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Linear discriminant rules for high-dimensional
correlated data: Asymptotic and finite sample
results

A. Pedro Duarte Silva

Faculdade de Economia e Gestão & CEGE, Univ. Católica Portuguesa at Porto,
Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal; psilva@porto.ucp.pt

Abstract. A new class of linear discrimination rules, designed for problems with
many correlated variables, is proposed. This proposal tries to incorporate the most
important patterns revealed by the empirical correlations and accurately approxi-
mate the optimal Bayes rule as the number of variables increases. In order to achieve
this goal, the new rules rely on covariance matrix estimates derived from Gaussian
factor models with small intrinsic dimensionality.

Asymptotic results, based on a analysis that allows the number of variables to
grow faster than the number of observations, show that the worst possible expected
error rate of the proposed rules converges to the error of the optimal Bayes rule when
the postulated model is true, and to a slightly larger constant when this model is a
close approximation to the data generating process.

Simulation results suggest that, in the data conditions they were designed for,
the new rules can clearly outperform both Fisher’s and naive linear discriminant
rules.

Key words: Discriminant Analysis, High Dimensionality, Expected Misclassifica-
tion Rate, Min-Max Regret.

AMS2000 subject classification: 62H30

1 Introduction

The classical theory of Linear Discriminant Analysis (see, for example, [7])
assumes the existence of a training data set with more observations than vari-
ables leading to a non-singular empirical covariance matrix. However, nowa-
days many applications work with data bases where a large number of vari-
ables is measured on a smaller set of observations. Practical experience has
shown [2, 3] that, for problems of this type, natural extensions of Fisher’s
linear discriminant rule, that replace the inverse of the empirical covariance
matrix by a generalized inverse, have a disappointing performance. On the
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other hand, in the same problems the naive discriminant rule that ignores all
variable correlations can be quite effective.

Recently, Bickel and Levina [1], based on an asymptotic analysis that
allows the number of variables to grow faster than the number of observations,
have shown that these surprising results have a deep theoretical justification,
and that the expected error of the naive rule can approach a constant close
to the expected error of the optimal Bayes rule, while generalized versions
of Fisher’s rule are asymptotically no better than simple random guessing,
ignoring the data.

Here, it will be shown that linear discriminant rules based on covariance
estimates derived from low-dimensional factor models can successfully incor-
porate some of the information available on the empirical correlations, and
under conditions similar to those considered in [1] can achieve, or come close
to, asymptotic optimality for some problems where both Fisher’s and naive
Bayes rules perform poorly.

The reminder of this paper is organized as follows. Section 2 motivates and
introduces our proposal. Section 3 presents its asymptotic properties. Section
4 addresses implementation issues. Section 5 describes preliminary simulation
experiments assessing the performance of the new rules in finite samples. Sec-
tion 6 discusses the main results of this contribution and presents perspectives
for future research. Mathematical proofs are given in the Appendix Section
A.

2 A Factor Model Linear Discriminant Rule

Consider the two-group homocedastic Gaussian model where entities are rep-
resented by binary pairs (X,Y );X ∈ <p;Y ∈ {0, 1} and the distribution of X
conditioned on Y is the multivariate normal Np(µ(Y ), Σ). The classical dis-
criminant problem deals with the development of rules capable of predicting
unknown Y values (class lables) given X observations. When the parameters
µ(0), µ(1), Σ are known and a-priori probabilities π0 = P (Y = 0), π1 = P (Y =
1) are equal (i.e., π0 = π1 = 1/2) it is well known [7] that the classifica-
tion rule that minimizes the expected misclassification error is the theoretical
Bayes rule, given by

Y = δB(X) = 1(∆TΣ−1γ > 0) (1)

where ∆ = µ(1) − µ(0) ; γ = X − 1
2 (µ(0) + µ(1)) and 1(.) is the indicator

function.
Different a-priori probabilities and/or misclassification costs can be easily

incorporated into (1), and would not alter the essential of the arguments made
here, but for the sake of simplicity will be omitted from this paper.

In practice, ∆, γ and Σ are usually unknown and are estimated from a
training sample of n = n0+n1 observations ((Xi, Yi) ; i = 1, ..., n) with known
class labels. When n0 >> p and n1 >> p common estimators are
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∆̂F = X̄1 − X̄0 =
1
n1

∑
Yi=1

Xi −
1
n0

∑
Yi=0

Xi

γ̂F = X − 1
2
[
X̄0 + X̄1

]

Σ̂F =
1

n− 2

[∑
Yi=0

(Xi − X̄0)(Xi − X̄0)T +
∑
Yi=1

(Xi − X̄1)(Xi − X̄1)T
]

which, for non-singular Σ̂F , leads to Fisher’s linear rule

Y = δF (X) = 1(∆̂T
F Σ̂−1

F γ̂F > 0) (2)

Here, we will be mostly concerned with problems where p is close to, or
higher than n. In the later case Σ̂F is singular and rule (2) can not be applied
directly. However, a modified Fisher’s rule

Y = δMF (X) = 1(∆̂T
F Σ̂−F γ̂F > 0) (3)

can be defined by replacing Σ̂−1
F by Σ̂F Moore-Penrose generalized inverse

Σ̂−F =
1
k

k∑
a=1

1

λ̂a
ξ̂aξ̂a

T

where k is the rank of Σ̂F and λ̂a, ξ̂a their non-null eigenvalues and corre-
sponding normalized eigenvectors.

Alternatively, when Σ is estimated by the diagonal matrix of training
sample variances, Σ̂I = diag(Σ̂F ), one gets an estimator of the optimal rule
for independent variables, known as naive Bayes

Y = δI(X) = 1(∆̂T
F Σ̂−1

I γ̂F > 0) (4)

Note that, contrary to Σ̂F , Σ̂I is always non-singular for any value of n and
p, as long as the empirical variances of X remain strictly positive. Further-
more, several authors (e.g. [2, 3]) remark that rule (4) is surprisingly effective
even in problems where many variables are clearly correlated. However, when
p >> n some form of regularization or variable selection may be necessary to
avoid error accumulation in the estimation of ∆ and γ (see [6] and [4]).

Recently, Bickel and Levina [1] have shown that under general conditions
where both p and n grow to infinity and n/p → d < ∞, a variant of rule (4)
that replaces ∆̂F and γ̂F by consistent (when p → ∞) estimators of ∆ and
γ, has an asymptotic error rate that depends on the maximum ratio between
the largest and the smallest eigenvalues of population correlation matrices.
When this ratio is bounded by some ”moderate” constant the asymptotic
performance of the naive rule is close to that of the optimal Bayes rule.
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Building on these results, here we will propose an alternative linear rule
with good asymptotic performance for some common data conditions where
ratios of correlation eigenvalues can be large. In particular, we will assume
that the true population covariance can be reasonably approximated by a
covariance matrix derived from the following q-dimensional (q << p) factor
model

X = µ(Y ) + β F +Ω ε

β ∈ <p∗q ; a > j ⇒ β(j, a) = 0
Ω ∈ <p∗p ; j 6= l ⇒ Ω(j, l) = 0 ; Ω(j, j) > k0 ∈ <+ (5)

where F and ε are respectively q-dimensional and p-dimensional random
vectors following Nq(0, Iq) and Np(0, Ip) distributions, and the condition
a > j ⇒ β(j, a) = 0, is imposed to ensure the identifiability of β.

When model (5) holds the X covariance matrix, given by Σ = ββT +Ω2,
is non-singular with inverse equal to

Σ−1 = Ω−2 −Ω−2β[Iq + βTΩ−2β]−1βTΩ−2 (6)

This suggests the rule

Y = δFctq (X) = 1(∆̂T
C Σ̂−1

Fctq
γ̂C > 0) (7)

where ∆̂C and γ̂C are consistent estimators of ∆ and γ, to be discussed later,
and Σ̂Fctq is given by

Σ̂Fctq = β̂ β̂T + Ω̂2 ; (β̂, Ω̂) = argmin||Σ̂Fctq − Σ̂F ||2 (8)

with ||.|| being the Frobenius matrix norm, ||A||2 = tr(ATA) =
∑
j,lA(j, l)2 .

3 Asymptotic Properties

In this section we will discuss the min-max asymptotic performance of rule
δFctq when n, p → ∞ and n/p → d < ∞. In particular, we will be concerned
with the conditions for convergence, and the limit, of the min-max expected
misclassification error

WΓF ctq
(δFctq ) = maxΓF ctq

[
Pθ(δFctq (X) = 1|Y = 0)

]
(9)

where

θ = (∆, γ,Σ) ∈ ΓFctq (k0, k1, k2, q, B, c)

and
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ΓFctq (k0, k1, k2, q, B, c) =



(∆, γ,Σ) :
∆TΣ−1∆ ≥ c2

k1 ≤ λmin(Σ) ≤ λmax(Σ) ≤ k2

∆, γ ∈ B
∀j = 1, ..., p ; a = 1, ..., q∑

j′,l′

∣∣∣ ∂β(j,a)
∂Σ(j′,l′)

∣∣∣→ e <∞∑
j′,l′

∣∣∣ ∂Ω(j,j)
∂Σ(j′,l′)

∣∣∣→ f <∞


ΣFctq = β βT +Ω2 ; (β,Ω) = argmin|| ΣFctq −Σ||2

β ∈ <p∗q ; a > j ⇒ β(j, a) = 0
Ω ∈ <p∗p ; j 6= l ⇒ Ω(j, l) = 0 ; Ω(j, j) > k0 ∈ <+

with λmin(Σ) and λmax(Σ) being the smallest and largest eigenvalues of Σ,
and B a compact subset of l2(N), the set of real number sequences with
convergent square sums.

The specification of the parameter space, ΓFctq , requires some explanation.
The condition ∆TΣ−1∆ ≥ c2 establishes the minimum degree of group

separation on ΓFctq . It is well known that for fixed θ, the expected error rate
of the optimal Bayes rule equals 1− Φ( 1

2

√
∆TΣ−1∆) with Φ(.) being the cu-

mulative probability of a standardized Gaussian random variable. Therefore,
this condition implies that for all θ ∈ ΓFctq the optimal misclassification rate
is bounded from above by 1−Φ(c/2), which then becomes an useful benchmark
against which the asymptotic rate of any empirical rule can be assessed.

Condition k1 ≤ λmin(Σ) ≤ λmax(Σ) ≤ k2 ensures that Σ is always non-
singular and well-conditioned.

Conditions ∆, γ ∈ B are technical requirements necessary to allow the
possibility of estimating ∆ and γ consistently. We note that when ∆ /∈ l2(N)
and ||Σ|| is bounded, the expected misclassification rate of the Bayes rule
converges to zero when p grows without limit. In that case it may be possible
to find empirical rules with similar perfect asymptotic performance, even if
their coefficients remain far apart from those of the theoretical rule. While
such problems may have some interest on their own, they will be not con-
sidered here, and we will focus on the more standard conditions where rules
approaching perfect group separation are not possible. Therefore, we assume
that ∆ ∈ l2(N) and look for ∆, γ estimators such that Eθ||∆̂ − ∆||2 = o(1)
and Eθ||γ̂ − γ||2 = o(1). Known results in the theory of countable Gaussian
sequences (see [6] and Lemma 1 in [1]) show that such estimators exist if and
only if ∆ and γ are restricted to lie on a compact subset of l2(N).

The previous conditions are similar to corresponding conditions assumed
by Bikel and Levina [1] in their theoretical study of the naive rule.
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Conditions

∀j, a
∑
j′,l′

∣∣∣∣ ∂β(j, a)
∂Σ(j′, l′)

∣∣∣∣→ e <∞
∑
j′,l′

∣∣∣∣ ∂Ω(j, j)
∂Σ(j′, l′)

∣∣∣∣→ f <∞ (10)

are new technical requirements, specific to the δFctq rule, that are necessary
to ensure that convergence of Σ̂F to Σ leads to convergence of Σ̂Fctq to ΣFctq .
In practice, they imply that any variable (Xj) contribution to the underlying
structure of the closest q-factor model is stable, and can be essentially recov-
ered after a finite number of new variables are added to the model. This seems
to be a sensible and reasonable assumption, were it not true and no stable
q-factor model could be used to approximate the covariance structure defined
by the sequence of X variables.

Condition

∀j Ω(j, j) > k0 ∈ <+ (11)

ensures that for (∆, γ,Σ) ∈ ΓFctq , ΣFctq remains always non-singular and
well-conditioned. The empirical versions of this condition and formula (6) are
central in guaranteeing that, similarly to Σ̂I and unlike Σ̂F , Σ̂Fctq can always
be inverted and leads to an inverse approximation error, ||Σ̂−1

Fctq
−Σ−1

Fctq
||, that

can be bounded by a constant times the ||Σ̂Fctq −ΣFctq || error. Furthermore,
formula (6) shows that in order to compute Σ̂−1

Fctq
only a q-dimensional matrix

needs to be explicitly inverted, a fact that makes the implementation δFctq
computationally feasible for moderately large values of p as long as, as implied
by our model, q remains much smaller than p.

We can now state the main result of this section.

Theorem 1.

When (ln p2)/n→ 0,

lim supn→∞ WΓF ctq
(δFctq ) ≤ 1− Φ

( √
K0Fq

1 +K0Fq

c

)
where

K0Fq
= maxΓF ctq

λmax(Σ0Fctq )
λmin(Σ0Fctq )

; Σ0Fctq = Σ
− 1

2
Fctq

Σ
(
Σ
− 1

2
Fctq

)T
and Σ

− 1
2

Fctq
is the inverse of the lower-triangular Cholesky decomposition of

ΣFctq .
For the proof see section A.
Note that the bound defined in Theorem 1 has the same form as the limit

found in [1] for the min-max expected error of the naive rule, but replaces the
bound (K0) on the ratio for the eigenvalues of the correlation matrix by K0Fq .
This constant measures the maximum distance between the true covariance
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and a covariance compatible with the postulated q-factor model. When the
data generating process satisfies (5), Σ0Fctq becomes the p-dimensional iden-
tity, K0Fq

equals one, and the worst expected error rate of δFctq converges to
the expected error rate of the optimal rule. On the other hand, when K0Fq

is allowed to increase without limit as p grows, the true generating process
becomes farther and farther apart from the postulated model and rule δFctq is
asymptotically no better than simple random guessing. In intermediate cases,
with K0Fq

> 1 but bounded by some finite constant, rule δFctq does not con-
verge to the theoretical Bayes rule but, depending on the particular value of
K0Fq , can be close.

The main motivation for our proposal is the fact that, when the data
generating process implies a correlation structure that is far from total in-
dependence but close to a low dimensional factor model, K0Fq

can be much
smaller than K0. In such a case, Theorem 1 shows that as p grows δFctq
can approach a smaller expected error rate than δI . The simulation results
presented in section 5 suggest that for these conditions, δFctq can perform
considerably better than δI , δF or δMF , also for moderate values of p and n.

4 Shrinkage and Variable Selection

In order to implement rule δFctq , one has to chose appropriate estimators for
∆ and γ. The asymptotic properties described in the previous section are valid
for any estimators such that Eθ||∆̂−∆||2 = o(1) and Eθ||γ̂−γ||2 = o(1), and
these conditions are satisfied by all shrunken, or truncated, linear estimators
of the form

∆̂C = cT ∆̂F ; γ̂C = cT γ̂F (12)

with c being a vector o regularization coefficients, satisfying

1
n

∑
j

c2j → e <∞ (13)

∑
j

(1− cj)2∆2
j → 0 ;

∑
j

(1− cj)2γ2
j → 0 (14)

When the set B is explicitly defined as an ellipsoid, such estimators
can always be found by appropriately choosing c based on a parametric
description of B (see [6]). However, this form of regularization is not re-
lated to the discriminant problem and a more natural choice seems to be
to use some discriminant variable selection algorithm (i.e., chose c such that
cj = 1 , j ≤ m ; cj = 0 , j > m, for an m enforcing (13) and (14)) that does
not depend on the explicit specification of B.
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One possibility is to use a variant of forward variable selection adding
variables, one by one, to previous sets, S0 = ∅, S1, ..., Sm−1, based on the
additional discrimination criterion

X2(l)(j) =

(
∆̂F (j)− Σ̂(j, Sl−1)Σ̂−1(Sl−1, Sl−1)∆̂F (Sl−1)

)2

Σ̂(j, j)− Σ̂(j, Sl−1)Σ̂−1(Sl−1, Sl−1)Σ̂(Sl−1, j)
(15)

Similarly to traditional forward selection, we stop adding variables when
maxj /∈Sl−1X

2(l)(j)/(1/n0 + 1/n1) falls below some quantil, χ2
1;1−α, of a Qui-

Square distribution with one degree of freedom. Furthermore, regardless of
the value of the X2(l)(j) maximum, we always stop the selection process when
l = Mn for some, previously chosen, M constant.

The adjustment described above ensures that condition (13) is always sat-
isfied, while conditions (14) are automatically satisfied (with probability one)
for any such procedure with strictly positive α, since we are assuming that
∆ ∈ l2(N) and n→∞.

5 Finite Sample Performance

In order to evaluate the performance of δFctq in finite samples we performed
a small simulation experiment with the following design.

We considered balanced samples with two combinations for the number
of variables and sample size, (p = 100, n = 200), and (p = 100, n = 50).
The first condition intends to illustrate a more traditional situation where
the ratio n/p, although relatively small, is still larger than 1, while the sec-
ond condition illustrates moderate dimensionality problems with p > n. For
each combination of n and p we considered the following five data generating
processes:

Condition A - All variables are independent.
Conditions B, C, D - Variables are generated according to model (5) with
q = 1(Condition B), q = 20 (Condition C) and q = p (Condition D).

Condition E - Variables are generated according to a factor model with p
factors, with all specific variances set to 0.

In conditions B, C, D, and E, factor loadings were generated randomly
according to an uniform U(0,1) distribution, and then normalized in order to
achieve a pre-specified communality level. This level was set to 0.5 in condi-
tions B, C and D, while in conditions A and E it was respectively equal to
0 and 1. In all conditions we assumed that 90 percent of the variables rep-
resented noise, having equal population means (set to 0) in both groups. For
the remaining 10 percent (the signal), we set the means in the first group to
0, and in the second group to the geometic sequence µ1 = (ν, 0.9 ν, 0.92 ν, ...)
where the constant ν was chosen in order to ensure a Mahalanobis distance
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between group centroids equal to 3. With this choice the expected rate of the
theoretical Bayes rule is equal to 1− Φ(1.5) = 0.0668.

We compared six different empirical classification rules, corresponding to
two variants of the δF (or δMF ), δI , and δFctq with q = 1, rules. In the first
variant we used the ∆̂F and γ̂F estimators for all rules (i.e., used all variables
without any selection or shrinkage), while in the second variant we used the
∆̂C and γ̂C estimators described in the previous section. In this later case
we set α to 0.05 and assumed that the constant M was larger than 2 which,
for the sample sizes considered, implied that our regularization reduced to
traditional forward selection where in (15), Σ̂−1 was set to Σ̂−1

F , Σ̂−F , Σ̂
−1
I or

Σ̂−1
Fctq, respectively for the δF , δMF , δI and δFctq rules.

We then generated 100 independent training samples, used them to es-
tablish the empirical rules, and evaluated these rules on one, independently
generated, balanced validation sample with 100 000 observations. The average
misclassification rates in the validation sample are shown in Figures 1 and 2,
and the K0,K0Fq constants and corresponding bounds on asymptotic error
rates are presented in Table 1.

Simulation Results (n=50 ; p=100)

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

A B C D E
Data Configuration

M
is

. E
rr

. (
Va

l. 
Sa

m
p.

)

Fish_F
Naiv_F
Fctq_F
Fish_C
Naiv_C
Fctq_C

Fig. 1. Simulation Results – n=p/2

Table 1 illustrates some of the large differences that can occur between the
K0 and K0Fq

constants which here, with randomly generated factor loadings,
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Simulation Results (n=200 ; p=100)

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

A B C D E
Data Configuration

M
is

. E
rr

. (
Va

l. 
Sa

m
p.

)

Fish_F
Naiv_F
Fctq_F
Fish_C
Naiv_C
Fctq_C

Fig. 2. Simulation Results – n=2p

Table 1. Theoretical constants and their asymptotic error rates

Data Conditions
A B C D E

K0 1 101.0 75.9 76.1 6.57 ∗ 108

Naiv. As. Err. 0.067 0.384 0.367 0.367 0.500
K0Fq 1 1 3.82 1.98 8.14 ∗ 106

Fctq As. Err. 0.067 0.067 0.112 0.078 0.499

lead in some cases to asymptotic bounds on error rates more than four times
higher for the naive than for the δfctq rule. The actual error rates of the naive
rules in the validation sample were often somehow smaller than predicted by
their asymptotic bounds. This is not totally unexpected since the theoretical
bounds reflect worst-case behavior. However, these bounds seemed to be good
indicators of the order of magnitude of the true error rates.

We can see in Figure 1 that for data condition E with n = p/2, none of
methods had a misclassification error meaningfully below than 0.5. The Fisher
rule using all 100 variables was reasonably effective for this condition when
n = 2p (see Figure 2), but none of the other methods was able to benefit
from the larger sample size. Notably, for this condition the variable selection
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procedure was not helpful at all, and all rules using the ∆̂C and γ̂C estimators
had misclassification rates close to fifty percent. This is a condition that was
chosen exactly because of its inherent difficultly, which was confirmed by this
results. However, we conjecture that similar structures might not be common
in real life applications, where we expect most variables to have some specific
variability and a dependence structure that may be explained by a lower-
dimensional set of common factors.

On the other extreme, we see that both the δI and δfctq rules using the ∆̂C

and γ̂C estimators were quite effective when the data was indeed independent
(data condition A), with error rates coming close to the one of the optimal
rule when n = 2p. However, their performance worsened when the data was
generated by a factor model with correlated variables and positive specific
variances (data conditions B, C and D), where they were both outperformed
by the δfctq rule using all 100 variables.

This result, in conjunction with those previously reported for condition E,
suggests that, for these dimensionalities and sample sizes, any improvement
due to the noise elimination in the ∆̂C , γ̂C estimators is often outweighted
by the difficulty in separating discriminating variables from noisy ones. Cu-
riously, the naive rule did not seem to be strongly affected by this problem,
with the variant using ∆̂C and γ̂C always giving better results than the one
based on ∆̂F and γ̂F , with clear differences when n = p/2. However, this
apparent better capacity of the δI rule in identifying important variables, was
not enough to compensate for the consequences of ignoring the true correla-
tions generated in conditions B, C and D. In higher dimensionalities, where it
is likely that the importance of noise elimination will increase, some of these
conclusions might be reversed. We leave a thorough investigation of this issue
to future research.

The most interesting results are those concerning data conditions C and D.
In these conditions, that we believe to be the more realistic ones, each variable
has a variability explained in part by a common factor structure and in part
by its own characteristics. In both conditions the true intrinsic dimensionality
of the underlying model is considerably higher than the one assumed by the
δfctq rule, although in condition C (but not in D) is smaller than the total
number of variables. In both cases the variant of the δfctq rule that considers
all available variables gave the best results with an expected error rate that
was close the corresponding rate for the conditions (A and B) where the
assumed model coincided with the data generating process. We consider these
results to be particularly encouraging and have as top research priority to
investigate if they still hold for higher dimensionalities and real-world data
sets.
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6 Discussion and Perspectives for Further Research

We proposed a new class of linear discriminant rules capable of incorporating
information regarding correlation structures in problems with more variables
than observations. Its main distinctive feature is the use of covariance es-
timates derived from low-dimensional factor models. Asymptotic properties
and moderate dimensionality simulation results suggest that these rules can
be quite effective under data conditions where Fisher’s and naive discrimina-
tion rules perform poorly.

The asymptotic properties of the new rules require the use of shruken or
truncated estimators of mean differences. However, our simulation results sug-
gest that in problems with moderate dimensionalities the use of such regular-
ized mean estimators might be counterproductive. For larger dimensionalities,
where the damming effects of noisy variables are bound to be more serious,
some fine tuning of regularization schemes may be required. This is an issue
that we will address in future research.

In the present from, the proposed rules can be computationally too de-
manding for very high dimensional problems (with several thousand variables)
common in genetic and microarray applications. Variants that try to allivi-
ate the computational burden, while retaining some of its desirable statistical
properties, are currently under investigation.

Other avenues of future research include the evaluation of the proposed
rules in real-world data sets, and the development of generalizations to prob-
lems with more than two groups and to quadratic heterocedastic discrimina-
tion problems.

A Proof of Theorem 1

In this Appendix we demonstrate the claim we’ve made in Theorem 1, that
we repeat here for convenience

lim supn→∞ WΓF ctq
(δFctq ) ≤ 1− Φ

( √
K0Fq

1 +K0Fq

c

)
(16)

Firstly, we will introduce some notation.
Let δθFctq be a population version of rule δFctq with θ̂ = (∆̂C , γ̂C , Σ̂Fctq )

replaced by (∆, γ,ΣFctq ), and ψΣ(∆̃, Σ̃) denote the ratio

ψΣ(∆̃, Σ̃) =
∆̃T Σ̃−1∆̃

2(∆̃T Σ̃−1ΣΣ̃−1∆̃)1/2
(17)

where, depending on the rule being considered, ∆̃, Σ̃, may represent parame-
ters or estimators.

It can be easily shown that, for any linear rule of the form



LDA for High-Dimensional Correlated Data 13

Y = δA(X, ∆̃, Σ̃) = 1(∆̃T Σ̃−1γ̃ > 0)

the posterior misclassification error probability is given by

W (δA, θ) = Pθ(δA(X, ∆̃, Σ̃) = 1|∆̃, Σ̃, Y = 0) = 1− Φ(ψΣ(∆̃, Σ̃)) (18)

In order to prove (16) we just need to show the following

WΓF ctq
(δθFctq ) ≤ 1− Φ

( √
K0Fq

1 +K0Fq

c

)
(19)

maxΓF ctq

{∣∣ψΣ(∆̂C , Σ̂Fctq )− ψΣ(∆,ΣFctq )
∣∣} P→ 0 (20)

maxΓF ctq

{∣∣ψΣ(∆̂, Σ̂Fctq )− ψΣ(∆, Σ̂Fctq )
∣∣} P→ 0 (21)

where the convergence in probability of (20) and (21) is uniform over ΓFctq .
Conditions (19), (20) and (21) imply (16) because, exactly by the same

arguments as made by Bickel and Levina in the demosntration of their the-
orem 1, part b (see [1], pp. 995-996), (20) and (21) are enough to establish
convergence of WΓF ctq

(δFctq ) to WΓF ctq
(δθFctq ).

We now proceed to the demonstration of (19), following again the same
line of reasoning as in [1].

We first note that

WΓF ctq
(δθFctq ) = maxΓF ctq

(1− Φ(ψΣ(∆,ΣFctq )) =

1− Φ(minΓF ctq
ψΣ(∆,ΣFctq ) )

Next, we write minΓF ctq
ψΣ(∆,ΣFctq ) as

minΓF ctq
ψΣ(∆,ΣFctq ) =

c

2
min{ΓF ctq : ∆TΣ−1∆=c2}

ψΣ(∆,ΣFctq )
ψΣ(∆,Σ)

=
c

2
min{ΓF ctq : ∆TΣ−1∆=c2}

∆T (Σ−1/2
Fctq

)TΣ−1/2
Fctq

∆

[(∆T (Σ−1/2
Fctq

)TΣ0FctqΣ
−1/2
Fctq

∆)(∆T (Σ−1/2
Fctq

)TΣ−1
0Fctq

Σ
−1/2
Fctq

∆)]1/2

which is true because ψΣ(∆,ΣFctq ) always reaches its minimum on ΓFctq at
some θ such that ∆TΣ−1∆ = c2, and ψΣ(∆,Σ) = (1/2)(∆TΣ−1∆)1/2.

Therefore, defining ∆0Fctq = Σ
−1/2
Fctq

∆, it follows that
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minΓF ctq
ψΣ(∆,ΣFctq ) =

c

2
min{ΓF ctq : ∆TΣ−1∆=c2}

∆T
0Fctq

∆0Fctq

[(∆T
0Fctq

Σ0Fctq∆0Fctq )(∆T
0Fctq

Σ−1
0Fctq

∆0Fctq )]1/2
≥

c

2
2
[
λmax(Σ0Fctq )λmin(Σ0Fctq )

]1/2
λmin(Σ0Fctq ) + λmax(Σ0Fctq )

=

√
K0Fq

1 +K0Fq

c

where the inequality above follows from Kantorovich inequality, which states
that for any vector, v, and positive defenite matrix, M , of conformable di-
mensions

(vT v)2

(vTMv)(vTM−1v)
≥ 4 λmin(M) λmax(M)

[λmin(M) + λmax(M)]2

This establishes (19), so now we turn our attention to the demonstration
of (20) and (21).

We first claim that when

maxΓF ctq
maxj,l|Σ−1

Fctq
(j, l)− Σ̂−1

Fctq
(j, l)| P→ 0. (22)

hold, then (20) and (21) are true.
To verify this claim, expand 1/p4 times the numerator of ψΣ(∆̃, Σ̃) around

∆̂C and Σ̂−1
Fctq, as

1
p4

(
∆̂C + ε1 e

)T (
Σ̂−1
Fctq + ε2 E

)(
∆̂C + ε1 e

)
=

1
p4

(
∆̂T
C Σ̂−1

Fctq ∆̂C+

2ε1 eT Σ̂−1
Fctq ∆̂C + ε2 ∆̂

T
C E ∆̂C + 2ε1ε2 eTE ∆̂C + ε21ε2 e

TE e
)

=
1
p4

(
∆̂T
C Σ̂−1

Fctq ∆̂C

)
+O(ε1 + ε2) (23)

and 1/p4 times the denominator of ψΣ(∆̃, Σ̃) as

2
p4

[(
∆̂C + ε1 e

)T (
Σ̂−1
Fctq + ε2 E

)
Σ
(
Σ̂−1
Fctq + ε2 E

)(
∆̂C + ε1 e

)]1/2
=

2
p4

[(
∆̂T
C Σ̂−1

Fctq Σ Σ̂−1
Fctq ∆̂C + 2ε1 eT Σ̂−1

Fctq Σ Σ̂−1
Fctq ∆̂C +

2ε2 ∆̂T
C E Σ Σ̂−1

Fctq ∆̂C + ε21 e
T Σ̂−1

Fctq Σ Σ̂−1
Fctq e +

ε22 ∆̂
T
C E Σ E ∆̂C + 4ε1ε2 eTE Σ Σ̂−1

Fctq ∆̂C +

2ε21ε2 e
TE Σ Σ̂−1

Fctq e + 2ε1ε22 e
TE Σ E ∆̂C + ε21ε

2
2 e

TE Σ E e
)]1/2

=

2
p4

(
∆̂T
C Σ̂−1

Fctq Σ Σ̂−1
Fctq ∆̂C

)1/2

+ O(ε1 + ε2) (24)
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where e and E are the unitary vector an matrix, and in the last equalities of
(23) and (24) we used the facts that ∆̂T

C Σ̂−1
Fctq Σ Σ̂−1

Fctq ∆̂C is bounded away
from zero (see inequality (4.13) in [1]), and that the maximum absolute-value
elements of ∆̂C , Σ, ΣΣ̂−1

Fctq and Σ̂−1
FctqΣΣ̂

−1
Fctq are all bounded by a constant

that does not depend on p. This last claim is a consequence of ∆̂C ∈ l2(N)
and known properties of symmetric matrix norms, namely maxjl|M(j, l)| ≤
||M ||2 =

√
λmax(M), ||M N ||2 ≤ ||M ||2||N ||2, and the conditions λmax(Σ) ≤

k2 and λmax(Σ̂−1
Fctq) = λ−1

min(Σ̂Fctq) ≤ k−1
0 .

From these expansions, and the property ∆̂T
C Σ̂−1

Fctq Σ Σ̂−1
Fctq ∆̂C > h with

strictly positive h, it follows that

ΨΣ

(
∆̂C + ε1e, Σ̂

−1
Fctq + ε2E

)
= ΨΣ

(
∆̂C , Σ̂

−1
Fctq

)
+ O(ε1 + ε2) (25)

which, together with the condition Eθ||∆̂C −∆||2 = o(1), is sufficient to show
that (22) implies (20) and (21).

In order to prove (22) we first remark that, as Σ̂F follows the Wishart
distribution, W (n− 2, Σ), (see e.g. [8]), Σ̂F (j, l) can always be written as

Σ̂F (j, l) =
√
Σ(j, j)Σ(l, l)

n−2∑
i=1

ZijZil (26)

where (Zij , Zil) are independent bivariate normal vectors with unit variances
and correlation ρ(j, l) = Σ(j, l)/

√
Σ(j, j)Σ(l, l).

Then, by Lemma 4 in [1], it follows that

Pθ

(
maxj,l

∣∣∣Σ̂F (j, l)−Σ(j, l)
∣∣∣ ≥ ε) =

Pθ

(
maxj,l

∣∣∣∣∣ Σ̂F (j, l)√
Σ(j, j)Σ(l, l)

− ρ(j, l)

∣∣∣∣∣ ≥ ε
)
≤ p(p+ 1)

2
e−(n−2)c(ε) (27)

for a known positive constant, c(ε), not depending on n or p.
Therefore, it follows that when (ln p2)/n→ 0

maxj,l|Σ̂F (j, l)−Σ(j, l)| P→ 0 (28)

To show that a similar property holds for Σ̂Fctq we make a Taylor series
expansion of β(j, a) and Ω(j, j) as

β̂(j, a) = β(j, a) +
∑
j′,l′

∂β(j, a)
∂Σ(j′, l′)

(
Σ̂F (j′, l′)−Σ(j′, l′)

)
+

o
(
maxj′,l′ |Σ̂F (j′, l′)−Σ(j′, l′)|

)
(29)
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Ω̂(j, j) = Ω(j, j) +
∑
j′,l′

∂Ω(j, j)
∂Σ(j′, l′)

(
Σ̂F (j′, l′)−Σ(j′, l′)

)
+

o
(
maxj′,l′ |Σ̂F (j′, l′)−Σ(j′, l′)|

)
(30)

which, in view of (28) and conditions (10), imply that with probability tending
to one

|β̂(j, a)− β(j, a)| ≤M maxj′,l′ |Σ̂F (j′, l′)−Σ(j′, l′)| (31)

|Ω̂(j, j)−Ω(j, j)| ≤M maxj′,l′ |Σ̂F (j′, l′)−Σ(j′, l′)| (32)

for some common finite M > maxj,a

(∑
j′,l′ |

∂β(j,a)
∂Σ(j′,l′) |,

∑
j′,l′ |

∂Ω(j,j)
∂Σ(j′,l′) |

)
.

Furthermore, since Σ̂Fctq (j, j) = Ω̂2(j, j) +
∑q
a=1 β̂

2(j, a), Σ̂Fctq (j, l) =∑q
a=1 β̂(j, a)β̂(l, a) for (j 6= l), and q is fixed, it follows that

maxj,l|Σ̂Fctq (j, l)−ΣFctq (j, l)| P→ 0 (33)

All that it’s left, is to show that convergence of maxj,lΣ̂Fctq (j, l) implies
convergence of maxj,lΣ̂−1

Fctq
(j, l). That will follow from

maxj,l|Σ̂−1
Fctq

(j, l)−Σ−1
Fctq

(j, l)| ≤ C maxj,l|Σ̂Fctq (j, l)−ΣFctq (j, l)| (34)

for some positive constant, C, not depending on n or p.
To show that (34) is indeed true, we note that from (6)

Σ̂−1
Fctq

(j, j) = Ω̂−2(j, j)−
q∑

a,b=1

N̂−1(a, b)M̂2(j, a) (35)

Σ̂−1
Fctq

(j, l) =
q∑

a,b=1

N̂−1(a, b)M̂(j, a)M̂(l, a) (l 6= j) (36)

where M̂ = Ω̂−1β̂ and N̂ = Iq + M̂T M̂ .
But since q is fixed and by assumption Ω̂(j, j) > k0, we just need to show

that for the q-dimensional matrix N

maxa,b|N̂−1(a, b)−N−1(a, b)| ≤ C maxa,b|N̂(a, b)−N(a, b)| (37)

Inequality (37) follows from known results in the analysis of matrix per-
turbations, in particular from (see theorem 2.3.4 in [5])
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maxa,b|N̂−1(a, b)−N−1(a, b)| ≤ ||N̂−1−N−1||2 ≤
||N̂−1||22

1− r
||N̂−N ||2 =

λ−1
min(N̂)
1− r

||N̂ −N ||2 ≤
1

1− r
||N̂ −N ||2 ≤

q

1− r
maxa,b|N̂(a, b)−N(a, b)|

where r = ||N̂−1(N − N̂)||2 = ||N̂−1N − Iq||2 < 1 for N̂ close enough to N ,
and we used the well known inequality (for any A, a q-dimensional square
matrix) ||A||2 ≤ q maxa,bA(a, b), and the fact that for any matrix of the form
A = Iq +BTB, it is always true that λmin(A) ≥ 1.

This proves (34) and completes the demonstration of the Theorem.
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