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Abstract

We consider a general class of two-sided matching markets, called many-to-one

matching markets with money. For a special case of these markets, where each seller

owns di¤erent objects, we prove that stable outcomes cannot be characterized by the

non-existence of unsatis�ed pairs. Moreover, we restore the dual lattice structure

in markets with more than one seller using a connection with an assignment game.
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1 Introduction

We consider a general class of two-sided matching markets, called many-to-one matching

markets with money.1 We consider a set of sellers and buyers (that can also be seen as

a set of firms and workers) which has the characteristic that each seller owns a set of

possibly different objects, and each buyer wants to buy at most one object. The main

concern of these models is to establish what coalitions we can expect to observe in the

market and how they will divide their gains. In this regard, stability is the central solu-

tion requirement. Loosely speaking, an outcome, defined by a matching between buyers

and objects and the price that each buyer pays to the seller, is stable if it is individually

rational (no buyer or seller would prefer to cancel some of her transactions) and satis-

fies a no blocking requirement. There are two main ways for a set of agents to block

a given outcome: considering deviations only of pairs of agents, that is, a buyer and a

seller would like to create a new transaction or replace a previous joint one while possibly

canceling other transactions and possibly keeping other ones to obtain a strictly higher

payoff (pairwise stability), or deviations of groups of agents, that is, a set of buyers and

sellers, by making new trades only among themselves, possibly dissolving some transac-

tions and possibly keeping some, can all obtain a strictly higher payoff (setwise stability).2

The main contribution of this study within the matching literature is the following re-

sult: The pairwise stable set and the setwise stable set do not coincide when we introduce

the possibility that each seller owns a set of different objects. These two sets trivially

coincide in one-to-one models, such as the Shapley and Shubik Assignment Game, (Shap-

ley and Shubik, 1972) where these two concepts coincide since the only sensible coalition

that can block a given outcome is formed by, at most, two agents. For the many-to-one

models without money studied in Blair (1988) and Martínez et al. (2001), among others,

pairwise stable matchings are immune to group deviations. Also, in Sotomayor (1992)

she studies two different many-to-many models where she assumes that all the objects

a seller owns are equal, showing that (setwise) stable outcomes can be identified by the

non-existence of unsatisfied pairs. But, when we study a model where each seller can have

different objects, introduced in Camiña (2006), the coincidence of the pairwise stable set

and the setwise stable set is no longer true. Consequently, the non-existence of bloking

pairs does not characterize stability for our model and we cannot concentrate for this

kind of models on "small" coalitions formed by pairs of agents. In particular, we prove

1For the purpose of our study, the one-to-one analysis is trivial and the many-to-many extension
escapes from the scope of this paper.

2A version of this definition, which was called group stability, was defined in Roth (1985) in a different
context.
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that setwise stability is a sufficient, but not a necessary condition, for pairwise stability.

This relationship has to do with the fact that the total gain that one seller and one buyer

can share is not always the same, but depends on the object bought. In fact, since the

pairwise stable set and the setwise stable set do not coincide for this kind of models, the

choice of an appropriate solution concept for this class of games becomes crucial. This

choice is reinforced by the coincidence of the setwise stable set with the core of the game.

In Camiña (2006), the existence of setwise stable outcomes was proved and this set

was endowed with a lattice structure under the partial ordering of the buyers. Moreover,

she proves that it was not possible to do the same for a dual partial ordering of the

sellers. In this paper, we recover this discussion and show that, in a model where there

are more that one seller, we are not able to endow the set of (setwise) stable payoffs with a

lattice structure if we let only the sellers choose. Further, we consider a related one-to-one

market assignment game to restore the dual lattice structure for a proper subset of the

set of (setwise) stable payoffs.

This paper is organized as follows: Section 2 presents the formal model. In section

3 we propose a definition of pairwise stability adapted to our framework and reproduce

the definition of setwise stability in Camiña (2006), and establish their relationship by

means of a counter example. Section 4 presents the results for the analysis of the lattice

structure.

2 The model

We consider a general version of the Generalized Assignment Game studied in Camiña

(2006), where each seller may own different objects, and compare it with the special case

where all the objects of the same seller are equal.

The buyer-seller market consists of m buyers and t sellers. Each seller owns a number

of possibly different objects, and each buyer wants to buy at most one object. Formally,

there are two finite disjoint sets of agents, P and S, containing m and t agents, respec-

tively, and a set Q of n objects. Let P = {p1, p2, ..., pm} be the set of buyers. Generic
buyers will be denoted by pi and pk. The payoff of buyer pi ∈ P will be denoted by ui. Let

S = {s1, s2, ..., st} be the set of sellers. Generic sellers are denoted by sr and sd, and the

payoff of seller sr ∈ S is denoted by wr. Let Q = {q1, q2, ..., qn} be the set of indivisible
objects. Generic objects are denoted by qj and qh, and the price of object qj ∈ Q is vj. We

also define a function f : Q → S that assigns each object to the seller who owns it, i.e.,

f (qj) = sr if and only if seller sr owns object qj.We denote by Qr ≡ {qj ∈ Q : f(qj) = sr}
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the set of objects that seller sr owns, and by |Qr| the quota of seller sr, that is, the number
of objects he owns.

Associated to each possible pair (pi, qj) ∈ P ×Q there is a nonnegative real number,

αij, which denotes the maximum price that buyer pi is willing to pay for object qj, which

is her reservation value. We may interpret it as if she had in hand an offer of αij from

a client who will purchase the object from the buyer at that price. For simplicity, we

assume, without loss of generality, that the reservation price of seller sr for every object

qj ∈ Qr is zero (that is, if the seller offers any of his objects to an outside party, he

will obtain zero). Therefore, αij, denotes the potential gains from trade between the

buyer pi and the seller f (qj) if the object sold is qj. We denote by α the m× n matrix

(αij)i=1,...m;j=1,...n . We also assume that there are no monetary transfers among agents

of the same side, which is a natural and usual assumption in these kind of models and

agents’ preferences are concerned only with their monetary payoffs. Thus, if buyer pi buys

the object qj at a price vj then the resulting payoffs are ui = αij − vj for the buyer and

vj for seller sr = f (qj). The total payoff of seller sr, denoted by wr, is the sum of all

the prices of the objects he sells. For technical convenience, we introduce one artificial

null object, q0, and one dummy player, seller s0. Several buyers may buy this null object.

This convention allows us to treat a buyer pi that does not buy any object as if she has

bought q0. We assume that f(q0) = s0, (and Q0 = {q0}), so pi will be matched to the

dummy player s0 if she buys no object. We also assume that the value αi0 is zero to all

buyers, and the price of the object q0 is always zero, v0 = 0. Hence, if buyer pi buys q0
she obtains a utility ui = αi0 − v0 = 0.

Therefore, a market M is determined by (P, S,Q, f, α) .

3 Pairwise and setwise stable sets

An outcome of the market described specifies a matching between buyers and objects

(and, hence, with sellers) and the price that each buyer pays to the owner of the object

she is buying. Note that in this particular many-to-one matching model with money, the

gain of a given partnership of a buyer and a seller depends on the object bough. This fact

is crucial to understand the posterior results. First, we define a feasible matching as a

function that assigns buyers to objects, and its associated matching as a correspondence

that assigns buyers and sellers to an agent from the opposite side of the market, and then

we define what a feasible outcome is.

Definition 1 A feasible matching μ for a market M ≡ (P, S,Q, f, α) is a function
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from the set P ∪Q into the set P ∪Q ∪ {q0} such that:

(i) For any pi ∈ P, μ (pi) ∈ Q ∪ {q0} ,
(ii) For any qj ∈ Q, either μ (qj) ∈ P or μ (qj) = qj,

(iii) For any (pi, qj) ∈ P ×Q, μ (pi) = qj if and only if μ (qj) = pi.

We say that buyer pi is unmatched if μ (pi) = q0. Similarly, we say that object qj is

unsold if μ (qj) = qj.

Definition 2 For any given feasible matching μ, we define its associated matching μs
as a correspondence from the set P ∪S into the set of non-empty subsets of P ∪S ∪{s0} ,
such that:

(I) μs (pi) = f (qj) if and only if μ (pi) = qj,

(II) μs (sr) = {pi ∈ P : μ (pi) ∈ Qr} .

Given a feasible matching μ, a vector (u,w, v) ∈ <m
+ × <t

+ × <n
+ of utilities for the

agents and prices is compatible with μ if:3

(i) ui = αiμ(pi) − vμ(pi), for every pi ∈ P , and

(ii) wr =
P

qj∈Qr

vj =
P

qj∈Qr

¡
αμ(qj)j − uμ(qj)

¢
, for every sr ∈ S.

Note that compatibility requires that the total payoff of a seller is the sum of the prices

of his sold objects.4

Definition 3 A feasible outcome, denoted by (u,w, v;μ) , is a vector of utilities (or
payoffs) (u,w) ∈ <m

+ × <t
+, a price vector v ∈ <n

+, and a feasible matching μ, such that

the vector (u,w, v) of utilities and prices is compatible with μ. If (u,w, v;μ) is a feasible

outcome, then (u,w) is called a feasible payoff.

The next step is to define the solution concepts used in the matching literature adapted

to our framework to comment on their relationship. Stability is the key concept in a

matching model. We propose definitions of two solution concepts: pairwise stability and

setwise stability. We prove that, unlike what we observe in the many-to-one matching

3We sometimes abuse notation by writing αiμ(pi) instead of αij , where qj = μ (pi) . Similarly for
αμ(qj)j .

4We are assuming that every unsold object has zero price. This assumption simplifies notation and
posterior analysis.
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models where all the objects of the same seller are equal, these two sets of stable out-

comes are different when we allow each seller to have different objects. Moreover, setwise

stability implies efficiency while pairwise stability does not.

We start by defining the pairwise stability concept. A feasible outcome is pairwise

stable if it is individually rational and there does not exist a pair of a seller and a buyer

that can generate together a gain from trade that leaves both of them strictly better off.

Before formally defining the concept, we analyze the individual rationality of any feasible

outcome.

Definition 4 A feasible outcome (u,w, v;μ) is individually rational if no buyer can
obtain a higher utility by becoming unmatched, and no seller can obtain a higher utility

by leaving some of his objects unsold. That is, if:

(i) For every buyer pi ∈ P, ui ≥ 0.
(ii) For every object qj ∈ Q, vj ≥ 0.

Then, it is trivial that a feasible outcome is always individually rational.

Definition 5 A feasible outcome (u,w, v;μ) is pairwise stable if:

(i) For any (pi, qj) such that f (qj) 6= f (μ (pi)) we have:

ui + vj ≥ αij, if μ (qj) ∈ P

ui ≥ αij, if μ (qj) = qj

(ii) For any (pi, qj) such that f (qj) = f (μ (pi)) we have:

αiμ(pi) + vj ≥ αij, if μ (qj) ∈ P

αiμ(pi) ≥ αij, if μ (qj) = qj

Condition (i) is the usual requirement for pairwise stability in a two-sided matching

market where each seller owns a set of equal objects and in one-to-one models. Note that

in our case it is a sufficient condition for all pairs formed by a buyer and an object, but

it is not necessary for those pairs where the object and the partner of the buyer belong

to the same seller. For these pairs we need condition (ii). This is due to the fact that a

partnership formed by a buyer and a seller can generate different gains depending on the

object sold. Therefore, condition (ii) implies that each buyer is buying the object that

maximizes the gain that she can share with the seller she is matched with. Also, note

that we do not require that the "blocking pair" is such that they are not partners. This
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makes sense in models where the gain of a partnership is always the same.5

The definition of pairwise stability that we have proposed is, then, more general than

the usual one. Note that if we restrict attention to the one-to-one Shapley and Shubik

Assignment Game or to a many-to-one model where all the objects of a seller are equal,

this definition coincides with the one defined for these models. This follows directly from

the non-negativeness of prices, which implies that condition (ii) in Definition 5 is trivially

satisfied in those cases.

For an outcome to be setwise stable, we do not only require the non-existence of block-

ing pairs, but also of blocking coalitions. In the many-to-one models where each seller

owns a set of equal objects, these two definitions are equivalent as Sotomayor (1992) shows

for a many-to-many model, and an outcome is (setwise) stable if there is no unsatisfied

pair. Clearly, it is easier for a buyer-seller pair to join and generate a trade, than for a

coalition where more than one agent has to meet. Therefore, in the case where each seller

owns a set of different objects, we cannot restrict attention only to individual payments

of unmatched pairs.

We denote by T a coalition of agents, and Ts and Tp will denote the sets of S− and
P− agents in T, respectively, (i.e., the intersection of the coalition T with S and P,

respectively).

Definition 6 A feasible outcome (u,w, v;μ) is setwise stable if it is not blocked by
any coalition. That is, if there does not exist any coalition T = Ts ∪ Tp of agents that,

by matching among themselves, according to, say, μ0, and setting a price v0j for every

qj ∈
S

sr∈Ts
Qr such that μ (qj) ∈ Tp, all members of T prefer this new assignment to μ.

Definition 6 is equivalent to Definition 7 below:

Definition 7 A feasible outcome (u,w, v;μ) is setwise stable if it is not blocked by any
coalition formed by a single seller and a set of buyers, that is, if there does not exist any

coalition T = sr ∪ Tp with sr ∈ S and Tp ⊂ P , and any feasible matching bμ, such thatX
pi∈Tpbμ(pi)=qj

αij > wr +
X
pi∈Tp

ui

5Note that we allow the blocking pair to possibly keep some of their respective previous partners. If
we did not allow for this, we say that a buyer and a seller block a given outcome if ui + wr < maxαij .

This does not change any of the posterior results.
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The following result states the relationship between the pairwise stable set and the

setwise stable set in this market. Clearly, if an outcome is setwise stable for a given mar-

ket then it is pairwise stable, that is, setwise stability implies pairwise stability. However,

both definitions do not coincide in general. An illustrative example shows that setwise

stability is not a necessary condition for pairwise stability.

Proposition 1 Given a market M, every setwise stable outcome is in the pairwise stable

set.

Proof. From Definitions 5 and 7, it follows directly that a setwise stable out-

come is always pairwise stable. Let M ≡ (P, S,Q, f, α) , with S = {s1} , Q = Q1 =

{q1, q2} , P = {p1, p2}, and α11 = α22 = 10, α12 = α21 = 8. Taking (u,w, v;μ) =

((2, 2) , 12, (6, 6) ;μ (q1) = p2, μ (q2) = p1) is pairwise stable (α11 = α22 = 10 < 8 + 6 =

α12 + v1 = α21 + v2, see Definition 5). But it is not group stable. Indeed, the grand

coalition T = {s1, p1, p2} can be matched as follows: μ0 (q1) = p1, μ
0 (q2) = p2, and by

setting, for example, v01 = v02 = 7, all agents win more than in outcome (u,w, v;μ) , since

the new payoffs are: (u0, w0) = ((3, 3) , 14) > ((2, 2) , 12) = (u,w) .

We have proven that, given a market M , the set of setwise stable outcomes can be

strictly contained in the set of pairwise stable outcomes, that is, setwise stability is a

stronger condition than pairwise stability. This is due to the fact that we allow the

objects of one seller to be different. In the special case where all the objects of the same

seller are equal, that is, αij = αik if f (qj) = f (qk) , for every pi ∈ P and qj, qk ∈ Q,

we have coincidence between the pairwise and the setwise stable set: Suppose αij = αik

whenever f (qj) = f (qk) . In that case, if an outcome (u,w, v;μ) is not setwise stable, it

means that there exists a coalition of a seller, say sr, and a set of buyers that blocks it,

where it is necessarily the case that at least one of the buyers, say pi, is not buying from

sr under μ. This means that ui + vj < αij for some qj ∈ Qr and μ (qj) ∈ P, or ui < αij

for some qj ∈ Qr unsold, because otherwise there is no additional gain that the coalition

can share. But this implies that the outcome (u,w, v;μ) is not pairwise stable.

Since in Camiña (2006) she proves that the setwise stable set is equivalent to the core

of the game, an important Corollary of the previous result is the following:

Corollary 1 Pairwise stability does not imply efficiency as setwise stability does.
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4 Connection with the Assignment Game and struc-

ture of the (setwise) stable set

Camiña (2006) shows that the setwise stable set of a market M is endowed with a lattice

structure under the partial ordering of the buyers. If there is only one seller, as in her

model, the same occurs under the partial ordering of the seller. But when we allow the

market to have more than one seller, this result is no longer true.

Definition 8 A payoff vector (u,w) is setwise stable for a market M if there exists a

vector of prices v ∈ <n and a feasible matching μ such that (u,w, v;μ) is a setwise stable

outcome. We say that v is compatible with (u,w).

The partial orders≥P and≥S are defined as follows: For any two setwise stable payoffs

(u,w) and (u0, w0), (u,w) ≥P (u
0, w0) if ui ≥ u0i for all pi in P, and (u,w) ≥S (u

0, w0) if

wr ≥ w0r for all sr in S.

Definition 9 Take (u,w) and (u0, w0) setwise stable payoffs and denote by v and v0 the

compatible price vectors for (u,w) and (u0, w0), respectively, for the optimal matching μ.6

We define wS and uS as follows:

(i) for every sr ∈ S, wSr = max {wr, w
0
r} .

(ii) for every pi ∈ P , uSi(μ) =

(
ui, if wSf(μ(pi) = wr

u0i, if wSf(μ(pi) = w0r.

Similarly, we define wS and uS (μ) .

Proposition 2 Let (u,w) and (u0, w0) be two setwise stable payoffs. Then, the payoffs
(uS (μ) , wS) and (uS (μ) , wS) defined for an optimal matching μ may not even be pairwise

stable.

Proof. Take the following market. Let M ≡ (P, S,Q, f, α) be S = {s1, s2}, Q =

Q1 = {q1, q2, q3}, with f(q1) = f(q2) = s1 and f(q3) = s2, P = {p1, p2, p3}, and α11 = 4,

α22 = 6, α12 = 6, α21 = 2, α31 = 4.5, α32 = 6, α13 = 4, α23 = 1 and α33 = 6. The payoffs

(u,w) = ((3.5, 3, 4), (3.5, 2)) and (u0, w0) = ((4, 1, 5), (5, 1)) are setwose stable. To check

it, take the following matching μ, with μ(p1) = q1, μ(p2) = q2 and μ(p3) = q3, and prices

(v1,v2,v3) = (0.5, 3, 2), (v
0
1,v

0
2,v

0
3) = (0, 5, 1). The vector of prices v that makes the outcome

(uS (μ) , wS, v;μ) feasible is the following:

6A feasible matching is optimal for a market if it maximizes the gain of the whole set of players.

9



for every vj ∈ V , vj =

(
vj, if wSf(qj) = wr

v0j, if wSf(qj) = w0r.

In this market, (uS (μ) , wS, v;μ) = ((4, 1, 4), (5, 2), (0, 5, 2);μ), is not even pairwise

stable, because the pair of agents (s1,p3) blocks the outcome since uS3 + v1 = 4 + 0 <

α31 = 4.5.

A similar thing happens with (uS (μ) , wS) .

Given a market M ≡ (P, S,Q, f, α) , we can define the “one-to-one” market (an As-
signment Game), M 0 ≡ (P, S0, Q, f 0, α) , as follows:

Q = {q1, q2, ..., qn} , set of objects
S0 = {s01, s02, ..., s0n} , set of sellers with f 0 (qj) = s0j , for all j = 1, ..., n.

P = {p1, p2, ..., pm} , set of buyers.

Given a feasible outcome (u,w, v;μ) in the Generalized Assignment Game, the trans-

formed outcome in the Assignment Game is given by (u,w0, v;μ) with:

w0j =

(
vj, if μ (qj) ∈ P

0, if μ (qj) = qj,

for all j = 1, ..., n.

We can define feasibility and stability for these transformed markets in the same way

as before, since they are a subset of our generalized markets. Note that the pairwise

stable set and the setwise stable set coincide in the one-to-one market, but the concept

of pairwise stability used is different to that used for the many-to-one market, since now

condition (i) in Definition 5 is necessary for all pairs (pi, qj) ∈ P × Q. Note also that

the optimal matchings for a given market M coincide with the optimal matchings for the

transformed one-to-one market M 0.

The following proposition states the relationship between stable outcomes of a given

market M and stable outcomes in the corresponding Assignment Game M 0.

Proposition 3 Take a market M, and its corresponding one-to-one market M 0. If the

outcome (u,w0, v;μ) is (pairwise) stable forM 0, then (u,w, v;μ) is a setwise stable outcome

for M, where wr =
P

qj∈Qr

μ(qj)∈P

vj for every sr ∈ S.

Proof. By contradiction, suppose that the outcome (u,w, v;μ) is not setwise stable
for marketM.We prove that the outcome (u,w0, v;μ) is also not (pairwise) stable forM 0.
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Since (u,w, v;μ) is not setwise stable, there exists a coalition T formed by, say, seller

sr and a subset of buyers Tp and a feasible matching μ0, such that, w0r > wr, i.e.,X
qj∈Qr

μ0(qj)∈P

v0j >
X
qj∈Qr

μ(qj)∈P

vj

and

αiμ0(pi) − v0μ0(pi) > αiμ(pi) − vμ(pi), for every pi ∈ Tp,

where v0 is the new vector of prices.

This means that there exists qj ∈ Qr with μ0 (qj) ∈ Tp such that, either v0j > 0 and

μ (qj) = qj, or v0j > vj, μ (qj) ∈ P, and μ0 (qj) 6= μ (qj). In both cases, we must have

u0μ0(qj) > uμ0(qj). Therefore, in M 0, the pair (μ0 (qj) , qj) blocks the outcome (u,w0, v;μ) .

The previous Proposition proves that (pairwise) stability in the Assignment Game is

a sufficient condition for setwise stability.

From this result, we can restore the dual lattice structure in the Assignment Game for

a proper subset of the set of setwise stable payoffs. This is formally stated in the following

Proposition.

Proposition 4 Take a market M and its corresponding market M 0. The set of setwise

stable payoffs in M that are pairwise stable in M 0 forms a complete dual lattice under the

partial orderings ≥P and ≥S .

Proof. Note that Proposition 3 implies that, given a marketM and its corresponding

market M 0, the set of pairwise stable outcomes in M 0 is strictly contained in the setwise

stable set ofM.We know, from Shapley and Shubik (1972), that this set forms a complete

dual lattice. Also note that, given two stable payoffs in M 0, if all sellers in M 0 prefer one

to the other, this implies that all sellers inM prefer the same payoff over the other. Also,

the duality of the two orderings is satisfied.
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