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Abstract

This paper presents a backtesting exercise involving several VaR models for measur-

ing market risk in a dynamic context. The focus is on the comparison of standard

dynamic VaR models,ad hocfat-tailed models and the dynamic Peaks over Threshold

(POT) procedure for VaR estimation with different volatility specifications. We

introduce three different stochastic processes for the losses: two of them are of the

GARCH-type and one is of the EWMA-type. In order to assess the performance of the

models, we implement a backtesting procedure using the log-losses of a diversified

sample of 15 financial assets. The backtesting analysis covers the period March

2004 - May 2009, thus including the turmoil period corresponding to the subprime

crisis. The results show that the POT approach and a Dynamic Historical Simulation

method, both combined with the EWMA volatility specification, are particularly

effective at high VaR coverage probabilities and outperform the other models under

consideration. Moreover, VaR measures estimated with these models react quickly to

the turmoil of the last part of the backtesting period, so that they seem to be efficient

in high-risk periods as well.

Keywords: Market risk, Extreme Value Theory, Peaks over Threshold, Value atRisk, Fat tails.
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1 Introduction

Market risk was the earliest type of risk systematically tackled both by practitioners and academics. Mas-

sive developments in the methodology have been triggered by the release ofthe Market Risk Amendment

by the Bank of International Settlement (BIS, 1996). In order to keep a certain capital buffer against ad-

verse market movements, banks and financial institutions with relevant trading activity have to measure

regularly the exposure on the financial assets held in their trading portfolios. This exposure has to be

converted in a monetary amount, the so-called regulatory capital required against market risk. Standard

approaches to market risk measurement are mostly based on the normality assumption, which is often

inadequate from the empirical point of view.

A well-known measure of market risk, used both for internal risk management and regulatory pur-

poses, is the so-calledValue-at-Risk(VaR), which estimates, given a certain time horizon, the maximum

loss that a bank is going to suffer with a certain probability level. The VaR, originally proposed by J.P.

Morgan (RiskMetrics, 1996), has become a standard tool in market risk management.

Employing the VaR parametric setup requires various statistical assumptions. Acommonly accepted

starting point is that, when dealing with the production of short-term VaR estimates, a dynamic approach

is preferable, because it allows to capture the empirical properties of the loss time series. In this case,

the primary concern is the choice of an accurate econometric model that takes into account some stylized

facts of financial time series. Among them (see, for example, Cont, 2001),the main features considered

in this article are heteroskedasticity, persistence and fat tails. The first twoare strictly connected with

the empirical autocorrelation function of squared losses, which is typically significantly positive for a

long time, while the third one is observed both in the filtered conditional loss distribution and in the

unconditional loss distribution.

Many VaR models try to incorporate one or more of these stylized facts. The earliest dynamic VaR

approaches assemble conditional volatility models like ARCH (Engle, 1982) or GARCH (Bollerslev,

1986), which directly model the persistence in squared returns/losses, with the standard normal distribu-

tion. Although they usually fit the data reasonably well, the normality assumption isgenerally a cause

of VaR underestimation, because the filtered conditional loss distribution, i.e.the distribution of stan-

dardized losses, is often heavier-tailed than the normal. Thus, especially at high coverage levels, these

models are quite inadequate.

An obvious solution (see, for example, Angelidiset al., 2004; Hunget al., 2008) consists in fitting

a distribution with tails fatter than the normal: the data generating processes range from the simple

standardized Student-t or Generalized Error Distribution (GED), to the more complex Edgeworth-Sargan

distribution (see Baixauli and Alvarez, 2006). From a theoretical point of view, each of these models

may suit the filtered loss data better than the normal distribution. However, theyare based ona priori

hypotheses on the data-generating process. This fact, which entails somelack of generality, is considered

their major drawback, although the performance may be good in specific cases.

Recently, there have been a lot of efforts towards the implementation of techniques and methods be-

longing to the field of Extreme Value Theory (EVT). In particular, the PeaksOver Threshold (POT)
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method seems to be the most effective way of applying EVT to VaR estimation: here, we refer mainly

to the dynamic POT approach developed in McNeil and Frey (2000), Fernandez (2003), and Battacharya

and Ritolia (2008). This procedure allows to simultaneously take into accountpersistence in squared re-

turns/losses, heteroskedasticity and fat tails. Roughly speaking, it applies the traditional POT framework

(Embrechtset al., 1997; McNeil and Saladin, 1997) to the GARCH residuals or, more generally, to any

volatility-filtered loss time series. The main advantages of the approach are generality, strong theoretical

basis and acceptable computational tractability, as well as accuracy when dealing with fat-tailed data.

The analysis presented in this paper provides the results of a backtesting exercise aimed at assessing

several dynamic VaR estimation models applied to the log-losses of 15 financialinstruments - equities,

currencies and indexes. We employ three different dynamic POT models, some thin-tailed and severalad

hoc fat-tailed alternative VaR models. The goal is to compare the dynamic POT modelswith alternative

VaR models and, in particular, assess their accuracy with respect to the fat-tailedad hocmodels. More-

over, we assess the impact on the results of two different (EWMA and GARCH) volatility filters for the

losses.

The paper is organized as follows: Section 2 briefly summarizes several VaR-based techniques for mar-

ket risk measurement. Section 3 outlines the core EVT theoretical results, focusing on the dynamic POT

procedure for VaR estimation. Section 4 presents the procedure employedto perform the comparison of

the models. Section 5 reports the main findings of the analysis. Finally, Section 6contains concluding

remarks and discusses some issues open to future research.

2 Measuring market risk: methods and approaches

The exponential increase in the amount of traded assets, the broader and growing financial integration

through countries, and the uncertainty that accompanied the last two decades of the ’90s have led to

an augmented concern about systemic risk. In particular, the need to monitor the risk of big losses

caused by large drops in prices became more and more relevant to both regulators and financial insti-

tutions. One of the most successful market risk measurement models, namelythe VaR system based

on the RiskMetricsTM framework (RiskMetrics, 1996), was developed by J.P. Morgan Chasein the late

’80s. At present, VaR is considered a standard tool, largely employed both for internal risk management

purposes and for regulatory capital charging. The success of VaR can be explained by its theoretical and

computational tractability, its flexibility and its adoption as a risk measure for internal models in the BIS

Market Risk Amendment.

The VaR measures the maximum loss that a bank or a financial institution will suffer on his trading

book over a certain time horizon with a predetermined probability levelq= 1−α , called coverage level.

VaR is a large quantile of the loss distribution (unconditional or conditional), and aims at summarizing

the downside risk of a portfolio or a single asset. From a mathematical point ofview, the VaR at levelq

is the real numberk such that:

P
(

X ≤ k
)
=

∫ k

−∞
f (x) dx = 1−α , k=VaR(q) ,

2



wheref (x) is the density function of the random variableX used for modelling the losses. The probability

level α indicates the expected relative number of violations (losses bigger than VaR), while q is the

expected coverage level or, in other words, the probability that losses will be smaller or equal than the

VaR value.

One of the major drawbacks of VaR is its inability to give an indication about the entire tail of the loss

distribution: VaR gives the maximum loss that will not be exceeded with a certaincoverage levelq, but

does not tell anything about the potential losses above VaR, which are indeed of primary importance. This

problem can be taken into account by means of the so-calledExpected Shortfall(ES), i.e. the conditional

mean of the losses that exceed VaR:

ES(α) = E

(
X
∣∣∣ X >VaR(q)

)
=

1
α

∫ ∞

VaR(q)
x f (x) dx .

Given a certain coverage levelq, VaR estimates the potential maximum loss that will not be exceeded

with probabilityq, and ES supplements this information by giving a measure of the average lossabove

VaR. Using both risk measures is sometimes very useful, particularly when therisk manager is concerned

about big but rare loss events in the tail of the distribution.

2.1 The VaR approach in an econometric framework

For market risk measurement over short time intervals, a dynamic approachis strongly recommended, as

it allows to extrapolate sensible information from the loss time series and include it inthe VaR estimates,

leading to a forward-looking VaR measure that adapts daily to current market conditions. The most

common framework for dynamic VaR modelling assumes that losses follow a stochastic process with

certain peculiar features, modelled in an econometric framework.

Let xt = − ln(Pt/Pt−1) be the log-loss, or the negative log-return, from dayt − 1 to dayt, wherePt

is the asset price on dayt. The seriesxt represents the path of log-losses over time, and is modelled

as the product of two components: a stochastic partzt and a deterministic partσt|t−1. The deterministic

component allows to bind losses through time. The random variablezt is a zero mean and unitary variance

random variable with distributionD(Θ) and parameter spaceΘ, while σ2
t|t−1 is the conditional variance

of xt :

xt = σt|t−1 ·zt , zt ∼D(Θ) , E(zt) = 0, Var(zt) = 1, ∀t, (1)

σ2
t|t−1 = f (xt−1, . . . ,x1;ζ ),

where f (xt−1, . . . ,x1;ζ ) is the equation for the conditional variance with parametersζ . It is possible to

include a component for the conditional mean: in this case,xt = µt|t−1+σt|t−1 ·zt .

The VaR can be scaled virtually at any time horizon: a short-time horizon (typically, 1 or 10 days)

seems to be more useful than very long time horizons. Generally, for internal market risk assessment, the

one-day-ahead VaR is the most sensible choice. According to (1), the daily VaR is a quantile ofzt with
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coverage probabilityq times the standard deviation forecast:

VaR(q)t+1 = σt+1|t ·zq, σ2
t+1|t = f (xt−1, . . . ,x1;ζ ), (2)

wherezq is a quantile ofzat coverage levelq andσt+1|t is the one-step-ahead standard deviation forecast.

2.2 Empirical properties of financial time series: modellingissues in a VaR framework

As noted by many contributions in the literature (see, for example, Mandelbrot, 1963; Fama, 1965;

Ding and Granger, 1996; Cont, 2001) some common statistical features affect financial return/loss time

series. Identifying and modelling these characteristics is crucial for risk management purposes, because

it is necessary to extrapolate predictable movements from the loss time series in order to improve the

accuracy of VaR estimates. We now detail some stylized facts we will focus onin this paper.

* Strong serial correlation and persistence in squared returns.

Returns and losses are generally not significantly correlated. However, this does not imply that

they are independent over time. The persistence effect of some positivetransformations of losses,

such as squared or absolute values, is indeed well-known; see, for example, Ding and Granger

(1996), who also show that the empirical autocorrelation tends to decay rapidly in the first lags and

more slowly at higher lags. Thus, a shock on losses takes a long time to be reabsorbed, leading to

consecutively large returns/losses.

* Fat-tailed empirical distributions.

A key and commonly investigated issue in the VaR literature is the presence of fat tails in the

return/loss distribution. Even filtering the loss data with a volatility model, in order togather

the persistence in squared losses described above, the distribution of filtered losses still tends to

show heavy tails. This feature is neglected in the earliest VaR models, which fit the filtered losses

with a standard normal distribution, leading to a normal conditional loss distribution N(0,σ2
t+1|t).

This assumption is consistent with the hypothesis of log-normal prices and allows to simplify

considerably the VaR estimation procedure, but seems to be unrealistic and bias-leading.

Strong serial autocorrelation and persistence in squared returns are explicitly modelled by Engle (1982)

ARCH and Bollerslev (1986) GARCH approaches. The GARCH(1,1) volatility framework is the most

common GARCH model in the literature and can be formalized as follows:

xt = σt ·zt , zt ∼ D
(
Θ
)
, σ2

t = ω +αx2
t−1+βσ2

t−1, ∀t.

It takes into account serial correlation and volatility clustering, but does not fully consider volatility

persistence and long memory. Asβ departs from 1, the GARCH(1,1) process gradually gives less weight

to the past squared losses, as can be seen by substituting recursivelyσ2
t− j in (3):

σ2
t = ω(1−β )−1+α

∞

∑
i=1

β ix2
t−i .
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The process estimated for the analysis presented in this paper produces an averageβ equal to 0.89 for

equities and currencies and 0.875 for indexes; moreover,α +β results mostly very close to 1. This seems

to be a typical behavior of GARCH processes on returns/losses (see, for example, Angelidiset al., 2004).

For this reason, we call a GARCH model withβ < 0.90 a ‘typical GARCH model’. Such a lowβ keeps

the weight structure from accounting for long memory in squared losses; furthermore, the autocorrelation

function is not in accord with its empirical counterpart, which often remains significant for many lags.

Roughly speaking, the weight structure starts too high, decays too rapidlyand approaches zero too soon.

The presence of long memory in squared returns and the need to model this feature appropriately seems

to be an emergent topic in the financial literature for returns/losses time series(Ding and Granger, 1996).

An elegant approach is the so-called Fractionally Integrated GARCH (FIGARCH), proposed by Baillie

et al. (1996), which models the conditional variance allowing for an hyperbolic rate of decay (see also

Christodoulou-Volos and Siokis, 2006; Gil-Alana, 2006). This process, however, is considerably more

complicated than the standard GARCH from the statistical and computational point of view.

A simple model for the conditional volatility, which partially accounts for high persistence and long

memory, is the Exponentially Weighted Moving Average (EWMA) framework developed by J.P. Morgan

in its RiskMetricsTM environment (RiskMetrics, 1996). The EWMA volatility model is a non-parametric

truncated exponential weighted average of past squared losses. Its expression, for the univariate case, is

the following:

σ2
t+1 =

1
T

∑
τ = 1

λ τ−1

T

∑
τ = 1

λ τ−1 x2
t−τ+1, T = 75, λ = 0.94 . (3)

ForT 7→ ∞, (3) converges to the recursive equationσ2
t = (1−λ ) x2

t−1+λσ2
t−1. Thus, the EWMA model

is a restricted IGARCH specification, withα = 1−λ andβ = λ , so thatα +β = 1.

Compared to the GARCH(1,1) specification, the RiskMetricsTM EWMA(75,0.94) variance partially

captures the volatility persistence effect whenλ > β . In the standard case,λ = 0.94 is sufficiently

large to improve the typical GARCH process. Therefore, if one is worriedabout persistence effects

and correlation in squared losses and tries to account for these phenomena with a simple but reasonably

accurate variance model, the EWMA specification is certainly of interest.

Both the GARCH(1,1) process and the EWMA model require a distributional assumption for the

stochastic componentzt . If the filtered return distribution is fat-tailed,zt should reflect this feature.

The original RiskMetricsTM framework is based on the normal distribution, as well as most of the basic

first-generation GARCH models employed for dynamic VaR estimation. This choice may be reasonable

at low VaR coverage level (say, up to 95%) where estimating the density in thetail of the empirical fil-

tered loss distribution is not as important as in the case of high coverage levels (99% or higher). In the

latter case, neglecting the presence of fat tails and excess kurtosis may lead to a systematic underesti-

mation of VaR. Several models aim at solving this issue: the most common ones use ad hochypotheses

on the law governing the stochastic component, such as the standardized Student-t distribution and the

GED distribution. Both these distributions have tails fatter than those of the normal and are well suited
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for modelling filtered losses. A more convincing approach is based on Extreme Value Theory.

3 Extreme Value Theory for VaR estimation: a dynamic approach

Extreme Value Theory (EVT) is a comprehensive set of statistical procedures for the analysis of extreme

data. Originally, EVT concepts were applied mainly to the study of natural extreme and rare events,

such as floods and earthquakes. However, EVT quickly became popular in the financial and actuarial

literature, in particular for modelling very large insurance losses. In the following, we mostly follow

the setup proposed by Embrechtset al. (1997), adding some innovative features regarding the volatility

model.

Within the EVT framework, there are essentially two kinds of methodologies. Even though they are

related, each of them treats extreme data in a different manner.

* Block Maxima Method(BMM).

The BMM method focuses on the largest values (maxima) taken from samples of independent and

identically distributed (iid ) observations. It is moderately expensive in terms of data, because it

only uses periodical maxima and, therefore, requires wide datasets.

* Peaks Over Threshold(POT)method.

The POT method focuses on observations that exceed a high threshold. It is defined on the excesses

(i.e., the observations larger than some thresholdu) and is generally considered more efficient than

BMM, because it uses all the excesses, not only periodical maxima.

Recently, there has been a lot of interest about POT models in the financialliterature: in particular,

McNeil and Frey (2000) propose an innovative application of the POT procedure to dynamic VaR and

ES estimation; see also Fernandez (2003) and Batthacharyya and Ritolia (2008).

3.1 The Peaks Over Threshold method

Let (x1, . . . ,xn) be a sequence ofiid observations from a random variableX with unknown cumulative

distribution functionF(x). Let u∈R
+ be some predefined large value in the support ofF and letx0 ≤∞

be the right endpoint ofF . The POT procedure focuses on the excess distribution over a high threshold

u, that is the distribution ofY = X−u. It can be described by the conditional distribution function ofY

givenu, i.e. the probability that the losses exceed the threshold by no more than an amount y≥ 0, given

that the threshold has been exceeded:

P

(
X−u≤ y

∣∣ X > u
)
= Fu(y) =

F(y+u)−F(u)
1−F(u)

, 0≤ y< x0−u . (4)

The procedure relies on an important EVT result, the Balkema, de Haan andPickands (BHP) theorem

(see, for example, McNeilet al., 2005, p. 277). It says that, under some conditions and for a certain
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class of underlying distributions, the excess distribution converges to the Generalized Pareto Distribution

(GPD):

∃ β (u)> 0 : lim
u→xF

sup
0≤y<xF−u

∣∣∣Fu(y)−Gξ ,β (u)(y)
∣∣∣= 0 ⇐⇒ F ∈ MDA

(
Hξ

)
, ξ ∈ R, (5)

where

Gξ ,β (y) =





1−
(

1+ξ y
β

)−
1
ξ if ξ 6= 0,

1−exp
(
−

y
β

)
if ξ = 0,

D
(
Gξ ,β ) =





y≥ 0 if ξ ≥ 0,

0≤ y≤ β
ξ if ξ < 0,

are respectively the cumulative distribution function of the GPD and its support. The BHP theorem

(5) ensures that, ifF belongs to the maximum domain of attraction of theGeneralized Extreme Value

distribution(GEV), for some realξ , and if the thresholdu tends to the right endpoint of the support, there

exist a positive measurable functionβ (u) such that the GPD is the limiting distribution of the excesses

Y above the threshold. In practice, this means that the distribution of the excess lossesY = X−u is well

approximated by a GPD, given thatu is sufficiently large. For our purposes, it is worth adding some

comment about the two main assumptions of the theorem.

* F ∈ MDA
(
Hξ

)
.

Let x1, . . . ,xn be a sequence ofiid observations fromF and letMn = max
{

x1, . . . ,xn
}

. The Fisher-

Tippet theorem states that, if there exist appropriate norming constantscn > 0 anddn ∈ R such

that the normalised maxima converge to a non-degenerate distributionH, this limit distribution is

a GEV:

Mn−dn

cn

d
−→ H, H = Hξ ,β .

All distributions for which this condition holds are referred to as distributionsin the maximum

domain of attraction of the GEV, for someξ ∈ R. In other terms:F ∈ MDA(Hξ∈R).

* u→ x0.

The choice ofu is the critical issue in the POT procedure. When fitting the GPD to data, a high

threshold can lead to a small sample (too few excesses) and a low threshold causes a departure

from the limiting result of the BHP theorem. This suggests that the choice of the thresholdu is

essentially related to the trade-off between variance and bias of the estimators.

The standard versions of the Fisher-Tippet and BHP theorems are based on iid data, but returns and

losses are generally dependent. Fortunately, the convergence law fornormalized maxima and for the

excess distribution also holds for processes with extremal indexθ = 1 (such as, for example, ARMA

processes; see McNeilet al., 2005, p. 270, for a definition of extremal index). For processes with
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extremal indexθ < 1 (this class includes, among others, ARCH and GARCH processes) the limit result

is not completely justified because of the presence of extremal clusters and, therefore, non-iid excesses.

In the latter case, the application of the POT procedure is somewhat problematic. It seems therefore more

convenient to work with approximatelyiid data, applying an appropriate filter to the losses.

The core of the POT procedure is the use of the GPDGξ ,β (y) as an approximation of the excess

distributionFu(y). As said above, the underlying distributionF must belong to the MDA(Hξ∈R) for the

limit law to work. For the purposes of this paper, it is enough to note that (McNeil et al., 2005, p. 278)

‘ ... essentially all the common continuous distributions of statistics or actuarial science are in MDA(Hξ )

for some value ofξ ’. This means that the GPD can be thought of as the general model for excesses over

a high threshold, without imposing anyad hocassumption onF .

Using the limit result in the BHP theorem, (4) implies that the tail of the underlying distributionF has

the following representation:

F(x) =
[
1−F(u)

]
Gξ ,β (u)(y)+F(u) , x≥ u. (6)

Substituting in (6) the GPD density and inverting, we obtain the expression forthe quantile at coverage

levelq:

zq = u+
β
ξ

{ [
α

F(u)

]−ξ

−1

}
, F(u)≥ α , (7)

whereα = P

(
X > zq

)
andF(u) = 1−F(u).

3.2 The POT procedure in a dynamic market risk measurement framework

The POT procedure for dynamic market risk measurement is mostly based onMcNeil and Frey (2000).

They suggest to perform the following steps.

* Fit an AR-GARCH-type process to the loss data, in order to capture the persistence in squared

losses, using the Quasi-Maximum Likelihood Estimation (QMLE) procedure.

* Apply the POT procedure to AR-GARCH residuals by fitting with Maximum Likelihood estima-

tion (MLE) the GPD on the excess filtered loss distributionsFu(z−u). This allows to estimate the

tail of the filtered loss distribution.

* Use the POT quantile estimator (7), where the estimator ofFz(u) is F̂z(u) = n−1 ∑n
i=11{zi > u},

and the volatility forecasts to compute daily VaR estimates.

The model allows to take into consideration both volatility clustering and fat tails in the filtered loss

distribution, bypassing the problems related to the application of the POT procedure directly to losses.

The use of the GPD in the tail allows an accurate estimation of the quantilezq, with noad hocassump-

tion on the innovation distributionFz(z). Although not generally true in the case of loss time series, the
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iid hypothesis for the residuals is usually acceptable when working with standardized lossesz, given that

the volatility model is sufficiently accurate to capture the stylized facts cited above.

According to McNeil and Frey (2000), VaR estimates obtained with this procedure are preferable to

both dynamic methods that neglect the presence of fat tails in the residuals and unconditional methods.

Moreover, the dynamic POT applied to daily loss data gives slightly better results than the GARCH

Student-t VaR model. As described in section 4.2, we slightly modify the procedure outlined above by

including different volatility models (two GARCH-type and the EWMA set-up).

4 Backtesting: datasets, models and procedures

4.1 Datasets and methodology

The backtesting analysis is based on 15 assets (including three indexes) diversified by country (mainly

UE and USA), currency, market and business activity. Such a relatively wide list should improve the

robustness of the results. We use the log-lossesxt instead of the negative returns for convenience, because

the GPD is defined on a non-negative support. For each asset, the time horizon goes from January 2, 2001

to May 9, 2009. The entire period of the loss time series can be split into two sub-periods.

* From January 2, 2001 to May 8, 2004. This contains the loss samples used for VaR estimation.

The samples are constructed as follows: the first period begins on January 2, 2001, ends on March

1, 2004 and is used to obtain the first VaR forecast (for March 2, 2004). Every VaR forecast is

obtained using a sample determined by shifting the previous sample one day ahead. We call these

sub-periods ‘sample periods’.

* From March 2, 2004 to May 9, 2009. We use this period to evaluate the VaRestimates obtained

with the models employed in the analysis. The choice of the time horizon is motivated by the

presence of both relatively quiet and uprising market conditions (until February 2007) and the

turmoil caused by the sub-prime crisis that began (in terms of increased volatility) in March 2007

and came to its peak around mid March 2009. We refer to this period as to the ‘backtesting period’.

Thus, the estimation scheme uses the ‘temporal moving window’ procedure: each VaR estimate is ob-

tained on a different loss sample (the previous sample translated one day forward) with constant size. For

practical purposes, we introduce the following notation.

1. T is the entire period considered.

2. T j is the j-th sample period andX j =
{

x j,1, . . . ,x j,n
}

is the corresponding estimation sample.

Each sampleX j contains then realized losses of the sample period. The estimation sample moves

forward every day, dropping the oldest observation and adding the newest, so the number of losses

n is constant for every sampleX j , ∀ j and equals to the number of trading days between January 2,

2001 and March 1, 2004.
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3. Tbp is the backtesting period andXbp =
{

xbp,1 , . . . , xbp,m
}

is the set of losses used for the back-

testing analysis. The lengthm of the backtesting period is equal to the number of trading days

between March 2, 2004 and May 9, 2009.

The backtesting exercise is performed in an univariate framework: froma financial point of view, this

means that each asset is treated as a single position in the trading portfolio. Asfor the indexes, we

neglect the dependence structure among their components; we consider losses/returns of the indexes to

be a proxy of losses/returns of index-tracking funds or ETFs (thus, single positions), whose prices are

not available for such a long time backwards. The complete list of assets is asfollows:

* Luxottica, Italcementi, Unicredit (Milan);

* Credit Suisse, Vodafone Group Plc, Citigroup Inc., Ford Motors, Microsoft Corp, General Motors

Corp. (New York);

* MIBTEL (now, FTSE Italia All-Share), DAX 30, NIKKEI 225;

* GB Pound, BRA Real, ZAR Rand (all expressed in Euro);

Financial and banking stocks are included because they suffered the largest impact during and after the

financial crisis. Moreover, we chose a couple of ‘less extreme’ assets(Luxottica, Vodafone), automotive

firms and some indexes, mainly composed by financial, insurance and industrial companies. For cur-

rencies, two of them are more volatile (Real and Rand) and the remaining oneis more stable (British

Pound). All currencies are expressed in Euro.

Summarizing, we are interested in measuring the VaR models performance in the periodTbp. The

models are estimated with the ‘temporal moving window’method that createsmequally-sized (n) samples

and, therefore,mVaR estimates, each of them associated to the trading dates inTbp.

4.2 The models

The backtesting analysis involves dynamic as well as unconditional VaR models. In particular, we use

two different volatility models (GARCH(1,1) and EWMA(75,0.94)), some ad hoc fat tails assumptions

and the dynamic POT procedure. Dynamic VaR models are grouped into threeclasses: dynamic POT,

dynamic fat-tailed and dynamic thin-tailed models.

4.2.1 Dynamic POT models

Our implementation of the POT approach estimates daily dynamic VaR measures by applying the POT

procedure to the volatility-filtered losses. With respect to McNeil and Frey (2000) we introduce some

modifications.

1. McNeil and Frey (2000) consider an AR(1) component; rather, we neglect the conditional mean

specificationµt+1|t in the GARCH(1,1) process. The reason is that, as pointed out by Angelidiset

al. (2004), it does not seem to influence significantly the accuracy of the VaR estimates. In any
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case, to motivate empirically this remark, we tried to include an AR(1), MA(1) and ARMA(1,1)

component for some assets (MIBTEL, Credit Suisse, Microsoft and Rand): in almost all cases

(with a few exceptions within the estimation windowsT j ), the AR, MA and ARMA parameters

are not significant, whereas the total estimation time increases significantly.

2. As anticipated in Sect. 3.2, the POT procedure is applied both to GARCH residuals and EWMA

standardized losses. Moreover, we employ two different GARCH processes. The first one, pro-

posed by McNeil and Frey (2000), is defined without assuming any specific distribution for the

innovationsz (QMLE estimation procedure); the second one assumes standardized Student-t in-

novations. The latter assumption is justified because, if we constrain the GDP shape parameterξ
to be positive (which is reasonable if one thinks that residuals are fat-tailed), FZ(z) belongs to the

MDA(Hξ>0), that is the MDA of a Fréchet, which includes the Student-t distribution. Therefore,

we assume implicitly that the distribution of the GARCH innovationz is Student-t standardized,

but we estimate the quantilezq by modelling its tail with the accurate POT approximation instead of

the standard Student-t quantile. To sum up, we test three dynamic POT models: QMLE-GARCH

POT,t-GARCH POT and EWMA POT.

3. We choose the residual that gives a number of excesses larger than100. This results in a threshold

equal to the 87-th empirical quantile in each sample periodT j . We solve the threshold trade-off

using, for all assets, the same criterion, thus ensuring that the POT estimationprocedure makes use

of at least 100 residuals: we believe that this number is a reasonable compromise between variance

and bias. The graphical technique often proposed in the literature (Embrechtset al., 1997, Sect.

6.2.2), consisting in setting the threshold at the point where the empirical mean excess function

becomes approximately linear, has revealed to be a useless tool when working with large samples

of data and assets.

The decision of applying the POT procedure to EWMA-filtered losses is duenot only to the compu-

tational tractability of the EWMA volatility model but also to its ability in capturing squared residuals

persistence more deeply than the ‘typical GARCH’ model. The decay factorλ of the EWMA volatility

model is set to 0.94 (as in the RiskMetricsTM framework), thus leading to a decay of the weight structure

of the squared residuals slower than the ‘typical GARCH’ model.

The dynamic POT models employed in the analysis can be formalized as follows:

VaR(q)t+1 = σt+1|t ·

{
u+

β
ξ

{ [
α

Fz(u)

]−ξ

−1

}}
,

[a] σ2
t+1|t = ω +α1x2

t +β1σ2
t ,

[b] σ2
t+1|t =

1
75

∑
τ = 1

λ τ−1

75

∑
τ = 1

λ τ−1 x2
t−τ+1 , λ = 0.94.

The two volatility specifications[a] and[b] remain valid for all the models in the next two subsections.
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4.2.2 Dynamic fat-tailed models

It is possible to take into account heavy-tailed residuals by anad hocassumption on the distribution

of z. The use of a standardized Student-t random variable as a model for the stochastic component of

the GARCH process can be considered acceptable, since the Student-t distribution with few degrees of

freedom is fat-tailed. The VaR is given by:

VaR(q)t+1 = σt+1|t ·zq

√
ν −2

ν
, zq = T−1

ν
(
q
)
, ν > 2, (8)

wherezq is the quantile of the Student-t distribution withν degrees of freedom at the coverage levelq,√
ν −2/ν is the reciprocal of the standard deviation for a Student-t r.v. with ν > 2 andTν(z) denotes

the cumulative distribution function of the Student-t r.v. The GARCH parameters are obtained optimiz-

ing the standardized Student-t likelihood function (see next section). We will refer to 8 with volatility

specifications [a] and [b] respectively as ‘t-GARCH Student–t ’ and ‘EWMA Student–t ’.

Another possibility (Angelidiset al., 2004) consists in modelling the stochastic componentzby means

of a GED. The GED is a symmetric distribution characterized by a shape parameter υ . For υ < 2, it is

leptokurtic. A dynamic VaR model with GED innovations can be written as follows:

VaR(q)t+1 = σt+1|t ·zq, zq = G−1
υ ,0,1

(
q
)
, (9)

wherezq is the quantile of a GED with shape parameterυ , mean zero and unitary variance andGυ ,0,1(z)

is the cumulative distribution function of the standardized GED. The estimators of the GARCH param-

eters are obtained maximizing the GED likelihood function. 9 will be called ‘GED-GARCH GED’ and

‘EWMA GED’ models according to the volatility specifications.

A simple semi-parametric approach, not requiring any distributional assumption for the residuals, com-

bines historical simulation and volatility filtering: we refer to this model as ‘DynamicHistorical Simu-

lation’ (DHS). Two similar techniques have been proposed by Boudoukhet al. (1998), who apply the

EWMA weights directly to losses, and by Fernandez (2003), who works with GARCH residuals. This

method estimates the quantilezq by means of the empirical quantile of the residual/filtered loss distri-

bution rather than employing a predefined distributional assumption, is computationally light and quite

accurate, according to the results in Fernandez (2003). Given the sample of filtered lossesZ j (with both

EWMA and GARCH conditional volatility) we compute, in each estimation periodT j , ∀ j = 1, . . . ,m,

the ordered residualszj,[1], . . . ,zj,[k], . . . ,zj,[n]. The empirical quantile at coverage levelq is just thek-th

ordered residual, wherek= q·n. The DHS model for dynamic VaR estimation can be written as follows:

VaR(q)t+1 = σt+1|t ·zq, zq = z[q·n].

We apply this method to EWMA-filtered losses and tot-GARCH, N(0,1)-GARCH and GED-GARCH

residuals, leading to 4 dynamic VaR models called ‘EWMA DHS’, ‘t-GARCH DHS’, ‘N(0,1)-GARCH

DHS’ and ‘GED-GARCH DHS’.
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4.2.3 Dynamic thin-tailed models and unconditional models

Finally, we consider the distributional hypothesis used in the standard VaR estimation procedure, that

is the normal distribution. As often pointed out in the literature (see, for example, McNeil and Frey,

2000 and Angelidiset al., 2004), the two normal-driven models corresponding to [a] and [b] usually

underestimate the quantilezq, in particular at high coverage levels. Nevertheless, they are commonly

used in practical applications: in particular, the latter is the univariate EWMA RiskMetricsTM approach,

namely the standard solution for market risk measurement:

VaR(q)t+1 = σt+1|t ·zq, zq = Φ−1(q),

whereΦ−1(q) is the inverse of the standard normal distribution function at coverage level q. In the

following, these models will be called respectively ‘N(0,1)-GARCH N(0,1)’and ‘EWMA N(0,1)’ or

‘RiskMetrics VaR’.

Although conditional approaches for measuring market risk on a short-term basis are certainly prefer-

able, we also consider two unconditional approaches: standard historical simulation (‘Unconditional

HS’) and unconditional POT. The first one estimates VaR as the empirical quantile of the loss distribu-

tion, while unconditional POT estimates the tail of the loss distribution and high quantiles applying the

POT procedure directly to losses (in eachT j ), even though theiid assumption for the excesses (see Sect.

3) may not be satisfied. A summary of the models employed in the backtesting exercise is given in Table

1.

4.3 The estimation procedure

Let θ ′ =
(
ω ,α ,β

)
be the vector of parameters of the GARCH(1,1) process with conditional variance

σ2
t = ω +α1x2

t−1+β1σ2
t . The estimators of the parameters are obtained maximizing the log-likelihood

function of the GARCH model in use.

* For the GARCH POT model, estimation is based on QMLE. This allows to avoid anyexplicit

distributional assumption for the innovationsz, leading to a log-likelihood function derived from

the normal assumption, even though it may not hold true. It can be shown (see McNeilet al., 2005,

p. 152, and the references therein) that, even when the GARCH innovations are not Gaussian, the

estimators are consistent and asymptotically normal. The same procedure is used for the N(0,1)

GARCH model estimation.

* For the t-GARCH (three models), the vector of parameters isθ ′ = (ν ,ω ,α1,β1) and the log-

likelihood function used to obtain the estimates is based on the standardized Student-t hypothesis

for GARCH innovation.

* For the GED-GARCH process (two models), whereθ ′ = (υ ,ω ,α1,β1), the GED log-likelihood

function is used.
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Table 1: The table summarizes the VaR models tested in the backtesting periodTbp.

Name Conditional variance Distribution: Estimation procedure:

filtered losses conditional variance

QMLE–GARCH POT GARCH(1,1) FZ ∈ MDA(Hξ∈R) QMLE – N(0,1) log–L

t–GARCH POT GARCH(1,1) FZ ∈ MDA(Hξ>0) std Student–t log–L

EWMA POT EWMA(75,0.94) FZ ∈ MDA(Hξ∈R) –

N(0,1)–GARCH N(0,1) GARCH(1,1) N(0,1) N(0,1) log–L

t–GARCH Student–t GARCH(1,1) stdt(ν) std Student–t log–L

GED–GARCH GED GARCH(1,1) GED(υ ,0,1) GED log–L

EWMA N(0,1) EWMA(75,0.94) N(0,1) –

EWMA Student–t EWMA(75,0.94) stdt(ν) –

EWMA GED EWMA(75,0.94) GED(υ ,0,1) –

N(0,1)–GARCH DHS GARCH(1,1) N(0,1) N(0,1) log–L

t–GARCH DHS GARCH(1,1) stdt(ν) std Student–t log–L

GED–GARCH DHS GARCH(1,1) GED(υ ,0,1) GED log–L

EWMA DHS EWMA(75,0.94) – –

Unconditional POT – – –

Unconditional HS – – –

For a detailed review of the log-likelihood functions see Angelidiset al. (2004). The whole procedure

can be subdivided in the following five steps.

1. Compute, in eachT j , the GARCH parameter estimatesθ̂ , the vector of past variance estimates

(both EWMA and GARCH), a vector ofn GARCH residualŝZ j =
(
ẑ1, . . . , ẑn

)T
, the EWMA stan-

dardized losseŝZ∗
j =

(
ẑ∗1, . . . , ẑ

∗
n

)T
and the one-day-ahead volatility forecastsσ̂t+1|t for the EWMA

and the GARCH models.

2. Use the Ljung-Box test statistic, the empirical autocorrelation function of residuals/filtered losses

and of their squared values to check ifẐ j and Ẑ∗
j are iid . Evaluate the presence of fat tails by

means of Q-Q plots, histograms and formal (Jarque-Bera) test statistics. Test whether the GARCH

parameters estimatesθ̂ are significantly different from zero.

3. Apply the POT procedure of Sect. 3 both toẐ j andẐ∗
j . In eachT j set the threshold at the empirical

87-th quantile ( ˆu, û∗), obtaining the estimated excessesŶj =
(
ŷ1, . . . , ŷNu

)T
and Ŷ∗

j =
(
ŷ∗1, . . . , ŷ

∗
Nu

)T
.

The estimation of the GPD parameters(ξ , βu) uses the MLE method. The quantile estimate from

the tail of the filtered loss distribution at coverage levelq is:

ẑq = û+
β̂u

ξ̂

{ [
1−q

F̂z(u)

]−ξ̂

−1

}
, with F̂z(u) =

n

∑
i=1

1{ẑi > û}.

The standardized Student-t and the GED quantile estimators require the specification ofν andυ ,
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respectively the degrees of freedom for the Student-t fitted residuals/filtered losses and the GED

shape parameter. For the GARCH residuals, bothν and υ are estimated within the GARCH

estimation procedure, while in the EWMA case an ad hoc estimation procedure isrequired.

4. For each day inTbp, compute the estimated filtered loss quantile ˆzq for each of the aforementioned

distributional hypotheses, procedures and models.

5. For each model in Table 1, compute all the VaR estimates for the backtesting periodTbp, adapt-

ing (2) to each specific formulation. Therefore, for eachT j , an out-of-sample VaR estimate is

computed, in order to get a VaR estimate for each trading day in the backtestingperiodTbp:

V̂aR(q)1, . . . ,V̂aR(q)m.

4.4 The backtesting procedure

A backtesting analysis requires the evaluation of the VaR models over a sufficiently long backtesting

period. Accuracy is generally assessed by means of statistical testing procedures that rely on the com-

parison of the expected number of VaR violations implied by the model in use andthe realized violation

series. In this analysis we employ an unconditional coverage test, the so-called Proportion of Failures

(PoF) test proposed by Kupiec (1995) and Christoffersen (1998).

Let It be an indicator variable eqaul to one if the VaR value estimated on dayt for dayt +1 is smaller

than the correspondingt +1 loss and zero otherwise:

It+i =





1; if xt+i > VaR(q)t+i ,

0; if xt+i ≤ VaR(q)t+i ,

∀i = 1, . . . ,m,

wheret denotes thet-th trading day inTbp. (It)t=1,...,m is a sequence of independently and identically

distributed Bernoulli random variables:

It+i
iid
∼ Be(α), α = P

(
xt+i >VaR(q)t+i

)
, ∀i = 1, . . . ,m.

It follows that the sum of theIts is a binomial random variable withm trials and probability of success

α , whose expected number of successes is equal tom·α :

Ym =
m

∑
i=1

It+i ∼ Bin(m,α).

The PoF unconditional coverage test is a likelihood ratio test. The null hypothesis states that the failure

rateπ̂ =Ym/m is equal toα , while the alternative hypothesis iŝπ 6= α . Formally, the PoF test statistic is

defined as follows:

PoF=−2log

[
l
(
α ; Ît+1, . . . , Ît+m

)

l(π̂; Ît+1, . . . , Ît+m)

]
,

where l(α ; Ît+1, . . . , Ît+m) = (1− α)N0αN1, l(π̂; Ît+1, . . . , Ît+m) = (1− π̂)N0 π̂N1, N1 is the number of
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violations in the backtesting periodTbp andN0 = m−N1. The test statistic tends to be small whenN1 is

“close” to the expected number of violations (PoF= 0 whenπ̂ = α) and large when̂π is either larger or

smaller thanα . Thus, thePoF testing procedure allows to reject both a too conservative VaR model (too

large VaR estimates) and a poor VaR model (too small VaR estimates).

The PoF test statistic, form 7→ ∞, is distributed as aχ2 random variable with 1 degree of freedom. If

the test statistic is smaller than theγ-quantile of theχ2
1 distribution, where 1−γ is the size of the test, the

VaR model under examination is accepted and therefore can be considered reliable and effective.

The test was computed at sizes 1− γ = 10% and 1− γ = 5%. This choice is motivated by the trade-

off between a small size and its costs in terms of Type II error: the smaller the size, the larger the

probability of correctly choosing the null hypothesis but also the chance of a Type II error. In other

words, setting a high probability (for example, 99%) of correctly choosingan effective VaR model, we

also increase the probability of erroneously selecting an inappropriate VaR model, i.e. a VaR model with

too many or too few violations. This can be seen from Fig. 1, which represents the PoF test statistic with

m= 1,320 (approximately five years of daily observations) and a 99% coverage level. The thick black

curve represents the values of the test statistic as a function of the number of violations (x-axis), while the

vertical dashed line is the expected number of violations. The horizontal lines represent three different

critical values for the test, i.e. theγ-quantiles of theχ2
1 distribution withγ = 90, 95 and 99%. With a

1% size, the acceptance region of the test, represented by the lowermost thick grey line and including

the numbers of violations such that the curve lies under the dashed horizontal line, is significantly larger

than in the cases corresponding to the 5 and 10% levels, causing a Type IIerror that we deem too large.

Figure 1: The PoF test statistic as a function of the number of VaR violations (at 99% coverage level) and the
acceptance region as a function of the critical values corresponding to the 1, 5 and 10% sizes.
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5 Results

Since the end of the second quarter 2007, equity markets became increasingly volatile due to the emerg-

ing financial crisis culminated, in September 2008, in the default of Lehman Brothers and continued until

the end of 2008. In this period, the markets were characterized by unusually high volatility levels and

huge losses due to deleveraging and flight to quality. The equity indexes ofmost industrialized coun-

tries wiped off almost all the capitalization accumulated since mid 2004 and, in somecases, even more.

Similarly, the first quarter 2009 was dominated by high volatility and large lossesworldwide.

The models are implemented with three VaR probability levels (α) equal to 5, 1 and 0.5%, thus assum-

ing three coverage levels (95, 99 and 99.5%). The comparison of the overall performance of the models

during the backtesting period takes into consideration the number of rejections of the null hypothesis for

each VaR model: we count how many times each VaR model applied to the 15 loss timeseries (see Sect.

4.1) is rejected by the PoF test. This approach is justified because a model never rejected by the PoF test

is certainly preferable to a rejected (one or more times) model: thus, a VaR model with fewer rejections

is considered more accurate. More specifically, we adopt two differentrankings. The first one considers

the number of joint rejections with respect to the 99 and 99.5% VaR, so that it focuses on the behavior of

VaR estimates in the tail of the loss distribution. The alternative ranking counts the number of rejections

at 95% and is used along with the first one to complete the empirical evidence concerning VaR accuracy.

5.1 Preliminary results

Due to space limitations, we cannot show here all the results. We limit ourselvesto detail the most

important outcomes of the analysis of filtered losses. We use both formal testing procedures and graphical

representations to evaluate the statistical properties of volatility-filtered losses. As for the graphs, three

equally-sized filtered losses sub-samples are used for each asset, starting respectively on July 6, 2002,

June 15, 2004 and December 27, 2005. The main findings can be summarized as follows.

* The Ljung-Box test with 20 lags applied to each filtered loss sample (Ẑ j and Ẑ∗
j ) and to each

asset, does not produce, in almost all cases, any evidence of serial correlation. Two exceptions are

the FORD and Luxottica GARCH/EWMA residuals for which, at the extremes ofthe backtesting

period, the test accepts the presence of autocorrelation.

* The Q-Q plot of the filtered losses (with both EWMA and GARCH filters) with respect to the stan-

dard normal distribution shows the presence of heavy tails, in particular onthe right tail (losses).

This is more evident for the first and the third EWMA/GARCH filtered loss sub-sample.

* The mean excess estimator plot used for choosing the threshold of the filtered losses sub-samples

gives ambiguous results. In general, for most assets and sample periods, the expected linear pat-

tern starts approximately at the threshold. In some cases, however, it is hard to identify a linear

trend due to a large dispersion. In other cases, the linear trend seems to start above the threshold

suggesting that the threshold should be larger.
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5.2 Estimation results

The first issue of interest is the difference between the various estimates ˆzq of the quantiles of the residuals

obtained with the models under consideration. For Citigroup, Fig. 2(a) shows the estimates ˆzq for the

QMLE-GARCH POT model and the quantiles of the standard normal, all with a 99% coverage level.

Similarly, Fig. 2(b) and (c) display ˆzq for the remaining two POT models (t-GARCH and EWMA) and

the estimated quantiles for dynamic models with the standardized Student-t distribution. The results for

the other assets are similar and therefore not reported here.

Figure 2: Citigroup. Estimates of the quantiles of the filtered losseszq with q=99 and 99.5%. Dynamic POT
procedures.
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As can be seen from Fig. 2(a), the normal quantiles are significantly lowerthan the POT (GARCH-

QMLE, t-GARCH, EWMA) for the smallest VaR probabilities (1% and 0.5%). Thus, theassumption

of a normal-driven dynamic VaR model leads to a larger risk of VaR underestimation, in particular at

high coverage levels. This result is in line with the majority of VaR backtesting analyses in the literature

(Angelidiset al., 2004; McNeil, Frey, 2000; Hung,et al. 2008). In figures 2(b) and (c) the POTt-GARCH

and POT EWMA filtered losses quantiles are plotted against the standardizedStudent-t quantile obtained

from the estimation of dynamic VaR models. The POTt-GARCH quantiles (Fig. 2(b)) are larger than the

Student-t quantiles. In the last year of analysis, the POTt-GARCH quantiles declines slightly, whereas

thet quantiles rise sharply; however, this feature is specific to Citigroup. The most interesting results can

be seen by looking at Fig. 2(c): the POT quantiles estimated from EWMA filtered losses are significantly

larger than the standardized Student-t quantiles.

A second issue of interest is the relationship between the method used for volatility estimation and the

estimated quantiles of the filtered losses. In this case the main messages of the empirical analysis are as

follows.

• For most assets and models, towards the end ofTbp (from August 2007, say), the numerical values
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of the estimated quantiles increase significantly.

• The EWMA estimated quantiles are generally larger than all other filtered losses estimated quan-

tiles. This is probably due to both the weight structure of the EWMA filter withλ = 0.94 and the

accuracy of the POT quantile estimator. With respect to a typical GARCH, the weight structure of

the EWMA filter gives less weight to the very last observation but is more persistent: unusually

high squared losses, frequently observed during the entire backtestingperiod, are not immedi-

ately overweighted, but the weight structure spreads its effects over a relatively long time horizon,

contributing to constantly large and less volatile estimated quantiles with respect tothe estimated

quantiles of the GARCH residuals.

• As a consequence of fewer excesses, the 99.5% estimated quantiles are more volatile than the 99%

quantiles.

5.3 Backtesting results

Tables 4-10 in appendix A.1 show the full set of backtesting results for each asset involved in the analysis.

The tables include two patterns: each horizontal box contains three rows with the results of the PoF

test with three different VaR probabilities (5%, 1% and 0.5%). The first column shows the number of

VaR violations, the second column the PoF test statistic, and the third thep-value associated with the

numerical value of the PoF test statistic.

For the 10 and 5% sizes, we evaluate the models with VaR probability levelsα set to 5, 1 and 0.5% for

all assets (see Sect. 4.1). It follows that, for either size of the test, the number of rejections for each model

with a certain VaR probabilityα ranges from 0 to 15, namely the number of assets under consideration.

5.3.1 Results 1: test size 5%

Table 2 summarizes the backtesting results when the size of the test is equal to 5%. The first column

of Table 2 describes the VaR model tested, the central columns report the number of violations for each

VaR probability and the last column shows the model ranking, as determined bythe total number of

rejections: the models are listed in ascending order, according to the total number of rejections at 99 and

99.5% coverage levels.

Let us start with the worst performing VaR models, namely dynamic normal-driven VaR models. At 99

and 99.5%, for N(0,1)-GARCH, the number of rejections is 24 out of a maximum possible value of 30,

while for the RiskMetricsTM VaR we get 28 rejections. Furthermore, as the VaR coverage level increases,

the performance of both models gets worse. This is not surprising, giventhe well-known inadequacy of

the normal distribution at high coverage levels in presence of fat tails in the filtered loss distributions.

At 95%, the situation is quite different: the two dynamic normal-driven VaR models yield respectively 1

and 3 rejections and are at the top of the ranking.

The two static VaR models (unconditional POT and unconditional HS) performbadly regardless of the

VaR probabilityα : for all the three VaR probabilities, the number of PoF rejections ranges from 12 to

19



13, putting the two models at the bottom of the ranking (24 and 25 out of 30). This result is consistent

with other backtesting studies (Bhattacharyya and Ritolia, 2008; McNeil andFrey, 2000) and is largely

expected because of the inappropriateness of a static VaR model in a highlyvolatile period. A notable

exception are the backtesting results of currencies, for which the two models perform well in 2 cases out

of 3 (ZAR Rand and BRA Real).

Fat-tailed dynamic VaR models (GARCH and EWMA models with Student-t and GED stochastic

component) do not yield unequivocal performances. Looking at the total number of rejections with 1 and

0.5% VaR probabilities, the worst models are the EWMA fat-tailed specifications,both with 11 rejections

out of 30. Furthermore, considering separately each VaR ranking, asthe coverage level increases, the

EWMA GED model performs progressively worse (3, 4 and 7 rejections out of 15), while the EWMA

Student-t improves its performance (9, 7 and 4 rejections). However, at 95% VaR coverage, the EWMA

GED model is in the top 5 of the ranking.

The GARCH fat-tailed dynamic models achieve globally better results than the EWMA models, with

4 (GARCH Student-t) and 6 (GARCH GED) rejections out of 30; moreover, the GARCHt model is

among the top 5 of the total rejection ranking. As in the previous case, the GARCH GED model worsens

as the coverage level increases (1, 2 and 4 rejections), while the Student-t model improves (4, 2 and 2

rejections). Summarizing, GARCH fat-tailed models perform slightly better than EWMA models, but

the use of a GED stochastic component seems to produce worse results as the coverage level gets larger.

In general, DHS models work better at large VaR coverage levels than at low levels. The performance

of the GED-GARCH and the N(0,1)-GARCH DHS models is identical at 5 and 1%VaR probability (4

and 3 rejections), but the GED model is preferable at 0.5%, with only one rejection. However, looking

at the total number of rejections, these two DHS models perform similarly to fat-tailed dynamic models

(4 and 6 rejections out of 30), which is acceptable but put the models out of the top 5 of the ranking.

Consistently with the total rejection ranking, the best DHS models are the EWMA DHS and thet-

GARCH DHS model, respectively with 0 and 2 rejections out of 30. In particular, despite its simplicity

and questionable non-parametric methodology, the EWMA DHS model is at the top of the ranking. The

t-GARCH DHS is sometimes rejected (3 times out of 15) at 5% coverage, but is the third best model at

1 and 0.5% (1 rejection).

One of the most interesting results is related to the POT models. At the top of Table2 are listed the

best VaR models according to the PoF test. On the basis of the overall ranking, dynamic POT models are

the best-performing VaR approaches: the EMWA POT and thet-GARCH POT model are never rejected.

The QMLE-GARCH POT models also perform well, with just 1 rejection out of 30: this result is in line

with the outcomes obtained by McNeil and Frey (2000), Fernandez (2003), and Battacharya and Ritolia

(2008). At 95% VaR coverage, both the QMLE and thet-GARCH POT models do not perform as well

as at larger coverage levels, yielding respectively 3 and 4 rejections out of 15. Finally, the two GARCH

POT VaR models turn out to be similar to the other dynamic fat-tailed VaR models.

Figures 3 (DAX30 Index) – 6 (ZAR Rand in¤) in appendix A.2 show the hit sequences with a 99%

coverage level: each symbol on the graph represents a VaR violation, while the grey line shows the loss

time series. As can be seen by looking at the top of each figure, violations originated by the two static
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Table 2: Proportion of failures (POF) unconditional test. Confidence level:95%.
This table summarizes, for all assets analyzed (equities, indexes and currencies) and for each VaR model applied,
the total number of rejection of the null hypothesis for correct VaR coverage using the POF unconditional coverage
test (a.s. Chi squared) test with a confidence probability level of 95%

VaR model N◦rejections N◦rejections N◦rejections Total reject.

VaR 5% VaR 1% VaR 0,5% (1%, 0.5%)

(max. 15) (max. 15) (max. 15) (max. 30)

EWMA(75,0.94) POT 0 0 0 0

EWMA(75,0.94) DHS 0 0 0 0

t–GARCH(1,1) POT 4 0 0 0

QMLE–GARCH(1,1) POT 3 1 0 1

t–GARCH(1,1) DHS 3 1 1 2

t–GARCH(1,1) Studentt 4 2 2 4

GED–GARCH(1,1) DHS 4 3 1 4

GED–GARCH(1,1) GED 1 2 4 6

N(0,1)–GARCH(1,1) DHS 4 3 3 6

EWMA(75,0.94) GED 3 4 7 11

EWMA(75,0.94) Studentt 9 7 4 11

N(0,1)–GARCH(1,1) N(0,1) 1 11 13 24

Unconditional POT 12 12 12 24

Unconditional HS 12 13 12 25

EWMA(75,0.94) N(0,1) 3 13 15 28

models are concentrated in the last 18 months, when equity markets have become very volatile. Even the

two normal-driven dynamic models perform poorly during the financial crisis. Conversely, the EWMA

DHS and EWMA POT models are associated to violations spread over the entirebacktesting period.

Differently from most of the models tested, these two VaR models are reliable both in quiet and extreme

market conditions. This is an important feature: in case of highly volatile market conditions, they react

more timely and provide better VaR estimates, minimizing the slippage of VaR-based capital charges

over time.

5.3.2 Results 2: test size 10%

Table 3 shows the results of the backtesting analysis when the size of the testis equal to 10%. Again, the

worst VaR models according to the global ranking are the two normal-driven dynamic models (28 and 29

rejections) and the static VaR models. The first two result worse than in the previous ranking, falling in

the last two positions of the global ranking. At 5% VaR probability, the performance of the two normal

dynamic models deteriorates as well: in particular, the RiskMetricsTM model is rejected 8 times out of 15

with respect to 3 rejections at the 5% size. On the other hand, the GARCH-QMLE N(0,1) is significantly

better at 5% VaR probability, with only 3 rejections out of 15.
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Dynamic fat-tailed VaR models perform similarly to the preceding section: resultsare slightly less

satisfactory for EWMA-filtered models than for GARCH models and, as the coverage levels increase,

GED VaR models (both EWMA and GARCH) are rejected more often than Student-t based models. The

only exception to the global failure of fat-tailed dynamic models is the Student-t GARCH model, whose

performance is similar to the 5% size case (fourth out of 15 models).

According to the total rejection-based ranking, dynamic historical models perform not very differently

from the previous section. However, the Student-t DHS model now drops in the middle of the global

ranking (6 rejections out of 30).

The POT-based dynamic model is again at the top of the ranking. The first place is taken by the EWMA

POT model with zero rejections out of 30, the second place by the Student-t POT model with 1 rejection

and the third by the GARCH QMLE POT (3 rejections). At 5% VaR probability, the EWMA POT model

is rejected 2 times out of 15, but this was the second smallest number of rejections of all models. Finally,

the Student-t GARCH is not as efficient as the other POT models at 5% VaR probability, yielding 5

rejections out of 15.

POT models are not the only well-performing approaches: the EWMA DHS model also reaches the

top of both rankings (overall and at 5%), contrary to other DHS models, which turn out to be sufficiently

accurate, but not at the top of the ranking. The EWMA DHS model is rejected twice and results the

second best model at 5% probability level, while on the basis of the total rejection ranking it is rejected

just once, similarly to the Student-t POT model. These outcomes put it at the second place of the ranking.

Finally, the POT dynamic-based models are the most effective VaR estimation techniques, according

to the total rejection ranking, also at the largest size employed. Only at 5% VaR probability the POT

EWMA is sometimes rejected, but much more rarely than most of the other models. The other two POT-

based models tested in our analysis achieve quite satisfactory results, eventhough the QMLE POT model

is the worst POT model at both sizes.

In conclusion, the main outcomes of the backtesting analysis are the following.

* According to the PoF test at both 5 and 10% size, the POT EWMA and EWMA DHS models are

the most reliable and effective ones when the VaR coverage level is 99 or99.5%. At 95% coverage

they are rejected in single cases, but are still preferable to all other models.

* Dynamic fat-tailed models do not perform particularly well at the largest coverage level, lying

mostly in the middle of the two rejection-based rankings. Only thet-GARCH approach has a

performance comparable to the top-ranked models.

* EWMA fat-tailed models are slightly less efficient than GARCH fat-tailed approaches. The num-

ber of rejections of the GED-based dynamic models (both EWMA and GARCH)gets larger as the

VaR coverage level increases, contrary to the Student-t models.

From the risk management perspective, the message is quite clear: the POT and DHS approaches with the

EWMA volatility specification should be preferred, especially when tail risk isof paramount importance.
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Table 3: Proportion of failures (PoF) test. Confidence level:90%.
This table summarizes, for all assets analyzed (equities, indexes and currencies) and for each VaR model applied,
the total number of rejection of the null hypothesis for correct VaR coverage using the PoF unconditional coverage
test (a.s. Chi squared) test with a confidence level of 90%

VaR model N◦rejections N◦rejections N◦rejections Total reject.

VaR 5% VaR 1% VaR 0,5% (1%, 0.5%)

(max. 15) (max. 15) (max. 15) (max. 30)

EWMA(75,0.94) POT 2 0 0 0

EWMA(75,0.94) DHS 2 1 0 1

t–GARCH(1,1) POT 5 0 1 1

QMLE–GARCH(1,1) POT 6 1 2 3

t–GARCH(1,1) Studentt 5 2 2 4

t–GARCH(1,1) DHS 5 3 3 6

GED–GARCH(1,1) DHS 5 4 3 7

GED–GARCH(1,1) GED 1 4 4 8

EWMA(75,0.94) Studentt 11 7 5 12

N(0,1)–GARCH(1,1) DHS 6 7 6 13

EWMA(75,0.94) GED 7 6 8 14

Unconditional HS 13 13 12 25

Unconditional POT 12 13 13 26

EWMA(75,0.94) N(0,1) 8 13 15 28

N(0,1)–GARCH(1,1) N(0,1) 3 15 14 29

6 Conclusions

This paper compares several dynamic VaR models commonly employed in marketrisk measurement.

The time horizon includes the extreme market conditions observed during the financial crisis caused

by the sub-prime mortgage crisis. The focus is primarily on the performance of a dynamic Peaks over

Threshold procedure, which not only allows to take into account heavy-tailed risk factor distributions,

but also has a strong theoretical justification.

The results show that the POT model and the Dynamic Historical Simulation combined with the

EWMA volatility specification are preferable, in particular at high VaR coverage levels. Whereas the

good performance of the POT approach was not unexpected giving thefeatures of the time series at hand

and the sound theoretical foundations of the methodology, the success ofDHS and EWMA is somewhat

surprising in two respects. First, it is well-known that historical simulation does not perform particu-

larly well in presence of extreme market movements. Second, the non-parametric EWMA estimator has

weak theoretical justifications. A possible explanations for the first issue isthat DHS, unlike standard

historical simulation, uses a volatility filter, and this filter is likely to be the crucial tool for improving

the performance of the method. As for the second one, the EWMA empirical performance is known to

be rather good, and the weight structure captures reasonably well (better than typical GARCH models)
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persistence effects and autocorrelation of squared losses. It shouldalso be noted that EWMA works bet-

ter than GARCH when associated to POT and DHS, but worse than GARCH when used in conjunction

with ad hoc fat-tailed models.

Several issues remain open for further investigations. First, we have only used “portfolios” consisting

entirely of single assets, taking an index fund as a single asset. A generalization of the analysis to more

realistic portfolios (for example, portfolios containing derivatives) doesnot appear straightforward but

would be quite important. Second, it is well known that it is difficult to beat GARCH(1,1). In particular,

moving eitherp or q to 2 does little to improve fit. On the other hand, FIGARCH models have recently

been proposed as a tool for investigating long memory in squared returns.It would be of interest to check

whether models of this family can provide better results than standard GARCH.
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A Appendix

A.1 Tables

Table 4: VaR backtesting – DAX30 (DAX) index and MIBTEL (MIB) index.VaR probabilities: 5%,1% and 0.5%.

DAX MIB

VaR model Violations LRt unc p–value Violations LRt unc p–value

QMLE–GARCH(1,1) 72 0,521 ( 47,053 % ) 87 6,524 ( 1,065 % )
POT 18 1,554 ( 21,225 % ) 19 2,293 ( 13 % )

10 1,498 ( 22,091 % ) 7 0.026 ( 87,251 % )

t–GARCH(1,1) 69 0,123 ( 72,577 % ) 87 6,524 ( 1,065 % )
POT 18 1,554 ( 21,255 % ) 19 2,293 ( 13 % )

9 0,773 ( 37,941 % ) 8 0,286 ( 59,287 % )

EWMA(75,0.94) 72 0,521 ( 47,053 % ) 76 1,572 ( 20,986 % )
POT 15 0,227 ( 63,406 % ) 14 0,052 ( 82 % )

9 0,773 ( 37,941 % ) 9 0,798 ( 37,163 % )

N(0,1)–GARCH(1,1) 74 0,933 ( 33,398 % ) 93 10,504 ( 0,119 % )
N(0,1) 24 7,120 ( 0,762 % ) 39 33,533 ( 0 % )

20 17,602 ( 0,003 % ) 24 27,479 ( 0 % )

t–GARCH(1,1) 78 2,099 ( 14,735 % ) 94 11,25 ( 0,08 % )
Studentt 21 3,9 ( 4,829 % ) 29 14,316 ( 0,02 % )

9 0,773 ( 37,941 % ) 14 6,331 ( 1,186 % )

GED–GARCH(1,1) 75 1,183 ( 27,677 % ) 92 9,782 ( 0,176 % )
GED 21 3,9 ( 4,829 % ) 27 11,254 ( 0,08 % )

13 4,817 ( 2,818 % ) 14 6,331 ( 1,186 % )

EWMA(75,0.94) 82 3,702 ( 5,436 % ) 88 7,127 ( 0,759 % )
N(0,1) 28 12,589 ( 0,039 % ) 38 31,349 ( 0 % )

17 11,388 ( 0,074 % ) 27 35,686 ( 0 % )

EWMA(75,0.94) 84 4,661 ( 3,087 % ) 94 11,25 ( 0,08 % )
Studentt 22 4,882 ( 2,714 % ) 29 14,316 ( 0,015 % )

13 4,817 ( 2,818 % ) 16 9,647 ( 0,19 % )

EWMA(75,0.94) 82 3,702 ( 5,436 % ) 88 7,127 ( 0,759 % )
GED 19 2,231 ( 13,528 % ) 29 14,316 ( 0,015 % )

13 4,817 ( 2,818 % ) 16 9,647 ( 0,19 % )

N(0,1)–GARCH(1,1) 75 1,183 ( 27,677 % ) 84 4,862 ( 2,745 % )
DHS 20 3,015 ( 8,252 % ) 18 1,605 ( 20,51 % )

11 2,426 ( 11,932 % ) 12 3,595 ( 5,795 % )

t–GARCH(1,1) 76 1,461 ( 22,684 % ) 83 4,359 ( 3,682 % )
DHS 19 2,231 ( 13,528 % ) 18 1,605 ( 20,51 % )

10 1,498 ( 22,091 % ) 9 0,798 ( 37,163 % )

GED–GARCH(1,1) 75 1,183 ( 27,677 % ) 84 4,862 ( 2,745 % )
DHS 19 2,231 ( 13,528 % ) 18 1,605 ( 20,51 % )

11 2,426 ( 11,932 % ) 10 1,535 ( 21,541 % )

EWMA(75,0.94) 73 0,713 ( 39,861 % ) 76 1,572 ( 20,986 % )
DHS 18 1,554 ( 21,255 % ) 17 1,031 ( 31 % )

9 0,773 ( 37,941 % ) 9 0,798 ( 37,163 % )

Unconditional 78 2,099 ( 14,735 % ) 103 18,968 ( 0,001 % )
POT 28 12,589 ( 0,039 % ) 30 15,954 ( 0,01 % )

14 6,252 ( 1,241 % ) 17 11,499 ( 0,07 % )

Unconditional 81 3,261 ( 7,093 % ) 105 20,92 ( 0 % )
HS 29 14,145 ( 0,017 % ) 30 15,954 ( 0,01 % )

11 2,426 ( 11,932 % ) 17 11,499 ( 0,07 % )

Backtesting length: 1320. POT excesses: 104. Sample length: 800. Expected VaR violations: 66 (5%), 13 (1%), 7 (0,5%).
Backtesting length: 1317; POT excesses: 108; Samples size: 825. Expected VaR violations: 66 (5%), 13 (1%), 7 (0,5%).
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Table 5: VaR backtesting – NIKKEI 225 index (N225) and Credit Suisse Group (CS) (NYSE).
VaR probabilities: 5%,1% and 0.5%.

N225 CS

VaR model Violations LRt unc p–value Violations LRt unc p–value

QMLE–GARCH(1,1) 70 0,647 (42,125 % ) 74 1,144 (28,481 % )
POT 14 0,124 (72,477 % ) 15 0,272 (60,211 % )

8 0,391 (53,222 % ) 10 1,582 (20,845 % )

t–GARCH(1,1) 69 0,461 ( 49,702 % ) 71 0,492 ( 48,319 % )
POT 16 0,785 ( 37,575 % ) 16 0,615 ( 43,301 % )

8 0,391 ( 53,222 % ) 10 1,582 ( 20,845 % )

EWMA(75,0.94) 67 0,183 ( 66,916 % ) 59 0,681 ( 40,935 % )
POT 16 0,785 ( 37,575 % ) 15 0,272 ( 60,211 % )

8 0,391 ( 53,222 % ) 8 0,306 ( 58,033 % )

N(0,1)–GARCH(1,1) 75 2,02 ( 15,522 % ) 56 1,492 ( 22,193 % )
N(0,1) 21 4,538 ( 3,315 % ) 23 6,199 ( 1,278 % )

15 8,506 ( 0,354 % ) 16 9,778 ( 0,177 % )

t–GARCH(1,1) 75 2,02 ( 15,522 % ) 63 0,094 ( 75,941 % )
Student–t 17 1,309 ( 25,257 % ) 14 0,064 ( 80,044 % )

10 1,776 ( 18,266 % ) 10 1,582 ( 20,845 % )

GED–GARCH(1,1) 73 1,383 ( 23,955 % ) 58 0,915 ( 33,885 % )
GED 17 1,309 ( 25,257 % ) 14 0,064 ( 80,044 % )

13 5,332 ( 2,093 % ) 11 2,534 ( 11,139 % )

EWMA(75,0.94) 77 2,771 ( 9,602 % ) 55 1,836 ( 17,542 % )
N(0,1) 25 9,326 ( 0,226 % ) 21 4,093 ( 4,306 % )

19 16,414 ( 0,005 % ) 17 11,644 ( 0,064 % )

EWMA(75,0.94) 80 4,102 ( 4,282 % ) 60 0,482 ( 48,747 % )
Student–t 21 4,538 ( 3,315 % ) 17 1,084 ( 29,775 % )

14 6,847 ( 0,888 % ) 11 2,534 ( 11,139 % )

EWMA(75,0.94) 76 2,381 ( 12,279 % ) 55 1,836 ( 17,542 % )
GED 20 3,573 ( 5,873 % ) 17 1,084 ( 29,775 % )

15 8,506 ( 0,354 % ) 13 4,974 ( 2,572 % )

N(0,1)–GARCH(1,1) 73 1,383 ( 23,955 % ) 78 2,413 ( 12,031 % )
DHS 15 0,387 ( 53,401 % ) 19 2,375 ( 12,332 % )

11 2,783 ( 9,528 % ) 8 0,306 ( 58,033 % )

t–GARCH(1,1) 72 1,108 ( 29,247 % ) 78 2,413 ( 12,031 % )
DHS 17 1,309 ( 25,257 %) 20 3,183 ( 7,441 % )

11 2,783 ( 9,528 % ) 8 0,306 ( 58,033 % )

GED–GARCH(1,1) 72 1,108 ( 29,247 % ) 75 1,419 ( 23,353 % )
DHS 17 1,309 ( 25,257 %) 20 3,183 ( 7,441 % )

11 2,783 ( 9,528 % ) 8 0,306 ( 58,033 % )

EWMA(75,0.94) 70 0,647 ( 42,125 % ) 68 0,107 ( 74,305 % )
DHS 17 1,309 ( 25,257 %) 17 1,084 ( 29,775 % )

8 0,391 ( 53,222 % ) 8 0,306 ( 58,033 % )

Unconditional 84 6,251 ( 1,242 % ) 110 26,811 ( 0 % )
POT 27 12,223 ( 0,047 % ) 34 23,459 ( 0 % )

16 10,3 ( 0,133 % ) 24 27,721 ( 0 % )

Unconditional 86 7,479 ( 0,624 % ) 113 30,239 ( 0 % )
HS 27 12,223 ( 0,047 % ) 36 27,463 ( 0 % )

17 12,221 ( 0,047 % ) 22 22,641 ( 0 % )

Backtesting length: 1273; POT excesses: 101; Samples size: 776. Expected VaR violations 64 (5%), 13 (1%), 6 (0,5%).
Backtesting length: 1308; POT excesses: 103; sample size: 791. Expected VaR violations: 65 (5%), 13 (1%), 6 (0,5%).
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Table 6: VaR backtesting – Italcementi S.p.a. (IT) and Luxottica S.p.a. (LUX).
VaR probabilities: 5%,1% and 0.5%.

IT LUX

VaR model Violations LRt unc p–value Violations LRt unc p–value

QMLE–GARCH(1,1) 82 3,752 ( 5,273 % ) 78 2,137 ( 14,375 % )
POT 17 1,001 ( 31,699 % ) 15 0,232 ( 63,004 % )

10 1,509 ( 21,933 % ) 7 0,023 ( 88,027 % )

t–GARCH(1,1) 81 3,309 ( 6,891 % ) 72 0,539 ( 46,269 % )
POT 18 1,569 ( 21,042 % ) 16 0,553 ( 45,695 % )

10 1,509 ( 21,933 % ) 7 0,023 ( 88,027 % )

EWMA(75,0.94) 73 0,734 ( 39,145 % ) 69 0,132 ( 71,625 % )
POT 15 0,232 ( 63,004 % ) 9 1,532 ( 21,574 % )

10 1,509 ( 21,933 % ) 5 0,431 ( 51,174 % )

N(0,1)–GARCH(1,1) 80 2,892 ( 8,904 % ) 63 0,155 ( 69,347 % )
N(0,1) 22 4,909 ( 2,672 % ) 20 3,035 ( 8,147 % )

16 9,575 ( 0,197 % ) 10 1,509 ( 21,993 % )

t–GARCH(1,1) 83 4,222 ( 3,99 % ) 67 0,013 ( 90,977 % )
Student–t 18 1,569 ( 21,042 % ) 9 1,532 ( 21,574 % )

9 0,78 ( 37,718 % ) 5 0,431 ( 51,174 % )

GED–GARCH(1,1) 79 2,501 ( 11,377 % ) 60 0,611 ( 43,453 % )
GED 16 0,553 ( 45,695 % ) 10 0,865 ( 35,234 % )

9 0,78 ( 37,718 % ) 6 0,058 ( 80,905 % )

EWMA(75,0.94) 82 3,752 ( 5,273 % ) 66 0,001 ( 98,993 % )
N(0,1) 18 1,569 ( 21,042 % ) 21 3,924 ( 4,761 % )

16 9,575 ( 0,197 % ) 13 4,837 ( 2,786 % )

EWMA(75,0.94) 91 8,881 ( 0,288 % ) 77 1,801 ( 17,961 % )
Student–t 16 0,553 ( 45,695 % ) 13 0,004 ( 95,138 % )

8 0,275 ( 59,987 % ) 5 0,431 ( 51,174 % )

EWMA(75,0.94) 81 3,309 ( 6,891 % ) 65 0,019 ( 88,931 % )
GED(υ) 15 0,232 ( 63,004 % ) 12 0,117 ( 73,192 % )

8 0,275 ( 59,987 % ) 5 0,431 ( 51,174 % )

N(0,1)–GARCH(1,1) 77 1,801 ( 17,96 % ) 81 3,309 ( 6,891 % )
DHS 20 3,035 ( 8,147 % ) 18 1,569 ( 21,042 % )

10 1,509 ( 21,933 % ) 10 1,509 ( 21,933 % )

t–GARCH(1,1) 79 2,501 ( 11,377 % ) 77 1,801 ( 17,961 % )
DHS 19 2,248 ( 13,375 % ) 19 2,248 ( 13,375 % )

11 2,44 ( 11,831 % ) 9 0,781 ( 37,718 % )

GED–GARCH(1,1) 79 2,501 ( 11,377 % ) 77 1,801 ( 17,961 % )
DHS 18 1,569 ( 21,042 % ) 19 2,248 ( 13,375 % )

11 2,44 ( 11,831 % ) 10 1,509 ( 21,993 % )

EWMA(75,0.94) 68 0,057 ( 81,134 % ) 68 0,057 ( 81,134 % )
DHS 15 0,232 ( 63,004 % ) 13 0,004 ( 95,138 % )

10 1,509 ( 21,933 % ) 7 0,023 ( 88,027 % )

Unconditional 105 20,604 ( 0,001 % ) 98 14,202 ( 0,016 % )
POT 33 21,116 ( 0 % ) 23 5,986 ( 1,442 % )

20 17,643 ( 0,003 % ) 13 4,837 ( 2,786 % )

Unconditional 108 23,662 ( 0 % ) 102 17,732 ( 0,003 % )
HS 33 21,116 ( 0 % ) 28 12,634 ( 0,038 % )

21 19,927 ( 0,001 % ) 16 9,575 ( 0,197 % )

Backtesting length: 1322; POT excesses: 108, Samples size: 825. Expected VaR violations: 66 (5%), 13 (1%), 7 (0,5%).
Backtesting length: 1322; POT excesses: 108, Samples size: 825. Expected violations: 66 (5%), 13 (1%), 7 (0,5%).
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Table 7: VaR backtesting – Citigroup Inc. (C) and Vodafone Plc (VOD)
VaR probabilities: 5%,1% and 0.5%.

C VOD

VaR model Violations LRt unc p–value Violations LRt unc p–value

QMLE–GARCH(1,1) 80 3,213 ( 7,306 % ) 85 5,673 ( 1,723 % )
POT 21 4,093 ( 4,306 % ) 15 0,272 ( 60,211 % )

12 3,672 ( 5,539 % ) 7 0,032 ( 85,851 % )

t–GARCH(1,1) 86 6,241 ( 1,248 % ) 83 4,611 ( 3,176 % )
POT 18 1,673 ( 19,585 % ) 16 0,615 ( 43,301 % )

10 1,582 ( 20,845 % ) 7 0,032 ( 85,851 % )

EWMA(75,0.94) 81 3,653 ( 5,597 % ) 77 2,054 ( 15,178 % )
POT 15 0,272 ( 60,211 % ) 12 0,093 ( 76,085 % )

8 0,306 ( 58,033 % ) 7 0,032 ( 85,851 % )

N(0,1)–GARCH(1,1) 74 1,144 ( 28,481 % ) 71 0,492 ( 48,319 % )
N(0,1) 32 19,695 ( 0,001 % ) 22 5,101 ( 2,393 % )

21 20,328 ( 0,001 % ) 15 8,039 ( 0,458 % )

t–GARCH(1,1) 80 3,213 ( 7,306 % ) 71 0,492 ( 48,319 % )
Student–t 18 1,673 ( 19,585 % ) 16 0,615 ( 43,301 % )

13 4,974 ( 2,572 % ) 8 0,306 ( 58,033 % )

GED–GARCH(1,1) 72 0,681 ( 40,964 % ) 69 0,205 ( 65,066 % )
GED 20 3,183 ( 7,441 % ) 15 0,272 ( 60,211 % )

14 6,434 ( 1,119 % ) 9 0,832 ( 36,174 % )

EWMA(75,0.94) 78 2,413 ( 12,031 % ) 68 0,107 ( 74,305 % )
N(0,1) 26 10,014 ( 0,155 % ) 19 2,375 ( 12,332 % )

19 15,727 ( 0,007 % ) 13 4,974 ( 2,572 % )

EWMA(75,0.94) 93 10,904 ( 0,096 % ) 79 2,8 ( 9,429 % )
Student–t 21 4,093 ( 4,306 % ) 14 0,064 ( 80,041 % )

11 2,534 ( 11,139 % ) 7 0,032 ( 85,851 % )

EWMA(75,0.94) 78 2,413 ( 12,031 % ) 67 0,041 ( 83,975 % )
GED 21 4,093 ( 4,306 % ) 13 0 ( 98,225 % )

12 3,671 ( 5,539 % ) 7 0,032 ( 85,851 % )

N(0,1)–GARCH(1,1) 80 3,213 ( 7,306 % ) 85 5,673 ( 1,723 % )
DHS 21 4,093 ( 4,306 % ) 20 3,183 ( 7,441 % )

13 4,974 ( 2,572 % ) 11 2,534 ( 11,139 % )

t–GARCH(1,1) 85 5,673 ( 1,723 % ) 81 3,653 ( 5,597 % )
DHS 19 2,375 ( 12,332 % ) 20 3,183 ( 7,441 % )

13 4,974 ( 2,572 % ) 11 2,534 ( 11,139 % )

GED–GARCH(1,1) 83 4,611 ( 3,176 % ) 86 6,241 ( 1,248 % )
DHS 19 2,375 ( 12,332 % ) 21 4,093 ( 4,306 % )

14 6,434 ( 1,119 % ) 11 2,534 ( 11,139 % )

EWMA(75,0.94) 81 3,653 ( 5,597 % ) 74 1,144 ( 28,481 % )
DHS 20 3,183 ( 7,441 % ) 15 0,272 ( 60,211 % )

10 1,582 ( 20,845 % ) 7 0,032 ( 85,851 % )

Unconditional 142 71,809 ( 0 % ) 96 13,254 ( 0,027 % )
POT 60 90,672 ( 0 % ) 20 3,183 ( 7,441 % )

34 57,756 ( 0 % ) 13 4,974 ( 2,572 % )

Unconditional 146 78,646 ( 0 % ) 94 11,665 ( 0,064 % )
HS 56 78,477 ( 0 % ) 26 10,014 ( 0,155 % )

35 61,126 ( 0 % ) 13 4,974 ( 2,572 % )

Backtesting length: 1308; POT excesses: 103; Sample size: 792; Expected VaR violations: 65 (5%), 13 (1%), 6 (0,5%).
Backtesting length: 1308; POT excesses: 103; Samples size: 792. Expected VaR violations: 65 (5%), 13 (1%), 6 (0,5%).
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Table 8: VaR backtesting – Ford Motor Company (F) and General Motors (GM).
VaR probabilities: 5%,1% and 0.5%.

F GM

VaR model Violations LRt unc p–value Violations LRt unc p–value

QMLE–GARCH(1,1) 67 0,041 ( 83,975 % ) 84 5,129 ( 2,353 % )
POT 18 1,673 ( 19,585 % ) 16 0,615 ( 43,301 % )

12 3,671 ( 5,539 % ) 8 0,306 ( 58,033 % )

t–GARCH(1,1) 72 0,681 ( 40,964 % ) 84 5,129 ( 2,353 % )
POT 18 1,673 ( 19,585 % ) 13 0,01 ( 98,225 % )

12 3,671 ( 5,539 % ) 8 0,306 ( 58,033 % )

EWMA(75,0.94) 67 0,041 ( 83,975 % ) 81 3,653 ( 5,597 % )
POT 13 0,001 ( 98,225 % ) 13 0,01 ( 98,225 % )

10 1,582 ( 20,845 % ) 6 0,046 ( 83,001 % )

N(0,1)–GARCH(1,1) 57 1,185 ( 27,635 % ) 75 1,419 ( 23,353 % )
N(0,1) 20 3,183 ( 7,441 % ) 28 12,995 ( 0,032 % )

17 11,644 ( 0,064 % ) 18 13,629 ( 0,022 % )

t–GARCH(1,1) 69 0,205 ( 65,066 % ) 83 4,611 ( 3,176 % )
Student–t 17 1,084 ( 29,775 % ) 12 0,093 ( 76,085 % )

9 0,832 ( 36,174 % ) 7 0,032 ( 85,851 % )

GED–GARCH(1,1) 60 0,482 ( 48,747 % ) 76 1,723 ( 18,934 % )
GED 18 1,673 ( 19,585 % ) 15 0,272 ( 60,211 % )

11 2,534 ( 11,139 % ) 9 0,832 ( 36,174 % )

EWMA(75,0.94) 72 0,681 ( 40,964 % ) 81 3,653 ( 5,597 % )
N(0,1) 29 14,537 ( 0,014 % ) 29 14,537 ( 0,014 % )

16 9,778 ( 0,177 % ) 24 27,721 ( 0 % )

EWMA(75,0.94) 78 2,413 ( 12,031 % ) 91 9,425 ( 0,211 % )
Student–t 15 0,272 ( 60,211 % ) 22 5,1 ( 2,393 % )

11 2,534 ( 11,139 % ) 8 0,306 ( 58,033 % )

EWMA(75,0.94) 72 0,681 ( 40,964 % ) 80 3,213 ( 7,306 % )
GED 16 0,615 ( 43,301 % ) 20 3,183 ( 7,441 % )

13 4,974 ( 2,572 % ) 8 0,306 ( 58,033 % )

N(0,1)–GARCH(1,1) 67 0,041 ( 83,975 % ) 84 5,129 ( 2,353 % )
DHS 20 3,183 ( 7,441 % ) 26 10,014 ( 0,155 % )

12 3,671 ( 5,539 % ) 14 6,434 ( 1,119 % )

t–GARCH(1,1) 73 0,897 ( 34,348 % ) 83 4,611 ( 3,176 % )
DHS 19 2,375 ( 12,332 % ) 21 4,093 ( 4,306 % )

12 3,671 ( 5,539 % ) 9 0,832 ( 36,174 % )

GED–GARCH(1,1) 72 0,681 ( 40,964 % ) 84 5,129 ( 2,353 % )
DHS 19 2,375 ( 12,332 % ) 23 6,199 ( 1,278 % )

12 3,671 ( 5,539 % ) 10 1,582 ( 20,845 % )

EWMA(75,0.94) 68 0,107 ( 74,305 % ) 80 3,213 ( 7,306 % )
DHS 19 2,375 ( 12,332 % ) 15 0,272 ( 60,211 % )

10 1,582 ( 20,845 % ) 9 0,832 ( 36,174 % )

Unconditional 100 16,702 ( 0,004 % ) 130 52,841 ( 0 % )
POT 26 10,014 ( 0,155 % ) 38 31,697 ( 0 % )

14 6,434 ( 1,119 % ) 19 15,727 ( 0,007 % )

Unconditional 102 18,557 ( 0,002 % ) 132 55,837 ( 0 % )
HS 33 21,546 ( 0 % ) 44 45,658 ( 0 % )

17 11,644 ( 0,064 % ) 23 25,137 ( 0 % )

Backtesting length: 1308; POT excesses: 103; Samples size: 792 Expected violations: 65 (5%), 13 (1%), 6 (0,5%).
Backtesting length: 1308; POT excesses: 103; Samples size: 792. Expected violations: 65 (5%), 13 (1%), 6 (0,5%).
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Table 9: VaR backtesting – Microsoft Corp. (MSFT) and Unicredit Group (UCG).
VaR probabilities: 5%,1% and 0.5%.

MSFT UCG

VaR model Violations LRt unc p–value Violations LRt unc p–value

QMLE–GARCH(1,1) 74 1,144 ( 28,481 % ) 81 2,984 ( 8,407 % )
POT 19 2,375 ( 12,332 % ) 12 0,145 ( 70,356 % )

8 0,306 ( 58,033 % ) 6 0,072 ( 78,838 % )

t–GARCH(1,1) 77 2,054 ( 15,178 % ) 79 2,221 ( 13,612 % )
POT 15 0,272 ( 60,211 % ) 11 0,448 ( 50,325 % )

7 0,032 ( 85,851 % ) 5 0,465 ( 49,515 % )

EWMA(75,0.94) 72 0,681 ( 40,964 % ) 80 2,591 ( 10,757 % )
POT 15 0,272 ( 60,211 % ) 13 0,010 ( 92,079 % )

6 0,046 ( 83,001 % ) 5 0,465 ( 49,515 % )

N(0,1)–GARCH(1,1) 67 0,041 ( 83,975 % ) 73 0,589 ( 44,291 % )
N(0,1) 22 5,1 ( 2,393 % ) 20 2,892 ( 8,902 % )

17 11,644 ( 0,064 % ) 12 3,44 ( 6,363 % )

t–GARCH(1,1) 61 0,318 ( 57,254 % ) 76 1,279 ( 25,821% )
Student–t 14 0,064 ( 80,044 % ) 12 0,145 ( 70,356 % )

6 0,046 ( 83,001 % ) 5 0,465 ( 49,515 % )

GED–GARCH(1,1) 58 0,915 ( 33,885 % ) 74 0,791 ( 37,395 % )
GED 12 0,093 ( 76,085 % ) 10 0,935 ( 33,359 % )

8 0,306 ( 58,033 % ) 5 0,465 ( 49,515 % )

EWMA(75,0.94) 51 3,599 ( 5,781 % ) 80 2,591 ( 10,757 % )
N(0,1) 21 4,093 ( 4,306 % ) 26 9,464 ( 0,209 % )

14 6,434 ( 1,119 % ) 16 9,377 ( 0,221 % )

EWMA(75,0.94) 69 0,205 ( 65,066 % ) 83 3,852 ( 4,967 % )
Student–t 14 0,064 ( 80,044 % ) 16 0,496 ( 48,143 % )

8 0,306 ( 58,033 % ) 7 0,015 ( 90,198 % )

EWMA(75,0.94) 52 3,099 ( 7,834 % ) 80 2,591 ( 10,757 % )
GED 14 0,064 ( 80,044 % ) 15 0,196 ( 65,831 % )

11 2,534 ( 11,139 % ) 7 0,015 ( 90,198 % )

N(0,1)–GARCH(1,1) 98 14,934 ( 0,011 % ) 79 2,221 ( 13,612 % )
DHS 26 10,014 ( 0,155 % ) 15 0,196 ( 65,831 % )

13 4,974 ( 2,572 % ) 10 1,438 ( 23,052 % )

t–GARCH(1,1) 75 1,419 ( 23,353 % ) 81 2,984 ( 8,407 % )
DHS 19 2,375 ( 12,332 % ) 13 0,010 ( 92,079 % )

9 0,832 ( 36,174 % ) 9 0,731 ( 39,289 % )

GED–GARCH(1,1) 77 2,054 ( 15,178 % ) 81 2,984 ( 8,407 % )
DHS 21 4,093 ( 4,306 % ) 13 0,010 ( 92,079 % )

10 1,582 ( 20,845 % ) 10 1,438 ( 23,052 % )

EWMA(75,0.94) 71 0,492 ( 48,319 % ) 78 1,881 ( 17,033 % )
DHS 18 1,673 ( 19,585 % ) 16 0,496 ( 48,143 % )

8 0,306 ( 58,033 % ) 8 0,246 ( 61,956 % )

Unconditional 103 19,516 ( 0,001 % ) 129 48,492 ( 0 % )
POT 28 12,955 ( 0,032 % ) 41 37,249 ( 0 % )

12 3,671 ( 5,539 % ) 23 24,434 ( 0 % )

Unconditional 103 19,516 ( 0,001 % ) 135 57,297 ( 0 % )
HS 33 21,546 ( 0 % ) 43 41,918 ( 0 % )

17 11,644 ( 0,064 % ) 24 26,976 ( 0 % )

Backtesting length: 1308; POT excesses: 103; Samples size: 792. Expected VaR violations: 65 (5%), 13 (1%), 6 (0,5%).
Backtesting length: 1336; POT excesses: 108; Samples size: 825. Expected VaR violations: 67 (5%), 13 (1%), 7 (0,5%).
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Table 10: VaR backtesting – GBP British Pound (in¤) and ZAR South African Rand (in¤).
VaR probabilities: 5%,1% and 0.5%.

GBP ZAR

VaR model Violations LRt unc p–value Violations LRt unc p–value

QMLE–GARCH(1,1) 70 0,196 ( 65,768 % ) 63 0,192 ( 66,149 % )
POT 13 0,006 ( 93,605 % ) 12 0,131 ( 71,767 % )

7 0,019 ( 89,114 % ) 7 0,019 ( 89,114 % )

t–GARCH(1,1) 74 0,872 ( 35,032 % ) 68 0,038 ( 84,588 % )
POT 12 0,131 ( 71,767 % ) 12 0,131 ( 71,767 % )

7 0,019 ( 89,114 % ) 8 0,261 ( 60,97 % )

EWMA(75,0.94) 78 2,006 ( 15,664 % ) 63 0,192 ( 66,149 % )
POT 11 0,423 ( 51,524 % ) 15 0,213 ( 64,414 % )

6 0,065 ( 79,868 % ) 6 0,065 ( 79,868 % )

N(0,1)–GARCH(1,1) 74 0,872 ( 35,032 % ) 80 2,738 ( 9,797 % )
N(0,1) 22 4,815 ( 2,821 % ) 24 7,037 ( 0,798 % )

13 4,769 ( 2,898 % ) 19 15,328 ( 0,009 % )

t–GARCH(1,1) 79 2,359 ( 12,457 % ) 86 5,563 ( 1,835 % )
Student–t 15 0,213 ( 64,414 % ) 18 1,518 ( 21,795 % )

11 2,393 ( 12,188 % ) 11 2,393 ( 12,188 % )

GED–GARCH(1,1) 74 0,872 ( 35,032 % ) 79 2,359 ( 12,457 % )
GED 16 0,524 ( 46,912 % ) 20 2,963 ( 8,518 % )

11 2,393 ( 12,188 % ) 11 2,393 ( 12,188 % )

EWMA(75,0.94) 84 4,519 ( 3,353 % ) 87 6,122 ( 1,335 % )
N(0,1) 27 11 ( 0,091 % ) 30 15,644 ( 0,008 % )

15 7,768 ( 0,532 % ) 22 22,145 ( 0 % )

EWMA(75,0.94) 90 7,947 ( 0,482 % ) 96 12,234 ( 0,047 % )
Student–t 19 2,187 ( 13,918 % ) 24 7,037 ( 0,798 % )

9 0,755 ( 38,5 % ) 15 7,768 ( 0,532 % )

EWMA(75,0.94) 84 4,519 ( 3,353 % ) 87 6,122 ( 1,335 % )
GED 19 2,187 ( 13,918 % ) 24 7,037 ( 0,798 % )

11 2,393 ( 12,188 % ) 15 7,768 ( 0,532 % )

N(0,1)–GARCH(1,1) 67 0,005 ( 94,488 % ) 67 0,005 ( 94,488 % )
DHS 15 0,213 ( 64,414 % ) 13 0,006 ( 93,605 % )

10 1,473 ( 22,488 % ) 10 1,473 ( 22,488 % )

t–GARCH(1,1) 69 0,102 ( 74,971 % ) 68 0,038 ( 84,588 % )
DHS 16 0,524 ( 46,912 % ) 12 0,131 ( 71,767 % )

10 1,473 ( 22,488 % ) 9 0,755 ( 38,5 % )

GED–GARCH(1,1) 67 0,005 ( 94,488 % ) 68 0,038 ( 84,588 % )
DHS 15 0,213 ( 64,414 % ) 12 0,131 ( 71,767 % )

10 1,473 ( 22,488 % ) 10 1,473 ( 22,488 % )

EWMA(75,0.94) 73 0,659 ( 41,675 % ) 67 0,005 ( 94,488 % )
DHS 14 0,038 ( 84,614 % ) 15 0,213 ( 64,414 % )

9 0,755 ( 38,5 % ) 9 0,755 ( 38,5 % )

Unconditional 103 18,254 ( 0,002 % ) 70 0,196 ( 32,751 % )
POT 34 22,783 ( 0 % ) 14 0,038 ( 84,614 % )

17 11,309 ( 0,077 % ) 9 0,755 ( 38,5 % )

Unconditional 104 19,2 ( 0,001 % ) 68 0,038 ( 84,588 % )
HS 35 24,724 ( 0 % ) 14 0,038 ( 84,614 % )

22 22,145 ( 0 % ) 8 0,261 ( 60,97 % )

Backtesting length: 1329; POT excesses: 105; Samples size: 806. Expected VaR violations: 66 (5%), 13 (1%), 7 (0,5%).
Backtesting length: 1329; POT excesses: 105; Samples size: 806. Expected violations: 66 (5%), 13 (1%), 7 (0,5%).
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A.2 Figures

Figure 3: DAX30 Index. VaR 99% backtesting from March, 2 2004 to May, 9 2009. Each symbol represents a VaR
violation for the VaR models listed in the legend.
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Figure 4: Citigroup Corp. VaR 99% backtesting from March, 2 2004 to May, 9 2009. Each symbol represents a
VaR violation for the VaR models listed in the legend.
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Figure 5: Vodafone Plc. VaR 99% backtesting from March, 2 2004 to May, 9 2009. Each symbol represents a VaR
violation for the VaR models listed in the legend.
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Figure 6: ZAR Rand (in¤). VaR 99% backtesting from March, 2 2004 to May, 9 2009. Each symbol represents a
VaR violation for the VaR models listed in the legend.
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