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1. Introduction

In this paper, we extend classical results from the Colombeau algebra, concerning
point-value characterizations of generalized functions, to the more general case of
multi-parameter (C, E ,P)–algebras. Our investigations include an analysis of dif-
ferent definitions of tempered generalized functions and similar related subspaces.

The usefulness of pointvalue characterisations, in particular for proving existence
and uniqueness of solutions to various differential problems, is well-established in
the existing literature. As in the classical case, the well-definedness of (generalized)
point-values is also relevant for considerations about the possibiliy of composition
of generalized functions.

The extension with respect to known results is thus twofold: On one hand we
consider multi-indices as regularisation parameters. This proves very useful in con-
crete differential problems with singular coefficients and data, which can be ir-
regular concerning its behaviour as well as the geometry of its support. On the
other hand we consider scales other than the polynomial scales, in particular those
(“over”)generated by a given set of nets, indexed by the beforementioned parame-
ters. This setting allows a fine analysis which distinguishes the dependency of the
singular spectrum of the solutions to a given problem, on the different sources of
singularities [8, 13].

The results extend, mutatis mutandis, known results from the usual Colombeau
algebra [2, 9, 15], which are of course reproduced in the corresponding case. Never-
theless, the consideration of several parameters and non-polynomial scales is not
always completely straightforward. Asymptotic bounds usually given explicitely in
terms of “ε going to zero”, as for example in the notion of slow scale nets, do not
make manifest in how far they correspond to the regularisation parameter going
to zero, and to what extent the concrete expression is related to the choice of the
polynomial scale. Since in our approach the parameters themselves cannot be used
as a numerical value, the relation with the asymptotic scale is necessarily made
manifest in an explicit manner.
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2. (C, E, P)–algebras

We consider the setting of (C, E ,P)–algebras [12], which is a special case of the
asymptotic extension of topological algebras as described in [10].

Definition 2.1 Let Λ be a set of indices on which is given a filter base BΛ, allowing
to consider asymptotics on nets indexed by λ ∈ Λ: For x, y ∈ KΛ with K = R or C,
the notation x = O(y) (resp. x = o(y)) means that there is (resp. for all) c > 0 and
some Λ′ ∈ BΛ, |xλ| ≤ c |yλ| for all λ ∈ Λ′. Then for any solid subring S ⊂ KΛ,
i.e., a subring such that

∀(x, s) ∈ KΛ × S : x = O(s) ⇒ x ∈ S , (1)

and any semi-normed K–vector space (E ,P), we define

H(S,E,P) =
{
f ∈ EΛ | ∀p ∈ P : p(f) ∈ S

}
, (2)

where p(f) = (p(fλ))λ∈Λ ∈ RΛ
+ ⊂ KΛ. We will also consider H(S,K,P) for any subset

K ⊂ E, which does not need to be a vector (sub)space.

Example 2.2 A left filtering partial order ≺ on Λ induces the base of filter BΛ =
{Λλ;λ ∈ Λ}, where Λλ = {λ′ ∈ Λ | λ′ ≺ λ}. Classical examples for (Λ,≺) are (N,≥)
and ((0, 1] ,≤). However, it can be very useful in practical applications to have
several independent parameters, λ = (ε, η, ...), which may correspond to different
processes of regularization, requiring different respective scales [8, 14]. It may also
be of interest to consider more complex types of parameters, e.g. λ = (ε, ϕ) ∈
(0, 1] × D(Ω), where D(Ω), the space of compactly supported smooth functions,
would be equipped with an appropriate filter.

Example 2.3 The set of complex nets of at most polynomial growth indexed by
(0, 1] can be written as A =

{
x ∈ C(0,1] | lim sup |xε|1/| log ε| < ∞

}
[3]. For E =

C∞(Rn) with the usual family of seminorms P = { pK,α : f *→ ‖∂αf‖L∞(K); K !
Rn, α ∈ Nn }, this yields H(A,E,P) = EM , Colombeau’s moderate nets.

Proposition 2.4 Consider Λ and (E ,P) as in the above Definition 2.1.

(1) If A is a solid subring of KΛ, then H(A,E,P) is an A–module for component-
wise multiplication, and an A–algebra if E is a topological algebra.

(2) If I is a solid ideal of A, then H(I,E,P) is an A–linear subspace of H(A,E,P),
and an ideal of H(A,E,P) if E is a topological algebra.

(3) As a consequence, the factor space H(A,E,P)/H(I,E,P) is again an A–module,
but also an A/I–module (and an algebra, if E is a topological algebra).

(4) For (E ,P) = (K, {|·|}), we get H(A,K,|·|)/H(I,K,|·|) = A/I.

Remark 2.5 Requiring E to be a topological algebra means that multiplication
in E is continuous for the topology defined by the family of seminorms. But we
also consider the more primitive case of a vector space, relevant for the notion of
generalized points.

Definition 2.6 Consider (E ,P) and A, I as in the above Proposition 2.4, (1)–(2).

(1) The factor ring C = A/I is called the ring of generalized numbers associated
to A and I, and the C–algebra AC(E ,P) := H(A,E,P)/H(I,E,P) is called the
(C, E ,P)–algebra of generalized functions.

(2) If (E ,P) is a sheaf of K–algebras over a topological space X, then we define

AC(E ,P) := Ω *→ AC(E(Ω),P(Ω)) . (3)
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for all open Ω ⊂ X.

Example 2.7 Assume that for all a ∈ A there is ā ∈ A∗ with a = O(ā), where
A∗ is the set of invertible elements of the ring A. Then we have the “canonically”
associated ideal IA := {x ∈ A | ∀a ∈ A∗ : x = o(a)}, which is solid if A is.
For A from the preceding Example 2.3, this yields the set of sequences decreasing
to zero faster than any power, IA =

{
x ∈ C]0,1] | lim |xε|1/| log ε| = 0

}
. With E ,P as

before, we get Colombeau’s simplified (or “special” [9]) algebra Gs(Rn) over the
ring of generalized numbers C.

Example 2.8 (“Overgenerated” (C, E ,P)–algebras.) For any nonempty subset
B0 ⊂ (R∗

+)Λ, let B = 〈B0〉 be the closure of B0 under addition and division
(consisting of rational fractions of “linear combinations” with positive integer
(or rational) coefficients of products of elements of B0.) Then A = AB0 ={
x ∈ KΛ | ∃b ∈ B : x = O(b)

}
is a solid ring, and C = CB0 = A/IA is said to be

generated by the set B0, and ACB0
(E ,P) the (C, E ,P)–algebra generated by B0.

(In earlier publications, the term “overgenerated” had been used to describe this
construction.) In practical applications, this construction is useful to construct the
adequate algebra for a given differential problem [5–7]. For B0 =

{
(ε)ε∈(0,1]

}
we get

back Colombeau’s polynomial scale. Sometimes we use the fact that B is countable
whenever B0 is countable or finite. (Actually every (C, E ,P)–algebra whose ideal
is IA as given in Example 2.7, is generated by the set B0 = A∗ ∩ RΛ

+, but this set
is uncountable except for pathological cases.)

Remark 2.9 The assignment f *→ (f)λ∈Λ+H(I,E,P) defines a map i : E → AC(E) iff
1l = (1)λ∈Λ ∈ A, or equivalently, if A contains at least one (and thus any) nonzero
constant sequence. Then this map is injective iff (E ,P) is Hausdorff and 1l /∈ I (⇐⇒
I 2= A). We shall assume these three conditions to hold throughout the
sequel of this paper. (The condition (xλ)λ∈Λ ∈ I ⇒ lim (xλ)λ∈Λ = 0 is sufficient
but not necessary to have 1l /∈ I; and for A = AB0 and IA as in Example 2.8, all
these conditions on A an I are satisfied for arbitrary sets B0.)

Proposition 2.10 If (E ,P) is a presheaf of semi-normed K–algebras over a to-
pological space X, i.e.,

(1) for any open Ω ⊂ X, the algebra E(Ω) is endowed with the set P(Ω) of
seminorms such that, if Ω1 ⊂ Ω2 ⊂ Ω and ρ2

1 is the restriction from Ω2 to
Ω1, then for each p ∈ P(Ω1), we have p ◦ ρ2

1 ∈ P(Ω2).
(2) for any open covering (Ui)i of an open set Ω ⊂ X and each p ∈ P(Ω), there

is a finite subfamily (Ui1 , ..., Uin) of (Ui)i and p1 ∈ P(Ui1), ..., pn ∈ P(Uin)
such that for all u ∈ E(Ω), p(u) ≤ p1(u|Ui1

) + ... + pn(u|Uin
) ,

then AC(E ,P) defined in (3) is again a presheaf.
Moreover, if˙ E is a fine sheaf, then AC(E ,P) also is a fine sheaf.

The proof is given in [12], and, for the last statement, in [10].

3. Multiparameter algebras of tempered generalized functions

We first study the relations between two closely related definitions of spaces of
tempered generalized functions, which generalize the “simplified” version Gτ (Ω) of
the corresponding space introduced by Colombeau in [1]. An important property
of functions in Gτ (Ω) is that their point-values in (not necessarily compactly sup-
ported) generalized points are well-defined. This is also relevant when considering
the possibility of composition of generalized functions. In the previously introduced



4 M. F. Hasler and J.-A. Marti

framework it is most natural to consider

AC(OM )(Ω) := AC(OM (Ω),Pτ (Ω)) ,

the C–extension of Schwartz’ space OM (Ω) of “multipliers” or slowly increasing
functions, with topology given by the family of semi-norms

Pτ (Ω) = { pϕ,α : f *→ ‖ϕ · ∂αf‖L∞(Ω) ; ϕ ∈ S(Ω), α ∈ Nn } .

The elements of OM (Ω) are the smooth functions for which all of the above semi-
norms are finite,

OM (Ω) = {f ∈ C∞(Ω) | ∀α ∈ Nn ∀ϕ ∈ S(Ω) : pϕ,α(f) < ∞} .

For the sequel, it is also important to note that OM (Ω) is a topological algebra,
which is trivial if Ω is bounded, but else (and in particular for Ω = Rn) requires a
rather lengthy proof of Lemma 4 given in [2]1.

It is well known [11] that for Ω = Rn, we have OM (Rn) = Og
M (Rn), where

Og
M (Ω) = {f ∈ C∞(Ω) | ∀α ∈ Nn ∃r ∈ N : q−r,α(f) < ∞} ,

with qr,α : f *→ sup
{
|(1 + ‖x‖)r ∂αf(x)| ; x ∈ Ω

}
.

Obviously, the qr,α are not seminorms on the whole of Og
M (Ω), which could be

written as projective limit of the inductive limit of the spaces Er,α on which these
seminorms are finite. For the same reason, the corresponding factor algebra

Gτ,C(Ω) = Mτ,A(Ω)/Mτ,I(Ω) (4)

where for any S ⊂ KΛ,

Mτ,S(Ω) =
{
f ∈ (Og

M (Ω))Λ | ∀α ∈ Nn ∃r ∈ N : (q−r,α(fλ))λ ∈ S
}

, (5)

does not fit in the framework of (C, E ,P)–algebras as defined in Def. 2.6. (It is
included, however, in the more general concept reviewed in [3].) Since we will not
apply the construction of Def. 2.6 with this space, we do not need to know whether
Og

M (Ω) is a topological algebra. The obvious estimates using the qr,α are sufficient
to establish Mτ,A(Ω) as an algebra and Mτ,I(Ω) as an ideal thereof.

Remark 3.1 In the above definition, the integer r ∈ N must not depend on λ ∈ Λ,
i.e., for any representative u ∈ u, the whole net u = (uλ)λ must lie in a subspace
of C∞(Ω) on which some q−r,α is finite, for given α ∈ N.

Remark 3.2 Even though we have OM (Rn) = Og
M (Rn), we do not claim that the

topologies induced on this space by Pτ (Rn) resp. Qτ = {qr,α} are the same.

Theorem 3.3 (i) Consider C = A/I as in Def. 2.6. Then, for S = A and S = I,
we have Mτ,S(Rn) ⊂ H(S,OM ,Pτ )(Rn).
(ii) Assume the additional hypothesis that the base of filter BΛ is countable,
and that A and I are given as A =

{
x ∈ KΛ | ∃( ∈ Z : x = O(b(&))

}
, I ={

x ∈ KΛ | ∀( ∈ Z : x = o(b(&))
}

in terms of a countable set
{
b(k) ; k ∈ Z

}
⊂ RΛ

+

such that ∀k, ( ∈ Z : k < ( ⇒ b(k) = o(b(&)). Then we have: Mτ,A(Rn) =

1Personal communication by the author of [2].
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H(A,OM ,Pτ )(Rn) and therefore AC(OM )(Rn) can be seen as Gτ,C(Rn) modulo the
canonical image, in Gτ,C(Rn), of the larger ideal H(I,OM ,Pτ )(Rn).

Remark 3.4 Such a countable set
{
b(&)

}
exists in particular for asymptotic alge-

bras [4] and thus in the Colombeau case. In practical applications, when A/I is to
be generated by a finite number of nets, we can usually choose a subsequence of
the set B mentioned in example 2.8, which has the required property. On the other
hand, the rather restrictive hypothesis on

{
b(&)

}
could be significantly relaxed.

However, for the scope of this short paper, we feel obliged to confine ourselves to
this somehow limited framework, leaving a more general treatment as future work.

To prove the Theorem, we will use the following Lemma:

Lemma 3.5 Consider f ∈ H(A,OM ,Pτ )(Ω), with A as in Theorem 3.3. We have
f ∈Mτ,A(Ω) iff

∀α ∈ Nn ∃(, r ∈ N ∃K ! Ω ∃Λ′ ∈ BΛ ∀λ ∈ Λ′ ∀x /∈ K :
(1 + ‖x‖)−& (∂αfλ(x))λ ≤ b(r)

λ .
(6)

Proof From the definition (5) of Mτ,A(Ω), it is clear that (6) is satisfied for any
f ∈Mτ,A(Ω), with any K ! Ω, and ( = p, r = (′, where b(&′) is dominating q−p,α(f)
in (5). Conversely, assume that (6) holds for some f ∈ H(A,OM ,Pτ ). We have to show
that for each α ∈ Nn, there is r′′ such that the analogous relation is verified also
inside K. For this, it is sufficient to consider the definition of H(A,OM ,Pτ ) with the
seminorm pϕ,α for ϕ ∈ D(Ω) ⊂ S(Ω) equal to 1 on K: This implies that pϕ,α(f) is
an element of A, which by hypothesis is dominated by some b(r′).
Multiplying by (1 + ‖x‖)−& and restricting x to K makes the left hand side only
smaller. Thus, for (′′ = max {(, (′} Choosing r′′ such that br + br′ = O(br′′) we have
the inequality in (6) for all x ∈ Ω, i.e., f ∈Mτ,A(Ω). "

Proof of the Theorem. (i) We show that Mτ,X(Ω) ⊂ H(X,OM ,Pτ )(Ω) for X = A
and X = I. From the definitions (of S in particular), this inclusion is obvious in
both cases: For any α, if such p exists in (5), then, since any ϕ ∈ S decreases faster
than (1 + ‖x‖)−p, one has pϕ,α ≤ C q−p,α (with C = sup |(1 + ‖x‖)p ϕ(x)|), and
since X is solid, q−p,α(f) ∈ X ⇒ pϕ,α(f) ∈ X.
(ii) For the converse inclusion with X = A and Ω = Rn, we assume that BΛ

has an equivalent countable base Λ1 ⊃ Λ2 ⊃ .... Then, in view of the Lemma, if
f /∈Mτ,A(Ω) then

∃α ∈ Nn ∀(, r ∈ N ∀K ! Ω ∀Λ′ ∈ BΛ ∃λ ∈ Λ′ ∃x /∈ K :

(1 + ‖x‖)−& |∂αfλ(x)| > b(r)
λ .

For Ω = Rn, this allows to construct, for some α ∈ Nn, sequence (x&)&∈N and
(λ&)&∈N such that ‖x&+1‖ ≥ ‖x&‖+ 2, λ& ∈ Λ& and (1 + ‖x&‖2)−& |∂αfλ"

(x&)| ≥ b(r)
λ"

for all ( ∈ N. Let us consider the element ϕ ∈ S which consists of “bumps” of
height 1 centered in these x&,

ϕ(x) =
∑

&∈N
(1 + ‖x&‖2)−&ρ(x− x&) , ρ ∈ D(Rn), supp ρ ⊂ B1(o), 0 ≤ ρ ≤ 1 = ρ(o) .

Obviously it is such that pϕ,α(fλ"
) ≥ b(&)

λ"
for every (, therefore (pϕ,α(fλ))λ is not

dominated by any a ∈ A and thus f /∈ H(A,OM ,Pτ ). "

We have the following characterization of the ideal H(I,OM ,Pτ ):
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Lemma 3.6 Under the same hypotheses as in part (ii) of Theorem 3.3,

H(I,OM ,Pτ )(Rn) =
{
u ∈ OM (Rn)Λ | ∀α ∈ Nn ∀( ∈ Z ∃p ∈ N : q−p,α(uλ) = o(b(&)

λ )
}

.

Proof With the quantifiers and asymptotics exchanged, the proof of the nontrivial
inclusion is here the same as for H(A,OM ,Pτ ) ⊂Mτ,A in the preceding Theorem. "

4. Generalized points and point values of generalized functions

Here we generalize classical results concerning point values in the Colombeau al-
gebra, as given, e.g., in [9], to the multiparametric algebras introduced above.

Definition 4.1 For a given ring of generalized numbers C = A/I, the generalized
points in Ω ⊂ Rn, Ω̃ =Ω A / ∼ , are equivalence classes of A–moderate sequences
x ∈ ΩA = H(A,Ω,‖·‖) =

{
x ∈ ΩΛ | (‖xλ‖)λ ∈ A

}
modulo the equivalence relation

x ∼ y ⇐⇒ (‖xλ − yλ‖)λ ∈ I ⇐⇒ x− y ∈ H(I,Rn,‖·‖) .

The compactly supported points in Ω̃ are those having a representative in a
compact set, Ω̃c = Ω̃ ∩

{
x̃ ; x ∈ KΛ, K ! Ω

}
, or, equivalently, having a compact

support supp x̃ = {y ∈ Rn | ∀V ∈ V(y) ∀Λ′ ∈ BΛ ∃λ ∈ Λ′ : xλ ∈ V } .

(The support of a generalized point is thus nothing else than the set of cluster
points of any of its representatives.)

Remark 4.2 Since an open set Ω ! Rn is not a vector space, we cannot write Ω̃
as quotient vector space, but have to use the set-theoretic formulation modulo an
equivalence relation. However, for applications (where we are only interested in
the behaviour for “λ small enough”), it amounts to the same to consider points
of R̃n = AC(Rn, ‖ ·‖ ) which have a representative in ΩΛ. Since elements of I have
zero limit, this implies that, for open Ω, all representatives of such points lie in Ω
for λ small enough. (However, for some values of λ, we may have xλ /∈ Ω. Then,
an expression f(xλ) is not defined for these λ, if the domain of f is Ω.)

We now prove the following generalization of Proposition 1.2.45 in [9]:

Theorem 4.3 Let C = A/I be a ring of generalized numbers, E the space of C∞

functions on a connected open Ω ⊂ Rn, with topology given by the supremum norms
of all derivatives on compact sets, P =

{
pK,α : f *→ ‖∂αf‖L∞(K)

}
. Then, for any

u ∈ AC(E ,P) and x̃ ∈ Ω̃c, u(x̃) is a well defined element of C = K̃.

This means that the sequence (uλ(xλ))λ is an element of A, for any representa-
tives (uλ)λ resp. (xλ)λ of u resp. x̃, and that its class modulo I is independent of
the choice of these representatives.

Proof Consider representatives (uλ)λ, (vλ)λ of u and (xλ)λ, (yλ)λ of x̃. Let us first
show that (uλ(xλ))λ ∈ A. Indeed, we can assume that for all “sufficiently small”
λ, xλ lies in some compact K. Then, since for all compact sets K and α ∈ Nn,
pK,α(uλ) ∈ A, we have that (uλ(xλ))λ ∈ A. In the same way we have for any
j ∈ H(I,E,P), (jλ(xλ))λ ∈ I. We use this in

uλ(xλ)− vλ(yλ) = uλ(xλ)− uλ(yλ) + uλ(yλ)− vλ(yλ)︸ ︷︷ ︸
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to see that the second part is an element of I. As to the first part, we use

uλ(xλ)−uλ(yλ) =
∫ yλ

xλ

graduλ(ξ) ·dξ =
∫ 1

0
graduλ(xλ +s(yλ−xλ)) ·(yλ − xλ) ds .

(Since we have xλ − yλ → 0 following BΛ, all segments connecting xλ and yλ

eventually lie in uλ’s domain Ω.) Thus

|uλ(xλ)− uλ(yλ)| ≤ ‖yλ − xλ‖
∫ 1

0
‖ graduλ(xλ + s(yλ − xλ))‖ds ,

and using that (‖yλ − xλ‖)λ ∈ I and (pK,α(uλ))λ ∈ A (for |α| = 1 and some
compact K containing the segments [xλ, yλ], which exists since both x and y are in
Ω̃c), we finally get uλ(xλ)−vλ(yλ) ∈ I, i.e., the required independence of respective
representatives. "

The following Lemma, which generalizes Theorem 1.2.3 in [9], will be used to
prove Theorem 4.6:

Lemma 4.4 (Characterization of the ideal by 0-order estimate) Assume that
I = IA (cf. Example 2.7) and for every x ∈ A and a ∈ A∗, there is b ∈ A∗

such that b x = o(a). Then we have H(I,E,P) = H(A,E,P) ∩ H(I,E,P0) where P0 =
{pK,0;K ! Ω}, pK,0 = ‖·‖L∞(K) . In other words, for u ∈ H(A,E,P) we have u ∈
H(I,E,P) iff for every K ! Ω, (‖uλ‖L∞(K))λ

∈ I.

Remark 4.5 The second assumption is satisfied whenever every x ∈ A are domi-
nated by some y ∈ A∗, thus in particular in algebras generated (as in Example 2.8)
by a set B0 having an element going to 0 or to infinity.

Proof We only have to show the inclusion ⊃. Consider u = (uλ) ∈ H(A,E,P) such
that pK,0(u) ∈ I for all K ! Ω. It is enough to show that for any partial derivative
∂i, we still have pK,0(∂iu) ∈ I for all K ! Ω. Then, since ∂iu is still in H(A,E,P), the
result holds for any derivative by immediate recurrence. Let K ! Ω and a ∈ A∗

be given. We will show that pK,0(∂iu) = o(a). As usual, we let L = K + Bδ/2(0),
where δ = min(dist(K, ∂Ω), 1). We know that ∂2

i u ∈ H(A,E,P), thus, by assumption,
there exists h ∈ A∗ : pL,0(h ∂2

i u) = o(a), and we can assume that |hλ| < δ/2 for all
λ ∈ Λ. By Taylor’s theorem, ∂iu(x) = h−1 (u(x+h ei)−u(x))− 1

2h ∂2
i u(x+ h̃ ei) ,

with h̃λ ∈ [0, hλ]. From this we get, as required,

pK,0(∂iu) ≤ |h−1|︸ ︷︷ ︸
∈A

2 pL,0(û)
︸ ︷︷ ︸

∈I

+1
2 |h| pL,0(∂2

i û)
︸ ︷︷ ︸

=o(a)

= o(a) .

"

Theorem 4.6 Under the assumptions of Lemma 4.4, if u ∈ AC(E ,P), then

u = 0 ∈ AC(E ,P) ⇐⇒ ∀x̃ ∈ Ωc : u(x̃) = 0 ∈ C .

Proof The implication “⇒” is a consequence of Theorem 4.3. Let us show “⇐”
by contraposition: Assume u 2= 0. This means that for some K ! Ω and some
representative (uλ) ∈ u, (pK,0(uλ))λ /∈ I (using the preceding Lemma 4.4). Now, if
we let xλ ∈ K such that uλ(xλ) = ‖uλ‖L∞(K), then x̃ ∈ Ωc and u(x̃) 2= 0. "

The requirement of compactly supported points can be dropped if we confine
ourselves to tempered generalized functions defined in (4), in analogy to Proposi-
tion 1.2.45 in [9].
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Theorem 4.7 For u ∈ Gτ,C(Ω) and x̃ ∈ Ω̃, u(x̃) is a well-defined element of C.

Proof Let u resp. x be representatives of u resp. x̃. We have that r ∈ N such that
aλ = supξ∈Ω(1 + |ξ|)−r|uλ(ξ)| defines an element a = (aλ)λ of A, and b = (‖xλ‖)λ

is also in A. Replacing ξ by xλ, we get |uλ(xλ)| ≤ (1+bλ)raλ, and since A is a solid
ring, we also have (uλ(xλ))λ ∈ A. As in the previous proof, |uλ(xλ) − uλ(yλ)| ∈ I
if y is another representative of x̃ and thus x − y ∈ I, and in the same way
|uλ(xλ)− vλ(xλ)| ∈ I for any other representative v of u, achieving the proof. "

The following Lemma generalizes Theorem 1.2.25 in [9, p.27]:

Lemma 4.8 (Characterization of Mτ,I by 0-order estimates.)
Under the assumptions of Lemma 4.4, and the additional hypothesis that Ω is an
n–dimensional box, we have Mτ,I = Mτ,A ∩Mτ∗,I , where

Mτ∗,I =
{

f ∈ (C∞(Ω))Λ | ∃p ∈ N :
(
sup
Ω
|(1 + ‖x‖)−pfλ|

)
λ∈Λ

∈ I
}

.

Proof For u ∈Mτ,A ∩Mτ∗,I , we will show that q−p,0(∂iu) = o(a) for some p ∈ N
and all a ∈ A∗. Let p ∈ N such that q−p,0(u) ∈ I and q−p,0(∂2

i u) ∈ A, and let a ∈ A∗

be given. Using the assumption, there is h ∈ A∗ such that h q−p,0(∂2
i u) = o(a) (and

we can assume that hλ → 0). Again, by Taylor’s theorem, ∂iu(x) = h−1 (u(x +
h ei) − u(x)) − 1

2h ∂2
i u(x + h̃ ei) , with h̃λ ∈ [0, hλ]. (Since Ω is a box, for each ei

the sign of hλ can be chosen such that the segments [x, x + h ei] lie in Ω.) In the
expression of q−p,0 we use ‖x‖ ≥ ‖x + hλ ei‖−‖hλ‖ and (1+‖x + h ei‖−‖h‖)−p =
(1 + ‖x + h ei‖)−p(1 + O(h)) to get

q−p,0(∂iu) ≤ |h−1|︸ ︷︷ ︸
∈A

q−p,0(u) (2 + O(h))
︸ ︷︷ ︸

∈I

+1
2 |h| q−p,0(∂2

i û)(1 + O(h))
︸ ︷︷ ︸

=o(a)

= o(a) .

"

Theorem 4.9 Under the hypotheses of Lemma 4.8, and assuming that BΛ is count-
able (or cofinal to a countable filter base), we have that u ∈ Gτ,C(Ω) is zero if, and
only if, u(x̃) = 0 ∈ C for all x̃ ∈ Ω̃.

Remark 4.10 The condition on the shape of Ω can be significantly relaxed; as in
[9, Thm. 1.2.50], the result holds also if Ω is a moderate open set.

Proof The sense (⇒) is a consequence of Theorem 4.7, e.g., by taking as repre-
sentative of u the sequence identically equal to zero. Now consider (⇐), by con-
traposition. Assume that u ∈ Gτ,C \ {o}, i.e., (uλ)λ ∈ Mτ,A \ Mτ∗,I (using the
Lemma 4.8). By definition and assumptions made on A, IA, this means that

∀α ∈ Nd, ∃p ∈ N, ∃a ∈ A, ∀Λ′ ∈ BΛ, ∃λ ∈ Λ′ : sup
x∈Ω

|(1 + ‖x‖)−p ∂αuλ(x)| ≤ aλ

(∗)
(where a ∈ A can be taken invertible, a ∈ A∗, without loss of generality), and

∀q ∈ N, ∃j ∈ A \ I, ∀Λ′ ∈ BΛ, ∃λ ∈ Λ′ : sup
x∈Ω

|(1 + ‖x‖)−q uλ(x)| ≥ jλ , (∗∗)

where j can be taken in A∗, according to the assumption.
Now take α = 0 and p ∈ N, a ∈ A as in (∗), and j ∈ A∗ such that (∗∗) holds with
q = p + 1. Then we have (1 + ‖x‖)−p−1 |uλ(x)| ≤ (1 + ‖x‖)−1 aλ < jλ whenever
λ ∈ Λ0 and ‖x‖ ≥ aλ j−1

λ . This means, in view of (∗∗), that

∀Λ′ ⊂ Λ0, ∃λ ∈ Λ′ : sup
‖x‖≤aλj−1

λ

|uλ(x)| ≥ sup
‖x‖≤aλj−1

λ

(1 + ‖x‖)−p−1 |uλ(x)| ≥ jλ .
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Thus there exists a sequence (Λk)k which can be taken to be decreasing and cofinal
to BΛ, (λk)k (with λk ∈ Λk), and (xk)k ∈ ΩN such that ‖xk‖ ≤ aλk

j−1
λk

and
|uλk

(xk)| ≥ 1
2jλk

. If we let xλ = xk for λ ∈ Λk \ Λk+1, then (‖xλ‖)λ ∈ A, thus
x̃ ∈ Ω̃, and (uλ(xλ))λ /∈ I, i.e., u(x̃) 2= 0 ∈ C, which achieves the proof of the “if”
part of the Theorem. "

We can establish an analogon of the pointvalue characterizations in AC(OM ,Pτ )
known for the simplified Colombeau case1, using

Definition 4.11 A generalized point x̃ ∈ Ω̃ is said to be of slow scale (c.f. [15])
if

∃a ∈ A∗ ∀n ∈ N |xλ|n = O(aλ) . (7)

It is easily seen that (7) is independent of the chosen representative x ∈ x̃. The
detailed theorems and proofs will be given in a forthcoming paper.
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