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Abstract

In 1957, Berge has introduced the Berge equilibrium for a normal form game based on

the notion of equilibrium of a coalition structure P with respect to a set of coalitions K.

This equilibrium did not receive any attention from game theory researchers for two decades.

In the 80s, Zhukovskii V.I. and his followers started to study a special case of this equilib-

rium, we call it simple Berge equilibrium to avoid confusion. The most important feature of

this equilibrium is that it captures cooperation in noncooperative settings. Later, Vaisman,

a student of Zhukovskii, discovered that simple Berge equilibrium does not satisfy the indi-

vidual rationality condition. Therefore, this condition has been added to the simple Berge

equilibrium equilibrium, we call Berge-Vaisman equilibrium the obtained equilibrium. Past

research has showed that the problem of existence of Berge equilibrium is difficult (compared

to that of Nash). This paper is a contribution to the problem of existence and computation of

Berge-Vaisman equilibrium and Berge equilibrium of a normal form game. Indeed, using the

g-maximum equality, we establish the existence of these two equilibria. In addition, we give

sufficient conditions for the existence of a Berge-Vaisman equilibrium which is also a Nash

equilibrium. This allows us to get equilibria enjoying the properties of both concepts of solu-

tion. Finally, using these results, we provide two methods of computation of Berge-Vaisman

∗We thank K. Kerstens, L. Eeckhoudt and D. Newlands for comments and suggestions. E-mail address:

r.nessah@ieseg.fr
†E-mail address: larbani61@hotmail.com
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equilibria: the first one computes Berge-Vaisman equilibria; the second one computes Berge-

Vaisman equilibria which are also Nash equilibria.

1 Introduction

Berge [1957] has introduced the Berge equilibrium (see Definition 2.1 below) for a normal form

game based on the notion of equilibrium of a coalition structure P with respect to a set of coali-

tions K. This equilibrium did not receive any attention from game theory researchers for two

decades. In the 80s, Zhukovskii and his group of researchers started to study a special case of this

equilibrium, we call it simple Berge equilibrium (see Definition 2.2 below). This equilibrium can

be used as an alternative solution when Nash equilibrium (Nash [1951, 1950]) does not exist. In

addition to this, it captures cooperation in noncooperative settings. In this equilibrium, the payoff

of each player is maximized by the rest of players.

Gaidov wrote a pair of short papers on simple Berge equilibrium (Gaidov [1987, 1986]) in

stochastic differential games. The volume entitled “Multicriteria Dynamical Problems Under Un-

certainty”, a Collection of Scientific Works, published in Orekhovo-Zuevo, contains three papers

on different aspects of simple Berge equilibrium: existence theorems (Dinovsky [1991]), simple

Berge equilibrium in difference differential games (Boribekova and Jarkynbayev [1991]) and sim-

ple Berge equilibrium in bi-matrix games (Gintchev [1991]). Radjef [1988] has also studied the

problem of existence of this equilibrium in differential games. In all the mentioned works the set of

players is assumed to be finite and no procedure for the computation of simple Berge equilibrium

is proposed.

In Zhukovskii et al. [1994], Vaisman constructed an example where simple Berge equilibrium

does not satisfy the individual rationality condition, therefore, it has been added to the definition of

simple Berge equilibrium (see Definition 2.3 below). To avoid confusion, we call Berge-Vaisman

equilibrium the obtained equilibrium. Further, the existence of this equilibrium has been investi-

gated in three person differential games with quadratic payoff functions Zhukovskii et al. [1994].

Zhukovskii [1999] has investigated the problem of existence of Berge-Vaisman equilibrium in the

case of two and three person games involving uncertainty with strictly concave payoff functions;

in the case of quadratic payoff functions, an explicit formula of Berge-Vaisman equilibrium is

given. Thus, there are no general existence results of Berge-Vaisman equilibrium.

Abalo and Kostreva [2005, 2004, 1996a, 1996b] studied the Berge equilibrium as defined in

Berge [1957]. They also provide theorems of existence of this equilibrium in the case of infinite

set of players as Theorems 2, 3 in 2005, Theorems 3.1, 3.2 in 2004, Theorems 2, 3 in 1996a

and Theorems 3.2, 3.4 in 1996b. It is to be noted that these theorems are based on an earlier

paper of Radjef [1988] providing an existence theorem of simple Berge equilibrium. In Nessah

et al. [2007], Larbani and Nessah [2008], we have showed that the above mentioned Abalo and
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Kostreva’s theorems are flawed, and proposed their corrections as well. The same remark can be

made for the Radjef’s Theorem.

In this paper we provide general sufficient conditions for the existence of Berge-Vaisman equi-

librium and Berge equilibrium when the set of players may be infinite countable. Next, we pro-

vide a procedure for computation of Berge-Vaisman equilibrium. We also establish sufficient

conditions for the existence of Berge-Vaisman equilibrium that is also Nash equilibrium (Berge-

Vaisman-Nash equilibrium) and a method for its computation. Our approach is totally different

from the existing ones, we use the g-maximum equality theorem (Nessah and Larbani [2005]).

This paper is organized as follows. In Section 2, we recall the definitions of Berge equilibrium,

simple Berge equilibrium, Berge-Vaisman equilibrium and some of their properties. In Section 3,

we provide sufficient conditions for the existence of Berge-Vaisman equilibrium (Subsection 3.1)

and Berge-Vaisman-Nash equilibrium (Subsection 3.2). Then, from these two results, we derive

two procedures for the determination of these equilibria. An existence theorem of Berge equilib-

rium is provided in Subsection 3.3 followed by a discussion. We end the paper with a conclusion

in Section 4.

2 Berge Equilibrium

Consider the following non cooperative game in normal form

G = (Xi, ui)i∈I . (2.1)

where I is the set of players, which we assume to be finite or infinite countable; X =
∏
i∈I

Xi is the

set of strategy profiles of the game, where Xi is the set of strategies of player i; Xi ⊂ Ei, Ei is a

vector space; ui : X −→ R is the payoff function of player i.

Let = denote the set of all coalitions (i.e., nonempty subsets of I). For each coalition R ∈ =,

we denote by −R; the set −R = {i ∈ I such that i /∈ R}: the complementary coalition of

R, if R is reduced to a singleton {i}, then we denote by −i the set −R. We also denote by

XR =
∏
i∈R

Xi the set of strategy profiles of players in coalition R. If {Ki}i∈{1,..,s}⊂N is a partition

of the set of players I , then any strategy profile x = (x1, ..., xn, ...) ∈ X can be written as

x = (xK1 , xK2 , .., xKs) where xKi ∈ XKi =
∏

j∈Ki

Xj .

We denote by A the closure of a set A and by ∂A its boundary. Let Y0 be a nonempty con-

vex subset of a convex subset Y of a vector space and y ∈ Y0, we denote by HY0(y), TY0(y)

and ZY0(y), respectively, the following sets: HY0(y) = ∪
h>0

[Y0 − y] /h, TY0(y) = HY0(y) and

ZY0(y) = [TY0(y) + y] ∩ Y . Note that TY0(y) is called tangent cone to Y0 at the point y.

Let us now give the existing different definitions of Berge equilibria. We start by the general

definition of Berge equilibrium as introduced in Berge [1957].
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DEFINITION 2.1 (Berge [1957]) Consider the game (2.1). Let R = {Ri}i∈M ⊂ = be a partition

(coalition structure) of I and S = {Si}i∈M be a set of subsets of I . A feasible strategy x ∈ X is

an equilibrium point for the set R relative to the set S or a Berge equilibrium (BE) for (2.1) if

urm(x) ≥ urm(xSm , x−Sm),

for each given m ∈M , any rm ∈ Rm and xSm ∈ XSm .

It is easy to see that when M = I , Ri = {i} and S = {i}, for all i ∈ I , then BE is a Nash

equilibrium. A strategy profile x is a BE if no player in any coalition Rm in R, can be better off

when the players of corresponding coalition Sm in S deviate from their BE strategy profile xSm .

This means that at BE, the players in coalition Sm play a strategy profile that maximizes the payoff

of the players in coalitionRm, but they neglect or ignore their own payoffs (when Sm
⋂
Rm = ∅)!

This statement makes BE look unrealistic and irrational. In fact, the payoffs of the players in Sm

are taken care of by some other players. Indeed, let j ∈ Sm, since the family of coalitions R is

a partition of the set of players I , then there exists some p ∈ M such that j ∈ Rp. According to

the definition of BE, the players of the corresponding coalition Sp maximize the payoff functions

of the players in Rp, since j ∈ Rp, the payoff of player j is also maximized by the players of Sp.

It appears that at BE, globally, each player maximizes the payoff of at least one other players, in

return his payoff is maximized by at least one other player. It is important to note that for some

coalition structures R and sets of coalitions S, BE may not be individually rational as Vaisman

pointed out in Zhukovskii et al. [1994] for the simple Berge equilibrium (see Definition 2.2 below).

Therefore, for such BE, it is necessary to incorporate the individual rationality in their definition

or select only BE that are individually rational in the process of game resolution. In general, the

problem of individual rationality may occur when Sm
⋂
Rm = ∅, because in this case the players

in Rm do not maximize their own payoff function.

As mentioned in the introduction, Abalo and Kostreva [2005, 2004, 1996a, 1996b] provide

many theorems of existence of BE in the case of infinite set of players. After a deep investigation,

we have found that the above mentioned Abalo and Kostreva’s theorems are flawed Nessah et al.

[2007], Larbani and Nessah [2008], then we proposed their corrections.

Next we present the simple Berge equilibrium, which is a special case of BE.

DEFINITION 2.2 (Zhukovskii [1985]) A strategy profile x ∈ X is a simple Berge equilibrium

(SBE) of the game (2.1) if

ui(x) ≥ ui(x−i, xi), (2.2)

for each given i ∈ I and x−i ∈ X−i.

We can see that this definition means that when a player i ∈ I plays his strategy xi from the

SBE x, he cannot obtain a maximum payoff unless the remaining players−iwillingly (or obliged)
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play the strategy x−i from the SBE x. In other words, if at least one of the players of coalition −i
deviates from his equilibrium strategy, the payoff of the player i in the resulting strategy profile

would be at most equal to his payoff ui(x) in the resulting profile. To see that SBE is a special

case of BE, we just need to assume M = I , Ri = {i}, i ∈ I and Si = −i, i ∈ I .

Many authors have investigated the SBE (Gaidov [1987, 1986], Dinovsky [1991], Boribekova

and Jarkynbayev [1991], Gintchev [1991] and Radjef [1988]). In all the mentioned works the set

of players is assumed to be finite and no procedure for its computation is proposed.

In Zhukovskii et al. [1994] an example where SBE does not satisfy the individual rationality

condition is constructed, that is, at SBE, some of the players may get a payoff that is less than their

security or maxmin level. In general the problem of individual rationality in BE may arise when

rm /∈ Sm, for some rm ∈ Rm,m ∈M , which means that player rm does not take care of his own

payoff. This serious drawback makes it difficult to accept SBE as a solution concept for a normal

form game. Therefore, the individual rationality condition has been added to the definition of SBE

as follows.

DEFINITION 2.3 (Zhukovskii et al. [1994]) We say that a strategy profile x ∈ X is a Berge-

Vaisman equilibrium (BVE) of the game (2.1) if

1. ∀i ∈ I, ∀y−i ∈ X−i, ui(xi, y−i) ≤ ui(x)

2. ∀i ∈ I, αi = sup
xi∈Xi

inf
y−i∈X−i

ui(xi, y−i) ≤ ui(x).

The first condition of Definition 2.3 means that BVE is an SBE (see Definition 2.2). The

second condition of Definition 2.3 means that the strategy profile x is individually rational. In

other words, for each player i ∈ I , BVE x yields a payoff that is greater or equal than his security

level, denoted by αi. We then say that BVE is individually rational.

Zhukovskii et al. [1994] have investigated the existence of BVE in three person differential

games with quadratic payoff functions. Zhukovskii [1999] has investigated the problem of exis-

tence of BVE in the case of two and three person games involving uncertainty with strictly concave

payoff functions; in the case of quadratic payoff functions, an explicit formula of BVE is given.

Thus, there are no general existence results of BVE. Note that individual rationality of BE has not

been discussed in Abalo and Kostreva [2004, 2005, 1996a, 1996b], this is also a major difference

between our work and theirs.

The BVE is rarely mentioned (not to say used) by game theorists. One of the most important

reasons for this is that Zhukovskii and his group of researchers published their results in Russian

and within former USSR with local publishers only, so their results are not known world wide. The

first paper published on SBE outside former USSR is Radjef [1988]. The first papers published on

BE in well established international journals are (Abalo and Kostreva [2005, 2004, 1996a, 1996b]).
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There are two main reasons that motivated the introduction of BVE as an alternative solution

to Nash equilibrium (Zhukovskii and Chikrii [1994]). The first one is the absence of a concept

of solution (in pure strategies) for games where there is no Nash equilibrium; the second one is

the difficulty to choose a Nash equilibrium in games where there are more than one Nash equi-

librium. The BVE can be used to study numerous non-cooperative models, more particularly

coalition games. Furthermore, on the contrary to the Nash equilibrium, this concept allows to

reach cooperative strategy profiles. Indeed, with this equilibrium it is no necessary to introduce

behavioral assumptions to obtain cooperative strategy profiles, consequently, it becomes possible

to reach cooperation in a non-cooperative framework. This property is very important for games

like prisoner’s dilemma. Let us give an example of a conflict situation where BVE equilibrium is

the solution to which players will converge.

EXAMPLE 2.1 Consider the game illustrated by the following table.

A B

A (-1.40, 0.94) (-0.99, 0.93)

B (-1.01, 0.98) (-1, 1)

There are two players I and II , and each has available two strategies. We list I’s strategies as

rows in the table, and II’s strategies as columns. This game has no pure-strategy Nash equilibrium.

On the other hand, the strategy profile (B,B) is a BVE. Let us explain this. The strategy A is

attractive for player I because he may get his best payoff in the game, i.e -0.99, but in the case

where player II chooses the strategyA, he gets his worst payoff in the game, i.e -1.40. In addition,

strategy B is his maxmin strategy. Indeed, the minimum he gets by choosing A is -1.40, and by

choosing B he gets -1.01. Thus, player I will tend to choose the strategy B. He can reach the

SBE (B,B) in announcing that he has chosen the strategy B. Indeed, in this case player II

will automatically choose the strategy B for which he will get his best payoff in the game, i.e

1. One can easily verify that (B,B) is also individually rational, that is, a BVE. The described

resolution process involves an implicit reciprocal cooperation. Indeed, by playing strategy B,

Player I maximizes the payoff of player II , and by playing B, player II maximizes the payoff of

player I .

It is important to note that BE is totally different from strong Berge equilibrium that was also

introduced in Berge [1957] as follows.

DEFINITION 2.4 (Berge [1957]) A strategy profile x ∈ X is said to be strong Berge equilibrium

(STBE) of the game (2.1), if

∀i ∈ I, ∀j ∈ −i, uj(xi, y−i) ≤ uj(x), ∀y−i ∈ X−i. (2.3)
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Indeed, referring to Definition 2.1, let us try to see if STBE can be a special case of BE. In

Definition 2.4, by construction, we have M = I , Ri = {−i}, for any i ∈ I and and Si = −i. It is

obvious that the family R = {Ri}i∈I is not a partition of the set of players I , in games with more

than two players. Therefore, in this case STBE cannot be a BE.

If a player i chooses his strategy xi in a STBE x, then the remaining players−i cannot improve

their earnings by deviating from x−i, i.e., this equilibrium is stable against deviations of any

coalition of type −i, i ∈ I .

Analyzing the game aspect in BE and STBE, we find that they are totally different. STBE is a

refinement1 of the Nash equilibrium Nash [1951] (see Larbani and Nessah [2001]), but in general,

BE is not a Nash equilibrium. Let us compare STBE with BVE, which is a special case of BE. If

only one player i adopts his strategy in a STBE, he obliges all the other players in the coalition

−i to choose their strategy in this equilibrium: the adoption of other strategies by any players

in the coalition −i, would provide each of them a payoff at most equal to that they get in this

equilibrium. In other words, if any player selects his strategy in a STBE, the other players have no

other choice than to follow him by choosing their strategies from the same STBE. By contrast, if

a player chooses his strategy in a BVE, he cannot oblige the other players to follow him; he gets a

maximum payoff if the other players are willing or obliged by some circumstances to choose their

strategies in the same BVE.

The reader can find a detailed study and interesting results about STBE in Larbani and Nessah

[2001].

The next definition merges the properties of BVE and Nash equilibrium.

DEFINITION 2.5 (Abalo and Kostreva [2004]) A Berge equilibrium which is also Nash equilib-

rium is called Berge-Nash equilibrium or (B-Nash) equilibrium.

Similarly, we can define the simple Berge-Nash (SB-Nash) equilibrium, and Berge-Vaisman-

Nash (BV-Nash) equilbrium.

It would be interesting to find sufficient conditions for the existence of BV-Nash equilibrium

for such equilibrium enjoys the properties of both concepts of solution at the same time. We

address this problem in Subsection 3.2.

3 Existence and Computation of Berge Equilibria

In this section we establish the existence of BVE (Definition 2.3), BV-Nash equilibrium (Defini-

tion 2.5) and BE (Definition 2.1). From these results we derive procedures for the computation of

BVE.
1For more details, see the book of Van damme [1987]
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3.1 Berge-Vaisman Equilibrium

In order to establish the existence of BVE for the game (2.1), we will use the following general-

ization of the Ky Fan minmax inequality (Ky Fan [1972]), which was established by Nessah and

Larbani [2005] and called the g-Maximum Equality Theorem. Let us recall this theorem.

THEOREM 3.1 (g-Maximum Equality Theorem (Nessah and Larbani [2005])) Let X be a

nonempty subset of a metric space E, Y be a nonempty, compact and convex subset of a lo-

cally convex Hausdorff space F . Let Ω be a real valued function defined on X × Y . Let X0 be a

nonempty compact subset of X and g be a continuous function defined from X0 into Y such that:

1. g(X0) is a convex subset of Y ,

2. the function (x, y) 7→ Ω(x, y) is continuous on X0 × Y ,

3. for all x ∈ X0, the function y 7→ Ω(x, y) is quasi-concave on Y ,

4. for all g(x) ∈ ∂g(X0) and for all y ∈ Y , there exists z ∈ Zg(X0)(g(x)) such that Ω(x, y) ≤
Ω(x, z).

Then, there exists x ∈ X0 such that

sup
y∈Y

Ω(x, y) = Ω(x, g(x)). (3.1)

The following Lemmas will be used thereafter.

LEMMA 3.1 (Choquet [1984]) A product of convex sets is a convex set.

LEMMA 3.2 (Schwartz [1970]) A finite or countable product of metric spaces is a metric space.

LEMMA 3.3 (Schwartz [1970]) A product of locally convex spaces is a locally convex space.

LEMMA 3.4 (Kolmogorov and Fomine [1977]) A Hausdorff topological vector space, locally

convex and locally bounded is a normable space.

Let us consider the following set

A = {x ∈ X such that αi = max
xi∈Xi

min
y−i∈X−i

ui(xi, y−i) ≤ ui(x), ∀i ∈ I}. (3.2)

The set A represents the set of individually rational strategy profiles of the game (2.1). We have

the following Lemma.

LEMMA 3.5 Suppose that the following conditions are satisfied:
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1) for all i ∈ I , the set Xi is non empty, convex and compact in the Hausdorff locally convex

space Ei,

2) for all i ∈ I , the function ui is continuous and quasiconcave on X .

Then, the set A defined in (3.2) is nonempty, convex and compact.

PROOF. A is a nonempty set. The conditions 1) and 2) of Lemma 3.5 imply that ∀i ∈ I,

αi = sup
xi∈Xi

inf
y−i∈X−i

ui(xi, y−i) exists. Since the functions ui, i ∈ I are continuous over the

compact X , then ∀i ∈ I, ∃x̃i ∈ Xi such that

αi = sup
xi∈Xi

inf
y−i∈X−i

ui(xi, y−i) = inf
y−i∈X−i

ui(x̃i, y−i).

Let be x̃ = (x̃1, ..., x̃n, ...) ∈ X, we have then:

∀i ∈ I, ui(x̃) = ui(x̃i, x̃−i) ≥ inf
y−i∈X−i

ui(x̃i, y−i) = αi.

Thus A 6= ∅.
A is convex in X.

Let x and x be two elements in A and let λ ∈ [0, 1]. Let us show that λx+ (1− λ)x ∈ A.
x, x are two elements in A, then αi ≤ ui(x) and αi ≤ ui(x), ∀i ∈ I , hence

αi ≤ min{ui(x), ui(x)}, ∀i ∈ I.

Since the functions ui, i ∈ I are quasiconcave over X , then

αi ≤ ui(λx+ (1− λ)x), ∀i ∈ I, ∀λ ∈ [0, 1].

Therefore, λx+ (1− λ)x ∈ A.

A is compact in X.

Since X is compact, then it sufficient to prove that A is closed. Let {xp}p≥1 a sequence of

elements in A converging to x. Let us show that x ∈ A. We have ∀p ≥ 1, xp ∈ A, then

∀p ≥ 1, ∀i ∈ I, αi ≤ ui(xp).

Taking into account the condition 1) and the continuity of ui of Lemma 3.5, when p → ∞, we

obtain: ∀i ∈ I, αi ≤ ui(x), i.e. x ∈ A.
Let us introduce the following functions

g : A→ X̂

defined by x 7→ g(x) = (x−1, ..., x−n, ...).

Γ : A× X̂ → R

defined by (x, ŷ) 7→ Γ(x, ŷ) =
∑
i∈I

{ui(xi, y−i) − ui(x)} where ŷ = (y−1, ..., y−n, ...) ∈ X̂ =∏
i∈I

X−i, where X−i =
∏

j∈−i
Xj , ∀i ∈ I .

9
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REMARK 3.1 For all x ∈ A, we have

sup
ŷ∈X̂

Γ(x, ŷ) ≥ 0.

We have the following Lemma.

LEMMA 3.6 If for all i ∈ I , the set Xi is nonempty, convex and compact in the Hausdorff locally

convex space Ei, then the following assertions are true.

1) The function g is continuous on A.

2) If A is convex and compact, then g(A) is also convex and compact.

PROOF. The fact that the function g is continuous is a consequence of its definition and the

construction of the set X̂ . The compactness of the set g(A) is a consequence of Weierstrass

Theorem. The convexity of g(A) is a consequence of the linearity of g, which can be easily

verified.

The following Lemma establishes the relation between BVE of the game (2.1) and the func-

tions Γ and g.

LEMMA 3.7 The following two assertions are equivalent.

1) x is a BVE of the game (2.1).

2) x ∈ A and sup
ŷ∈X̂

Γ(x, ŷ) = 0.

PROOF. Sufficiency. Let x ∈ A such that max
ŷ∈X̂

Γ(x, ŷ) = 0, this equality implies ∀ŷ ∈ X̂,

Γ(x, ŷ) =
∑
i∈I

{ui(xi, ŷ−i) − ui(x)} ≤ 0. For an arbitrarily fixed i ∈ I , we have ∀ŷ ∈ X̂,

Γ(x, ŷ) = {ui(xi, ŷ−i)− ui(x)}+
∑
j 6=i
j∈I

{uj(xj , ŷ−j)− uj(x)} ≤ 0.

For ŷ ∈ X̂ such that ŷ−i is arbitrarily chosen in X−i and ŷ−j = x−j ,∀j 6= i, we have∑
j 6=i
j∈I

{uj (xj , ŷ−j) − uj (x)} = 0. Then from the last inequality we deduce that ∀ŷ−i ∈ X−i,

ui (xi, ŷ−i) ≤ ui (x) . Since i is arbitrarily chosen in I , we have ∀i ∈ I, ∀y−i ∈ X−i,

ui (xi, y−i) ≤ ui (x), hence, taking into account the fact that x ∈ A, we deduce that x is a

BVE of the game (2.1).

Necessity. Let x ∈ X be a BVE of the game (2.1). The second condition of Definition 2.3

implies that x ∈ A. The first condition of Definition 2.3 implies ui(xi, t−i) ≤ ui(x), ∀t−i ∈ X−i,

∀i ∈ I, hence Γ(x, ŷ) =
∑
i∈I

{ui(xi, ŷ−i) − ui(x)} ≤ 0, ∀ŷ ∈ X̂ , i.e. max
ŷ∈X̂

Γ(x, ŷ) ≤ 0. Taking

into account Remark 3.1, we obtain max
ŷ∈X̂

Γ(x, ŷ) = 0.
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REMARK 3.2 Lemma 3.7 transforms the problem of finding BVE of the game (2.1) into a prob-

lem of finding a strategy profile x ∈ A satisfying sup
ŷ∈X̂

Γ(x, ŷ) = 0.

We will now establish the existence of BVE by g-Maximum Equality Theorem (Theorem 3.1).

THEOREM 3.2 Assume that (1) the sets Xi, i ∈ I are non empty compact and convex subsets of

locally convex Hausdorff spaces, (2) ∀i ∈ I, the function ui is continuous and concave on X , and

(3) for all g(x) ∈ ∂g(A), for all ŷ ∈ X̂, there exists ẑ ∈ Zg(A)(g(x)) such that Γ(x, ŷ) ≤ Γ(x, ẑ).

And in addition if I is infinite countable, assume that the function Γ is continuous onA×X̂ . Then,

the game (2.1) has at least one BVE (Definition 2.3).

PROOF. The assumptions of Theorem 3.2 imply that those of Lemma 3.5 are satisfied. Then

the set A is nonempty, convex and compact, and the function ŷ 7→ Γ(x, ŷ) is concave on X̂ . Then,

from Lemmas 3.1-3.4 and the non emptiness, convexity and compactness of A, we conclude that

all the conditions of the Theorem 3.1 are satisfied. Consequently,

∃x ∈ A such that sup
ŷ∈X̂

Γ(x, ŷ) = Γ(x, g(x)) = 0. (3.3)

Then by Lemma 3.7, x is a BVE of the game (2.1).

Taking into account Remark 3.1 and Lemma 3.7, we deduce the following proposition for

games with a finite number of players.

Let

µ = inf
x∈A

[
sup
ŷ∈X̂

Γ(x, ŷ)

]
. (3.4)

PROPOSITION 3.1 Assume that the set of players is finite in the game (2.1). Suppose that Γ is

continuous on A × X̂ and the sets Xj , j ∈ I are compact. Then, the game (2.1) has at least one

BVE if and only if µ = 0.

Proposition 3.1 actually provides a method for the determination of BVE of game (2.1) under

certain conditions (see Algorithm 1).

Let us now illustrate this Algorithm by examples.

EXAMPLE 3.1 Let us consider the following game: I = {1, 2, 3}, X1 = [0, 1], X2 = [1, 2],

X3 = [−1, 1] and x = (x1, x2, x3).

u1(x) = −x2
2 − x2

3,

u2(x) = −x2
3 + x2,

u3(x) = −x3
3x1 − 3x2

1 − x2
3x

2
2.

The conditions (1)-(2) of Theorem 3.2 are satisfied. Let us verify the condition (3).
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Algorithm 1 Procedure for the Computation of a BVE.
Require: Suppose that all conditions of the Proposition 3.1 are satisfied.

Require: Determine the security levels αi, ∀i ∈ I .

Require: Calculate the value µ in (3.4)

if µ > 0, then
the game (2.1) has no BVE.

else
the strategy profiles x ∈ A satisfying max

ŷ∈X̂
Γ(x, ŷ) = 0 are BVE of the game (2.1).

end if

a) ∀x ∈ X, with x1 ∈ X1, x2 ∈ X2 and −1 ≤ x3 < 0, ∃y = (−x3
3

6 , 1, 0) ∈ X such that

ui(xi, t−i) ≤ ui(xi, y−i),∀t−i ∈ X−i , ∀i ∈ I .

b) ∀x ∈ X, with x1 ∈ X1, x2 ∈ X2 and 0 ≤ x3 ≤ 1, ∃y ∈ X, y = (0, 1, 0) such that

ui(xi, t−i) ≤ ui(xi, y−i), ∀t−i ∈ X−i , ∀i ∈ I.

Hence, a) and b) imply

∀x ∈ X,∃y ∈ X, ui(xi, t−i) ≤ ui(xi, y−i),∀t−i ∈ X−i,∀i ∈ I. (3.5)

Now let us prove that both y = (0, 1, 0) and y = (−x3
3

6 , 1, 0) with −1 ≤ x3 < 0, are in the set A.

Indeed, we have

u1(0, 1, 0) = −1, u1(−x3
3

6 , 1, 0) = −1 and α1 = −5,

u2(0, 1, 0) = 1, u2(−x3
3

6 , 1, 0) = 1 and α2 = 1,

u3(0, 1, 0) = −3, u3(−x3
3

6 , 1, 0) = −3x6
3

36 and α3 = −3.

Hence both y = (0, 1, 0) and y = (−x3
3

6 , 1, 0) are in the set A. Taking into account (3.5), we

deduce that the condition (3) of Theorem 3.2 is satisfied. Thus, according to Theorem 3.2, this

game has at least one BVE.

From the preceding result we have

max
y−1

u1(0, y−1) = u1(0, 1, 0), max
y−2

u2(1, y−2) = u2(0, 1, 0), max
y−3

u3(0, y−3) = u3(0, 1, 0).

Hence,
3∑

i=1
max
y−i

ui(xi, y−i) =
3∑

i=1
ui(x) with x = (0, 1, 0) which is equivalent to

max
ŷ∈X̂

3∑
i=1
ui(xi, ŷ−i) =

3∑
i=1
ui(x), i.e. max

ŷ∈X̂
Γ(x, ŷ) = 0. Since we have proved above that

x = (0, 1, 0) ∈ A, then according Algorithm 1, x = (0, 1, 0) is a BVE of this game.
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3.2 Berge-Vaisman-Nash Equilibrium

In this section, we establish the existence of BV-Nash (Berge-Vaisman-Nash) equilibrium of the

game (2.1) by using Theorem 3.1. Let us consider the following functions:

g̃ : X → X̂ ×X

defined by x 7→ g̃(x) = ((x−1, ..., x−n, ....), x) and

Γ̃ : X × (X̂ ×X)→ R

defined by (x, (ŷ, z)) 7→ Γ̃(x, (ŷ, z)) =
∑
i∈I

[ui(xi, y−i) + ui(x−i, zi)].

REMARK 3.3 By definition, for all x ∈ X , we have

sup
(ŷ,z)∈X̂×X

Γ̃(x, (ŷ, z)) ≥ Γ̃(x, g̃(x)).

LEMMA 3.8 If for all i ∈ I , the set Xi is nonempty, convex and compact in the Hausdorff locally

convex space Ei, then the following propositions are true.

1. The function g̃ is continuous on X .

2. The set g̃(X) is convex and compact.

PROOF. The proof of this lemma is similar to that of Lemma 3.6

The following Lemma establishes the relation between BV-Nash equilibria of the game (2.1)

and the functions Γ̃ and g̃.

LEMMA 3.9 The following two assertions are equivalent:

1. sup
(ŷ,z)∈X̂×X

Γ̃(x, (ŷ, z)) = Γ̃(x, g̃(x)).

2. x is a Berge-Nash equilibrium of the game (2.1).

PROOF. Sufficiency. Suppose that sup
(ŷ,z)∈X̂×X

Γ̃(x, (ŷ, z)) = Γ̃(x, g̃(x)), i.e.

∑
i∈I

[ui(xi, y−i) + ui(x−i, zi)] ≤
∑
i∈I

[ui(x) + ui(x)], ∀(ŷ, z) ∈ X̂ ×X (3.6)

If we take y−i = x−i, ∀i ∈ I in (3.6), we conclude that
∑
i∈I

ui(x−i, zi) ≤
∑
i∈I

ui(x), ∀z ∈ X ,

which implies that x is Nash equilibrium of the game (2.1).

If we take z = x in (3.6), we conclude that x verifies the property 1) of Definition 2.5 and

since x is a Nash equilibrium, it is also individually rational. We conclude that x is a BVE of the

game (2.1).
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Necessity. Suppose that x is a BV-Nash equilibrium of the game (2.1). The fact that x is a

Nash equilibrium of the game (2.1) implies

max
z∈X

∑
i∈I

ui(x−i, zi) =
∑
i∈I

ui(x). (3.7)

The fact that x is a BVE of the game (2.1) implies

max
ŷ∈X̂

∑
i∈I

ui(xi, y−i) =
∑
i∈I

ui(x). (3.8)

The two equalities (3.7) and (3.8) imply

max
(ŷ,z)∈X̂×X

Γ̃(x, (ŷ, z)) = Γ̃(x, g̃(x))

It is to be noted that in Lemma 3.9 we have deliberately omitted the condition x ∈ A of

individual rationality for it is well known that a Nash equilibrium is always individually rational.

We have the following Theorem.

THEOREM 3.3 Suppose that (1) the sets Xi, i ∈ I are nonempty, compact and convex subsets of

Hausdorff locally convex vector spaces, (2) the function ui is continuous on X and the functions

y−i 7→ ui(xi, y−i) and zi 7→ ui(zi, x−i) are concave on X−i and on Xi, respectively, ∀x ∈ X
and ∀i ∈ I, and (3) ∀g̃(x) ∈ ∂g̃(X), ∀(ŷ, z) ∈ X̂ × X, ∃(p̂, q) ∈ Zg̃(X)(g̃(x)) such that

Γ̃(x, (ŷ, z)) ≤ Γ̃(x, (p̂, q)). In addition if I is infinite countable, assume that the function Γ̃

is continuous on X × (X̂ × X). Then the game (2.1) has at least one BV-Nash equilibrium

(Definition 2.5).

PROOF. The conditions of Theorem 3.3 imply that the function Γ̃ satisfies all conditions of

Theorem 3.1, consequently, ∃x ∈ X such that

sup
(ŷ,z)∈X̂×X

Γ̃(x, (ŷ, z)) = Γ̃(x, g̃(x)).

By Lemma 3.9, the strategy profile x is a BV-Nash equilibrium of the game (2.1).

From Remark 3.3 and Lemma 3.9, we deduce the following proposition.

Let

β = inf
x∈X

[
sup

(ŷ,z)∈X̂×X

Γ̃(x, (ŷ, z))− Γ̃(x, g̃(x))

]
. (3.9)

PROPOSITION 3.2 Suppose that the function Γ̃ is continuous on X × (X̂ ×X) and the sets Xj

are compact. Then, the game (2.1) has at least one BV-Nash equilibrium if and only if β = 0.

Since the function Γ̃ is a series of functions, the calculation of the value β may be difficult,

but in the case where the set of players is finite, Proposition 3.2 can be used to verify if a BV-Nash

equilibrium exists or not. From this Proposition we deduce the method presented in Algorithm 2

for the computation of a BV-Nash equilibrium of the game (2.1).
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Algorithm 2 Procedure for the determination of a BV-Nash equilibrium.
Require: Suppose that the conditions of Proposition 3.2 are satisfied.

Require: Calculate the value β in (3.9).

if β > 0, then
the game (2.1) has no BV-Nash equilibrium.

else
the strategy profiles x ∈ X satisfying sup

(ŷ,z)∈X̂×X

Γ̃(x, (ŷ, z)) = Γ̃(x, g̃(x)) are BV-Nash

equilibria of the game (2.1).

end if

3.3 Berge Equilibrium

In this section, to establish the existence of a Berge equilibrium (Definition 2.1) of the game (2.1),

we will use the Theorem 3.1.

Let R = {Ri}i∈M ⊂ = be a partition of I and S = {Si}i∈M be a set of subsets of I .

Let us consider the following functions:

h : X → X̃

defined by x 7→ h(x) = (

rm−times︷ ︸︸ ︷
(xSm , ..., xSm), m ∈M) and

F : X × X̃ → R

defined by (x, ỹ) 7→ F (x, ỹ) =
∑

m∈M

∑
j∈Rm

{uj(x−Sm , ySm)−uj(x)}, where X̃ =
∏

m∈M

∏
j∈Rm

Xj
Sm

and Xj
Sm

= XSm , ∀j ∈ Rm.

LEMMA 3.10 If for all i ∈ I , the set Xi is nonempty, convex and compact in the Hausdorff

locally convex space Ei, then the following assertions are true.

1. The function h is continuous on X .

2. The set h(X) is convex and compact.

PROOF. The proof of this lemma is similar to that of Lemma 3.6

The following Lemma establishes the relation between BE of the game (2.1) and the functions

F and h.

LEMMA 3.11 The following two propositions are equivalent:

1. sup
ỹ∈X̃

F (x, ỹ) = 0.
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2. x is a BE of the game (2.1).

PROOF. The proof of this lemma is similar to that of Lemma 3.7.

Finally, we have the following existence theorem.

THEOREM 3.4 Suppose that (1) the sets Xi, i ∈ I are nonempty, compact and convex subsets

of Hausdorff locally convex vector spaces, (2) the function ui is continuous over X , and the

functions ySm 7→
∑

i∈Rm

ui(x−Sm , ySm) are concave on XSm , ∀x−Sm ∈ X−Sm and ∀m ∈ M, and

(3) ∀h(x) ∈ ∂h(X), ∀ỹ ∈ X̃, ∃p̃ ∈ Zh(X)(h(x)) such that F (x, ỹ) ≤ F (x, p̃). In the case if I is

infinite countable, in addition to assumption (1)-(3), assume that the function F is continuous on

X × X̃ . Then, the game (2.1) has at least one BE (Definition 2.1).

PROOF. The proof of this theorem is similar to that of Theorem 3.2.

By Lemma 3.11, we deduce the following proposition. Let

γ = inf
x∈X

[
sup
ỹ∈X̃

F (x, ỹ)

]
. (3.10)

PROPOSITION 3.3 Suppose that the function F is continuous on X × X̃ and the sets Xj are

compact. Then, the game (2.1) has at least one berge equilibrium (Definition 2.1) if and only if

γ = 0.

From this proposition we deduce the method presented in Algorithm 3 for the computation of

a Berge equilibrium of the game (2.1).

Algorithm 3 Procedure for the determination of a Berge equilibrium.
Require: Suppose that the conditions of Proposition 3.3 are satisfied.

Require: Calculate the value γ in (3.10).

if γ > 0, then
the game (2.1) has no Berge equilibrium.

else
The strategy profiles x ∈ X satisfying sup

ỹ∈X̃

F (x, ỹ) = 0 are Berge equilibria of the game

(2.1).

end if

3.4 Discussion

From Theorems 3.2, 3.3, 3.4, one can see that the existence of SBE (simple Berge equilibrium),

BVE (Berge-Vaisman equilibrium), BV-Nash (Berge-Vaisman-Nash equilibrium) and BE (Berge

equilibrium) requires much stronger conditions than the existence of Nash equilibrium which can
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be established by common conditions on the primitives of the normal form game as continuity,

compactness, convexity and (quasi-) concavity. To illustrate this fact, the following counter exam-

ple shows that a game may not possess a SBE (Definition 2.2) even if it is continuous, compact,

convex and (quasi-) concave.

EXAMPLE 3.2 Consider a three person game such that I = {1, 2, 3}, X1 = X2 = X3 = [0, 1]

with

u1(x) = x1 + x2 + x3,

u2(x) = −x1 + x2 − x3,

u3(x) = x1 − x2 + x3.

It can be easily seen that this game is compact, convex, continuous and concave. However,

it has no SBE. We will demonstrate this fact by two ways. The first way is direct by using the

Definition 2.2 of SBE itself. The second is by Algorithm 3.

Let us start with the first way. It is easy to calculate the following maximums

max
y−1

u1(x1, y−1) = u1(x1, 1, 1) = x1 + 2,

max
y−2

u2(x2, y−2) = u2(0, x2, 0) = x2,

max
y−3

u3(x3, y−3) = u3(1, 0, x3) = x3 + 1,

(3.11)

for all x ∈ X .

Assume that x ∈ X is an SBE of the considered game, then by Definition 2.2 and (3.11), we have

max
y−1

u1(x1, y−1) = u1(x1, 1, 1) = u1(x1, x2, x3),

max
y−2

u2(x2, y−2) = u2(0, x2, 0) = u2(x1, x2, x3),

max
y−3

u3(x3, y−3) = u3(1, 0, x3) = u3(x1, x2, x3).

(3.12)

Then based on the uniqueness of the maximums in (3.11) and the equalities (3.12), we deduce that

(x2, x3) = (1, 1), (x1, x3) = (0, 0), (x1, x2) = (1, 0). (3.13)

The first equation of (3.13) implies that x2 = 1, however, the third equation implies that x2 = 0.

This contradiction shows that x cannot be an SBE of the considered game.

Let us now prove that the considered game has no SBE by Algorithm 3. An SBE is a Berge

equilibrium in the case where M = I , Ri = {i}, i ∈ I and Si = −i, i ∈ I . Then, X̃ becomes

X̃ = X−1 ×X−2 ×X−3 and

F (x, ỹ) = [u1(x1, y−1)− u1(x)] + [u2(x2, y−2)− u2(x)] + [u3(x3, y−3)− u3(x)], (3.14)

where x ∈ X and ỹ = (y−1, y−2, y−3) ∈ X̃ .

17

IESEG Working Paper Series 2010-ECO-16



Using (3.11), we get
3∑

i=1
max
y−i

ui(xi, y−i) = x1 +x2 +x3 + 3. On the other hand, using (3.14),

we get

γ = inf
x∈X

[
sup
ỹ∈X̃

F (x, ỹ)

]
= inf

x∈X

[
3∑

i=1

max
y−i

ui(xi, y−i)−
3∑

i=1

ui(x)

]
.

Then we obtain

γ = inf
x∈X

[(x1 + x2 + x3 + 3)− (x1 + x2 + x3)] = 3.

Since γ = 3 > 0, then according to Algorithm 3, the considered game has no SBE. Consequently,

it does not have a BVE as well.

REMARK 3.4 The counter Example 3.2 shows also that the assumptions of Theorem 9 2 and

Theorem 10 3 in Abalo and Kostreva [2006] are not sufficient for the existence of BE because

these theorems state that a compact, convex, continuous and (quasi-) concave game has a BE.

In fact, the mentioned Theorems 9-10 in Abalo and Kostreva [2006] are based on the following

theorem which is flawed as well.

THEOREM 3.5 (Abalo and Kostreva [2006]) Let I be an indexed set, finite or infinite, and S =

{Si}i∈I be a set of non-empty pairwise distinct sets such that I = ∪
i∈I
Si. Let {Li}i∈I be a family

of separated locally convex topological vector spaces. For each i ∈ I , let Xi be a non-empty

compact convex set in Li. Let {Ei}i∈I be a family of subsets of X . If for each i ∈ I ,

(i) the section Ei(xSi) = {x−Si ∈ X−Si : (xSi , x−Si) ∈ Ei} is open in X−Si , for each

xSi ∈ XSi ,

(ii) the section Ei(x−Si) = {xSi ∈ XSi : (xSi , x−Si) ∈ Ei} is nonempty and convex for each

x−Si ∈ X−Si .

Then,
⋂
i∈I

Ei 6= ∅.

2Theorem 9. Let I be an indexed set, finite or infinite. Let S = {Si}i∈I be a set of non-empty pairwise distinct sets

such that I = ∪
i∈I

Si. Let {Li}i∈I be a family of separated locally convex topological vector spaces. For each i ∈ I , let

Xi be a non-empty compact convex set in Li. Let {ui}i∈I be a family of real-valued continuous functions defined on

the set X such that for each index i ∈ I and for each x−Si ∈ X−Si , ui(., x−Si) is a quasi-concave function on XSi .

Then, there is a point x ∈ X such that for i ∈ I , max
xSi
∈XSi

ui(xSi , x−Si) = ui(x).

3Theorem 10. Let I be an indexed set, finite or infinite. Consider a game (2.1) with an (S, R, M)-system. For each

i ∈ I , let Xi be a non-empty compact convex set in a real separated locally convex topological vector space, ui be

a real-valued continuous functions defined on the set X . If for each m, each rm ∈ Rm and each x−Sm ∈ X−Sm ,

Jrm(x−Sm , .) is a quasi-concave function on XSm . Then, there is a point x ∈ X such that for all m, each rm ∈ Rm,

max
xSm∈XSm

urm(xSm , x−Sm) = urm(xS).

18

IESEG Working Paper Series 2010-ECO-16



The following counterexample shows also that the Theorem 3.5 is not correct.

EXAMPLE 3.3 Consider a three person game with I = {1, 2, 3}, X1 = X2 = X3 = [0, 1],

x = (x1, x2, x3) and

E1(x) = {x ∈ X : x2 + x3 > 1.99},
E2(x) = {x ∈ X : x1 + x3 < 0.1},
E3(x) = {x ∈ X : x1 − x2 > 0.99}.

For i = 1, 2, 3, let Si = −i, i ∈ I .

It can be easily seen that the the section Ei(xSi) is open in X−Si , for each xSi ∈ XSi , and the

section Ei(x−Si) is nonempty 4 and convex for each x−Si ∈ X−Si . Thus by Theorem 3.5 , we

have
⋂
i∈I

Ei 6= ∅.

Let x ∈
⋂
i∈I

Ei, then x ∈ Ei for each i ∈ I . Since x ∈ E1, then x2 + x3 > 1.99, i.e.

x2 > 1.99− x3 ≥ 0.99. we have also x ∈ E3, then x1 − x2 > 0.99, i.e. x1 > 0.99 + x2 ≥ 1.98.

Therefore, x1 > 1.98 and x1 ∈ X1 = [0, 1] which is impossible.

4 Conclusion

In this paper we dealt with the problem of existence and computation of Berge-Vaisman, Berge-

Vaisman-Nash and Berge equilibria. For the general case of games with an infinite countable

number of players, we have used the g-Maximum Equality Theorem to derive general sufficient

conditions for their existence in Theorems 3.2-3.4 respectively. From these theorems we have

derived Algorithms 1-3 respectively, for their computation.

In Subsection 3.4, we have shown that the problem of existence of Berge equilibria is a chal-

lenging problem. In general the existence of such equilibria cannot be established based on the

conditions that guarantee the existence of Nash equilibrium. Therefore, the weakening of exis-

tence conditions of Berge equilibria could be one future direction of research. The study of Berge

equilibria in differential games may be a worthy direction of research as well.

The Definition 2.1 of Berge equilibrium is very general, so only Nash equilibrium and Berge-

Vaisman equilibrium have been investigated as special cases of it. It would be very interesting to

explore more special cases of this equilibrium both from theoretical an application points of view.

We expect that some Berge equilibria may be very useful in social sciences (political, regional and

global issues and conflicts).
4Let x = (x1, x2, x3) ∈ X .

1) If i = 1, let y2 = y3 = 1, then (x1, y2, y3) ∈ E1. Thus E1(x1) 6= ∅

2) If i = 2, let y1 = y3 = 0, then (y1, x2, y3) ∈ E2. Thus E2(x2) 6= ∅

3) If i = 3, let y1 = 1, y2 = 0, then (y1, y2, x3) ∈ E3. Thus E3(x3) 6= ∅
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