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Abstract: The spatial concentration of firms has long been a central issue in economics both under 
the theoretical and the applied point of view due mainly to the important policy implications. A 
popular approach to its measurement, which does not suffer from the problem of the arbitrariness of 
the regional boundaries, makes use of micro data and looks at the firms as if they were 
dimensionless points distributed in the economic space. However in practical circumstances the 
points (firms) observed in the economic space are far from being dimensionless and are conversely 
characterized by different dimension in terms of the number of employees, the product, the capital 
and so on. In the literature, the works that originally introduce such an approach (e.g. Arbia and 
Espa, 1996; Marcon and Puech, 2003) disregard the aspect of the different firm dimension and 
ignore the fact that a high degree of spatial concentration may result from both the case of many 
small points clustering in definite portions of space and from only few large points clustering 
together (e.g. few large firms). We refer to this phenomena as to clustering of firms and clustering 
of economic activities. The present paper aims at tackling this problem by adapting the popular K-
function (Ripley, 1977) to account for the point dimension using the framework of marked point 
process theory (Penttinen, 2006). 
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1. Introduction 
 
Spatial economics theories show that economic integration may boost spatial concentration of 
economic activities and industrial specialization both at a regional and at an international level 
(Bickenbach and Bode, 2008). Furthermore, due to the external increasing returns driven by the 
spatial concentration, the core regions (where spatial clusters of firms are more likely to occur) may 
reach higher levels of economic growth than the peripheral regions (see Krugman, 1991 and Fujita 
et al., 1999 among others). As a consequence, the phenomenon of spatial concentration is of 
paramount importance to explain the determinants of growth and development on one hand and 
regional disparities on the other. 

Fostered by the centrality of these issues under the theoretical and the practical point of view, 
a variety of empirical studies have tried to develop proper indices and statistical tests to measure the 
degree of spatial clustering in real industrial situations. Under this respect, a series of recent papers 
(Arbia et al, 2008, 2010; Marcon and Puech, 2003, 2009; Duranton and Overman, 2005, 2008) have 
introduced the use of distance-based methods. These methods are more robust than the traditional 
measures of spatial concentration (such as Gini index (Gini, 1912, 1921) or Ellison-Glaeser index 
(Ellison and Glaeser, 1997)), which make use of regional aggregates and thus depend on the 
arbitrariness of the definitions of the spatial units. The distance-based methods, conversely, make 
use of micro economic data, treating each firm as a point on a map and studying their spatial 
distribution with the methods borrowed from the so called point pattern analysis (Diggle, 2003). 

In many empirical circumstances where the presence of spatial clusters of firms is tested by 
using micro-geographical data, an important element to be taken into account is represented by the 
firm dimension. 

Indeed a high level of spatial concentration can be due to two very different phenomena (see 
Figure 1). Namely, 

 
• Case 1: many small firms clustering in space, and 
• Case 2: few large firms (in the limit just one firm) clustering in space. 
 

We can refer to the first case as to the case of clustering of firms and to the second as to the 
case of clustering of economic activities.  
 
Figure 1: Two extreme paradigmatic situations of spatial concentration. 

        

       Case 1: clustering of firms                                    Case 2: clustering of economic activities  
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A proper test for the presence of spatial clusters should thus consider the impact of the firm 

dimension on industrial agglomeration by clearly distinguishing these two cases. 
Under this respect, Marcon and Puech (2009) and Duranton and Overman (2005) have 

extended the use of Ripley’s K-function (Ripley, 1977) considering firm size treating it as a weight 
attached to each of the points constituting the pattern. Both quoted papers developed relative 
measures of the spatial concentration, detecting the extra-concentrations of firms belonging to a 
specific industry with respect to the distribution of firms of the whole economy. Following this 
procedure a positive (or negative) spatial dependence between firms is detected when the pattern of 
a specific sector is more aggregated (or more dispersed) than the pattern of the whole economy. 
Although measures of relative spatial concentration are very useful in controlling for the 
idiosyncratic characteristics of the territories under study, on the other hand they do not allow 
comparisons across different economies (see Haaland et al., 1999 and Mori et al., 2005 for a more 
detailed discussion).   

In this paper we propose a similar extension of Ripley’s K-function which leads to an 
absolute (rather than a relative) measure of the industrial agglomeration and which allows 
comparability amongst different empirical situations. More specifically, referring to the theory of 
marked point processes, we develop a stochastic mechanism which generates weighted point 
patterns of firms representing stylized facts of the different phenomena occurring in real cases 
(essentially: spatial randomness or spatial concentration in the sense indicated in  “Case 1” or “Case 
2” above). The values assumed by the proposed measure in the various cases constitute the 
benchmark that allows us to formally test the departure from spatial randomness. 

We will present our new approach along the following lines. In Section 2 we will briefly 
discuss the classical Ripley’s K-function which represents the starting point to develop more 
sophisticated measures of spatial concentration. Section 3 will be devoted to introduce the 
stochastic mechanism based on the marked point processes theory which allows us to develop a test 
for the presence of absolute spatial concentration of firms and economic activities. In this section 
we will introduce the new model, we will discuss the meaning of the model’s parameters in the 
context of spatial concentration of firms and economic activities and we will present some 
simulation results to better illustrate how the model works in practice. Finally, Section 4 contains a 
discussion of the results, some conclusions and directions for further studies in the field. 
 

2 Measuring the spatial concentration of firms disregarding size: the basic K-function  
 
It is probably fair to say that Ripley’s K-function (Ripley, 1976 and 1977) is currently the most 
popular distance-based measure to summarize the cumulative characteristics of a spatial distribution 
of events in the context of micro-geographic data. It has indeed proved a very versatile tool to test 
for the presence of spatial concentration within a stationary point pattern where each event is 
considered as a dimensionless point. As a consequence, the K-function has been largely applied in 
various fields such as geography, ecology, epidemiology and, more recently, economics (see Arbia 
and Espa, 1996; Marcon and Puech, 2003). 

The K-function is defined as follows: 
 

( ) { }pointarbitrary an  from   distance aat  falling points ofnumber 1 dEdK ≤= −λ                        (1) 
 
with {}.E  indicating the expectation operator and λ  representing the mean number of events per 

unitary area, a parameter called intensity. Therefore, ( )dKλ  can be interpreted as the expected 
number of further points within a distance d of an arbitrary point of the process (Ripley, 1977). In 
case of a homogeneous field (where the probability of hosting a point is constant across the study 
area), the K-function quantifies the level of spatial dependence between points at each distance d.  
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In order to develop a test for the presence of absolute spatial concentration, we can rely on the 
fact that for many stochastic processes, it is possible to compute the expectation in the right-hand 
side of Equation (1), so that ( )dK  can be written in a closed form (Dixon, 2002). A point process 
generating a spatial distribution of events completely at random (that is, points are distributed 
uniformly and independently on space) is the so-called homogeneous Poisson process. It can be 
shown that if a point pattern is a realisation of a homogeneous Poisson process then ( )dK  tends to 

be equal to 2dπ  (see Diggle, 2003). Therefore:    
 

( ) 2ddK π= , d > 0 
 

represents the null hypothesis of random location of events. Significant departures from this 
benchmarking value represent the alternative hypothesis of spatial dependence. More precisely, for 

( ) 2ddK π>  we have positive dependence and hence clustering (where points tend to attract each 

other), for ( ) 2ddK π<  we have negative dependence and hence inhibition (where points tend 
conversely to repulse each other). Therefore, to formally test whether the observed points tend to 
cluster in space we can verify if, for some d, ( )dK  is significantly greater than 2dπ . Critical values 
can be computed by Monte Carlo simulation of homogeneous Poisson processes (see Besag and 
Diggle, 1977).  

The test for the presence of absolute concentration based on Ripley’s K-function, however, 
can be used to detect industrial agglomeration only if firms can be considered to have the same 
dimension. Indeed, in a context where economic activities are different in terms of dimension with 
the presence of small, medium and large firms, a point pattern is not a good representation of the 
location pattern of economic activities and, as a result, the K-function is no more a proper tool to 
summarize the spatial distribution. For instance, the simple K-function cannot recognize a situation 
like the one reported in Figure 1 as “Case 2” as a cluster. In other words, the test do not “control for 
the overall agglomeration of manufacturing”  (Duranton and Overman, 2005). 

In such a context, in order to define a proper test, we need to refer to the concepts and 
methods of the marked point process statistics, which is a branch of spatial statistics devoted to 
analyse sets of events scattered in space, where each event is not only defined by its spatial location, 
but also by a mark, that is a supplementary set of information which might be either quantitative or 
qualitative (Illian et al., 2008).   
 
3 Measuring the spatial concentration of firms considering size: the mark-weighted K-
function 
 
3.1 The mark-weighted K-function  
 
The mark-weighted K-function, indicated as ( )dKmm , is an explorative tool proposed by Penttinen 
(2006) to summarize the cumulative characteristics of a homogeneous quantitative marked point 
pattern (that is a pattern where a quantitative mark is attached on each point). It has been proposed 
as a natural generalization of Ripley’s K-function. In order to introduce it let us first rewrite the 
classical K-function as: 
 

( ) ( ) λ







≤= ∑∑

= ≠

n

i ij
ij ddIEdK

1

 

 
where the term ijd  is the Euclidean distance between the ith and jth arbitrary points, n is the total 
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number of points and ( )ddI ij ≤  represents the indicator function such that I = 1 if ddij ≤  and 0 

otherwise. Following this notation, the mark-weighted K-function has a similar form but the marks 
are now taken into account: 
 

( ) ( ) 2

1

µλ







≤= ∑∑

= ≠

n

i ij
ijjimm ddImmEdK .                                                                              (2)                 

 
In Equation (2) im  and jm  are the marks attached to the ith and jth points, respectively, and 

µ  is the mean of the marks. Thus the term ( )dKmm
2λµ  can be interpreted as the mean of the sum 

of the products formed by the mark of the ith arbitrary point and the marks of all other points in the 
circle d centred in it (Illian et al., 2008). Therefore, the mark-weighted K-function measures the 
joint cumulative distribution of marks and points at each distance d.  
Turning now to the estimation aspects, following Penttinen (2006), a proper approximately edge-
corrected unbiased estimator of ( )dKmm  is  

 

( ) ( ) 2

1

µλ ˆˆnddIwmmdK̂
n

i ij
ijijjimm 










≤= ∑∑

= ≠
 

 

where Anˆ =λ  is the estimated spatial intensity, A  is the area of the study region and µ̂  is the 

mean of the observed marks. Due to the presence of edge effects arising from the arbitrariness of 
the boundaries of the study region, the adjustment factor ijw  is introduced thus avoiding potential 

biases in the estimates in proximity to the boundaries of the study region. More precisely, the 
weight function ijw  expresses the reciprocal of the proportion of the area of a circle centred on the 

ith point, passing through the jth point, which lies within the study region A (Boots and Getis, 
1988). 

In an economic context, in which the marks are the values of a quantitative variable 
representing the firms size, the mark-weighted K-function might be used to develop a test for the 
presence of absolute spatial concentration. However, we need to derive the benchmark value of the 
function representing the null hypothesis of spatial randomness. For this reason the next paragraph 
is devoted to derive a stochastic model to generate marked point patterns of firms which is able to 
represent the stylized situations of spatial randomness and concentration in the meaning of “Case 1” 
(i.e., many small firms clustering in space) and “Case 2” (i.e., few large firms clustering in space).   
 
3.2 A model for the null hypothesis of spatial randomness 
 
The basic idea we follow is that the spatial concentration of economic activities (in the sense of 
“Case 1” and “Case 2”) can be originated by some form of correlation between the spatial point 
intensity and the marks. This would imply, for instance, that in regions characterized by high spatial 
point intensity the marks tend to be systematically large if such a correlation is positive or, 
conversely, small if such correlation is negative. 

To define a model which incorporate such a correlation structure we refer to the design, 
already explored by Ho and Stoyan (2008), of an intensity-marked Cox process, where the spatial 
point intensity is driven by a Cox process and the marks are realizations of a process whose 
parameters are conditioned by the values of the spatial point intensity. 
 
3.2.1 The log Gaussian Cox process for the spatial point intensity 



 

 

 
- 5 - 

  

 
To start with we assume that the spatial point intensity can be modelled as a log Gaussian Cox 
process (a specific kind of Cox process proposed by Møller et al., 1998). According to this model 
each point pattern represents a partial realization of an inhomogeneous Poisson process 
characterized by a spatial intensity function ( )xλ , with x representing the spatial coordinates of an 

arbitrary point (see Diggle, 2003). The values of ( )xλ  constitute a realization of a positive random 

field ( ){ }xΛ  such that ( ) ( ){ }xSexpx =Λ , where ( ){ }xS  is a Gaussian random field with mean Sµ , 

variance 2
Sσ  and correlation function ( )dSρ . ( ){ }xΛ  is known as a log Gaussian Cox process.  

The log Gaussian assumption is particularly useful because explicit expressions can be 
derived for the intensity and covariance structure of the point process. Indeed, according to the 
moment generating function of a log Gaussian distribution, the intensity λ  of a log Gaussian Cox 
process ( ){ }xΛ  can be written as: 
 

( )[ ] ( )( )[ ] 






 +==Λ= 2

2

1
SSexpxSexpExE σµλ . 

 
Concerning to the covariance structure, for any arbitrary pairs of points (say x and x′ ), 

( ) ( ) ( ) ( ){ }xSxSexpxx ′+=′ΛΛ , and ( ) ( )xSxS ′+  is also Gaussian with mean Sm µ2=  and variance 

( )[ ]dv SS ρσ += 12 2  where d is the Euclidean distance between x and x′ . As a result, 

( ) ( )[ ] ( )2vmexpxxE +=′ΛΛ , and hence: 
 

( ) ( )[ ] ( ){ }dexpxxE SSρσλ 2=′ΛΛ .  

  
3.2.2 The marks process  
 
Our model assumes that the mark ( )nxm  attached to the point nx  generated by the log Gaussian 

Cox process depends on the intensity of the process itself. More formally we have: 
 

 ( ) ( ) ( )nnn xbxaxm Ε+Λ=                                                                                                  (3) 

 
where ( )nxΛ  is the value of the spatial intensity at point nx  and ( )nxΕ  is due to a residual process 

such that ( ) ( ){ }xRexpx =Ε , where ( )xR  is a Gaussian random field with mean Rµ , variance 2
Rσ  and 

correlation function ( )dRρ . Thus, the expected value of process ( )xΕ , indicated with ε , is 

( ){ }[ ]






 +== 2

2

1
RRexpxRexpE σµε 3. 

The two constants a and b appearing in Equation (3) are the model parameters. It is important 
to understand the role of these two parameters in the generation of the patterns of firms and the way 
in which they can model the relationship between the intensity with which firms are distributed in 
space and their dimension. More specifically, a is the parameter driving the correlation between the 
spatial point intensity process and the marks process. When a = 0 the marks are independent of the 
spatial intensity. Conversely when a > 0 the marks process generates marks that tend to be larger 
(that is larger firms) in regions characterized by a high spatial point intensity. Finally, in those cases 
where a < 0 the marks tend to be smaller (and hence the firms of smaller dimension) in regions 

                                                        
3 In order to avoid any misunderstanding, note that the greek letter Ε , used to indicate the residual process, and the 
expectation operator E are different symbols. 
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characterized by a high spatial point intensity. On the other hand the parameter b represents the 
perturbation effect of the residual process on the correlation between marks and intensity. The 
larger is b in absolute value, the more the residual process disturbs the phenomenon of correlation 
controlled by a.   

The log Gaussian assumption makes the computation of the expected value of the marks 
process mathematically tractable, indeed we have: 
 

( )[ ] { } εσλµ bexpaxmE S +== 2 .  

 

It is easy to show that the expected value of the marks process would be ελ ba + . However, 
following Ho and Stoyan (2008), the true unbiased expected value is { } εσλµ bexpa S += 2 , which is 

larger than ελ ba +  when a > 0, and smaller when a < 0. For a detailed explanation of this bias 
correction see Ho and Stoyan (2008).          

The model proposed here is particularly interesting having in mind economic application and 
specifically the study of firm location. In fact in the application of the present methodological 
framework to the problem of assessing industrial agglomeration, the marked point patterns 
generated when a = 0 represent the null hypothesis of spatial randomness of firms. Similarly, a > 0 
and a < 0 refer to the alternative hypothesis of spatial concentration of economic activities in the 
sense expressed in “Case 1” and “Case 2”, respectively, in Section 1.        

To better illustrate how the model works, in the reminder of this section we will show some 
realizations of a marked point process. In what follows all the generated patterns are obtained using 
the same random seed so that all realizations are directly comparable and the differences between 
the patterns can be ascribed only to differences in the model parameters. Figure 2 shows the 
realization of the underlying spatial point intensity process given as ( ) ( ){ }xSespx =Λ  on the unit 

square, with mean 5=Sµ , variance 2502 .S =σ  and correlation function ( ) { }250.dexpdS −=ρ 4. 

As we can see, in this particular realisation, the spatial point intensity tends to be higher (light grey 
colours) towards the centre of the unitary area.  
 
Figure 2: A realization of the underlying spatial point intensity (grey-scale image). 

 
 

In order to illustrate the role of parameter a in driving the correlation between the spatial point 
intensity and the marks Figure 3 displays different realizations of the marked point process with 
different values for a. The six simulated marked point patterns appearing in Figure 3 show the net 

                                                        
4 This specific form of the correlation function is known as the exponential function; see Diggle and Ribeiro (2007) for 
details. 
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effect of parameter a since b is always set to zero. In each pattern the marks are rescaled to the unit 
interval and each point is represented by a circle with radius proportional to its rescaled mark. 
Figure 3 shows quite clearly that, for positive values of a, the marks tend to be larger where the 
spatial point intensity is higher, that is approximately at the centre of the unitary area (see pattern i, 
iii  and v). On the other hand, for negative values of a, the marks tend to be smaller where the spatial 
point intensity is higher (see pattern ii , iv and vi). The two kind of clustering situation – namely, 
“Case 1” and “Case 2” – tend to be more evident when a increases in absolute value. 

Figure 4 shows six simulated marked point patterns with different values for b which illustrate 
the role of this parameter in disturbing the correlation between the spatial point intensity and the 
marks. In all six cases the residual process ( )xΕ  is characterised by 5=Rµ , 2502 .R =σ  and 

( ) { }250.dexpdR −=ρ  and a is set to be equal to 0.25. To understand how the parameter b disturbs 
the effect of the parameter a, we can compare the patterns of Figure 4 with the pattern of Figure 3(i) 
where a = 0.25. As b increases in absolute terms, the residual process becomes relatively more 
important in generating the marked point patterns. In this situation the correlation between the 
spatial point intensity and the marks depicted by the pattern reported in Figure 3(i) becomes less 
strong. 
 
3.2.3 The benchmark value of the mark-weighted K-function  
 
Because of the mathematical tractability of the model defined above, the corresponding theoretical 
mark-weighted K-function can be derived in a closed form. Indeed, for such a marked log-Gaussian 
Cox process (for d >0), the mark-weighted K-function assumes the form: 
 

( )
( ){ } ( ) ( ){ }

{ }[ ] du
bexpa

dexpbdexpabdexpa

udK
d

S

RRSSSSSS

mm ∫ +

+






 +++

=
0 22

222222222

2

3
232

2
εσλ

ρσεερσσλρσσλ
π  

(4) 
 

The formal derivation of Equation (4) is reported in the Appendix. Equation (4) above allows 
us to develop a test for the presence of absolute concentration of economic activities using the 
mark-weighted K-function, in which the null hypothesis of spatial randomness of firms is 
represented by the values of ( )dKmm  when a = 0. In fact, when a = 0, then we have: 

 

( ) ( ){ }dudexpudK
d

RRmm ∫=
0

22 ρσπ .                                                                                                       (5) 

 

To help the visualization, Figure 5 shows the mean of ( )dK̂mm  for 1000 marked point patterns 

generated in the unit square from model (3) with parameters 5=Sµ , 2502 .S =σ , 

( ) { }250.dexpdS −=ρ , 0=Rµ , 2502 .R =σ , ( ) { }250.dexpdR −=ρ , a = 0 and  b = 1. Since the 

theoretical function (dashed line), given by Equation (5), lies within the confidence envelopes 

(resulting from the highest and lowest values of ( )dK̂mm  calculated from the 1000 simulations) and 

very close to the mean of ( )dK̂mm  (solid line), the graph confirms that Equation (5) may well 

represent the proper benchmark to verify the presence of spatial concentration of economic 
activities. 
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Figure 3: Simulated patterns of marks according to model (3). The figure illustrates the role of 
parameter a when b = constant = 0. 

          

              i) a = 0.25; b = 0                                              ii ) a = – 0.25; b = 0 
 

        

              iii ) a = 0.5; b = 0                                              iv) a = – 0.5; b = 0 
 

        

              v) a = 1; b = 0                                                  vi) a = – 1; b = 0 
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Figure 4: Simulated patterns of marks according to model (3). The figure illustrates the role of 
parameter b when a = constant = 0.25. 
 

          

              i) a = 0.25; b = 0.25                                        ii ) a = 0.25; b = – 0.25 
 

        

              iii ) a = 0.25; b = 0.5                                        iv) a = 0.25; b = – 0.5 
 

        

               v) a = 0.25; b = 1                                             vi) a = 0.25; b = – 1 
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Figure 5: Mean of ( )dK̂mm  estimated from 1000 simulations of the marked point process following 

model (3) with parameters a = 0 and b = 1. The behaviour of the empirical mean is represented by 
the solid line. The theoretical function given by (5) is reported in the graph as a dashed line.  
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4. Discussion and conclusions 
 
The spatial concentration of firms has long been a central issue in economics both under the 
theoretical and the applied point of view due mainly to the important policy implications. An 
approach to its measurement, that became recently very popular, makes use of micro data and looks 
at the firms as if they were dimensionless points distributed in the economic space. This approach is 
very attractive because it does not suffer from the problem of choosing an arbitrary partition of the 
economic space (such as e.g. regions, counties or countries). However in practical circumstances 
this is an excessive simplification since the points (firms) observed in the economic space are far 
from being dimensionless and are conversely characterized by different dimension measured in 
terms of the number of employees, the product, the capital and so on. In the literature, the papers 
that introduced such an approach (e.g. Arbia and Espa, 1996; Marcon and Puech, 2003) disregard 
the aspect of the different firm dimension and ignore the fact that a high degree of spatial 
concentration may result from the case of many small points clustering in definite portions of space 
(as it is usually considered in the literature), but also from only few large points clustering together 
(e.g. few large firms). In other words they are not able to distinguish between two very different 
issues, namely the clustering of firms and the clustering of economic activities. The aim of this 
paper was to introduce absolute measures of spatial concentration of firms based on an extension of 
Ripley’s K-function that accounts for the different firm dimension. In order to derive the null 
hypothesis of spatial randomness in this more complex environment, we developed a new stochastic 
model that generates marked point patterns of firms and is able to describe the various situations 
that could arise in empirical cases. In our model the firm dimension is expressed as a function of the 
spatial intensity of the point process. According to the different values assumed by the model 
parameters, this could result either in larger points located in areas with high intensity or, 
conversely, smaller points located in areas characterized by high intensity. The first case is more 
grounded under the economic point view where we can postulate that the same conditions that lead 
to a higher clustering of firms in some portions of space may also lead to the growth of the 
dimension of the existing firms. A good example is constituted by the action of the three 
Marshallian forces fostering agglomeration (Marshall, 1920). In his seminal work Marshall 
emphasized that industrial agglomeration can be explained by the fact that firms try to locate near 
suppliers to save shipping costs, by the theory of labor market pooling and by the theory of 

( )dKmm  

d 
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knowledge spillovers. If some of the services are internalized in one leading big company than the 
same forces could produce a growth of the firms’ dimension rather than an increase in the number 
of firms located in the area. We would expect therefore that in most practical cases the parameter a 
in Equation (3) will be positive and large in absolute value. Similar arguments reinforcing this 
empirical expectation may be found in Krugman (1991). 

On the basis of the stochastic model introduced here we derived the corresponding mark-
weighted K-function and, by making use of some simulated pattern, we presented evidence that this 
tool represents a proper mean to detect the presence of absolute concentration of firms keeping their 
dimension into account. 

The problem of calibrating the values of the model’s parameters in practical cases is complex 
and it is not undertaken here where we restricted ourselves to only the presentation of the stochastic 
mechanism. The inferential aspects would involve the estimation of the parameters a and b in 
Equation (3) and also of the parameters characterising the two log Gaussian processes 

( ) ( ){ }xSespx =Λ  and ( ) ( ){ }xRexpx =Ε  introduced in Section 3.2. A closed form for the likelihood 
of the model is not yet available at current state of the literature and currently the only viable 
possibility appears to be to exploit (as it is usual practice in such instances) a pseudo-likelihood 
approach as indicated in Besag (1974). We will undertake such an approach in some future work. 
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Appendix: Analytical derivation of the theoretical mark-weighted K-function 
 
The mark-weighted K-function Kmm(d)  can be conceived as the integral of the mark correlation 
function kmm(d) (Illian et al., 2008), i.e. 
 

( ) ( )∫=
d

mmmm duuukdK
0

2π .                                                                                                      (6) 

 
The mark correlation function can be given by:  

 

( ) ( ) ( )[ ]
2µ

tmomE
dk ot

mm =                                                                                                  (7) 

 
where ( ) ( )[ ]tmomEot  denotes the conditional mean under the condition that there are points in two 

arbitrary locations separated by a distance d, which are considered as the origin o and the 
destination t. m(o) and m(t) are the marks attached to the points located in o and t respectively. The 
term in the denominator µ  represents the mean of the marks. Therefore kmm(d) can be interpreted 
as the normalized mean of the product of the marks of a pair of points separated by a distance d. 

According to Ho and Stoyan (2008), the numerator of kmm(d) satisfies the condition that: 
 

( ) ( )[ ] ( ) ( ) ( ) ( )[ ]
( ) ( )[ ]toE
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tmomEot ΛΛ

ΛΛ= .                                                                                     (8) 

 
If ( )xΛ  is defined as in section 3.2.1 and ( )xm  is given by equation (3) then 
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Therefore Equation (8) can be written as 
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As a result, since { } εσλµ bexpa S += 2 , the mark correlation function has the following form: 

 

     ( )
( ){ } ( ) ( ){ }

{ }[ ]22

222222222

2

3
232

εσλ

ρσεερσσλρσσλ

bexpa

dexpbdexpabdexpa

dk
S

RRSSSSSS

mm
+

+






 +++

= , d >0. 

(9) 
 
 

Finally, by substituting Equation (9) in Equation (6) we obtain, for d > 0, the explicit form of 
the mark-weighted K-function: 
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