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Abstract. In this paper we study Maximum Likelihood Estimation of the parameters of a Pareto mixture. Application

of standard techniques to a mixture of Pareto is problematic. For this reason we develop two alternative algorithms.

The first one is the Simulated Annealing and the second one is based on Cross-Entropy minimization. The Pareto

distribution is a commonly used model for heavy-tailed data. It is a two-parameter distribution whose shape parameter

determines the degree of heaviness of the tail, so that it can be adapted to data with different features. This work

is motivated by an application in the operational risk measurement field: we fit a Pareto mixture to operational

losses recorded by a bank in two different business lines. Losses below an unknown threshold are discarded, so that

the observed data are truncated. The thresholds used in the two business lines are unknown. Thus, under the

assumption that each population follows a Pareto distribution, the appropriate model is a mixture of Pareto where all

the parameters have to be estimated.

1 Introduction

Parameter estimation of the parameters of a finite mixture distribution is a well-known topic in the

statistical literature. The starting point is the pioneering contribution by Pearson (1894), who tried

to use the method of moments for the estimation of the parameters of a two-population normal

mixture. Currently, two main approaches play a key role in this setup: the likelihood-based and

the Bayesian approach. In the present paper we will focus on the first one. It is well known that

Maximum Likelihood Estimation (MLE) of the parameters of a finite mixture is rather difficult,

because the likelihood equations are highly nonlinear. A major step further was the introduction of
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the EM algorithm (Dempster et al. 1977). This algorithm is mainly designed for the maximization

of likelihood functions with missing data, but can often be applied in non-missing data frameworks.

The Pareto distribution was introduced by the Italian economist Pareto as a model for income

distribution, and has subsequently been used mostly as a model for heavy-tailed data, in particular in

hydrology, insurance and finance. In all of these fields, a small number of very large observations is of

crucial importance for the computation of some quantity of interest. For example, the estimation of

a large quantile (say 99% or more) depends heavily on few observations in the right tail. In this case

it is extremely important to choose a probabilistic model that accounts for these observations. The

Pareto distribution is a two-parameter distribution whose shape parameter determines the degree

of heaviness of the tail, so that it can be adapted to data with different features.

The density of a k-population Pareto mixture is the convex combination of k Pareto densities.

When k = 2, it is possible to build mixtures with (i) the same location and different shapes or (ii)

the same shape and different locations or (iii) different shapes and locations. The first setup is easier

to deal with, as estimation can be performed by means of the EM algorithm.

The mixture of two Pareto distributions obtained in case (i), namely under the restriction a1 =

a2, sometimes called double Pareto distribution, has recently been employed in various fields of

application. In particular, it has been proposed for the statistical analysis of the Chinese airport

network (Li and Cai, 2004) and as a model for human settlements, income, and size distributions

(Reed, 2002, 2003; Reed and Jorgensen, 2004). On the theoretical side, Nadarajah (2004) derived

the Fisher information matrix.

As will be shown below, when a1 6= a2 the EM algorithm breaks down. Thus, in this paper we

study MLE of a general Pareto mixture, namely a Pareto mixture corresponding to (iii). From the

methodological point of view, the paper originates from the remark that the EM algorithm cannot

be applied if the largest of the two location parameters is not known, so that the most common

numerical procedure used for MLE in a mixture setup has to be ruled out. For this reason we

develop two alternative algorithms; the first one is the Simulated Annealing and the second one is

based on Cross-Entropy minimization. From an applied point of view, a general Pareto mixture can

be used as a model for heavy-tailed data sampled from k different populations: in particular, we

will present an example based on loss data from the field of operational risk.

The rest of the paper is organized as follows. Section 2 outlines MLE of a Pareto mixture and

gives some details about the failure of the EM algorithm. Sections 3 and 4 respectively show how to

implement the Simulated Annealing and the Minimum Cross-Entropy algorithms. Section 5 presents

a detailed simulation study of the properties of the two approaches and an example based on real

data. Finally, Section 6 discusses the results and reviews the problems open for future research.
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2 Maximum Likelihood Estimation of a Pareto mixture

The density of a Pareto r.v. Y is given by

f(y; a, c) =
cac

yc+1
1{y≥a}, (1)

where a, c ∈ R+ and 1{y≥a} is the indicator function of the set {y ≥ a}. Given a random sample

y1, . . . , yn from the Pareto distribution with density (1), it is well known that the MLEs of the

parameters are

â = min
1≤i≤n

yi, ĉ =
n∑n

i=1 yi log(yi/â)
.

It is quite clear that the partial derivative ∂l(a, c; y)/∂a of the log-likelihood function does not exist

in â, where the log-likelihood is not continuous. Although this feature does not keep us from finding

the MLE of the parameters of a single Pareto r.v., this is going to be a major problem in the mixture

setup.

2.1 The EM algorithm in the Pareto mixture case

The EM algorithm is the preferred method for MLE of finite mixture distributions. However, the

purpose of the algorithm is more general, as it is an iterative method for MLE with missing data.

In order to fix the notation we summarize here the main features of the algorithm referring the

interested reader to McLachlan and Krishnan (1996) for details.

Let Y be the p-dimensional random vector of the observed data, g(y; θ) its density function and

l(θ) the corresponding log-likelihood function, where θ ∈ Θ is the parameter vector. Let Z be the

(hypothetical) vector of missing data, which are unobservable, but whose knowledge would allow

for a straightforward application of the maximum likelihood method. Finally, let X = (Y , Z) be

the complete-data vector, whose density and log-likelihood functions will be denoted respectively

by gc(x; θ) and lc(θ).

The first step of the algorithm (called E-step, where E stands for Expectation) consists in

computing the conditional expectation of the complete log-likelihood lc(θ), given the current value

of θ and the observed data y. The second step (M -step, where M stands for Maximization)

consists in maximizing, with respect to θ, the conditional expectation of the complete log-likelihood

computed in the E-step.

Formally, the algorithm can be described as follows: let θ(0) be the initial value of the parameters

vector; the E-step computes

Q(θ;θ(0)) = Eθ(0){lc(θ)|y}.
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Then one maximizes Q(θ; θ(0)) with respect to θ, i.e. one chooses θ(1) such that

Q(θ(1);θ(0)) ≥ Q(θ;θ(0)), ∀θ ∈ Θ.

To obtain the estimators, the two steps are iterated until some convergence criterion is met. The

convergence of the algorithm is relatively slow, but typically does not depend on the choice of the

starting value; the estimators enjoy the usual properties of MLEs, in particular they are consistent

and asymptotically normal.

One of the reasons why the algorithm was successful is the fact that it is also suitable for the

solution of problems where no data are missing. This is the case of MLE of the parameters of a

finite mixture distribution. Let Z = (Z1, . . . , Zk)′ be a multinomial random vector, Zj = 0 or 1

for all j = 1, . . . , k,
∑k

j=1 Zj = 1, and πj = P (Zj = 1), where
∑k

j=1 πj = 1. Let X be a random

variable such that, conditionally on Zj = 1, X ∼ fj , where fj is a pdf. Then the joint pdf of Z and

X is

fZ,X(z, x) =
k∏

j=1

[πjfj(x)]zj , x ∈ R, all zj = 0 or 1,
k∑

j=1

zj = 1.

The marginal density of X is the mixture pdf:

fX(x) =
k∑

j=1

πjfj(x). (2)

The conditional distribution of Zj given X, is given by

τjx = P [Zj = 1|X = x] =
πjfj(x)
fX(x)

= E[Zj |X = x],

and P [Zj = 0|X = x] = 1− τjx. The τjx are commonly referred to as posterior probabilities.

Let’s now specialize (2) to the case where k = 2 and fj is given by (1), namely the density of a

Pareto distribution:

f(x; π, a1, c1, a2, c2) = π
c1a

c1
1

xc1+1
1{x≥a1} + (1− π)

c2a
c2
2

xc2+1
1{x≥a2},

with a2 > a1 > 0, c1, c2 > 0. A graphical representation is given in figure 1.

The observed and complete log-likelihood functions are respectively given by

l(π, a1, a2, c1, c2; y) =
n∑

i=1

log

[
π

c1a
c1
1

yc1+1
i

1{yi≥a1} + (1− π)
c2a

c2
2

yc2+1
i

1{yi≥a2}

]
(3)
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Figure 1: Density of a Pareto mixture (π = 0.5, a1 = 1, c1 = 1, a2 = 2, c2 = 5).

and

lc(π, a1, a2, c1, c2; y, z) =
n∑

i=1

log





[
π

c1a
c1
1

yc1+1
i

1{yi≥a1}

]z1i
[
(1− π)

c2a
c2
2

yc2+1
i

1{yi≥a2}

]1−z1i



 =

=
n∑

i=1

z1i log(π) +
n∑

i=1

z1i[log(c1) + c1 log(a1)− (c1 + 1) log(yi) + log(1{yi≥a1})]+

+
n∑

i=1

(1− z1i) log(1− π) +
n∑

i=1

(1− z1i)[log(c2) + c2 log(a2)− (c2 + 1) log(yi) + log(1{yi≥a2})].

Suppose now that c1 and c2 are known, so that we are only interested in the estimation of π, a1 and

a2; then we have to maximize the function

l̃c(π, a1, a2; y, z) =
n∑

i=1

z1i log(π) +
n∑

i=1

{z1i[c1 log(a1) + log(1{yi≥a1})]+

+
n∑

i=1

(1− z1i) log(1− π) +
n∑

i=1

(1− z1i)[c2 log(a2) + log(1{yi≥a2})]}.

As often happens when the support of the r.v. depends on the parameters, differentiation is not

going to help us here, because the likelihood function is non-differentiable at the maximum. With
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complete data, MLEs are given by

â1 = min
z1i=1

yi, â2 = min
z1i=0

yi.

What is the conditional expectation of the complete log-likelihood function? By linearity, we have

E[l̃c(π, a1, a2; y, z)] =
n∑

i=1

{τ1i[c1 log(a1) + log(1{yi≥a1})] + τ2i[c2 log(a2) + log(1{yi≥a2})]}.

The problem to be solved is

max
π,a1,a2

n∑

i=1

{τ1i[c1 log(a1) + log(1{yi≥a1})] + τ2i[c2 log(a2) + log(1{yi≥a2})]}.

The solution for a2 is clearly given by â2 = min yi; notice that E[l̃c(a2; y, z)] = −∞ for any a2 >

min yi. Unfortunately, this implies that â2 does not depend on the posterior probability τ2j , so that

it is not updated as the iterations increase; in other words, â2 is determined with probability one

by the initial value a
(0)
2 .

This happens because the maximum of Q(π, a1, a2; π(t), a
(t)
1 , a

(t)
2 ) = E[l̃c(π, a1, a2; π(t), a

(t)
1 , a

(t)
2 ]

does occur at a point where the first derivative with respect to a2 is not equal to zero (more precisely,

where the function is not differentiable). As a consequence, although the main convergence theorem

for the EM algorithm (Little and Rubin 1987, Theorem 7.1) remains valid, Theorem 7.2 of Little

and Rubin (1987, pag. 136), which would guarantee that the sequence a
(t)
2 converges to a stationary

point, does not apply.

For this reason one has to resort to alternative algorithms, and in particular to techniques which

do not employ derivatives. Notice indeed that standard numerical methods using derivatives, as

quasi-Newton methods, also fail in this case because the maximum of the log-likelihood function

occurs at a point where, as noted above, one of the partial derivatives does not exist.

3 The Simulated Annealing Algorithm

The Simulated Annealing (SA) algorithm (Metropolis et al. 1953, Kirkpatrick et al. 1983, Geman

and Geman 1984; see Casella and Robert 2004, sect. 5.2.3, for a review) is a powerful algorithm

for function maximization and optimization on a continuous set. Ingrassia (1992) proposed an

application to MLE of the parameters of a normal mixture and performed a detailed comparison of

the EM and SA algorithms.

Let H(θ) be a real-valued function defined on a compact subset D ⊂ Rp. The algorithm is

based on two fundamental ideas. First, the decrease of a scale parameter T , called temperature,
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guarantees a faster exploration of the surface of the function to maximize. Second, the point for

the next iteration is chosen by means of a Metropolis step, i.e., it may be accepted (in the sense

that the acceptance probability is larger than zero) even if it corresponds to a decrease of the

objective function. The latter feature allows the algorithm to escape the “traps” of local maxima.

On the theoretical side, the main result states that the probability distribution of θ converges, as

the temperature tends to zero from above, to a probability measure concentrated on the set of points

of global maximum of H.

The algorithm can be either homogeneous or inhomogeneous: in the first case it is described by

a sequence of homogeneous Markov chains, in the second one by a single inhomogeneous Markov

chain.

3.1 An anisotropic algorithm

In this section we develop, in the setup of a Pareto mixture, the homogeneous version of the algorithm

illustrated by Ingrassia (1992; see also McLachlan and Krishnan 1996, sect. 6.9.2). The steps for

the implementation are as follows.

(i) Initialize the algorithm;

(ii) Determine a rule for the selection of the width of the interval where the algorithm chooses the

point for the next iteration;

(iii) Choose a cooling schedule, and, in particular, an initial value of the temperature;

(iv) Determine a stopping criterion.

Steps (ii) and (iii) are by far the most important ones in the definition of an SA algorithm, so

that they will be given more attention. Both the choice of the initial value of the temperature and of

the step distribution should be guided by the aim of maximizing the number of accepted transitions.

The algorithm is initialized randomly. After that, the transition density of the n-th Markov

chain has to be determined. Notice that the n-th Markov chain, corresponding to temperature Tn,

is homogeneous, namely the transition kernel only changes across chains or, in other words, when

the temperature changes. Let θ
(n)
l be the parameter vector at temperature Tn in the l-th position

of the chain.

A possible implementation of the algorithm consists in sampling the space near the current value

in an isotropic way. In other words, the direction is randomly sampled from the distribution:

θ
(n)
l+1 = θ

(n)
l + ∆rvn, (4)

7



where vn is a random direction vector with ‖vn‖ = 1 and ∆r is the fixed step size.

If the objective function has a markedly different behavior in different directions, this procedure

is probably not very efficient. In this case, a better solution would consist in exploring the parameter

space in an anisotropic way, according to the shape of the function in a neighborhood of the current

parameter value. This strategy requires a definition of the probability distribution of the next

candidate value such that its support is “as similar as possible” to the shape of the function to be

maximized. To this aim, Vanderbilt and Louie (1984) propose the following way of reasoning.

Consider first the artificially simple case where the Hessian Ĥ = H(θ̂) in the global optimum

point θ̂ is known and positive definite, and the current θ(n) is in a neighborhood of θ̂. Let the matrix

Σ be the inverse of Ĥ, that is Σ = Ĥ
−1

. Under these hypotheses, the Choleski decomposition allows

to find a matrix Q such that Σ = QQ′. Similarly to what has been done in (4), the next candidate

value can be generated as

θ
(n)
l+1 = θ

(n)
l + Qu,

where u is an m-dimensional uniform random vector with expected value equal to 0 and covariance

matrix Im (equivalently, it is uniformly distributed in the hypercube [−√3,
√

3]m). This procedure

produces big steps in the directions where the objective function is “less steep” (varies slowly) and

small steps in the directions along which the objective function is “more steep” (varies quickly). To

see why, assume Ĥ to be diagonal, so that Q is diagonal as well; thus the diagonal elements of S

and Q are large (small) when the corresponding elements of Ĥ are small (large), so that big (small)

steps take place in the direction along which the function varies slowly (quickly).

In practice, however, Ĥ is almost invariably unknown. Vanderbilt and Louie (1984) suggest to

estimate it on the basis of the information about the shape of the objective function collected during

the n-th iteration of the algorithm or, in other words, in the L points visited by the n-th Markov

chain.

The scheme used for updating the parameters consists of L replications of the following two

steps for each value Tn of the temperature.

1. Generate a point θ
(n)
l+1 = θ

(n)
l +Qu, where Q is an m×m positive definite matrix. The matrix

Q plays a crucial role because it determines the width of the interval where the algorithm

chooses θ
(n)
l+1, so that it deserves particular attention. According to the tests proposed by

Louie and Vanderbilt (1984), it can be updated at the end of each chain on the basis of the

mean and covariance matrix of the n-th path itself. More precisely, compute the mean and
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covariance matrix of the n-th sample path:

θ̄
(n) =

1
L

L−1∑

l=0

θ
(n)
l ;

S(n) =
1
L

L−1∑

l=0

(θ(n)
l − θ̄

(n))(θ(n)
l − θ̄

(n))′.

At the n-th iteration the matrix Σ(n) is estimated as

Σ(n) =
χ

βL
S(n),

where χ and β are appropriate constants: Vanderbilt and Louie (1984) show that β = 1/6 and

use χ = 3.

Now the matrix Q is still such that Σ = QQ′, but with Σ replaced by Σ(n). Thus Q depends

on n as well, so that in the following it can be denoted by Q(n). The simulation of the next

candidate value is based on the recursion θ
(n+1)
l+1 = θ

(n)
l + Q(n)u.

2. As for the initial value T0 of the temperature, consider that the number of accepted transitions

is large if the quantity exp{(L(θ(n+1)−L(θ(n))/Tn} is approximately equal to 1 for almost all

the proposed transitions θ(n) → θ(n+1). Borrowing a methodology first introduced by Johnson

et al. (1986), generate randomly K values of the parameters θ(1), . . . , θ(K) and insert them

into the likelihood function to get the corresponding values L(θ(1); x), . . . , L(θ(K);x). Then

compute the average of the decreasing variation of the values of the likelihood so obtained, i.e.

∆L− =
1
K

K∑

i=1

∆L−k ,

where ∆L−k = min{∆Lk, 0} and K = 200. Then set

ρ0 = exp

(
∆L−

T0

)
.

Choosing a value of ρ0 “close to 1”, the initial value of the temperature is equal to:

T0 =
∆L−

log(ρ0)
.

The cooling schedule is based on the exponential decay Tn+1 = cn+1 · T0 (Kirkpatrick et al.

1983) with c = 0.97, which has often proved to be more efficient than the logarithmically decreasing

function originally proposed by Metropolis et al. (1953).
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Determining a stopping criterion for the SA algorithm is always a difficult problem, because the

convergence of the algorithm is slow. The criterion adopted here is again based on the value of the

likelihood function. Consider the maximum value of the likelihood function at the end of the n-th

iteration:

L(n)
max = arg max

l<L−1
L(θ(n)

l |y).

Let

L(θ(n)|y) =
1
L

L−1∑

l=0

L(θ(n)
l |y)

be the average of the values of the likelihood function at the n-th iteration. Then the algorithm

stops either when
L(θ(n)|y)− L

(n)
max

L(θ(n)|y)
< ε

or when the temperature is below a small predefined threshold Tf

3.2 A simple implementation

A general remark concerning the SA algorithm is that the actual implementation and performance

are highly problem-dependent. Moreover, the large number of parameters that have to be set

makes it difficult to find the “optimal” version of the algorithm: as pointed out by Brooks and

Morgan (1995), a large L gives a more accurate solution, and a value of c close to 1 diminishes the

probability of getting trapped into local maxima. The initial and final values of the temperature

are also important. If T0 is not sufficiently high, some regions of the parameter space have little or

no chance of being explored. If Tf is not sufficiently low, the system may not yet be frozen. In the

approach proposed in the preceding section, it is also necessary to specify a value for the parameter

χ.

Thus, it may be useful to consider a simpler way of proceeding requiring fewer decisions on the

input variables. Such a strategy is likely to be more robust to erroneous settings of the parameters.

An actual implementation is given by Brooks and Morgan (1995): the main difference with respect

to Ingrassia’s (1992) proposal concerns the choice of the next candidate value, which is performed

in two steps. First, choose at random one of the parameters; second, simulate a new value for

that parameter within the bounds set by the problem at hand. This is a straightforward way of

simulating a new value “close” to the old one. As for the remaining steps, namely the choice of the

cooling schedule, the initial value of the temperature and the stopping criterion, the procedure is

exactly as detailed in section 3.1.

10



4 The Cross-Entropy approach

In this section we consider another approach to the maximization of the likelihood of a Pareto

mixture, namely the minimum Cross-Entropy (CE) approach. This method was first proposed by

Rubinstein (1997) in a rare event simulation setup; Rubinstein (1999) introduced a simple modifi-

cation that allows to use it for solving optimization problems. The approach is fully discussed in

Rubinstein and Kroese (2004, chap. 4 and 5), to which the interested reader is referred. We detail

here the application of the algorithm to the problem analyzed in this paper.

Recall that our aim is to maximize the log-likelihood function l(θ) given in (3) for θ ∈ Θ.

The main idea can be summarized in two steps. First, one has to randomize the problem, that is,

consider the parameters as random variables: formally, we denote with {f�(·; u);u ∈ V ⊂ Θ} the

family of pdfs of θ. Second, the so-called Associated Stochastic Problem (ASP ) has to be linked to

the actual optimization problem. The ASP is formulated as follows:

l(γ) = Pu(l(θ) ≥ γ) = Eu(1{l(�)≥γ}), (5)

where γ is an unknown parameter. To understand how the method works, consider the problem of

estimating l(γ) for some γ close to γ∗. Usually, in this case, {l(θ) ≥ γ} is a rare event. This remark

is fundamental, as it provides the link to the typical use of the CE method, namely the estimation of

rare-events probabilities. In this kind of problems the CE method is based on an iterative algorithm

that makes adaptive changes to the pdf of θ according to the minimization of the Kullback-Leibler

Cross-Entropy. As a result, one gets a sequence of pdfs f�(·;u), f�(·; v(1)), f�(·;v(2)), . . . converging

to the theoretically optimal density, which is characterized by the following theorem.

Theorem 1 Let γ∗ be the maximum of a real-valued function l on a finite set X . Suppose that the

corresponding maximizer θ∗ is unique and that the class of densities {f�(·)} to be used in the CE

algorithm detailed below contains the Dirac density with mass at θ∗:

δ�∗(θ) =





1 if θ = θ∗;

0 otherwise.

Then the solution of the CE program for the estimation of Pu(l(θ) ≥ γ∗) is given by δ�∗.

Proof. See Rubinstein and Kroese (2004, pag. 132).

Roughly speaking, the theorem says that, at convergence, the density f�(·) reduces to the Dirac

delta density centered at θ∗; in other words, the sequence θ̂
(n)

converges to θ∗ with probability 1.

11



For example, if f�(·) is the N(µ, σ2) density, it will converge to the N(θ∗, 0) density. It is worth

stressing that the initial variance of the distribution of θ must be “large enough”, or the algorithm

would not explore all the areas of the parameter space.

The algorithm works as follows (see Rubinstein and Kroese 2004, Algorithm 4.2.1).

1. Choose an initial parameter vector θ(0) for the parameters. Set t = 1.

2. Simulate a sample θ
(t)
1 , . . . , θ

(t)
N from the density f�(·;v(t−1)), where v(0) = θ(0). Compute the

numerical values l(θ(t)
1 ), . . . , l(θ(t)

N ) of the log-likelihood for each simulated sample and compute

the sample (1− ρ)-quantile γ̂t of l(θ(t)
1 ), . . . , l(θ(t)

N ).

3. Use the same sample θ
(t)
1 , . . . ,θ

(t)
N to solve the stochastic program (5). Call the solution v(t).

4. Use the formula v(t) = αv(t) + (1− α)v(t−1) (0 < α < 1) to smooth out the vector v(t).

5. If some stopping criterion is satisfied, stop. Else, set t = t + 1 and restart from step 2.

The smoothing procedure of step 4 is introduced to rule out the possibility that some component

of v(t) is zero or one. Details about the stopping criterion and the numerical values of α and ρ will

be given in the next section.

5 Simulation and application

5.1 Some simulation results

The first goal of this section consists in studying the properties of the estimators obtained by means

of the SA and CE algorithms. To this aim, we performed the following experiment. For each of

the sample sizes n = 20, 40, 60, 80, 100, 150, 200, 300, 500, we simulated 1, 000 samples from a

two-population Pareto mixture with parameters π = 0.5, a1 = 1, a2 = 5, c1 = 2.5 and c2 = 7.5.

We tried to use both the implementations of the SA algorithm presented in section 3. However,

step 1. of the first methodology (i.e., the part concerning the choice of the next candidate value)

did not work well. Therefore we show the results obtained by combining the technique proposed by

Brooks and Morgan (1995) for the transition probability and the Ingrassia (1992) approach for the

cooling schedule. As for the numerical value of ρ0, by trial and error we chose ρ0 = 0.7; different

values did not seem to change appreciably the final results. Moreover, we put ε = 0.005 and Tf = 0.2.

In the CE algorithm the density to be used in the CE program is four-dimensional. As the first

parameter must lie in the interval [0, 1], for v1 we used a Beta distribution, whereas the remaining

components are assumed to follow normal distributions with different means and variances. The
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components are assumed to be independent, so that updating of the parameters can be done in-

dependently. According to the suggestion by Rubinstein and Kroese (2004, p. 188-189), the ASP

for the first parameter was solved numerically. The algorithm was implemented with α = 0.5 and

ρ = 0.01. Whereas different choices of the numerical values of the latter parameter did not seem to

change the results appreciably, the value of α has a significant impact. In particular, with a larger

value of α the algorithm sometimes does not converge to the global optimum. On the other hand,

a smaller value avoids the traps of local maxima but makes convergence very slow. We ran several

experiments and found that the choice of the numerical value of α is strictly related to the choice

of θ(0): if θ(0) is “far away” from the true θ, a small α is called for, or the algorithm converges to

a suboptimal θ∗. Finally, using the same strategy of Rubinstein and Kroese (2004, pag. 134), the

algorithm was stopped when γ̂(t) = γ̂(t−1) = · · · = γ̂(t−5).

Figure 2 shows the averages ¯̂
θSA
i = (1/ni)

∑ni
i=1 θ̂SA

i and ¯̂
θCE
i = (1/ni)

∑ni
i=1 θ̂CE

i (i = 1, . . . , 9)

of the numerical values of the estimators obtained at each replication of the procedure. Figures 3,

4, 5 and 6 display the simulated distributions of the SA estimators; figures 7, 8, 9 and 10 show the

same distributions obtained with the CE algorithm.

Figure 2 allows to draw some interesting conclusions. First, both estimators are rather precise

even for moderate sample sizes. There is, however, a significant difference for the smallest sample size

considered in the experiment (i.e. N = 20): in this case the CE estimator has a considerably worse

performance than the SA estimator, and cannot be considered reliable. Moreover, the estimation

of the shape parameters, and in particular of c2, seems to be the most difficult one. For moderate

to large sample size the CE estimator is more precise.

A thorough analysis of the results must take into account also the variability of the estimators.

For these reasons we display the simulated distribution of the estimators and compute the Mean

Squared Errors (MSEs).

Figures 3 to 10 reinforce the remarks arising from figure 2 above. In particular, for N = 20,

the performance of the CE estimator is disappointing, and the numerical value of ĉ2 is sometimes

meaningless. To complete the analysis with a measure that encompasses all the results displayed so

far, we computed the MSE of the estimators. The outcomes are shown in Table 1.
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Figure 3: Simulated distributions of the SA estimator of π for N = 20, 40, 100, 500.
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ĉ1

R
el

at
iv

e 
fr

eq
ue

nc
y

1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6
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Figure 4: Simulated distributions of the SA estimator of c1 for N = 20, 40, 100, 500.
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Figure 6: Simulated distributions of the SA estimator of c2 for N = 20, 40, 100, 500.
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Figure 7: Simulated distributions of the CE estimator of π for N = 20, 40, 100, 500.
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Figure 8: Simulated distributions of the CE estimator of c1 for N = 20, 40, 100, 500.
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Figure 9: Simulated distributions of the CE estimator of a2 for N = 20, 40, 100, 500.
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Figure 10: Simulated distributions of the CE estimator of c2 for N = 20, 40, 100, 500.
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Table 1: Mean Squared Errors of the SA and CE estimators.

π̂SA π̂CE ĉSA
1 ĉCE

1 âSA
2 âCE

2 ĉSA
2 ĉCE

2

N = 20 0.016 0.003 2.644 5.772 0.043 11.367 12.043 530.230

N = 40 0.008 0.003 0.674 0.612 0.019 0.056 6.788 6.259

N = 60 0.007 0.002 0.703 0.362 0.038 0.001 4.323 3.894

N = 80 0.006 0.002 0.485 0.288 0.014 0.001 3.223 2.177

N = 100 0.004 0.002 0.330 0.223 0.005 0.001 2.579 1.706

N = 150 0.003 0.001 0.247 0.110 0.003 0.001 1.825 1.003

N = 200 0.003 0.001 0.170 0.086 0.027 0.001 1.722 0.762

N = 300 0.002 0.001 0.273 0.056 0.004 0.001 1.342 0.433

N = 500 0.002 < 0.001 0.119 0.039 0.025 0.001 1.073 0.294

Table 1 gives some more insight about the two estimators. First of all, for N = 20 the SA

approach is definitely preferable. Second, for all the remaining sample sizes CE performs better

than SA: in particular, the difference in the precision of estimation of the shape parameters c1 and

c2 increases as the sample size gets larger, so that according to Table 1 the CE algorithm should be

chosen for large N .

Finally, a remark about execution times is in order: on average, in the setup of the simulation

experiments performed above, with N = 500, the CE approach took approximately 111 seconds

and the SA algorithm 254 seconds on a 1.60GHz Pentium processor.

In conclusion, for N = 20 the SA algorithm is clearly superior in terms of MSE. For the remain-

ing sample sizes, and more evidently as N increases, the CE approach has a better performance.

The fact that SA is preferable when N = 20 is not surprising: in this setup the maximization is

clearly not straightforward, and it is well-known that SA often performs quite well (in the sense

that it converges at the global optimum when other algorithms get stuck at suboptimal points) in

“difficult” problems. On the other hand, SA is typically slow, dependent on many parameters and

less accurate in identifying the maximum, thus it may not be the best solution in more standard

frameworks. The problem treated here seems to confirm these remarks, so that, considering also the

larger convergence time and the difficulties in setting the parameters of SA, the CE approach may

be regarded as preferable for all but very small sample sizes. However, from the practitioner’s point

ov view, it should also be noted that when sampling from a mixture distribution a sample size as

small as 20 is hardly ever encountered, in particular in applications such as the one considered in

this paper.
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5.2 A real-data application

Figure 11a shows the distribution of the amounts (in thousands of Euros) of 1102 operational losses

corresponding to two different business lines. The losses were measured in Banca Intesa (Milano) in

a recent year and have been rescaled for confidentiality reasons. The business line each observation

belongs to is unknown, so that the data are sampled from the mixture. The tail is quite heavy.

Fitting a two-population Pareto mixture is a reasonbly good solution, although the frequency of

big losses (approximately > 8, according to a visual inspection of the histogram) seems larger than

expected under the Pareto model.

Table 2 shows the estimated parameters and the values of the log-likelihood obtained with the

two methodologies presented above. Notice that the maximum of the log-likelihood found by the

CE approach is larger than the value obtained with SA: given the large sample size, this is in

agreement with the results of the simulation exercise of the preceding section. As for the execution

times, the CE algorithm converged in 138 seconds, whereas the SA algorithm converged in 246

seconds (320 iterations).

Table 2: Estimated parameters

π̂ â1 ĉ1 â2 ĉ2 log-lik

SA 0.257 1.004 3.343 2.013 2.444 −1736.20

CE 0.259 1.004 2.537 2.001 2.005 −1678.72

Figure 11b shows the frequency distribution of the observed data and the two estimated densities,

namely the Pareto mixtures corresponding to the parameters estimated by means of SA and CE.

The two densities are very similar to each other; the fact that c1 is the parameter for which we observe

the largest difference between the estimates obtained with the two approaches is not surprising if we

consider that it is related to the tail behavior of the first distribution, and the tail of this distribution

is strongly contaminated by the body of the second one.

The ultimate measure of interest in risk management appplications like the present one is the

so-called Value at Risk (V aR). The V aR at level α is the α quantile of the loss distribution and

represents the threshold monetary amount such that the probability that the loss over the given

time horizon exceeds this value is equal to α. Having estimated the parameters, we can compute

the VaR at level alpha by simulating B observations from the estimated mixture and computing the

alpha quantile of the simulated distribution. With α equal respectively to 0.95 and 0.99, the results

are V aRSA,0.95 = 6.13, V aRCE,0.95 = 7.81, V aRSA,0.99 = 11.91 and V aRCE,0.99 = 17.06. Thus, the

differences are non-negligible, in particular for large α.
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6 Conclusions

In this paper we have studied Maximum Likelihood Estimation of a mixture of Pareto distributions.

When the location parameters of the component distributions are different, the EM algorithm

breaks down, so that different optimization techniques are required. We showed how the problem can

be solved by means of the Simulated Annealing and the minimum Cross-Entropy algorithms. The

results of a simulation experiment suggest that the CE algorithm has a slight advantage for moderate

and large N , mainly due to a more straightforward implementation and a faster convergence. On the

other hand, for very small sample sizes, SA is preferable. An application in the field of operational

risk confirmed the importance of an accurate estimate of the parameters.

Some problems are open for future research. First, the algorithms used in this paper are very

general and can be extended to mixtures of different distributions (just to mention an example, the

Laplace mixtures studied by Naradajah 2006): their precise formulation and properties depend on

the probabilistic model and need further investigation. Second, likelihood maximization in this setup

may probably be performed by means of other algorithms: given the features of the log-likelihood

function, direct search methods as the Nelder-Mead simplex method are likely to be a good solution.
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