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This study investigates the relative performance, for the two-group case, of a number of
classification methods under various different data conditions that are common in
business and economic applications.  Often, business classification problems are
characterized by skewed attribute distributions and unequal misclassification costs across
groups (Altman, Haldeman and Narayanan 1977; Rudolph and Karson 1988).  In
particular financial, accounting and demographic variables tend to have distributions that
are highly skewed to the right (Altman, Haldeman and Narayanan 1977; Altman, Avery,
Eisenbeis and Sinkey 1980; Eisenbeis 1977; Johnson, Leitch and Neter 1981; Gibbons,
Dianne, McDonald and Gunst 1987).
 Whereas classification rules with optimal properties for discriminant problems with
multivariate normally distributed attribute variables are well-known (Wald 1944, 1949;
Smith 1947), alternative rules may be more appropriate if some of the attributes are
skewed.  Most of the studies that compared non-normal classification methods with
normality-based methods for various different data conditions have assumed equal
misclassification costs across groups.   Hence, it is not clear to what extent the
conclusions in these studies can be generalized to typical business problems with
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distributions that are skewed to the right and with unequal misclassification costs across
groups.
 The purpose of the current study is to establish guidelines for choosing an appropriate
classification method if the problem at hand is characterized by the non-normal data
conditions described above.  To achieve this objective, several Monte Carlo simulation
experiments are conducted to compare the performance of a number of well-known
traditional classification methods with several nontraditional methods designed
specifically to handle problems with skewed distributions.  This study is limited to the
two-group classification problem.  A generalization of the results to problems involving
more than two groups is an issue that needs to be addressed in future research.

 

 REVIEW OF CLASSIFICATION METHODS

Suppose that a set of observations belonging to one of two mutually exclusive groups is
described by a set of p-dimensional attribute vectors.  Denote the attribute vector of
observation i by xi, membership in group j by Gj, the probability or probability density of
xi given membership in Gj by p(xi|Gj), the prior probabilities of membership in Gj by πj,
and the cost of misclassifying an observation belonging to Gj by Cj (j=1,2).  Then, the
Bayes rule that minimizes the expected cost of misclassification assigns observation i to
the group Gj for which Cj*πj*p(xi|Gj) is maximized (Wald 1939, 1949).  Parametric
classification methods assume that the p(xi|Gj) follow known probability distributions that
can be fully described by a small set of parameters, and estimate these parameters from a
training sample.  For example, if the p(xi|Gj) are assumed to be multivariate normally
distributed with different mean vectors but equal covariance matrices, the parametric
approach implies a linear classification rule based on Fisher’s Linear Discriminant
Function (LDF) (Fisher 1936), in which a classification score is compared with a
threshold value that depends on the πj and the ratio of group-wise misclassification costs
(Wald 1944).  If the p(xi|Gj) are assumed to be multivariate normally distributed with
heterogeneous covariance matrices across groups, the parametric approach implies a
similar rule that replaces the LDF by a quadratic function, Smith’s Quadratic
Discriminant Function (QDF) (Smith 1947).
If the attribute distributions are clearly non-normal, the usual approach is to apply data
transformations that reduce the deviations from normality, or to use methods that do not
make strong distributional assumptions.  Although the use of data transformations in
discriminant analysis has been criticized by some authors (e.g., Eisenbeis 1977), because
transformations may hide the interrelationships of the original attributes, their use may be
considered legitimate, as long as the purpose of the analysis is strictly classification,
rather than description (McLachlan 1992).
The most important alternatives to the LDF and QDF are logistic regression methods
(Anderson 1972; McCullagh and Nelder 1989), and methods based on kernel (Breiman,
Meisel and Purcell 1977; Hand 1982; Parzen 1962) and k-nearest neighbor (Agrawala
1977; Fix and Hodges 1951; McLachlan 1992) estimators of the p(xi|Gj).  Generally, k-
Nearest neighbor methods are simpler than kernel methods, and have the advantage that
they are adaptable to the amount of information available to estimate the p(xi|Gj).
Logistic regression methods estimate the posterior group membership probabilities
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p(Gj|xi) used in the Bayes rule directly, without the intermediate step of estimating the
p(xi|Gj).
A different approach to two-group classification is to estimate the boundaries of the
region of the attribute domain for which C1∗p(G1|xi)>C2∗p(G2|xi) directly, without
making any assumptions about the attribute distributions.  This approach assumes that
these boundaries can be described by the equation f(b,xi)=c, where b=(b1,b2,...,bt)

T is a
vector of unknown parameters, c is a threshold value and the functional form of f(b,xi) is
known a priori.  The parameters b, and in some cases c, are estimated such that some
training sample accuracy criterion is optimized.  This criterion typically seeks to establish
a classification rule that is not affected disproportionately by, “extreme” training sample
observations.  As the optimization of models with these types of criteria can be done in a
straightforward manner using mathematical programming (MP) techniques, this approach
is often referred to as the MP approach to classification.
Most criteria proposed in the MP approach belong to one of the following two classes, 1)
L1-norm distance criteria, which are based on some function of misclassification cost and
the absolute deviations of the training sample observations from the surface f(b,xi)=c that
separates the two groups, and 2) L0-norm criteria, which are based on the number
(proportion) of misclassified observations or total misclassification cost in the training
sample.  For a detailed discussion of criteria proposed in the MP approach to two-group
classification, see Erenguc and Koehler (1990) and Joachimsthaler and Stam (1990).
Among the vast literature that evaluates methods for two-group classification with equal
misclassification costs across groups, there is a consensus that the LDF and QDF tend to
be the most accurate methods if the p(xi|Gj) are approximately multivariate normally
distributed (Efron 1975; Fatti, Hawkins and Raath 1982; Lachenbruch, Sneeringer and
Revo 1973; Murphy and Moran 1986).  Whereas the LDF tends to perform the best if the
group-wise covariance matrices are similar, the case of unequal covariance matrices
implies a trade-off between estimating a rule with the same functional form as the Bayes
rule (QDF) and one for which the parameters can be estimated more efficiently (LDF).
The choice of classification rule in this situation depends on the extent of the covariance
heterogeneity across groups, on how many parameters are to be estimated in the QDF,
and on how many observations are available to estimate these parameters (Marks and
Dunn 1974).
Although robust with respect to slight or moderate deviations from normality, the
performance of the LDF and QDF deteriorates substantially if the p(xi|Gj) are highly
skewed (Clarke, Lachenbruch and Broffit 1979: Fatti, Hawkins and Raath 1982;
Lachenbruch, Sneeringer and Revo 1973; Rawlings, Faden, Graubard and Eckardt 1986).
If the attributes are highly skewed, methods based on weaker assumptions, particularly
logistic regression, have been found to yield better results than the LDF and QDF (Byth
and McLachlan 1980; Press and Wilson 1978).  While numerous studies have evaluated
nonparametric classification methods for various data conditions, the conclusions
reported in these studies are difficult to generalize, given the large number of such
methods.  For instance, there is strong evidence that certain nonparametric methods tend
to outperform the LDF and QDF if the data is skewed and the training samples are large.
However, the results for these same methods are not so clear and highly variable if the
training samples are small, and depend strongly on the particular data conditions analyzed
and the choice of estimator for p(xi|Gj).  Remme, Habbema and Hermans (1980) found



4

that for small samples and skewed distributions the nearest neighbor and kernel methods
perform about equally well as the LDF and QDF.  However, the conclusions for small
training samples are mixed, even if the attributes are multivariate normally distributed
(Gessaman and Gessaman 1972; Murphy and Moran 1986; Van Ness 1979).
A number of studies have found that, although inferior to the LDF and QDF if the
attributes are multivariate normally distributed, MP-based methods fare much better if
some of the attributes are highly skewed (Duarte Silva and Stam 1994; Glorfeld and
Olson 1982; Joachimsthaler and Stam 1990; Rubin 1990; Srinivasan and Kim 1987; Stam
and Joachimsthaler 1990). Koehler and Erenguc (1990) and Stam and Jones (1990)
remark that MP-based methods that use an L0-norm criterion, without a secondary
criterion to resolve ties in the total training sample misclassification cost, appear to be
very sensitive to the training sample size, with an often erratic behavior for problems with
small training samples, but that their relative accuracy improves significantly as the
training sample size increases.
Summarizing, the general conclusion in the literature is that methods based on normal
theory (LDF and QDF) usually yield the best classification results if the attribute
distributions are approximately multivariate normally distributed, but tend to be inferior
to non-normal methods if the deviations from normality are substantial, e.g., if the
attribute distributions are highly skewed.

METHODOLOGY

Objectives of the Current Study
This study focuses on three questions that have not been addressed fully in the
classification analysis literature, but are highly relevant in practice, particularly in the
case of business and economics applications: 1) what is the relative classification
accuracy of various nonparametric methods if the attribute distributions are skewed, and
which factors should guide the choice of nonparametric classification method; 2) is it
possible to generalize the conclusions drawn from previous studies that have assumed
equal misclassification costs across groups to problems involving unequal
misclassification costs; and 3) how do data transformations aimed at improving the
classification accuracy of parametric methods affect the performance of nonparametric
methods, and what are the implications of using data transformations in terms of selecting
an appropriate classification method.

Classification Methods
Table 1 summarizes the eight classification methods included in this study, the LDF,
QDF, linear logistic regression with first order term predictors (LGR), a nearest neighbor
method (NN), and four L0- and L1-norm MP-based methods for two-group classification,
each with a linear and a quadratic classification function (L0L, L0Q, L1L, L1Q).
The LDF, QDF and LGR are the most widely used two-group classification methods.
The NN method is a representative nonparametric method for estimating p(xi|Gj).  Due to
their conceptual similarity to the NN method, general kernel methods were not included
in this study, because these methods require several subjective choices, such as the choice
of kernel function and smoothing parameters, complicating the generalization of their
classification performance in a given experiment.  The NN distance norm used in this
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study is defined by d(xi,xj)= (xi-xj)
TSp

-1(xi-xj), where Sp is the pooled training sample
attribute covariance matrix.  Following recommendations by Enas and Choi (1986), the
number of neighbors in the NN is determined as a function of the training sample size N
and the variance heterogeneity across groups.  In the case of equal covariances across
groups, the number of neighbors equals the odd integer closest to N3/8, and otherwise the
odd integer closest to N2/8.

TABLE 1: CLASSIFICATION METHODS INCLUDED IN THE EXPERIMENTS
(CM FACTOR)

Acronym        Method (CM Factor)                                                                                            
LDF   Fisher’s Linear Discriminant Function.

QDF   Smith’s Quadratic Discriminant Function.

LGR Logistic regression, using first order term predictors.

NN  Nearest neighbor method, with the number of neighbors equal to either the
odd integer closest to N2/8 (unequal variance-covariances) or N3/8 (equal
variance-covariances), and a Mahalanobis norm based on the sample
pooled variance-covariance matrix.

L0L MP model which minimizes the training sample misclassification cost,
using a linear classification rule.

L0Q MP model which minimizes the training sample misclassification cost,
using a quadratic classification rule.

L1L MP model which minimizes an objective based on the sum of absolute
deviations from the threshold value multiplied by the misclassification
costs, for all misclassified observations combined, using a linear
classification rule.

L1Q MP model which minimizes an objective based on the sum of absolute
deviations from the threshold value multiplied by the misclassification
costs, for all misclassified observations combined, using a quadratic
classification rule.

The four MP-based methods are included in our study because these methods are
designed specifically to handle distributions with extreme values.  Some details of the
MP-based methods used in this study are reviewed in Appendix A.  Following the
decision-theoretic tradition (Wald 1949), the LDF, QDF, LGR and NN classification
rules incorporate the group-wise different misclassification costs (C1 and C2) by adjusting
the respective threshold values with ln(C1/C2).  The MP-based rules incorporate these
costs by including proportional weights in the criterion components.
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Factors in the Experimental Design
This study uses several Monte Carlo simulation experiments.Through the experiments,
the prior group membership probabilities are assumed to be equal (π1=π2=0.5), and all
training samples in the experiments are balanced.
The primary experiment evaluates the relative performance of the eight different
classification methods (CM) for three factors, level of skewness (SK), group-wise ratio of
misclassification costs (RC) and ratio of attribute variances across groups (RV), and
analyzes the interactions between SK, RC and CM.  Skewness is included as a factor
because, as noted above, many variables used in business and economic classification
problems are skewed to the right.  The group-wise ratio of misclassification costs is
included, because because in economic and business studies these costs are usually
different. The group-wise ratio of variances is included because this factor is widely
recognized as playing a critical role in the relative performance of different classification
methods (Marks and Dunn 1974; Clarke, Lachenbruch and Broffit 1979; Remme,
Habbema and Hermans 1980; McLachlan 1992).
A series of secondary experiments analyzes several additional factors not included in the
primary experiment: the use of a data transformation (DT), the number of attributes (P),
the relative training sample size (TS), the degree of group-overlap (OVLP) and the
correlation structure of the attributes (CORR).  As explained in more detail below, in the
secondary experiment the factors are varied one at the time, and the results are compared
pairwise with a typical data condition included in the primary experiment.  Tables 2 and 3
present the factors and factor levels considered in the primary and secondary
experiments, respectively.

Performance Measure
As in this study the misclassification cost varies by data condition, an assessment of the
relative accuracy of the classification methods requires a special performance measure.
To this purpose the ratio Ri/B=ECi/ECB is used, where ECi and ECB are the expected
misclassification cost of method i and the Bayes rule, respectively.  ECB is a benchmark
measure that reflects the performance of the “best” classification rule for that particular
data condition, and Ri/B measures the performance of each classification method relative
to this benchmark.  In order to assess the degree of difficulty of a given data condition,
Ri/B is also compared with RNAIV/B=ECNAIV /ECB where ECNAIV is the expected cost of the
“naïve” rule (NAIV) that assigns all entities to the group with the highest
misclassification cost.
For each data condition, the Bayes rule is derived mathematically for each level of RC,
after which the misclassification proportions eB1 and eB2 of this Bayes rule are determined
for a balanced validation sample of 14,000 randomly generated observations.  ECB is then
estimated as ECB=C1∗eB1+C2∗eB2, where C1 and C2 are the relative classification costs,
normalized such that C1+C2=1.  The ECi  are estimated as follows.  For each data
condition, 50 balanced independent training samples are generated, and after estimating
the relevant classification rule for each level of RC, the misclassification rates and cost
are computed for the above validation sample.  The average misclassification cost on the
validation sample for all 50 replications serves as the estimate of ECi for the data
condition in question.
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TABLE 2:  FACTORS AND FACTOR LEVELS - PRIMARY EXPERIEMENT

Factor            Description                                                                                                             
CM Classification method.  Eight factor levels: see Table 1.

SK Degree of skewness.  Two factor levels: moderate skewness (M) and high
skewness (H).

RC Ratio of the group-wise  misclassification costs  (C1/C2).  Five factor
levels:  0.1, 0.5, 1, 2 and 10.

RV Ratio of the group-wise attribute variances σ2
2/σ2

1 .  Three factor levels: 1,
4 and 64.

TABLE 3:  FACTORS AND FACTOR LEVELS - SECONDARY EXPERIMENT

Factor            Description                                                                                                         
DT Data transformation.  Two factor levels: no transformation (ORG); and

positive square root transformation (TRF).

TS Relative training sample size.  Two factor levels: small samples (S), with
the number of observations in each group equal to 5 times the number of
attributes; and large samples (L), with the number of observations in each
group equal to 10 times the number of attributes.

OVLP Group overlap.  Two factor levels: high overlap (H), with an expected
misclassification rate for the optimal rule in the case of equal
misclassification costs of 31.85 percent; and low overlap (L), with an
expected misclassification rate for the optimal rule in the case of equal
misclassification costs of 6.67 percent.

P Number of attributes.  Two factor levels: 3 attributes; and 10 attributes.

CORR Correlation structure of the attributes.  Two factor levels: independent
attributes (I); and positively correlated attributes(C), with ρ12=0.8,
ρ13=ρ23=0.4.    

Attribute Variable Generation
The attribute variables are generated from the family of log-normal distributions, with
appropriate parameter values to control for the distributional characteristics of the
experimental design. Let Yjk represent the kth attribute of observations from Gj, j=1, 2.  In
the primary experiment, Yjk is defined by Yjk I= exp(bj∗ZjkII+cj), where the Zjk are
independent standard normal random variables and bj, cj, are parameters ( j=1, 2).  The
following equations are used to solve for b1 and c1:
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observations in G1.  Once b1 and c1 have been determined, b2 and c2 are found by
conducting a line search that ensures that (i) the misclassification rate of the Bayes rule
(assuming equal costs) reflects the desired level of group overlap, (ii) the mode of the
attributes of the observations belonging to G2 is higher than that of the observations in G1,
and (iii) the attribute variance of the observations in G2,
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1.
In one of the secondary experiments, in which the effect of the correlation structure
(CORR) is analyzed, the assumption of independent attributes is relaxed, and several
correlated attributes are generated.  The details regarding the variable generation in that
case will be presented within the discussion of the experiment.

PRIMARY SIMULATION EXPERIMENT

Experimental Design, Primary Experiment
The primary experiment uses a repeated measures design with SK and RV as between-
subject factors and CM and RC as within-subject factors.  The 50 training samples for
each data condition are treated as “subjects.”  Moreover, each observation is described by
P=3 independent identically distributed attributes, the size of each training sample equals
15 observations per group (TS=S), the group overlap corresponds to that of two
multivariate normal populations with a common covariance matrix and a Mahalanobis
distance of 3 (OVLP=L), all methods are applied to the original data (DT=ORG), and the
attributes are independent (CORR=I).  These last five factors (DT, TS, OVLP, P and
CORR), are kept fixed at these levels in the primary experiment, but will be varied, one at
the time, in the secondary experiments described in the following section.
The factor levels of SK, RC and RV are described next.  The two levels of SK are
“moderate” (M), defined by an attribute skewness coefficient β1=1 for the observations in
G1, and “high” (H), with β1=10 for the observations in G1.  In both cases, the attribute
skewness of  the observations belonging to G2 is adjusted in order to achieve the desired
levels of OVLP and RV.
The five levels of RC are RC=0.1, 0.5, 1, 2 and 10, covering the cases C1=C2, Ci=2∗Cj

and Ci=10∗Cj, i, j=1, 2; i≠j.  Preliminary comparisons show that these levels of RC differ
in their impact on the performance of the classification methods, in particular whether the
group where the attributes have the lower mode, has the lower or the higher cost.  In the
remainder of this paper, the group with the attribute distributions that have the lower
mode will always be referred to as G1.  Hence, G1 and G2 may be described as “the group
on the left” and “the group on the right,” respectively.
The three levels of the group-wise variance ratio σ2

2 /σ2
1 are RV =1, 4, and 64.  For

skewed distributions with domain [0,+∞), higher modes usually correspond with higher
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variances.  For RV=1, the attribute distributions of G1 are more skewed than those of G2;
if RV=4, the skewness levels are similar for both groups; and the distributions of G2 are
more skewed than those of G1 if RV=64.  The ratio RV=64 is included as a factor level to
exemplify data conditions for which nonlinear rules will presumably yield the best
results.
Table 4 summarizes the six data conditions considered in the primary experiment (data
conditions 1-6).  Table 5 lists the transformation parameters needed to achieve data
conditions 1-6, as well as data conditions 9 and 10 of the secondary experiment, and
Table 6 summarizes the corresponding distributional characteristics.  This information is
not included for data conditions 7 and 8 of the secondary experiments, because their
distributional characteristics are the same as data condition 5. Data condition 11 of the
secondary experiment involves correlated variables and is treated separately.  In the
remainder of this paper, the term “data condition” will be abbreviated by “dc.”  The
estimated expected cost of the Bayes rule and the Ri/B ratios for all methods considered
and data conditions analyzed in both experiments are presented in Tables 7 and 8,
respectively.
MANOVA (within-subject factors) and ANOVA (between-subject factors) analyses
reveal that all main and interaction effects between CM, SK, RV and RC are significant at
the .01 level. This result is not surprising, given the large number of replications (50
replications for each of the 8×2×3×5=240 different combinations of factor levels).

TABLE 4:  DATA CONDITIONS - PRIMARY EXPERIMENT

Factors Varied Factors Fixed (in Primary Experiment)
 Condition              SK            RV            DT           TS          OVLP         P              CORR

1 M  1   ORG S L 3 I
2 M  4 ORG S L 3 I
3 M 64   ORG S L 3 I
4 H  1 ORG S L 3 I
5 H  4 ORG S L 3 I

        6                       H           64          ORG             S              L            3                   I        

TABLE 5:  TRANSFORMATION PARAMETERS  - PRIMARY AND
SECONDARY EXPERIMENTS, INDEPENDENT ATTRIBUTES

     Condition Parameters
b1 c1 b2 c2       

1 0.3143 1.0832 0.2114 1.5199
2 0.3143 1.0832 0.3488 1.6552
3 0.3143 1.0832 0.8035 1.8053
4 1.1651 -1.2087 0.6265 0.1700
5 1.1651 -1.2087 0.8005 0.4268
6 1.1651 -1.2087 1.1816 0.8256

       9 1.1651      -1.2087 1.1724 -0.5353
        10             1.1651            -1.2087                        1.0410            -0.1841
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TABLE 6:  DISTRIBUTIONAL CHARACTERISTICS

Condition Distributional Characteristics
                                                 Group 1 Group 2

Mode S.D. Skewness Mode S.D. Skewness
mo1 s1 s1 mo2 s2 s2

1 2.954 1.000 1.000  4.572 1.000 0.651
2 2.954 1.000 1.000  5.234 2.000 1.126
3 2.954 1.000 1.000  6.082 8.000 3.721
4 0.299 1.000 10.000 1.185 1.000 2.413
5 0.299 1.000  10.000  1.532 2.000 3.694
6  0.299  1.000 10.000 2.283  8.000 10.530
9  0.299  1.000 10.000 0.585 2.000 10.230

      10              0.299        1.000         10.000               0.832        2.000            6.930

TABLE 7:  ESTIMATED EXPECTED COST OF THE BAYES RULE
RC

Condition       0.1                0.5                  1.0                   2.0                     10.0

        1 0.0244 0.0573 0.0671 0.0670 0.0406
        2 0.0349 0.0641 0.0668 0.0602 0.0306
        3 0.0494 0.0680 0.0626 0.0506 0.0190
        4 0.0222 0.0553 0.0676 0.0723 0.0468
        5 0.0246 0.0582 0.0676 0.0665 0.0407
        6 0.0338 0.0632 0.0667 0.0613 0.0324
        7 0.0246 0.0582 0.0676 0.0665 0.0407
        8 0.0246 0.0582 0.0676 0.0665 0.0407
        9 0.0313 0.0651 0.0714 0.0670 0.0346
       10 0.0910 0.2680 0.3138 0.2699 0.0914
       11          0.0201          0.0523             0.0669             0.0712             0.0518

Skewness Effect (SK)
The results in Tables 7 and 8 for dc1 to dc6 show that each method tends to approximate
the Bayes rule more accurately if the skewness level is moderate, as opposed to high.
Figure 1 illustrates the effects on SK for the combination of RV=4 and RC=1.  The pattern
for the other combinations of RV and RC is similar.  The degree of skewness tends to
impact the parametric methods (LDF and QDF) most.  For example, Figure 1 and Table 8
shows that the ratios RLDF/B and RQDF/B are almost twice as large for SK=H (dc5) as for
SK=M (dc2).  The corresponding results for the LGR and MP indicate that these methods
are less sensitive to a high level of skewness.
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TABLE 8:  AVERAGE EXPECTED COST RATIOS
OF THE EMPIRICAL AND BAYES RULES

(PART 1: DATA CONDITIONS 1-6)

   Data                                     RC

Condition     Method             0.1                   0.5                   1.0                   2.0                 10.0
        1 NAIV 3.726 5.817 7.447 4.975 2.239

LDF 1.538 1.510 1.515 1.559 1.718
QDF 1.970 1.748 1.737 1.787 2.168
LGR 2.523 1.751 1.686 1.754 2.448
NN 1.824 1.996 1.677 1.893 1.984
L0L 2.499 1.682 1.675 1.758 2.663
L1L 3.748 2.065 2.025 2.229 4.026
L0Q 3.912 2.184 2.169 2.481 4.820

                           L1Q                        6.489                      3.342                      3.192                      3.550                      6.669
        2 NAIV 2.605 5.200 7.485 5.537 2.971

LDF 1.422 1.354 1.367 1.378 1.322
QDF 1.471 1.469 1.566 1.737 2.568
LGR 2.056 1.482 1.445 1.521 2.150
NN 1.764 1.693 1.521 1.903 1.672
L0L 2.304 1.548 1.396 1.524 2.447
L1L 2.691 1.718 1.786 2.156 4.447
L0Q 2.651 2.015 2.049 2.548 4.011

                           L1Q                        5.220                      3.223                      3.349                      3.974                      8.626
        3 NAIV 1.840 4.902 7.987 6.588 4.785

LDF 1.971 2.123 2.474 2.712 2.904
QDF 1.434 1.285 1.371 1.545 2.813
LGR 2.450 2.007 1.943 2.001 2.797
NN 2.287 1.977 2.088 2.531 2.038
L0L 2.696 1.947 2.006 2.374 4.002
L1L 3.021 2.198 2.310 2.715 6.587
L0Q 1.891 1.781 2.205 3.005 6.774

                           L1Q                        3.620                      2.809                      3.104                      3.966                     11.468          
NAIV 4.095 6.028 7.396 4.610   1.943
LDF 2.558 2.703 2.824 2.695 2.578
QDF 4.019 3.334 3.173 3.052 3.827
LGR 2.944 2.645 2.694 2.689 3.347
NN 2.712 2.686 2.555 2.694 2.598
L0L 3.911 2.626 2.586 2.703 3.787
L1L 5.386 2.993 2.778 2.777 4.100
L0Q 5.474 2.991 2.741 2.876 4.399

                           L1Q                        6.739                      3.249                      2.892                      2.953                      5.109
        5 NAIV 3.695 5.727 7.396 5.013 2.234

LDF 2.394 2.406 2.496 2.431 2.057
QDF 3.727 2.843 2.699 2.786 3.991
LGR 2.824 2.194 2.187 2.311 3.130
NN 2.649 2.294 2.287 2.730 2.444
L0L 3.391 2.228 2.095 2.285 3.436
L1L 4.557 2.494 2.362 2.539 4.234
L0Q 5.092 2.799 2.761 3.102 5.296

                           L1Q                        5.828                      2.974                      2.814                      3.112                      5.707
      6 NAIV 2.690 5.274 7.496 5.438 2.806

LDF 2.390 2.277 2.648 2.587 1.939
QDF 2.686 1.942 1.985 2.229 4.009
LGR 2.207 1.709 1.742 1.883 2.915
NN 2.300 1.919 2.023 2.437 2.045
L0L 2.581 1.763 1.705 1.884 3.287
L1L 2.933 1.923 1.972 2.250 4.517
L0Q 3.618 2.417 2.458 2.963 6.075

                           L1Q                        5.380                      2.972                      2.878                      3.225                      6.335
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(Part 2: Data Conditions 7-11)
    Data RC

Condition            Method                     0.1                          0.5                          1.0                          2.0                        10.0
       7 NAIV 3.695 5.727 7.396 5.013 2.234

LDF 1.793 1.722 1.738 1.768 1.774
QDF 2.271 2.104 2.126 2.257 2.977
LGR 2.864 1.907 1.846 1.941 2.706
NN 2.079 2.067 1.842 2.122 2.060
L0L 3.177 1.884 1.781 1.906 2.911
L1L 4.066 2.166 2.117 2.322 4.015
L0Q 4.574 2.494 2.440 2.687 4.123

                           L1Q                        5.902                      2.816                      2.632                      2.865                      5.159
        8 NAIV 3.695 5.727 7.396 5.013 2.234

LDF 2.467 2.184 2.460 2.477 1.991
QDF 3.753 2.924 2.678 2.602 3.174
LGR 2.152 1.953 2.025 2.122 2.427
NN 2.326 2.152 2.046 2.428 2.261
L0L 2.658 2.065 2.064 2.182 2.877
L1L 2.824 2.065 2.061 2.162 2.937
L0Q 4.702 2.455 2.270 2.546 4.160

                           L1Q                        5.050                      2.545                      2.407                      2.621                      4.549
        9 NAIV 0.999 1.244 1.593 1.235 0.995

LDF 1.068 1.223 1.169 1.137 1.238
QDF 2.881 1.530 1.244 1.224 2.258
LGR 1.108 1.211 1.152 1.166 1.567
NN 2.010 1.238 1.287 1.237 1.771
L0L 2.394 1.254 1.181 1.286 2.542
L1L 2.279 1.273 1.171 1.274 2.491
L0Q 4.041 1.557 1.367 1.547 4.298

                           L1Q                        3.917                      1.520                      1.356                      1.555                      4.476
      10 NAIV 2.904 5.120 7.003 4.975 2.627

LDF 1.971 2.540 2.653 2.616 2.364
QDF 6.804 3.778 3.430 3.500 5.719
LGR 2.310 2.331 2.394 2.495 3.244
NN 3.900 2.898 3.244 3.683 2.860
L0L 4.360 2.665 2.498 2.716 4.631
L1L 3.981 2.529 2.506 2.677 4.817
L0Q 5.051 3.140 3.285 3.886 7.555
L1Q 13.250 5.835 4.986 4.957 8.598

   11 NAIV 4.523 6.373 7.474 4.682 1.755
       LDF 2.927 2.418 2.272 2.060 1.462

QDF 3.274 2.444 2.140 2.066 2.508
LGR 3.730 2.057 1.773 1.686 1.890
NN 2.761 1.873 1.866 2.340 1.618
L0L 4.586 2.108 1.654 1.630 1.893
L1L 4.968 2.162 1.864 1.832 2.445
L0Q 6.035 2.651 2.194 2.304 3.176

                           L1Q                       6.959                     2.928                      2.447                     2.383                        3.459

This is true in particular for the L1-norm MP methods, as RL1L/B increases from 1.79 (dc2)
to 2.36 (dc5) and RL1Q/B  decreases from 3.35 (dc2) to 2.81 (dc5).  The corresponding
figures for RLGR/B are 1.45 (dc2) and 2.19 (dc5), and for RL0L/B, 1.40 (dc2) and 2.10 (dc5).

Ratio of Group-Wise Misclassification Costs Effect (RC)
In general, each of the classification methods yields better results if the misclassification
costs are similar across groups than if they are clearly different. Furthermore, RC has a
strong impact on the relative performance of the individual classification methods.
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Figure 1: Skewness Effect (SK)
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In particular, the LDF usually classifies more accurately, in relative terms, as the
difference between misclassification costs increase.  Notably, the LDF is more robust to
different misclassification costs across groups than the LGR.  The performance of each of
the MP-based methods deteriorates quickly as RC is further apart from 1.
For instance, from Table 8 we see that, if SK=H, RV=4 (dc5) and RC=1, RLDF/B=2.50
exceeds the Ri/B ratios of the LGR, NN, L0L and L1L methods, indicating that the LDF is
inferior to these other methods.  However, if  the group-wise ratio of misclassification
costs equals 10 (RC = 0.1 or RC = 10.0), the LDF ranks first, with RLDF/B equal to 2.39
and 2.06, respectively, for RC=0.1 and RC=10.0.  Under these conditions, NN is the
second best method, with RNN/B equal to 2.65 (RC=0.1) and 2.44 (RC=10).  The LGR and
the MP methods are clearly inferior, with RLGR/B, RL0L/B and RL1L/B equal to 2.82, 3.39,
4.56 (RC=0.1) and 3.13, 3.44, 4.23 (RC=10), respectively. Interestingly, for RC=10 the
LDF is the only rule that beats the naïve rule ( RNAIV/B=2.23).  The RC effect for dc5, with
SK=H and RV=4, is illustrated in Figure 2.  The results for other combinations of SK and
RV are similar.

Ratio of Group-Wise Attribute Variances Effect (RV)
As expected, the relative performance of the QDF tends to improve, both in absolute and
relative terms, as the variance heterogeneity across groups (RV) increases.  For instance,
from Table 8 it is seen that for the combination of SK=M and RC=1, RQDF/B decreases
from 1.74 (dc1) to 1.37 (dc3) as RV increases from 1 to 64.  In relative terms, the QDF
moves from the fourth most accurate to the most accurate method as RV increases from 1
to 64.  The second best method for dc3 is LGR, with RLGR/B =1.94.
Interestingly, the performance of the linear rules tends to approximates that of the optimal
Bayes rule more closely for RV=4 than for RV=1.  This behavior is contrary to known
results for normal distributions, in which case linear rules give the best results when the
covariances are equal across groups (e.g., Marks and Dunn 1974).  In the case of skewed
distributions the performance of linear classifications rules can usually be improved by
data transformations that reduce the skewness level.  It is remarkable that the linear rules
still yield the best performance for moderately different variances across groups, when
applied to the original data.
The variance heterogeneity level of RV=64 has a stronger effect on the performance of
the LDF than on that of the other linear classification methods.  For example, for the
combination of SK=M and RC=1, a change in RV from 4 (dc2) to 64 (dc3) results in an
increase in the Ri/B ratios from 1.37 to 2.47 (LDF), from 1.45 to 1.94 (LGR) and from
1.40 to 2.01 (L0L).  This effect is illustrated in Figure 3.

Higher Order Interactions
All of the interactions between CM and the other factors are found to be significant at the
0.0001 level.  The most important higher order interactions are those between CM, SK
and RC (η2=0.763) and between CM, RV and RC (η2=0.756).  Thus, the way in which RC
affects the relative performance of the misclassification methods depends on the
distributional characteristics of the different data conditions.  In particular, the choice of
which group has the highest misclassification cost can have a major impact on relative
classification performance.  This impact is directly related to the levels of SK and RV.
For instance, consider the following two observations (see Table 8):
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Figure 2: Ratio of Misclassification Costs Effect (RC)
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Figure 3: Ratio of Attribute Variances Effect (RV)
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i) If RV=1, RNAIV/B tends to be closer to 1 when G1 has the higher misclassification cost
(i.e., RC>1).  This effect is stronger for SK=H (dc4) than for SK=M (dc1).  For example,
for the combination of SK=H and RV=1, RNAIV/B equals 4.10 when RC=0.1 and 1.94 when
RC=10.  The latter case can be described as a difficult data condition for classification
purposes, since the best possible rule cannot improve the naïve rule by more than 50
percent.  Remarkably, for this combination of factor levels (dc4, with RC=10) none of the
empirically derived rules was able to beat the naïve rule on average, as Ri/B>RNAIV/B, for
all i.  This effect is illustrated in Figure 4a).
ii) As RV increases, RNAIV/B decreases when G2 has the higher misclassification cost (i.e.,
RC<1), indicating that the corresponding data condition becomes more difficult in terms
of accurate classification.  For example, for dc3, with SK=M and RV=64, the naïve rule
yields RNAIV/B =1.84 when RC=0.1, and the only method that beats the naïve rule is the
QDF, with RQDF/B =1.43.  However, for RC=10, the naïve rule perfroms poorly
(RNAIV/B=4.79), and the NN method (RNN/B=2.04) handily beats all other methods,
including the QDF (RQDF/B=2.81).  This effect is illustrated in Figure 4b.
The effect in i) may be explained as follows.  If RC>1, i.e., if the misclassification cost of
G1 is higher than that of G2, the probability of misclassifying observations from G1,
p(2|1), is bound to be lower than if RC≤1.  With attribute distributions that are skewed to
the right, large reductions in p(2|1) can be achieved only by expanding the region of the
attribute space assigned to G1 well to the right and misclassifying almost all of the
observations belonging to G2.  As a result, the Bayes rule becomes similar to the “naïve”
rule, i.e., RNAIV/B approaches 1.  In contrast, if RC<1, i.e., if the misclassification cost of
G2 is higher, significant reductions in p(1|2) can be achieved by smaller changes in the
regions assigned to each group, and hence involve smaller increases in p(2|1).  In this
case, the performance of the Bayes rule can be significantly better than that of the “naïve”
rule, so that RNAIV/B is larger.  The higher the skewness of the attribute distributions, the
stronger this effect is felt.  The “difficult” data condition RC>1 has a similar effect for all
of  the classification methods included in this study.
Effect ii) may be explained by the following argument.  As RV (σ2

2/σ2
1) increases, the

dispersion of G2 increases, and a given expansion of the region in attribute space assigned
to G1 results in smaller increases of p(1|2).  Thus, significant reductions in p(2|1) require
larger expansions of the region assigned to G

2
 and higher increases in p(1|2). As a result,

RNAIV/B is bound to be lower (“the difficult condition”) when the cost of the “group on the
right” is higher than the cost of the “group on the left” (i.e., RC<1).  In this situation, the
quadratic classification methods, notably the QDF, are less affected by the “difficult
condition” than the other methods, and are better in relative terms when RC is smaller.

 

 SECONDARY SIMULATION EXPERIMENTS

In this study, secondary experiments are conducted to analyze the impact on classification
accuracy of the five factors (data transformation DT, training sample size TS, group
overlap OVLP, number of attributes P and the correlation structure of the attributes
CORR) that were kept at a fixed level in the primary experiment.  These experiments are
all based on dc5 of the primary experiment, because its factor levels SK=H, RV=4 reflect
fairly typical conditions.  The level SK=H is selected because the focus of this study is on
skewed distributions.  The level RV=4 is chosen because in the log-normal distribution,
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Figure 4: Higher Order Interactions
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b) Moderate Skewness
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as well as in other distributions with domain ℜ+, a “shift to the right” usually implies a
moderate increase in dispersion.  The classification methods and the levels of RC in the
secondary experiments are the same as in the primary experiment (see Tables 1 and 2).
In each of the secondary experiments, the classification performance of dc5 is compared
pairwise with a variant of dc5, with one factor level modified.
The factor levels and the data conditions in the secondary experiments are described in
Tables 3 and 9, respectively.  The experimental design, the motivation for selecting the
particular factor levels, and the relative classification performance for each of these
pairwise evaluations in the secondary experiment are discussed next.  The significance of
the factor effects in each of the secondary experiments is again analyzed using
MANOVA (within-subject factors) and ANOVA (between-subject factors) models, in
which each of the 50 training samples generated is treated as a “subject.”  The estimated
expected cost of the Bayes rules and the Ri/B ratios for each data condition are presented
in Tables 7 and 8, respectively.

TABLE 9:  DATA CONDITIONS, PAIRWISE SECONDARY EXPERIMENTS

    Factors Fixed in the   Factors Varied in the
Factor Analyzed  Secondary Experiments Secondary Experiments

Data
                                       Condition       SK        RV               DT      TS     OVLP     P    CORR
Data Transformations 5 H  4 ORG S L 3 I

7 H  4 TRF S L 3 I
Training Sample Size 5 H  4 ORG S L 3 I

8 H  4 ORG L L 3 I
Group Overlap 5 H  4 ORG S L 3 I

9 H  4 ORG S H 3 I
Number of Attributes 5 H  4 ORG S L 3 I

 10 H  4 ORG S L  10 I
Correlation Structure 5 H  4 ORG S L 3 I

 11 H  4 ORG S L   3 C

Transformation Effect (DT)
The first secondary experiment considers the effect of a positive square root
transformation of the data (DT) on the relative performance of the classification methods.
The experiment uses a repeated measures design with CM, RC, and DT as within-subject
factors.  The two levels of DT  consist of applying the classification methods to either the
original data (ORG, dc5) or the data after the transformation (TRF, dc7).  Other than the
data transformation, dc5 and 7 are identical (see Table 9).  Thus, in this experiment the
relative performance of dc5 is compared pairwise with that of dc7.
The purpose of this experiment is to evaluate the extent to which the performance of each
method can be improved by transformations that are aimed at reducing the deviations
from normality.  Note that, due to the way in which the attribute distributions were
generated in this study, the transformed attribute variables would be exactly normally
distributed if a logarithmic transformation were used, implying that the assumptions
underlying the parametric methods (LDF, QDF) would be satisfied perfectly.  However,
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the conclusions to be drawn from the results would be biased and less than interesting,
because in practice it is not possible to find transformations that achieve perfect
normality.  Hence the choice in this paper to use the positive square root transformation,
which does not yield exactly normally distributed attributes.
A MANOVA analysis reveals that all main and interaction effects between CM, RC and
DT are significant at the .0001 level.  From Tables 7 and 8, it is seen that the data
transformation tends to reduce the expected cost for all classification methods, except
under some very unfavorable circumstances.  This reduction tends to be the strongest for
the parametric methods (LDF and QDF).  The primary beneficiaries from the data
transformation are the LDF, in the case of similar misclassification costs, and the QDF, in
the case of different classification costs.  For instance, Table 8 shows that, assuming
equal costs (RC=1), the performance of the LDF applied to the original data (RLDF/B=2.5)
ranks fifth, behind the LOL, LGR, NN and L1L (see dc5).  Applied to the data after
transformation (dc7), the LDF performs the best (RLDF/B=1.74), followed closely by the
L0L (RL0L/B=1.78), NN (RNN/B=1.84) and LGR (RLGR/B= 1.85).  If the misclassification
costs differ strongly across groups (RC=0.1 or RC=10), the LDF and NN perform the best
(in this order), regardless of whether the data have been transformed or not.  The QDF
performs poorly when applied to the original data, but its performance improves
dramatically if the data have been transformed.  For instance, when RC=0.1 with the
original data, the Ri/B ratios for the LDF and NN equal 2.39 and 2.65, respectively, while
the QDF (RQDF/B=3.73) is beaten even by the naïve rule ( RNAIV/B =3.70).  After the data
transformation, the LDF and NN are still better (RLDF/B=1.79, RNN/B=2.08), but the QDF is
a close third (RQDF/B=2.27).  These effects are illustrated in Figure 5.

Training Sample Size Effect (TR)
The second secondary experiment considers the effects of the size of the training sample
(TS) and uses a repeated measures design with TS as between-subject factors and CM, RC
as within-subject factors.  The levels of TS reflect a small training sample size TS=S, with
a ratio of the number of training sample observations per group (n) and the number of
attributes (p) of n/p=5 (dc5), and a large training sample size TS=L, with n/p=10 (dc8)
(see Table 9).  Training samples with less than 5p observations per group usually do not
provide enough information to fit useful classification functions.  Training samples with
at least 10p observations per group are typically considered large.
The MANOVA and ANOVA results reveal that all main and interaction effects between
CM, RC and TS are significant at the .0001 level.  As expected, the results in Table 8
show that all methods perform better if TS=L (dc8).  The L1L, L1Q and LGR are
particularly sensitive to the training sample size, whereas the LDF and L0L are affected
the least by the training sample size.  For instance, for RC=1 a reduction of the training
sample size from 30 to 15 observations results in an increase in RLGR/B from 2.03 to 2.19.
The corresponding increases for the LDF and L0L are much smaller, from 2.46 to 2.50
and from 2.06 to 2.10, respectively.  Under the same conditions, RL1L/B increased from
2.06 to 2.36.  The good performance of the L0L with small training samples is
particularly surprising because this result contradicts previous studies (Koehler and
Erenguc 1990; Stam and Jones 1990;), which found this method to be very sensitive to
the training sample size.  One possible explanation for this discrepancy is that, in contrast
with Koehler and Erenguc (1990) and Stam and Jones (1990), the implementation of the
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Figure 5: Transformation Effect (DT)
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b) Different Misclassification Costs (RC = 0.1)
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L0-norm used in this study includes a secondary objective to resolve ties among
alternative classification rules with the same training sample misclassification cost.  The
inclusion of this secondary objective improves the stability of the method, yielding better
accuracy on validation samples, especially if the training samples are small.
While the LGR, L0L and L1L appear to be affected most by the training sample size if
the misclassification costs differ across groups, this is not typically the case for the other
methods, in particular the LDF.  For instance, for RC=10.0, the changes in Ri/B due to
reducing the training sample are from 2.43 to 3.13 (LGR), from 1.99 to 2.06 (LDF), from
2.88 to 3.44 (L0L) and from 2.94 to 4.23 (L1L).  The effects described in this section are
illustrated in Figure 6.

Group Overlap Effect (OVLP)
The next secondary experiment uses a repeated measures design with group overlap
(OVLP) as between-subject factors and CM and RC as within-subject factors to evaluate
the effect of OVLP.  Group overlap, measured by the expected misclassification rate of
the Bayes rule in the case of equal costs, has two levels, OVLP=H  (dc9) and OVLP=L
(dc5), corresponding to an optimal misclassification rate of 31.85 and 6.67 percent,
respectively (see Table 3). These misclassification rates correspond to the optimal
misclassification rates of multivariate normal populations with a common covariance
matrix and a Mahalanobis distance of 1 and 3, respectively. These two cases represent
standard problems that have been used previously in the literature to illustrate “high” and
“low” group overlap (Lachenbruch, Sneeringer and Revo 1973, Konishi and Honda
1990). Dc5 and dc9 are summarized in Table 9.  The transformation parameters and
distributional characteristics for these data conditions are shown in Tables 5 and 6.  The
significance of the factor effects, analyzed using MANOVA and ANOVA models,
reveals that all main and interaction effects between CM, RC and OVLP are significant at
the .0001 level.
Table 8 shows that for all methods, Ri/B is lower for OVLP=H than for OVLP=L,
indicating that the estimated expected cost is closer to the expected cost of the Bayes rule
for OVLP=H.  The difference in performance between the various methods tends to
decrease as the group overlap increases, especially in the case where the misclassification
costs across groups are similar.  For instance, whereas for RC=1 and OVLP=L  the Ri/B

ratios vary between 2.10 (RL0L/B) and 2.81 (RL1Q/B), these ratios are between 1.17 (RLDF/B)
and 1.37 (RL0Q/B) for RC=1 and OVLP=H. Other than this observation, there is no clear
pattern of how the degree of group overlap favors any particular method.  The effect of
OVLP  is illustrated in Figure 7.

Number of Attributes Effect (P)
Another secondary experiment considers the effect of varying the number of attributes P
from 3 (dc5) to 10 (dc10) (see Table 9).  The corresponding transformation parameters
and distributional characteristics are shown in Tables 5 and 6.  The range from 3 to 10
attribute variables is representative of most prior experiments and real life business
applications. The secondary experiment use a repeated measures design with P as
between-subject factors and CM and RC as within-subject factors.  MANOVA and
ANOVA analyses reveal that all main and interaction effects between CM, RC and P are
significant at the .0001 level.
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Figure 6: Training Sample Size Effect (TS)

a) Equal Misclassification Costs (RC = 1.0)

1

1.5

2

2.5

3

3.5

4

R(i/B)

5 10
n / P

LDF

LGR

L0L

L1L

Linear Rules
(SK=H;RV=4;OVLP=L;P=3;CORR=I)

1

1.5

2

2.5

3

R(i/B)

5 10
n / P

QDF

L0Q

L1Q

NN

Non-Linear Rules
(SK=H;RV=4;OVLP=L;P=3;CORR=I)



26
b) Different Misclassification Costs (RC = 10.0)
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Figure 7: Group Overlap Effect (OVLP)
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Figure 8: Number of Attributes Effect (P)

1

1.5

2

2.5

3

3.5

4

R(i/B)

3 10
P

LDF

LGR

L0L

L1L

Linear Rules
(SK=H;RV=4;TS=S;OVLP=L;CORR=I)

1

1.5

2

2.5

3

3.5

4

R(i/B)

3 10
P

QDF

LGQ

L0Q

L1Q

NN

Non-Linear Rules
(SK=H;RV=4;TS=S;OVLP=L;CORR=I)



29

In general, the performance of all of the classification methods is closer to that of the
optimal rule for problems with 3 attributes than for problems with 10 attributes. The
nonlinear methods as well as the L0L tend to perform worse in the case of 10 attributes
than for 3 attributes. This effect is illustrated in Figure 8 for the case of RC=1.
As shown in Figure 8, the L0L has the lowest Ri/B ratio for P=3 (2.10, compared with
2.19 for the LGR), but for P=10 this ratio increases sharply to 2.50 and the L0L is
outperformed by the LGR (RLGR/B = 2.39).  The LDF, with an increase from 2.50 to 2.65,
and the L1L, with an increase from 2.36 to 2.51 also improved in relative terms.  The
nonlinear methods deteriorate considerably for P=10.  For example, RNN/B increases from
2.29 to 3.24 and RQDF/B from 2.70 to 3.43.  This effect appears to be the most pronounced
when the misclassification costs vary widely across groups.

Correlation Structure Effect (CORR)
The effects of the correlation structure is studied next.  Again, the basic data condition
dc5 is modified, in this case by introducing correlation between the attribute variables.
The two levels types of correlation structures (CORR) considered are independent
attributes (I) (dc5) and positively correlated attributes (C) (dc11) (see Table 9).  CORR=I
is included because it is the simplest structure.  It should be remarked that this condition
is by no means common in practice, and in most business and economics problems the
attributes tend to be correlated.  However, it is useful to understand how the classification
methods perform in the simplest case, before attempting to establish general results for
more realistic conditions with complex correlation structures.  The condition CORR=C is
defined as follows.  Two of the three attributes (X1 and X2) are strongly correlated
(ρ12=0.8), and the third attribute (X3) is moderately correlated with the X1 and X2

(ρ13=ρ23=0.4).  Although many other correlation structures could have been selected,
positive correlations are common in business problems.  An exhaustive analysis of how
different correlation structures affect classification performance reaches beyond the scope
and objectives of this study. This experiment uses a repeated measures design with CORR
as between-subject factors and CM and RC as within-subject factors.
The generation of positive correlated attributes is based on the multivariate log-normal
distribution (Johnson and Kotz 1972).  The variables corresponding to the attributes in Gj,
Yj1, Yj2, Yj3, are generated as follows,

11 1 1 11 11Y = b + c Zexp( ),

Y = b + c Z + c Z12 1 1 21 11 1 22 12exp( ), ,

13 1 1 31 11 1 32 12 1 13Y = b + c Z + c Z + c Z33exp( ), , ,

21 2 2 11 21Y = b + c Zexp( ),

Y = b + c Z + c Z22 2 2 21 21 2 22 22exp( ), ,

Y b + c Z + c Z + c Z23 2 2 31 21 2 32 22 2 33 23= exp( ), , ,

where the Zij IIIare independent standard normal random variables and the parameters bj

and ci,jk are selected in order to achieve the desired distributional characteristics.  The
parameters used in this study to generate dc11 are presented in Table 10.
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TABLE 10:  TRANSFORMATION PARAMETERS, SECONDARY
EXPERIMENT WITH CORRELATED ATTRIBUTES

Group j b j c j ,11 c j ,12  c j ,13 c j ,22 c j ,23 c j ,33

                                                                                                                                                   
  1   -1.2087 1.1651 1.0271 0.5500 0.6588 0.1653 0.9466
  2               0.9046        0.6103      0.5051        0.3426        0.2719      0.0835        0.5400        

The MANOVA and ANOVA tests reveal that all main and interaction effects between
CM, RC and CORR were significant at the .0001 level.  Generally, as long as the
misclassification cost ratio is moderate (RC=0.5, 1 or 2), each method tends to
approximate the Bayes rule more closely if the attributes are correlated than if they are
independent.  However, the reverse holds if RC=0.1, i.e., if the misclassification cost of
G2 is ten times higher than that of G1, as shown by the high Ri/B ratios in the left-most
column of Table 8.  The LDF benefits the least with the presence of positive correlations.
For instance, for RC=1 the L0L, LGR and L1L were only slightly better than the LDF in
the condition with independent attributes (dc5) (RL0L/B=2.10, RLGR/B=2.19,
RL1L/B=2.36, RLDF/B=2.50).  However in the condition with correlated attributes
(dc11) the LDF was clearly inferior (RL0L/B=1.65, RLGR/B=1.77, RL1L/B=1.86,
RLDF/B=2.27).  On the other hand, the nonlinear classification methods yield
substantially improved results for dc11.  For example, again comparing the results for dc5
with dc11 in the case of RC=1, introducing positive correlation between the attributes
reduces the Ri/B ratios from 2.70 to 2.14 (QDF) and from 2.29 to 1.87 (NN).  The
correlation effect is illustrated in Figure 9 for RC=1 and RC=0.1.
As seen from Figure 9 and Table 8, in the case of RC=1, the L0L and the LGR gives the
best results for both CORR=I and CORR=C.  Comparing the parametric methods, the
LDF performs better than the QDF for CORR=I, but the reverse is true for CORR=C.
When RC=0.1, the LDF gives the best results for CORR=I, but for CORR=C the NN
method ranks first.  Interestingly, while for RC=0.1 most of the Ri/B ratios increase as a
result of introducing correlation, RQDF/B decreases from 3.73 to 3.27.

CONCLUSIONS

This study reveals that both the ratio of misclassification costs across groups and the
attribute skewness have a clear impact on the relative performance of different
misclassification methods.  If the misclassifications costs differ widely across groups, the
LDF is favored over the other methods considered, notably over logistic regression
methods.  For this data condition, the MP-based methods with objective function weights
proportional to the misclassification costs perform poorly.  An analysis of the group-
specific rates in the simulation experiment reveals that, in the case of unequal costs across
groups, the MP-based methods consistently yield higher misclassification rates for the
group with the higher costs than the optimal rule, and lowest misclassification rates for
the group associated with the lower cost.  This finding suggests that weights that are
larger than proportional to the ratio of misclassification costs may lead to better results
for the MP-based methods.  This issue should be addressed in future studies.
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Figure 9: Correlation Structure Effect (CORR)
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b) Different Misclassification Costs (RC = 0.1)
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If the differences in misclassification costs across groups are not strong, highly skewed
attribute distributions favor logistic regression and certain MP-based methods. Under
these conditions, the logistic regression tends to give the best results if the training
sample is large.  If the training sample is small and the problem has few attributes, the L0-
norm MP-based methods used in this study, with a secondary objective to break ties,
appear to give the best results.  While the use of data transformations to reduce the degree
of skewness can improve the performance of all classification methods, the relative gains
achieved by the LDF and QDF tend to exceed those of the remaining classification
methods, at least for the data conditions analyzed in this study.
In the majority of data conditions analyzed, methods using linear classification rules tend
to yield better results than nonlinear classification methods.  The only data condition
analyzed in this study for which nonlinear methods are clearly found to be superior is
characterized by moderate skewness and high ratios of attribute variances across groups.
This condition is particularly favorable for the QDF and the NN methods.  When the
misclassification costs are similar across groups the QDF is the preferred method.  When
these costs are strongly different the relative performance of the QDF and the NN
depends on whether or not it is possible to achieve important improvements over the
NAIVE rule which assigns all observations to the group with the highest cost.  For
problems where it is difficult to beat the NAIVE rule, the QDF gave the best results.  For
problems where, the NAIVE rule was not competitive, the NN was the best performing
method.
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APPENDIX A:  Accuracy Criteria and Normalization Scheme Used in the MP-
Based Classification Methods

A1.  Methods Based on L1-Norm Criteria
The L1-norm criterion was the first one proposed in the MP literature (Koford and Groner
1966; Smith 1968), as well as among the simplest and most widely used ones.  The L1-
norm distance optimization criterion used in our experiments (L1L, L1Q) is defined as
follows:

Min Z = C1 SG1,i→2|f(b,xi)-c| + C2 SG2,i→1|f(b,xi)-c|,

where SG1,i→2 and SG2,i→1 represent the sum over those observations from G1 that are
assigned to G2, and those from G2 that are assigned to G1, respectively. This criterion
minimizes the sum of absolute differences, for all misclassified observations, between the
classification scores and the threshold value.  The components of this criterion can be
interpreted as heuristic indications of the “extent” by which observations are
misclassified weighted by the appropriate misclassification costs.  In our experiments, the
parameters of the classification function are normalized by the normalization constraint
n2ΣG1[f(b,xi)-c] + n1ΣG2[c-f(b,xi)] = 1, proposed by Glover (1990).  Glover shows that
applying this normalization guarantees that the classification rule is non-trivial and
invariant with respect to linear transformations of the attribute variables.

A2.  Methods Based on the Number of Misclassifications
The implementation of the L0-norm method used in this paper (L0L, L0Q) minimizes Z1,
the total misclassification cost in the training sample as the primary criterion, and
includes Z2 as a secondary criterion to break ties among those rules that yield identical
training sample misclassification costs.  Z1 and Z2 are defined as follows:

Min Z1 = ΣG1,i→2C1 + ΣG2,i→1C2

Min Z2 = C1ΣG1[c-f(b,xi)] + C2ΣG2[f(b,xi)-c]

Z2 is an L1-norm measure that simultaneously minimizes the sum of the absolute
differences between the classification scores and the threshold value for the misclassified
observations and maximizes the absolute differences for the observations that are
correctly classified.  The components of Z2 are weighted by C1 and C2.  The classification
function parameters are normalized by enforcing the following constraints: |bl|≤b0

l,
(l=1,...,t); |c|≤1; |c|=1 or |bl'|=b0

l' for at least one l=l', where the b0
l are appropriately

chosen constants (Liitschwager and Wang 1978).  In this paper, the b0
l were set to the

absolute values of the corresponding coefficients of the LDF (linear rules) or QDF
(quadratic rules), which were first normalized by setting the absolute value of the
threshold value to 1.  Duarte Silva and Stam (forthcoming) remark that computational
considerations play a major role in the choice of secondary criteria and normalization
schemes for methods that minimize a primary criterion based on the number of
misclassifications, and describe an algorithm that computes classification rules that
optimize these primary and secondary criteria for moderate size data sets.  A software
implementation of this algorithm is available upon request from these authors.


