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The Asymptotic Loss Distribution in a Fat-Tailed

Factor Model of Portfolio Credit Risk

MARCO BEE ∗

February 28, 2007

Abstract

This paper extends the standard asymptotic results concerning the

percentage loss distribution in the Vasicek uniform model to a setup

where the systematic risk factor is non-normally distributed. We show

that the asymptotic density in this new setup can still be obtained

in closed form; in particular, we derive the return distributions, the

densities and the quantile functions when the common factor follows

two types of normal mixture distributions (a two-population scale mix-

ture and a jump mixture) and the Student’s t distribution. Finally, we

present a real-data application of the technique to data of the Intesa

- San Paolo credit portfolio. The numerical experiments show that

the asymptotic loss density is highly flexible and provides the analyst

with a VaR which takes into account the event risk incorporated in the

fat-tailed distribution of the common factor.

Keywords: Factor model; asymptotic loss; Value at Risk.

1 Introduction

Quantitative risk management aims at building and estimating statistical

models which describe the random behavior of portfolios; this is true both

in market risk, where portfolios contain assets whose price is either known

from the market or computed by means of mathematical models, and in
∗Department of Economics, University of Trento, via Inama 5 - 38100 Trento (Italy)
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credit risk. The latter can be divided in two main fields: “static” credit

risk analyses loan and bond portfolios, “dynamic” credit risk deals with

credit derivatives. Measuring the risk of credit derivatives is mainly based

on the same tools employed in market risk, in that it uses option-theoretic

tools; on the other hand, static credit risk management has to be tackled

differently, both because its goals are not the same and because of limited

data availability. This is especially true for retail portfolios, where: (i) the

interest is not in predicting rating migrations or spread changes, but only

default; (ii) the counterparties do not have debt and equity (or they are not

exchange-traded), so that standard pricing techniques cannot be used; (iii)

data is scarce.

In this paper, we consider the problem of finding the loss distribution,

which is the basis for the computation of risk measures, in a typical static

credit risk setup. One of the main challenges is the multivariate nature

of the problem: a portfolio consists of many positions which are mostly

correlated ([1], [10], [4]), so that taking into account this correlation is of

crucial importance: a large literature (see [12], section 8.1.2, for an example

concerning credit risk measurement) has shown that ignoring the correlation

would indeed cause severe biases in the results.

Direct estimation of an unconstrained correlation matrix for the default

indicators of all the positions of a typical portfolio is unfeasible. The reason

is at least twofold. First, default is a “unique” event, so that it is impossible

to estimate the default correlation between two counterparties by means of

historical data, because, once a firm has defaulted, it no longer exists. The

only way out would consist in estimating a default correlation coefficient for

each pair of rating classes and assigning the same correlation to any pair

of counterparties belonging to the same rating categories; however, even if

we use all the defaults of two given rating classes, data are not enough, and

statistical estimation of the correlation matrix would be likely to give poor

estimates.

As a consequence, research has focused on identifying and modeling the

factors which induce default correlation. This approach allows to build a

correlation matrix on the basis of the knowledge of the correlation between

the counterparties and some common factors, which influence in a different
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measure all the firms in the portfolio. The interpretation of these factors

is clear, and common to other areas of finance and risk management: they

incorporate the so-called systematic risk, which is typically related to the

economic cycle, possibly at country and/or sector level.

In the setup of the so-called structural models (see, for example, [5], sect.

3.2), most commercial packages currently used by banks to measure portfo-

lio credit risk (in particular, JP Morgan CreditMetrics c© and Moody’s|KMV

Credit Portfolio Manager c©) are based on a combination of two building

blocks: the Merton model ([14]) is used for assessing the default proba-

bility and the Vasicek model ([16]) is a factor approach whose ultimate

purpose consists in introducing some correlation structure. Vasicek contri-

bution is particularly important because it provides us with a setup where

many asymptotic results concerning the portfolio loss distribution can be

derived; in particular, under the additional hypothesis of uniformity of the

portfolio, the asymptotic distribution can be obtained in closed form.

In this paper we extend the basic Vasicek model for uniform portfolios to

a setup where the common factor follows a non-normal distribution. From

the risk management point of view, “interesting” distributions for the factor

are fat-tailed, and we will examine in detail two distributional assumptions

for the factor: (i) a finite mixture of normal distributions; (ii) a Student’s

t distribution. From the theoretical point of view, however, we will show

that the density of the asymptotic percentage loss can be derived for general

choices of the distribution of the factor.

This approach has two advantages. First, the factor distribution is ex-

tremely flexible, and for proper choices of the parameter(s) it becomes as

leptokurtic as desired, a feature which is usually very important in models

of the systematic risk component; second, the asymptotic loss distribution

and its VaR are known in closed form. The latter issue marks a relevant dif-

ference with respect to approaches where the specific risk is also assumed to

be non-normal (see, for example, the copula-based approaches outlined by

[3], sect. 2.6), where the loss distribution cannot be obtained analytically.

The structure of the paper is as follows. In section 2 we will introduce the

standard Vasicek model, its main implications and the notation used in the

following. In section 3 we obtain analytically the asymptotic loss distribution
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and some of its features when we substitute to the normality assumption for

the systematic risk factor a different distributional hypothesis. In section 4

we look more closely at the density when the factor is distributed as a finite

normal mixture and as a Student’s t distribution; several examples and an

application to the default data of a specific sector of the portfolio of the

Intesa - San Paolo banking group will also be provided. Section 5 concludes

and outlines some directions for future research.

2 Setup: the standard single-factor Vasicek model

The so-called Vasicek model ([16]; [3], sect. 2.5.1; [8]) is the simplest factor

model used in portfolio credit risk measurement. Formally, it assumes that

the standardized return of the i-th counterparty is given by

ri =
√

ρY +
√

1− ρZi, i = 1, . . . , N, (1)

where the single factor Y represents global economic conditions, ρ is the

correlation between the returns, Zi represents the idiosyncratic risk and N is

the number of counterparties. The importance of this model is also related

to the regulatory environment, as it is indeed the basis of the approach

enforced to banks and financial institutions by the Basel II Accord for the

computation of default probability and required capital.

Technically, (1) is based on the standard assumptions employed in factor

analysis ([11], chap. 9): Y ∼ N(0, 1), Zi ∼ N(0, 1), cov(Zi, Zj) = 0, when

i 6= j, cov(Zi, Y ) = 0. It can be verified that r ∼ Np(0, R), i.e., ri ∼ N(0, 1),

i = 1, . . . , p and cov(ri, rj) = corr(ri, rj) = ρ, i 6= j. In other words, each

ri is standard normal and any pair (ri, rj) has correlation ρ; in multivariate

analysis, the matrix R is known as the equicorrelation matrix, and (1), also

called equicorrelation model, is a repeated measurement model ([6], sect.

8.4).

The interpretation of these hypotheses is straightforward: standardized

returns follow the standard normal distribution, systematic risk (Y ) and

specific risk (Zi) are independent, as well as specific risks of different coun-

terparties (Zi, Zj).
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The model is based on a Merton-type approach; thus, there exists a

threshold ci such that pi = P (ri < ci), where pi is the unconditional default

probability. More formally, we can introduce a random variable Li = 1{ri<ci}
such that

Li =





1 with probability pi,

0 with probability 1− pi, i = 1, . . . , N.

As ri ∼ N(0, 1), we can also write ci = Φ−1(pi). Finally, it is easy to prove

that the conditional default probability is given by

pi(Y ) = Φ
(

Φ−1(pi)−√ρY√
1− ρ

)
, i = 1, . . . , N.

The results obtained so far are not specific to the Vasicek model, and anal-

ogous outcomes can be derived in multifactor settings. The significant ad-

vantage of the Vasicek model is that the asymptotic loss distribution can

be derived without using simulation techniques, which are almost always

necessary in more complicated models.

2.1 The asymptotic loss distribution in the general case

We now give a brief review of the limiting distribution theory concerning

the standard Vasicek model, namely when the counterparties have different

PD’s; the reader interested in more details is again referred to [3] (sect.

2.5.1) and to the references therein. The case of a uniform portfolio (all the

counterparties have the same PD) will be treated thoroughly in the next

subsection.

The main theorem concerns the portfolio percentage loss L(N), which is

defined as follows:

L(N) =
N∑

i=1

wiηiLi,

where wi = EADi/
∑N

j=1 EADj and EADi and ηi are respectively the Expo-

sure At Default and the Loss Given Default (LGD) of the i-th counterparty.

The following two hypotheses are required for the asymptotic results to hold,
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and in the following we will assume that they hold true:

N∑

i=1

EADi ↑ ∞ as N →∞; (2)

∞∑

k=1

(
EADk∑k
i=1 EADi

)2

< ∞. (3)

Essentially, for N → ∞, (3) defines an infinitely fine-grained portfolio, be-

cause the exposure share of each counterparty tends to zero as N → ∞.

These requirements are not very restrictive: it can be shown that a suffi-

cient condition for (2) and (3) to hold is that EADi ∈ (0, b], with b ∈ IR+,

for all i = 1, . . . , N . On the other hand, (3) may not always be met in prac-

tice, because it is quite common for real bank portfolios to contain some

“large” exposures.

We are now ready to give the following characterization of the limiting

distribution of L(N).

Proposition 1 If assumptions (2) and (3) hold, the percentage portfolio

loss L(N) converges almost surely to the conditional expectation E(L(N)|Y ):

P

(
lim

N→∞

(
L(N) −E(L(N)|Y )

)
= 0

)
= 1.

Proof. See [3], pag. 88.

When applied to a portfolio where all the counterparties have the same

default probability, proposition 1 allows to obtain the distribution and den-

sity functions of the asymptotic loss in closed form.

2.2 The asymptotic loss distribution of a uniform portfolio

In this subsection we focus on the uniform portfolio version of the Vasicek

model; formally, this means that the random variable Li is now defined as

follows:

Li =





1 with probability p,

0 with probability 1− p, i = 1, . . . , N.
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In other words, in addition to the hypotheses listed after (1), we assume

pi = p for all the counterparties.

Applying proposition 1 to this new framework is straightforward. Con-

sider the asymptotic loss limN→∞ L(N) =: L(∞). As for the conditional

expectation E(L(N)|Y ), it is easy to see that

E(L(N)|Y ) =
N∑

i=1

wiE(Li|Y ) = Φ
(

Φ−1(p)−√ρY√
1− ρ

)
,

where Φ(·) is the standard normal distribution function. Proposition 1 im-

plies that

L(∞) = Φ
(

Φ−1(p)−√ρY√
1− ρ

)
a.s. (4)

As pointed out by [3] (pag. 89), this result does not depend on the

distribution of the factor Y ; however, when Y ∼ N(0, 1), the distribution

and density functions can be obtained in closed form. Assuming, without

loss of generality, EADi = ηi = 1 (i = 1, . . . , N), the distribution function

is given by:

FL(∞)(x) = P (L(∞) ≤ x) = P

(
Φ

(
Φ−1(p)−√ρY√

1− ρ

)
≤ x

)
=

= P

(
Φ−1(p)−√ρY√

1− ρ
≤ Φ−1(x)

)
=

= P

(
−Y ≤ 1√

ρ
(Φ−1(x)

√
1− ρ− Φ−1(p))

)
= (5)

= Φ
(

1√
ρ
(Φ−1(x)

√
1− ρ− Φ−1(p))

)
.

In order to find the density we have to differentiate FL(∞)(x) with respect

to x. Putting s(x) = 1√
ρ(Φ−1(x)

√
1− ρ − Φ−1(p)) and applying the chain

rule we get:

fL(∞)(x) =
∂FL(∞)(x)

∂x
=

∂Φ(s(x))
∂x

= φ(s(x))
∂s(x)
∂x

, (6)

where φ(·) is the density of the standard normal distribution. As for the

partial derivative of s(x), using the inverse function differentiation theorem
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we immediately get

∂s(x)
∂x

=
√

1− ρ

ρ
· ∂Φ−1(x)

∂x
=

=
√

1− ρ

ρ
· 1
φ(Φ−1(x))

. (7)

It follows that

fL(∞)(x) = φ(s(x))
√

1− ρ

ρ
· 1
φ(Φ−1(x))

. (8)

Finally, some straightforward algebraic manipulations of the two standard

normal densities in (8) give the density function of L(∞):

f(L(∞)) =
√

1− ρ

ρ
·

· exp
(
− 1

2ρ

(
(1− 2ρ)(Φ−1(x))2 − 2

√
1− ρΦ−1(x)Φ−1(p) + (Φ−1(p))2

))
.

The density depends on ρ and p and exhibits different shapes as the nu-

merical values of the parameters change; moreover, its quantile function

and moments can be obtained analytically ([3], pagg. 91-95). In the next

section we extend these results to the case where the factor Y follows a

non-normal distribution.

3 The asymptotic loss under non-normal factor

distributions

Consider now a setup where all the hypotheses of section 2.2 remain un-

changed except the distribution of the factor Ỹ , which is assumed to be

given by a non-normal, and for now unspecified, distribution (in the follow-

ing, all the quantities whose distribution is different from the standard case

will be denoted by the symbol “̃ ”). We are now going to derive the density

of L̃(∞) under this more general assumption.

Before proving the main result, it is worth stressing that, although

proposition 1 does not rely on any specific hypothesis concerning the dis-

tribution of the common factor, when Ỹ is non-normal the distribution of

r̃i =
√

ρỸ +
√

1− ρZi is no longer normal: it is indeed the sum of a random
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variable Ỹ and of a standard normal random variable Zi. Usually the dis-

tribution of r̃ is not known analytically but can be easily simulated, so that

c = F−1
Ỹ

(p) has to be computed by Monte Carlo simulation. In section 4 we

will give more details about the distributions obtained with specific choices

of Ỹ .

Proposition 2 Suppose that all the hypotheses of proposition 1 hold true,

with the exception of the distribution of the common factor Ỹ , which is now

assumed to follow an unspecified distribution FỸ . Then the density of the

asymptotic percentage loss L̃(∞) is given by

fL̃(∞)(x) =
√

1− ρ

ρ
· fỸ (s̃(x)) · 1

φ(Φ−1(x))
.

Proof. We can rewrite (4) as

L̃(∞) = Φ

(
F−1

Ỹ
(p)−√ρỸ√

1− ρ

)
a.s.

The way of reasoning followed in the standard case remains unchanged until

(5) because it does not require any specific assumption about Ỹ . Thus we

have

FL̃(∞)(x) = P (L̃(∞) ≤ x) = P

(
Φ

(
F−1

Ỹ
(p)−√ρY√

1− ρ

)
≤ x

)
=

= P

(
F−1

Ỹ
(p)−√ρY√

1− ρ
≤ Φ−1(x)

)
=

= P

(
−Ỹ ≤ 1√

ρ
(Φ−1(x)

√
1− ρ− F−1

Ỹ
(p))

)
=

= FỸ (s̃(x)), x ∈ [0, 1]. (9)

To find the density, we have to differentiate (9) with respect to x. We have:

∂FỸ (s̃(x))
∂x

= fỸ (s̃(x))
∂s̃(x)
∂x

.

Now, s̃(x) differs from s(x) only because F−1
Ỹ

(p) replaces Φ−1(p); thus, from

(7) we conclude that the partial derivative of s̃(x) is unchanged with respect

to the standard case:

∂s̃(x)
∂x

=
∂s(x)
∂x

=
√

1− ρ

ρ
· ∂Φ−1(x)

∂x
=

√
1− ρ

ρ
· 1
φ(Φ−1(x))

.
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To conclude the proof we only have to combine (7) and (9) in order to obtain

the density fL̃(∞)(x). It is given by

∂F
(∞)

L̃
(x)

∂x
= f

(∞)

L̃
(x) = fỸ (s̃(x)) ·

√
1− ρ

ρ
· 1
φ(Φ−1(x))

, x ∈ [0, 1]. (10)

The density (10) is completely defined only when the distribution of

the factor Ỹ is specified. We now work out the details when the factor

is distributed respectively as a finite normal mixture and as a Student’s t

distribution.

Example 1 (Finite Normal Mixture). We assume that Ỹ follows a finite

normal mixture, whose density is given by fỸ (y) =
∑k

i=1 πiφµi,σ2
i
(y). Ac-

cording to proposition 2, the asymptotic loss density is given by:

fL̃(∞)(x) =

(
k∑

i=1

πiφµi,σ2
i
(s̃(x))

)
·
√

1− ρ

ρ
· 1
φ(Φ−1(x))

, x ∈ [0, 1].

Example 2 (Student’s t). Let Ỹ follow a Student’s t distribution with ν

degrees of freedom; then (10) becomes

fL̃(∞)(x) = ftν (s̃(x)) ·
√

1− ρ

ρ
· 1
φ(Φ−1(x))

, x ∈ [0, 1],

where ftν (s̃(x)) is the tν density.

This approach has another desirable feature: quantiles can be computed

in closed form. We summarize the result in the next proposition (see also

[8] for more details on risk measures in a factor model setup).

Proposition 3 The quantile function of L̃(∞) is given by

qα(L̃) = p(−qα(Y )) = Φ

(
F−1

Ỹ
(p) +

√
ρqα(Ỹ )√

1− ρ

)
,

where qα(Ỹ ) is the α quantile of Ỹ .

Proof. The proof is identical to the one given by [3] (pag. 94), because the

only relevant condition (p(·) strictly decreasing) is obviously verified for any

choice of the distribution of Ỹ .
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Finally, as concerns the expectation of L̃(∞), it is easy to see that it is

equal to p, as in the standard Vasicek setup. We have:

E(L̃(∞)) = E(p(Y )) =
N∑

i=1

wiE(L|Y ) = E(L|Y ) = p.

As for the variance, the result valid in the standard case, namely var(L(∞)) =

Φ2(Φ−1(p),Φ−1(p); ρ) (see [3], pag. 94), does not extend to the setup of the

present paper. We ran some simulation experiments (not shown here to save

space) from which it turned out that the variance of L̃(∞) is larger than the

variance of L(∞), and the difference increases as the tails of Ỹ get heavier.

4 Applications

4.1 Choosing a distribution for Ỹ

Two types of mixtures are common in finance and risk management: the

scale mixture of normals and the so-called “jump” mixture.

The two-component scale mixture of normals has density

fS(x) = π1φµ11,σ2
11

(x) + (1− π1)φµ12,σ2
12

(x), x ∈ IR,

where π1 is “large” (π1 ∈ [0.9, 1], say), µ11 = µ12 = 0 and σ12 is larger

than σ11 (σ12 ≥ 4σ11, say). The density is unimodal and symmetric and its

kurtosis increases as σ12 increases.

Another mixture often used in applications ([7], [2]) is a three-population

distribution with µ21 < 0, µ22 = 0 and µ23 > 0, and usually σ21 = σ22 =

σ23 =: σ2. The random variable in this case can be defined as

X = X2 + XJ ,

where X2 is allowed to follow any distribution and the jump component has

a trinomial distribution:

XJ =





0 with probability (1− π21 − π23);

D with probability π21;

U with probability π23,
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where π21 ∈ [0, 1], π23 ∈ [0, 1], π21 + π23 < 1, D ∈ IR− and U ∈ IR+. Thus,

X is a mixture of three random variables XD, X2 and XU , whose density is

given by:

fJ(x) = π21fD(x) + (1− π21 − π23)f2(x) + π23fU (x), x ∈ IR. (11)

Assuming f2 ∼ N(µ22, σ
2
2), X is a mixture of three normal densities with

the same variance σ2
2 and means respectively equal to µ21, µ22 and µ23, with

µ21 = µ22 + D and µ23 = µ22 + U ; the observations coming from fD and fU

are sometimes called jumps. If (11) is used as a model for Ỹ , jumps can be

interpreted as the quantification of the impact of events taking place with

small probability and affecting the whole economic system (for example,

unexpected good or bad news concerning the economy of major countries,

terroristic attacks, catastrophic weahter events and so on).

Finite mixture disributions have been employed in several fields of finance

and risk management: see [9], [18], [17], [15], [7] and [2]. Efficient estimation

algorithms have also been developed: see [13] for a review.

In our opinion, mixture distributions are preferable to the Student’s t

distribution as a model for Ỹ . The reason is essentially the larger flexibility

that can be obtained by varying the number of components k and the values

of the parameters π, µi and σi (i = 1, . . . , k): as will be seen in section

4.2, the Student’s t is actually very similar to the scale mixture of two

normals. However, the latter provides us with the possibility of modeling

more precisely the “degree of heaviness” of the tails, because when using the

Student’s t we can only vary the numerical value of one parameter, namely

the number of degrees of freedom.

4.2 The distribution of returns

Consider first the distribution of the returns r̃i =
√

ρỸ +
√

1− ρZi. Figures

1 and 2 show the Q-Q plots of the returns simulated respectively when Ỹ is

a scale mixture of two normals and a Student’s t, for various values of the

parameters.

From graph 1 it can be seen that the distribution gets more leptokurtic as

the variance of the second mixture component and/or the numerical value of

12
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Figure 1: Q-Q plot of the returns when Ỹ is a scale mixture.
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Figure 2: Q-Q plot of the returns when Ỹ Student’s t.
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Figure 3: Q-Q plot of the returns when Ỹ is a jump mixture.

ρ increase. A similar message comes from graph 2: the tails become heavier

as the number of degrees of freedom decreases and/or the numerical value

of ρ increases.

Returns simulated from a jump mixture are shown in figure 3. Tails are

generally heavier than in the normal case; notice in particular (see figure 3d)

that the distribution becomes asymmetric when |µ23| > |µ21|; this implies

the possibility of giving more weight to a negative event than to a positive

event.

4.3 The asymptotic loss density

We concentrate now on the asymptotic loss density (10). In this and in the

next section, results obtained with the Student’s t distribution are essentially

identical to those obtained with the scale mixture of two normals, so that,

to save space, we do not show them. Figures 4 and 5 display the density

obtained using respectively the scale mixture and the jump mixture for the

factor Ỹ .

In both cases the density is, for some parameter configurations, bimodal,

with a mode at zero (m1, say) and another mode farther away from zero
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Figure 4: The asymptotic loss density when Ỹ follows a scale mixture.
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Figure 5: The asymptotic loss density when Ỹ follows a jump mixture.
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(m2). This feature is very interesting because of the following interpretation:

when the economy expands, the probability of observing a percentage loss

close to zero (m1) is particularly high; when the economy is in recession,

there is a larger probability of observing a larger percentage loss (m2); in

other words, the heaviness of the tails of Ỹ seems to determine the presence

of the mode m2.

Finally, we compute VaR for the standard Vasicek, the scale-mixture

and the jump mixture distributions. Results are shown in tables 1, 2 and 3.

Table 1. VaRα in the standard Vasicek case

α = 0.95 α = 0.99 α = 0.999

p = 0.01, ρ = 0.1 0.0285 0.0468 0.0775

p = 0.03, ρ = 0.1 0.0758 0.1137 0.1704

p = 0.06, ρ = 0.1 0.1377 0.1940 0.2713

p = 0.1, ρ = 0.1 0.2111 0.2825 0.3742

p = 0.01, ρ = 0.3 0.0442 0.1043 0.2244

p = 0.03, ρ = 0.3 0.1208 0.2342 0.4110

p = 0.06, ρ = 0.3 0.2173 0.3687 0.5654

p = 0.1, ρ = 0.3 0.3246 0.4965 0.6883

Table 2. VaRα in the scale-mixture case (in all cases we set π1 = 0.9 and σ11 = 1)

α = 0.95 α = 0.99 α = 0.999

σ12 = 4, p = 0.01, ρ = 0.1 0.0235 0.0454 0.0869

σ12 = 10, p = 0.01, ρ = 0.1 0.0003 0.0015 0.0064

σ12 = 4, p = 0.03, ρ = 0.1 0.0790 0.1322 0.2162

σ12 = 10, p = 0.03, ρ = 0.1 0.0664 0.1420 0.2785

σ12 = 4, p = 0.06, ρ = 0.1 0.1554 0.2363 0.3493

σ12 = 10, p = 0.06, ρ = 0.1 0.1905 0.3284 0.5157

σ12 = 4, p = 0.1, ρ = 0.1 0.2399 0.3405 0.4681

σ12 = 10, p = 0.1, ρ = 0.1 0.3171 0.4824 0.6699

σ12 = 4, p = 0.01, ρ = 0.3 0.0097 0.0396 0.1344

σ12 = 10, p = 0.01, ρ = 0.3 < 0.0001 < 0.0001 < 0.0001

σ12 = 4, p = 0.03, ρ = 0.3 0.1117 0.2618 0.5049

σ12 = 10, p = 0.03, ρ = 0.3 0.0509 0.2151 0.5641

σ12 = 4, p = 0.06, ρ = 0.3 0.2487 0.4607 0.7094

σ12 = 10, p = 0.06, ρ = 0.3 0.3943 0.7189 0.9370
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From table 2 we see that the scale mixture VaR tends to increase as σ12

increases, that is, as the tails of the factor distribution get heavy; moreover,

in general, the scale-mixture VaR is larger than the standard VaR. There

is, however, a significant exception: when p = 0.01, the distribution tends

to collapse to δ0 (a Dirac delta centered at zero) more quickly than in the

standard case; this explains the VaR figures obtained in the 2-nd and 10-th

row of table 2.

Table 3. VaRα in the jump-mixture case

(in all cases we set π21 = 0.1, π23 = 0.1, µ22 = 0 and σ2 = 1)

α = 0.95 α = 0.99 α = 0.999

µ21 = −1, µ23 = 1, p = 0.01, ρ = 0.1 0.0323 0.0525 0.0859

µ21 = −3, µ23 = 3, p = 0.01, ρ = 0.1 0.0187 0.0319 0.0549

µ21 = −1, µ23 = 7, p = 0.01, ρ = 0.1 0.0493 0.0772 0.1210

µ21 = −1, µ23 = 1, p = 0.03, ρ = 0.1 0.0828 0.1232 0.1829

µ21 = −1, µ23 = 7, p = 0.03, ρ = 0.1 0.1159 0.1664 0.2376

µ21 = −1, µ23 = 1, p = 0.06, ρ = 0.1 0.1447 0.2026 0.2817

µ21 = −1, µ23 = 7, p = 0.06, ρ = 0.1 0.1942 0.2626 0.3517

µ21 = −1, µ23 = 1, p = 0.1, ρ = 0.1 0.2172 0.2896 0.3821

µ21 = −1, µ23 = 7, p = 0.1, ρ = 0.1 0.2808 0.3619 0.4606

µ21 = −1, µ23 = 1, p = 0.01, ρ = 0.3 0.0678 0.1477 0.2924

µ21 = −1, µ23 = 7, p = 0.01, ρ = 0.3 0.1355 0.2563 0.4385

µ21 = −1, µ23 = 1, p = 0.03, ρ = 0.3 0.1649 0.2986 0.4886

µ21 = −1, µ23 = 7, p = 0.03, ρ = 0.3 0.2801 0.4457 0.6419

µ21 = −1, µ23 = 1, p = 0.06, ρ = 0.3 0.2682 0.4317 0.6286

µ21 = −1, µ23 = 7, p = 0.06, ρ = 0.3 0.4114 0.5879 0.7649

µ21 = −1, µ23 = 1, p = 0.1, ρ = 0.3 0.3749 0.5506 0.7348

µ21 = −1, µ23 = 7, p = 0.1, ρ = 0.3 0.5311 0.6999 0.8471

The interpretation of table 3 is similar to table 2: VaR increases as the

probability of observing a large positive value of the factor increases (when

µ23 = 7). As the parameters p and ρ vary, the VaR figures show a behavior

similar to the standard case; in other words, jump mixture VaR, while being
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larger than standard VaR (in a measure quantified by the tail heaviness of

the distribution of Ỹ ), exhibits a dependence on p and ρ similar to the one

of standard VaR. This feature is very desirable because it allows to quantify

directly (in term of risk measures) how the portfolio is affected by a fat-

tailed factor distribution. Moreover, the possibility of choosing a skewed

distribution for the factor makes the approach even more flexible.

4.4 A real-data application

In this section we apply the methodology developed so far to the counter-

parties of the retail sector of the credit portfolio of the Intesa - San Paolo

banking group. These counterparties are small, and do not have exchange-

traded equity and/or debt, so that a Merton-based approach is unfeasible;

although we do not have any information concerning the exposures, this

should also imply that the portfolio share of each counterparty is negligible.

The sector contains approximately 550,000 counterparties, so that it makes

sense to resort to asymptotic theory.

In absence of exchange-traded equity and debt, the popular commercial

versions of the structural models, like Creditmetrics c© and MKMV c©, can-

not be used. Essentially, what is known of a counterparty is the default

probability; with this limited information, however, we can still implement

the methodology proposed here.

As pointed out before, in order to derive explicitly the loss density we

have to assume that the portfolio is uniform. Considering that the sector is

organized in rating classes, we decided to compute, for each rating category,

the average default probability p̄ of the individual PD’s, and assigned to each

counterparty of the class a PD equal to p̄; this hypothesis seems reasonable

because the PD’s of firms with the same rating are similar.

The internal rating system of the bank consists of 14 categories, includ-

ing the D (Default) class, labelled as A1, A2, . . . , A14; as an illustration, we

compute VaR for classes A1, A7 and A13. The bank has developed several

internal models for each sector of its portfolio; the PD’s used here are ac-

tually obtained, for confidentiality reasons, by means of a slightly modified

version of one of these models. The average PD values for the three classes
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are p̄A1 = 0.00057, p̄A7 = 0.0125 and p̄A13 = 0.33291. Tables 4, 5 and 6

show selected results.

Table 4. 99% VaR for class A1 (p̄A1 = 0.00057)

(in all cases we set σ11 = 1, π21 = 0.1, π23 = 0.1, µ22 = 0 and σ2 = 1)

L
(V )
m L

(S)
m L

(J)
m

σ12 = 4; µ21 = −1, µ23 = 1; ρ = 0.1 0.0039 0.0006 0.0049

σ12 = 10; µ21 = −1, µ23 = 7; ρ = 0.1 0.0039 < 0.0001 0.0087

σ12 = 4; µ21 = −1, µ23 = 1; ρ = 0.3 0.0090 < 0.0001 0.0140

σ12 = 10; µ21 = −1, µ23 = 7; ρ = 0.3 0.0090 < 0.0001 0.0338

Table 5. 99% VaR for class A7 (p̄A7 = 0.0125)

(in all cases we set σ11 = 1, π21 = 0.1, π23 = 0.1, µ22 = 0 and σ2 = 1)

L
(V )
m L

(S)
m L

(J)
m

σ12 = 4; µ21 = −1, µ23 = 1; ρ = 0.1 0.0562 0.0576 0.0620

σ12 = 10; µ21 = −1, µ23 = 7; ρ = 0.1 0.0562 0.0058 0.0912

σ12 = 4; µ21 = −1, µ23 = 1; ρ = 0.3 0.1238 0.0666 0.1738

σ12 = 10; µ21 = −1, µ23 = 7; ρ = 0.3 0.1238 < 0.0001 0.2887

Table 6. 99% VaR for class A13 (p̄A13 = 0.33291)

(in all cases we set σ11 = 1, π21 = 0.1, π23 = 0.1, µ22 = 0 and σ2 = 1)

L
(V )
m L

(S)
m L

(J)
m

σ12 = 4; µ21 = −1, µ23 = 1; ρ = 0.1 0.6256 0.7046 0.6209

σ12 = 10; µ21 = −1, µ23 = 7; ρ = 0.1 0.6256 0.8367 0.6940

σ12 = 4; µ21 = −1, µ23 = 1; ρ = 0.3 0.8430 0.9240 0.8472

σ12 = 10; µ21 = −1, µ23 = 7; ρ = 0.3 0.8430 0.9901 0.9217

The tables show that, at the 99% level, the VaR obtained with L
(J)
m is

larger than with L
(V )
m and L

(S)
m ; as for the latter, both for class A1 and for

class A7 we observe the same behavior noted in section 4.3, namely a very
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small VaR, due to the fact that the distribution tends to concentrate near

zero; on the other hand, for class A13 the scale mixture provides us with

the largest VaR figures.

According to these results, in our opinion, if one seeks a model where

the factor has a fat-tailed distribution (that is, in other words, event risk is

appropriately accounted for), and this distributional property impacts the

percentage portfolio loss, the jump mixture model seems to be the most

approriate one, because it produces larger risk measures while remaining

easily interpretable and feasible to different setups.

Finally, it is worth pointing out that the only purpose of the examples

shown so far consists in investigating the mathematical and probabilistic

features of the asymptotic distribution in this new framework. A complete

implementation would entail an empirical investigation of the distribution

of Ỹ , possibly based on historical data, in order to give a sound statistical

foundation to the choice of the distribution and of the numerical values of

the parameters.

5 Conclusions

The aim of this paper was to generalize the standard asymptotic results

concerning the percentage loss distribution in the Vasicek uniform model.

We showed that the asymptotic density in the uniform portfolio can still

be obtained in closed form under different distributional hypotheses for the

common factor. Moreover, we derived the return distributions, the densities

and the quantile functions obtained with two types of mixture distributions

(a two-population scale mixture and a jump mixture) and with the Student’s

t distribution. Finally, we applied the methodology to some real data from

the Intesa - San Paolo credit portfolio.

The approach constitutes an extension of the standard Vasicek model in

that it allows to obtain a wide range of densities, which can accommodate

many different features required by the investigator; in particular, we stress

the importance of bimodal asymptotic loss densities, which can be well-

suited to incorporate event risk. Its implementation is straightforward: the

only quantity that cannot be computed analytically is the default threshold
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c. However, its estimation by means of Monte Carlo simulation is easy.

As concerns the application of the model, the main issues to be addressed

in the future seem to the be choice of the distribution of the common fac-

tor and the estimation of its parameters; a thorough statistical analysis is

necessary in order to avoid a misspecification of the distribution that would

lead to substantial errors in the estimation of risk measures. Estimation of

ρ is also of crucial importance.

From a theoretical point of view, the extension of the analytical results

to the standard Vasicek setup (where with “standard” we mean the non-

uniform portfolio case) does not appear immediate. Thus, it is quite likely

that future research shall concentrate on trying to improve copula-based

models, which currently constitute the most general approach to credit loss

distributions.
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