
(PAC), in order to determine whether it is possible to discriminate between
any pure autoregressive or moving average process in the data. The PAC of a
pure AR(p) should cut o¤ at lag p, while the PAC of a pure moving average
process should gradually decline to zero: the last case is never detectable both
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in UK and US data. In any case the corresponding Q values con�rm the visual
impression arisen from the analysis of the AC and of the PAC functions of the
occurrence of serial correlation in the parameters of interest. Furthermore, any
form of autocorrelation disappears after taking �rst di¤erences of the series.
Another important issue is non stationarity: this aspect is extremely im-

portant in order to assess the properties of the estimated distribution in terms
of invariance and to proceed with the analysis of the responsiveness of the pa-
rameters of the same distribution to macroeconomic �uctuations, in order to
avoid any spurious regression. We carry out an Augmented Dickey-Fuller test
in which the lag-length is automatically selected relying on the Schwartz crite-
rion: we have also taken into consideration the presence of any deterministic
part in the speci�cation of the test from the observation of the series: as we
have already observed, a deterministic trend clearly emerges in all the parame-
ters but bl for US and ar in the case of UK. The presence of a unit root in the
underlying processes for UK parameters is detected in the case of ar and br:
the null hypothesis cannot be rejected at any signi�cance level for ar, while it
can be rejected only at 10% signi�cance level for br. As regards US the null hy-
pothesis must be rejected in all the cases. However, it must be pointed out that
the response of the simple Dickey-Fuller statistic13 of the parameters of interest
would have led to the acceptance of the null hypothesis of non stationarity in
most of the cases. Results are reported in Table 9 and 10.

Insert Table 9 and 10 about here

After these preliminary inspection we want to draw the attention to the
responsiveness of the parameters to macroeconomic �uctuations, captured by
the GDP rate of growth. The analysis aims at determining which side of the
distribution, described by the scale and the shape parameters, appears to be
more responsive to macroeconomic shocks, and hence to �nd a rationale for the
observed dynamic pattern of higher empirical moments detected by Higson et
al. (2002, 2004). Relying on the evidence provided by the descriptive statistics
and by the dynamic analysis of the series of interest, we specify the following
regression

(1� �1a(L))yt = �+ �t+ gt + "t (4)

where yt represents the parameter of interest, gt is the rate of growth of
the real GDP and "t is a serially uncorrelated error term. The results of the
estimation for UK and US are reported in Tables 11 and 12.

Insert Table 11 and 12 about here

13However it must be considered that the Dickey-Fuller statistic does not allow to cope with
problems of dynamic mis-speci�cation.
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As one would expect, both for UK and US, the estimated left tail and scale
parameters have a negative response to relative changes in GDP, while the esti-
mated right parameters have a pro-cyclical pattern. What is striking is that in
both cases the marginal response of bl and al is in absolute value bigger than the
marginal response estimated for br and ar; respectively. A positive response of
br to macroeconomic �uctuations means that the right tail of the distribution,
composed by �rms growing at a very fast pace, becomes thinner in expansion,
leading the distribution to move towards a Gaussian benchmark. The opposite
conclusion must be drawn for the left tail, composed by extremely declining
�rms, which appear to be more vulnerable over the phases of the business cycle.
Since the scale parameter is a measure of the width of the distribution, evidence
of a pro-cyclical right scale parameter and of a counter-cyclical left scale para-
meter means that during expansions dispersion around the mean on the right
hand side increases, while it decreases on the left side: hence during expansions
the right half of the distribution is better approximated by a Gaussian bench-
mark, which is characterised by a higher dispersion around the mean than the
Laplace benchmark, that is more peaked and �ts better the left half of the dis-
tribution. The overall response of the width of the distribution, approximated
by the algebraic sum of the relative responses of the scale parameters on ei-
ther side, implies that, consistently with Higson et al. (2002, 2004), dispersion
will decrease in expansion and will increase in recession. The evidence on the
overall responses in the tails and in the scale of the distribution can be related
to the evidence of a pro-cylical kurtosis and of a counter-cycical skewness and
standard deviation of the empirical distribution, as pointed out by Higson et
al. (2002, 2004). We can envisage a mechanism for which �rms growing at
a lower than mean rate (hence lying on the left side) are more responsive to
macroeconomic �uctuations and in expansion move towards the mean, while
in recessions they move further: the e¤ect is captured through the marginal
response of the left scale parameter, which is negative (counter-cyclical) and
in absolute value bigger than the marginal response of the right counterpart
(which is positive and hence pro-cyclical). Such a mechanism shed more light
on the mechanisms underlying the evidence provided by Higson et al. (2002,
2004). But our results allow to move a step forward: Higson et al. (2002, 2004)
base their interpretation of the occurrence of a counter-cyclical skewness on the
possibility that �rms with lower than mean growth rate are more responsive to
aggregate shocks, while �rms lying on either tail of the distribution are rela-
tively insulated from macroeconomic turbulence. The evidence of a left tail of
the distribution which appears to be more responsive than the right one does
not contradict the results provided by Higson et al. (2002, 2004) and allows to
explain why pro-cyclical kurtosis emerges. The explanation relies on the fact
that the overall response of the tails of the distribution to a relative change in
the GDP, captured by the algebraic sum of the marginal responses of br and
bl to gt, is negative and hence the distribution becomes relatively more peaked
during expansions and exhibits a lower 4th central moment during recessions.
Thus, the joint evidence of the occurrence of a counter-cyclical skewness and

of a pro-cyclical kurtosis is con�rmed by our analysis and �nd a common root
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in the greater responsiveness of �rms growing at a lower than mean rate to
macroeconomic shocks than �rms growing at a bigger than mean rate, and of a
greater responsiveness of the left tail relative to the right one. To conclude, the
visual impression of the resulting density, expressed by the diagram reported in
Figure 8, is that during expansion phases we will observe a left hand side closer
to a Laplace density, with a fat tail and more peaked than a Normal, and a right
hand side closer to a Gaussian benchmark, with greater standard deviation and
a thinner tail: the overall result will be a density characterised by a negative
skewness. Opposite results hold during recession phases (see Figure 8.b).

Insert F igure 8 about here

It might be argued that the rate of growth of real GDP is a rather crude
measure of the business cycle. For this reason we have replicated the empir-
ical exercise stated by equation (4) by considering as cyclical component the
output gap, which has been obtained by detrending the series of the output
through a Kalman �lter technique. In particular, the technique implemented
is based on Kuttner�s (1994) bivariate model, which involves a Phillips-curve
regression. Kuttner�s (1994) model associates to a classical decomposition a
regression whose regressors include unobserved quantities such as the output
gap and its lags. The implementation is based on state-space models, with the
model parameters estimated by exact maximum likelihood. The technique in-
volves running the Kalman recursions with de Jong�s di¤use initialisation (de
Jong (1991)14), and a smoother that produces the unobserved quantities.
The results of the estimation for each Subbotin parameter, reported in Tables

13 and 14 , con�rm the empirical evidence detected in the case of the regression
of the same parameters on the rate of growth of real GDP. Focusing on the tails,
both for UK and US, the response of bl to an increase in output gap is negative,
denoting an increase in the degree of kurtosis of the left tail; opposite evidence
holds for br, which in every case has in absolute value a smaller response than
the one detected for the left tail.

Insert Table 13 and 14 about here

14The di¤use Kalman �lter, introduced by de Jong (1991), serves at the exact initialisation
of the �lter when the state vector contains non-stationary elements. This feature avoids
specifying an initial set of priors to initialise the algorithm. When the transition equation is
non-stationary, the unconditional distribution of the state vector is not de�ned. This means
that, unless good informative priors are available, the initial distribution of the state vector
must be speci�ed in terms of a di¤use (non-informative) prior. For details concerning the
initialisation we refer the reader to the original paper.
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2.1.1 The Financial Accelerator as a Driver of the Dynamics of the
Distribution

In line with several authors15 who have analysed the implications of �nancial
structure for the dynamics of �rms�rate of growth distribution, we argue that
the greater responsiveness of the left tail of the distribution can be determined
by �nancing constraints, which appear to be more relevant to declining �rms.
In order to �nd empirical support for our conjecture, we now consider one of

the theoretical mechanisms that have been formalised by the literature on the
credit view of the MPTM, widely regarded as the �nancial accelerator16 . Over
the last decade, theoretical macroeconomic frameworks have stressed the impor-
tance of �nancial factors in generating, propagating and amplifying macroeco-
nomic �uctuations. The choice of the �nancial accelerator as a possible trans-
mission channel of aggregate shocks is principally due to the fact that more
recent models featuring a �nancial accelerator have been developed to the point
where they are now useful for providing a quantitative assessment of how much
this mechanism might contribute to explaining aggregate �uctuations.
The main ingredients at the root of the mechanism are the following. First,

there is some friction present in the �nancial market, often due to the pres-
ence of asymmetric information or to monitoring costs. This imperfections of
the market mechanism introduce a wedge between the cost of external funds
and the opportunity cost of internal funds, which is widely recognised as "the
premium for external funding". The premium is an endogenous variable and
depends inversely on the balance sheet strength of the borrower. Finally, bor-
rowers��nancial positions depend positively on aggregate economic activity (e.g.
in a boom, asset values and cash �ows rise relative to debt, and vice-versa in
a downturn). The procyclical behavior in borrowers��nancial positions implies
countercyclical movement in the premium for external funding17 . This counter-
cyclical movement in the premium serves at amplifying borrower�s spending.
In order to empirically detect possible asymmetries in the propagation of

shocks to �rms growing at di¤erent rates, we consider as explanatory variable
the high bond yield spread. Gertler and Lown (1999) successfully identify the
vertical spread between corporate bonds of di¤ering risk as a proxy for the way
in which the �nancial accelerator works to propagate shocks, both real and
nominal. Gertler and Lown (1999) justify the choice of the spread between the
high yield bond rate and the corresponding safe interest rate as informational

15See for instance Cabral and Mata (2003) and Battacharjee et al. (2004).
16See Bernanke et al. (1999).
17Bernanke et al. (1999) have emphasised that external �nance is more expensive than

internal �nance and that since the cost to get external funds is positively a¤ected from the
presence informative asymmetries between borrowers and lenders, the external �nance pre-
mium should be inversely proportional to the level of net worth. This evidence implies that,
if in presence of downturns or contractionary monetary policy actions agency costs increase
and consequently �nancial intermediaries increase collateral requirements, then the fraction of
loans allotted to high agency cost borrowers should consequentely decrease: this phenomenon
has been de�ned �ight-to-quality e¤ ect.
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variable on the business cycle on the basis of two reasons: �rstly, they claim
that the spread might be a suitable measure of overall �nancial conditions, which
can o¤er a way to detect evidence of the role of credit market frictions in the
ampli�cation and propagation of business cycles, along the lines suggested by
the recent theoretical work on the �nancial accelerator; secondly, they consider
the increasing evidence on the use of �nancial indicators in relation to their
informational content for forecasting and policy, providing evidence of the high
yield spread as one of the most reliable indicators. In our case we de�ne the
vertical spread as the di¤erence between Moody�s seasoned Baa corporate bond
yield and 10 years treasury bond yield: the spread is denoted by st in the
following equation and it has been plotted in Figure 9.

(1� �1a(L))yt = �+ �t+ st + "t (5)

As in the previous case, yt represents the parameter of interest, while "t is a
serially uncorrelated error term. Estimation results of equation (5) for US have
been reported in Table15.

Insert Table 15 about here

Insert F igure 9 about here

From this empirical exercise it clearly emerges that the vertical spread has
no explanatory power for the right parameters ar and br, given that the corre-
sponding t-ratio statistic falls in the acceptance region for the null hypothesis
(H0 :  = 0), which probably means that �nancial accelerator does not a¤ect
the dynamics of �rms growing at a positive pace.
On the contrary, the spread has a strong positive impact on the left tail pa-

rameter bl, which is in line with what we might expect on theoretical grounds.
Given that the spread (which is a proxy for the premium for external funds) has
a counter-cyclical behaviour, a positive sign of the parameter  in the estimated
equation for bl means that an increase in the premium, which is usually associ-
ated with a declining aggregate economy, determines a decrease in the degree of
kurtosis of the left tail, which is perfectly in line with the results obtained from
previous analyses on the impact of aggregate activity on the distribution.
This simple empirical exercise shows how actually a �nancial accelerator

mechanism might be at work in the dynamics of the �rms�rate of growth dis-
tribution.

Conclusions

The present work has focused on the dynamic properties of the distribution of
the rate of growth for quoted UK and US companies. As regards the higher
moments of the empirical distribution, we support the evidence provided by
Higson et al. (2002, 2004) of a negative correlation between the rate of growth
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of the GDP and the standard deviation and skewness of the distribution, while
Kurtosis exhibits a procyclical pattern.
In order to observe the presence of any asymmetry in the response of the dis-

tribution to macroeconomic shocks, we �t the asymmetric Subbotin distribution
introduced by Bottazzi and Secchi (2003). The choice of the Subbotin distrib-
ution as instrument for imposing structure on the available data is determined
by the fact that such distribution encompasses as special cases (depending on
the values assumed by the shape parameter b) the two main benchmarks con-
sidered by the theoretical literature on the �rms�rate of growth distribution:
the Gaussian distribution, postulated by Gibrat, and the Laplace distribution,
which has been introduced by Stanley et al. (1996), Amaral et al. (1997) and
Bottazzi and Secchi (2003) in order to consider a fat-tailed distribution that has
been found to �t better the data.
The estimated parameters of interest appear quite volatile both for UK and

US, particularly in the case of the right scale and shape parameters. All the US
estimated parameters but the left tail one are characterised by the occurrence
of a deterministic positive trend.
The resulting distributions appear quite skewed, never being close to the

two proposed benchmarks, but showing signi�cant departures during period of
greater macroeconomic turbulence. Some serial correlation, generally limited to
the �rst order, arises from the analysis of the AC and the PAC functions. As
regards the analysis of stationarity, our study highlights the presence of a unit
root in the underlying process of most of the UK and US parameters, while the
augmented version of the test is able to detect the presence of a unit root only
for the right parameters of UK.
We then focus on the responsiveness of the parameters to macroeconomic

�uctuations, which are described by the GDP rate of growth. The analysis aims
at determining which side of the distribution, described by the scale and the
shape parameters, appears to be more responsive to macroeconomic shocks, and
hence to �nd a rationale for the observed dynamic pattern of higher empirical
moments detected by Higson et al. (2002, 2004).
As one would expect, both for UK and US, the estimated left tail and scale

parameters have a negative response to relative changes in GDP, while the es-
timated right parameters have a pro-cyclical pattern. What is striking is that
in both cases the marginal response of bl and al is bigger than the marginal re-
sponse estimated for br and ar; respectively. A positive response of br to macro-
economic �uctuations means that the right tail of the distribution, composed
by �rms growing at a very fast pace, becomes thinner in expansion, moving to-
wards a Gaussian benchmark. Opposite conclusions must be drawn for the left
tail, composed by extremely declining �rms, which appear to be more vulnera-
ble over the phases of the business cycle. As the scale parameter is a measure
of the width of the distribution, evidence of a pro-cyclical right scale parame-
ter and of a counter-cyclical left scale parameter means that during expansions
dispersion around the mean on the right hand side increases, while it decreases
on the left side: hence during expansions the right half of the distribution is
better approximated by a Gaussian benchmark, which is characterised by an
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higher dispersion around the mean than the Laplace benchmark, that is more
peaked and �ts better the left half of the distribution. The overall response of
the width of the distribution, approximated by the algebraic sum of the relative
responses of the scale parameters al and ar implies that, consistently with Hig-
son et al. (2002, 2004), dispersion will decrease in expansion and will increase
in recession. Furthermore, Higson et al. (2002, 2004) base their interpretation
of the occurrence of a counter-cyclical skewness on the possibility that �rms
with lower than mean growth rate are more responsive to aggregate shocks,
while �rms lying on either tail of the distribution are relatively insulated from
macroeconomic variation. The evidence of a left tail of the distribution which
appears to be more responsive than the right one does not contradict the results
provided by Higson et al. (2002, 2004) and allows to explain why pro-cyclical
kurtosis emerges. The explanation relies on the fact that the overall response
of the tails of the distribution to a relative change in the GDP, captured by
the algebraic sum of the marginal responses of br and bl to the rate of rgowth
of GDP, is negative and hence the distribution becomes relatively more peaked
during expansions and exhibits a lower 4th central moment during recessions.
The paper supports the evidence provided by Battacharjee et al. (2004)

and Higson et al. (2002, 2004), who claim that extremely declining and growing
�rms appear to be substantially insulated from movements in interest rate and in
GDP relative to lower than medium rate growing �rms: this mechanism explains
why counter-cyclical skewness emerges. We move also a step forward showing
that the left tail parameter (inversely related to the kurtosis) and the scale
parameter (positively related to the standard deviation) of the �tted asymmetric
distribution are more responsive to changes in the GDP relative to their right
counterparts: this evidence completes the puzzle and explains why counter-
cyclical standard deviation and pro-cyclical kurtosis emerge.
In line with Cabral and Mata (2003) and Battacharjee et al. (2004), although

with some theoretical departures, we argue that the greater responsiveness of
the left tail of the distribution can be determined by �nancing constraints, which
appear to be more relevant to declining �rms. Cabral and Mata (2003) start
from the observation that �nancial constraints are a signi�cant determinant of
�rms�investment decisions and that in particular this statement seems to be true
for young �rms. Battacharjee et al. (2004) assume a di¤erent perspective and
show how the monetary transmission mechanism mainly a¤ects medium range
growing quoted �rms. The authors argue that the credit view of the monetary
policy transmission mechanism (MPTM) could provide an explanation of the
stylised facts highlighted, arguing that �rms growing in the medium range are
the ones likely to rely more on external �nance and hence are the ones more
a¤ected in terms of production and investment decisions by marginal changes in
the cost of external �nance. This new evidence is somehow in contrast with the
classical credit view of the MPTM, which predicts that the impact of monetary
decisions propagated through the credit market (both for the lending and the
balance sheet channel) should have a grater e¤ect on smaller �rms, which are
the ones likely to rely more on external �nance.
On the basis of the evidence we have provided, we argue that in a regime of
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equity rationing (See Mayers and Majluf (1984)), extremely declining �rms are
severely constrained in the access to external �nance both on the equity and
on the credit market, thus they cannot exploit the new business opportunities
that come in an expansion phase due to the lack of liquidity. On the other
hand, �rms growing at an extremely fast pace can account on a su¢ cient degree
of internally generated funds and in any case can o¤er good collaterals on the
credit market: however, as Higson et al. (2002) point out, it can be the case that
these �rms are overstretched and have little slack to meet the higher demand
that recovery brings. Opposite implications hold in a recession phase. This
mechanism can explain the greater responsiveness to business �uctuations of
the left tail of the distribution of rates of growth relative to the right one and
hence the occurrence of pro-cyclical kurtosis in the data.
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Table 1
Descriptive Statistics: UK Rates of Growth of Sales, 19681997

Year  Mean  Std. Dev.  Skewness  Kurtosis CvM  Observations
1968 0.039 0.107 0.134 4.669 3.877 1453
1969 0.028 0.111 0.257 4.175 3.854 1800
1970 0.016 0.108 0.025 5.180 11.714 1790
1971 0.006 0.101 0.031 5.352 13.944 1756
1972 0.014 0.105 0.134 5.051 13.390 1728
1973 0.074 0.115 0.261 3.706 9.685 1786
1974 0.025 0.112 0.114 4.988 12.156 1785
1975 0.048 0.119 0.411 4.111 12.167 1753
1976 0.012 0.110 0.119 4.843 12.654 1742
1977 0.028 0.109 0.165 4.839 12.702 1756
1978 0.015 0.103 0.027 5.745 14.939 1717
1979 0.001 0.104 0.184 5.754 15.455 1777
1980 0.046 0.117 0.114 4.484 12.039 1790
1981 0.053 0.126 0.285 3.970 13.993 1770
1982 0.004 0.112 0.204 5.447 15.794 1777
1983 0.018 0.118 0.112 5.285 15.788 1785
1984 0.045 0.119 0.232 4.924 14.859 1740
1985 0.031 0.121 0.196 4.826 15.825 1771
1986 0.044 0.127 0.314 4.361 15.824 1717
1987 0.041 0.127 0.309 4.330 15.930 1694
1988 0.060 0.129 0.439 3.956 15.885 1684
1989 0.050 0.133 0.217 3.994 14.772 1753
1990 0.012 0.130 0.097 4.479 14.625 1797
1991 0.027 0.126 0.026 4.423 14.548 1786
1992 0.010 0.121 0.033 5.134 18.387 1783
1993 0.018 0.115 0.059 5.264 18.212 1757
1994 0.040 0.118 0.146 4.789 17.105 1765
1995 0.045 0.116 0.434 4.651 17.700 1797
1996 0.034 0.117 0.342 5.018 19.264 1790
1997 0.029 0.120 0.359 4.556 18.890 1787
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Table 2
Descriptive Statistics: US Rates of Growth of Sales, 19511998

Year  Mean  Std. Dev.  Skewness  Kurtosis CvM Observations
1951 0.002 0.105 0.536 6.032 9.599 1032
1952 0.045 0.100 0.457 5.570 7.571 1060
1953 0.000 0.101 0.386 5.563 7.937 1052
1954 0.075 0.108 0.412 4.147 4.534 1060
1955 0.067 0.102 0.766 5.125 6.939 1077
1956 0.027 0.101 0.545 6.107 10.266 1110
1957 0.009 0.112 0.185 5.679 9.360 1134
1958 0.073 0.100 0.761 4.178 6.413 1187
1959 0.038 0.098 0.608 5.081 7.598 1225
1960 0.051 0.118 0.153 4.370 6.406 2378
1961 0.069 0.115 0.084 4.747 7.088 2047
1962 0.049 0.112 0.014 4.973 7.467 2329
1963 0.071 0.116 0.078 4.517 5.351 2554
1964 0.084 0.116 0.044 4.460 4.099 2679
1965 0.095 0.117 0.023 4.112 3.525 2806
1966 0.049 0.122 0.211 3.992 5.897 2972
1967 0.075 0.125 0.019 4.069 5.226 3027
1968 0.073 0.123 0.104 4.050 6.740 3256
1969 0.015 0.133 0.020 3.807 5.759 3468
1970 0.026 0.135 0.107 4.049 7.361 3569
1971 0.072 0.125 0.107 4.217 5.648 3719
1972 0.108 0.125 0.284 3.977 1.537 3768
1973 0.078 0.145 0.327 3.489 2.070 4135
1974 0.027 0.158 0.020 3.003 2.349 5481
1975 0.020 0.142 0.108 3.520 5.458 5610
1976 0.054 0.137 0.345 3.997 6.635 5636
1977 0.065 0.134 0.355 3.925 5.071 5527
1978 0.068 0.141 0.290 3.742 4.829 5300
1979 0.028 0.149 0.177 3.337 3.760 5136
1980 0.016 0.151 0.009 3.292 4.492 5157
1981 0.046 0.155 0.191 3.197 2.832 5009
1982 0.008 0.161 0.042 3.074 4.370 5168
1983 0.066 0.153 0.233 3.309 3.059 5180
1984 0.019 0.161 0.045 3.136 4.109 5202
1985 0.027 0.168 0.144 3.024 3.642 5141
1986 0.054 0.161 0.285 3.162 2.720 5435
1987 0.059 0.157 0.300 3.310 4.118 5481
1988 0.039 0.152 0.200 3.331 4.910 5513
1989 0.023 0.151 0.090 3.347 5.380 5543
1990 0.006 0.153 0.129 3.259 4.428 5632
1991 0.019 0.153 0.004 3.269 5.677 5716
1992 0.044 0.154 0.129 3.204 4.548 5897
1993 0.063 0.150 0.183 3.247 3.257 6552
1994 0.081 0.155 0.344 3.237 1.945 6626
1995 0.072 0.155 0.233 3.215 3.684 7000
1996 0.066 0.154 0.227 3.308 4.907 7000
1997 0.047 0.157 0.143 3.287 10.831 6988
1998 0.048 0.146 0.057 3.636 23.685 6987
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Table 3
Asymmetric Subbotin Parameters: ML Estimation for UK
Year bl br al ar mean loglikelihood
1968 0.984 1.749 0.073 0.126 0.002 0.768
1969 1.450 1.244 0.100 0.100 0.033 0.732
1970 1.058 1.317 0.092 0.104 0.010 0.700
1971 1.251 1.533 0.098 0.110 0.002 0.706
1972 1.238 1.682 0.107 0.114 0.014 0.663
1973 1.014 2.578 0.088 0.153 0.056 0.680
1974 1.552 1.337 0.131 0.103 0.061 0.607
1975 2.333 1.456 0.163 0.110 0.030 0.560
1976 1.572 1.554 0.134 0.107 0.041 0.603
1977 1.309 1.665 0.110 0.121 0.033 0.629
1978 1.292 1.234 0.109 0.094 0.036 0.689
1979 1.176 1.299 0.091 0.113 0.019 0.677
1980 2.123 1.165 0.144 0.107 0.038 0.589
1981 3.211 1.108 0.206 0.102 0.003 0.505
1982 1.539 1.270 0.137 0.101 0.025 0.584
1983 1.205 1.543 0.112 0.133 0.010 0.540
1984 1.003 1.728 0.100 0.141 0.032 0.566
1985 1.169 1.538 0.114 0.133 0.030 0.525
1986 1.089 2.277 0.107 0.181 0.008 0.476
1987 1.131 2.465 0.108 0.190 0.001 0.465
1988 1.051 3.169 0.099 0.213 0.010 0.489
1989 1.108 3.167 0.115 0.211 0.007 0.437
1990 1.450 1.985 0.130 0.171 0.013 0.423
1991 1.884 1.771 0.130 0.169 0.075 0.445
1992 1.505 1.439 0.131 0.137 0.021 0.474
1993 1.384 1.510 0.130 0.123 0.035 0.527
1994 1.052 1.913 0.110 0.143 0.037 0.544
1995 1.138 1.877 0.103 0.148 0.033 0.562
1996 1.080 1.721 0.103 0.148 0.014 0.536
1997 1.260 2.183 0.109 0.174 0.005 0.496
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Table 4
Asymmetric Subbotin Parameters: ML Estimation for US
Year bl br al ar mean loglikelihood
1951 1.299 0.930 0.098 0.092 0.011 0.712
1952 0.905 1.121 0.072 0.092 0.042 0.822
1953 1.273 1.189 0.114 0.079 0.032 0.737
1954 0.860 1.350 0.072 0.104 0.072 0.803
1955 0.856 1.154 0.058 0.101 0.049 0.859
1956 0.902 0.887 0.071 0.085 0.024 0.810
1957 1.228 0.855 0.118 0.077 0.029 0.671
1958 0.871 1.308 0.053 0.107 0.046 0.900
1959 1.144 1.170 0.076 0.096 0.032 0.821
1960 1.048 1.199 0.087 0.105 0.040 0.701
1961 0.720 1.236 0.066 0.108 0.035 0.780
1962 0.883 1.130 0.076 0.095 0.036 0.779
1963 0.771 1.230 0.073 0.102 0.050 0.770
1964 0.729 1.720 0.067 0.131 0.032 0.767
1965 0.827 1.694 0.069 0.131 0.049 0.751
1966 1.192 1.429 0.090 0.122 0.025 0.666
1967 0.875 1.412 0.083 0.121 0.046 0.671
1968 0.833 1.575 0.073 0.135 0.021 0.691
1969 1.368 1.245 0.123 0.109 0.028 0.574
1970 1.101 1.240 0.110 0.112 0.026 0.572
1971 0.817 1.602 0.079 0.131 0.028 0.675
1972 0.807 2.512 0.079 0.161 0.048 0.687
1973 1.087 2.595 0.115 0.170 0.042 0.506
1974 2.359 1.563 0.189 0.135 0.011 0.401
1975 1.325 1.526 0.125 0.128 0.019 0.520
1976 0.996 1.594 0.106 0.124 0.039 0.584
1977 0.962 1.844 0.101 0.135 0.038 0.600
1978 0.970 1.940 0.104 0.150 0.031 0.543
1979 1.363 1.854 0.134 0.146 0.021 0.466
1980 1.397 1.738 0.127 0.155 0.006 0.451
1981 2.558 1.242 0.188 0.125 0.002 0.425
1982 1.640 1.685 0.157 0.152 0.013 0.381
1983 1.164 2.270 0.123 0.171 0.033 0.450
1984 1.420 1.933 0.138 0.172 0.007 0.383
1985 1.535 2.045 0.159 0.170 0.021 0.342
1986 1.375 2.452 0.148 0.173 0.041 0.392
1987 1.149 2.230 0.130 0.168 0.033 0.425
1988 1.182 1.954 0.124 0.158 0.014 0.451
1989 1.191 1.843 0.118 0.161 0.011 0.453
1990 1.608 1.542 0.136 0.150 0.018 0.437
1991 1.306 1.684 0.124 0.156 0.007 0.439
1992 1.228 2.080 0.123 0.171 0.008 0.434
1993 1.124 2.565 0.111 0.188 0.007 0.471
1994 1.187 3.148 0.126 0.193 0.038 0.449
1995 1.051 2.802 0.112 0.200 0.009 0.445
1996 1.051 2.737 0.114 0.199 0.006 0.439
1997 1.241 2.489 0.134 0.190 0.012 0.381
1998 1.225 2.384 0.131 0.179 0.026 0.412
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Table 7
Correlation between Subbotin parameter estimates: UK

al ar bl br mean
al 1.000
ar 0.168 1.000
bl 0.906 0.358 1.000
br 0.274 0.919 0.438 1.000

mean 0.276 0.221 0.389 0.011 1.000

Table 8
Correlation between Subbotin parameter estimates: US

al ar bl br mean
al 1.000
ar 0.489 1.000
bl 0.887 0.178 1.000
br 0.346 0.941 0.018 1.000

mean 0.587 0.401 0.573 0.147 1.000

Table 9: Augmented DickeyFuller (ADF) test statistic for UK

bl br al ar mean

ADF 3.504 2.871 4.255 2.626 4.151

Crtitical Values

1% level 3.662 3.662 3.670 4.285 3.670

5% level 2.960 2.960 2.964 3.563 2.964

10% level 2.619 2.619 2.621 3.215 2.621

pvalue 0.015 0.060 0.002 0.272 0.003

Table 10: Augmented DickeyFuller (ADF) test statistic for US

bl br al ar mean

ADF 4.612 4.334 4.664 4.731 6.330

Crtitical Values

1% level 3.574 4.166 4.161 4.166 4.161

5% level 2.924 3.509 3.506 3.509 3.506

10% level 2.600 3.184 3.183 3.184 3.183

pvalue 0.001 0.006 0.003 0.002 0.000
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Table11
Effect of aggregate GDP on the Subbotin parameters: OLS estimation for UK

bl br al ar

Constant 1.365 0.373 0.087 0.017
tstat 7.100 1.860 6.500 1.300

Deterministic Trend
tstat

Lagged Dependent Variable(1) 0.268 0.616 0.412 0.317
tstat 2.270 5.940 3.830 2.410

Lagged Dependent Variable(2)
tstat

GDP Rate of Growth 15.197 13.807 0.765 0.669
tstat 5.930 5.220 5.990 4.650

RSquared 0.627 0.681 0.665 0.477

DW 2.530 2.330 2.180 2.080

LMtest 1.960 0.598 0.795 1.531
pvalue 0.161 0.558 0.462 0.235

Table12
Effect of aggregate GDP on the Subbotin parameters: OLS estimation for US

bl br al ar

Constant 1.086 0.422 0.059 0.052
tstat 8.540 2.820 3.130 4.450

Deterministic Trend 0.009 0.018 0.001 0.002
tstat 2.620 3.340 3.220 4.150

Lagged Dependent Variable(1) 0.435 0.237 0.314
tstat 3.210 2.240 2.070

Lagged Dependent Variable(2)
tstat

GDP Rate of Growth 4.752 3.105 0.183 0.096
tstat 2.310 1.980 1.960 2.300

RSquared 0.230 0.736 0.500 0.869

DW 1.850 1.630 1.950 1.860

LMtest 1.432 1.598 0.010 0.971
pvalue 0.250 0.215 0.991 0.387
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Table13
Effect of Kalman Filtered GDP on the Subbotin parameters: OLS estimation for UK

bl br al ar

Constant 1.088 0.978 0.082 0.003
tstat 4.120 3.830 4.350 0.710

Deterministic Trend
tstat

Lagged Dependent Variable(1) 0.211 0.453 0.301 0.308
tstat 2.070 3.180 1.880 1.810

Lagged Dependent Variable(2)
tstat

Output Gap 15.750 13.335 0.732 0.504
tstat 2.180 2.500 2.630 1.890

RSquared 0.535 0.484 0.387 0.250

DW 2.480 2.030 2.290 2.190

LMtest 3.265 0.332 2.250 0.583
pvalue 0.057 0.721 0.126 0.565

Table14
Effect of Kalman Filtered GDP on the Subbotin parameters: OLS estimation for US

bl br al ar

Constant 0.944 0.499 0.052 0.049
tstat 13.100 3.810 5.710 5.230

Deterministic Trend 0.009 0.017 0.001 0.001
tstat 3.490 3.690 4.680 5.090

Lagged Dependent Variable(1) 0.551 0.464 0.249 0.387
tstat 4.320 4.040 2.390 3.430

Lagged Dependent Variable(2) 0.412 0.283
tstat 2.840 1.890

Output Gap 16.224 10.292 1.112 0.513
tstat 6.520 3.880 6.280 4.990

RSquared 0.551 0.788 0.733 0.915

DW 2.230 2.010 2.200 2.050

LMtest 2.311 1.010 0.719 0.237
pvalue 0.112 0.3785 0.497 0.791
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Table15
Effect of Vertical Spread on the Subbotin parameters: OLS estimation for US

bl br al ar

Constant 0.702 0.647 0.052 0.056
tstat 6.280 3.250 4.640 4.230

Deterministic Trend 0.020 0.001 0.002
tstat 3.240 4.200 4.180

Lagged Dependent Variable(1) 0.426 0.178 0.337
tstat 2.980 0.950 2.300

Lagged Dependent Variable(2)
tstat

Vertical Spread 0.489 0.168 0.043 0.005
tstat 4.500 1.350 3.420 1.000

RSquared 0.315 0.724 0.596 0.867

DW 2.070 1.930 1.970 1.760

LMtest 1.465 1.980 2.560 2.125
pvalue 0.243 0.158 0.086 0.133
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Moments of the empirical distribution against the rate of growth of GDP: US
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Figure 3: Estimated Subbotin parameters for UK
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Figure 8: Benchmarks of the distribution during expansion and recession
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