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Abstract

We establish that under mild conditions, testing for the individual sig-

nificance of an impulse indicator in the conditional model, selected on the

basis of prior testing of its significance in the impulse saturated marginal

model does not require bootstrapping critical values. Extensive Monte

Carlo evidence shows that the real size of a joint F test in the conditional

on the block of dummies retained from the marginal is independent of

nominal size used for impulse saturation used in the marginal model. The

findings are shown to hold for a plethora of dynamic models and sample

sizes. Such results are fundamental not only in model selection theory, but

also for the emerging class of automatically computable super exogeneity

tests.

JEL Codes: C52; C22; C15

Keywords: model selection; impulse saturation, super exogeneity; bootstrap-

ping

∗csantos@porto.ucp.pt

1



1 Introduction

Impulse saturation (Hendry, Johansen and Santos, 2007) is a major recent de-

velopment in model selection. It entails the possibility of testing an individual

impulse indicator for each observation in a sample. Groups of indicators are en-

tered in the econometric model in feasible subsets of either halves (T/2), thirds

(T/3) or any other even or uneven sample partition. Subset selection is then

used to retain the relevant indicators from each terminal model into a union

model. The authors derive the asymptotic distribution of the sample mean and

the sample variance in a simple location-scale model with IID observations, after

saturation. Monte Carlo evidence shows that under the null that no indicator is

in the DGP, the average retention rate matches the binomial result αT , showing

no signs of spurious retention. Furthermore, the number of sample splits is also

shown to be irrelevant, under the null, for the number of indicators retained.

Following the seminal work of Hendry et. al. (2008), major extensions have

been developed: Santos and Hendry (2006) and Nielsen and Johansen (2007)

show that the procedure can be extended to certain classes of dynamic models.

Santos (2008) evaluates impulse saturation as a test for multiple breaks with

unknown locations, and concludes that the procedure has good power proper-

ties both against mean and variance shifts. Hendry and Santos (2007) extend

this idea to develop a new class of automatically computable super exogeneity

tests (see, inter alia, Engle, Hendry and Richard (1983) and Engle and Hendry

(1993)).

In the new super exogeneity tests, marginal models are subject to the impulse

saturation break test, and the conditional is augmented with the resulting block

of dummies. The significance of this set of dummies is then tested for in the

conditional model, either by means of a joint F test or by means of index based

tests (see Hendry and Santos (2005) for the theory of indices of indicators).
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The procedure allows the researcher to test for super exogeneity, whilst, at

the same time, it avoids the criticisms of classical Engle-Hendry type of super

exogeneity tests, advocated by Lindé (2001). In particular, Engle-Hendry type

of testing is often reduced to testing in the conditional hand picked dummies

from the marginal. These dummies are selected on the basis of dates of events

of economic relevance. In fact, the new test can be made fully automatic,

precluding any intervention from the researcher, as the included indicators in

the conditional are only those assessed as significant in the marginal, when an

indicator has been tested for every sample observation.

Notwitstanding, the validity of the new super exogeneity test rests upon the

use of correct critical values when testing in the conditional dummies retained

on the basis of prior testing in the marginal. Some authores (see, inter alia,

Christiano (1992) and Hansen (2005)) argue in favour of the need to bootstrap

critical values when testing with variables selected on the basis of prior testing.

In this paper, we establish that for a wide range of dynamic conditional and

marginal models there is in fact no need to use bootstrapped critical values.

Thus, automatically computable super exogeneity tests can easily be built. In

section 2 we show that, under mild requirements for a bivariate VAR, the usual

critical values can be used in this framework. Section 3 provides extensive

Monte Carlo evidence showing a plethora of dynamic models derived from the

bivariate VAR DGP where the key result of the previous section - irrelevance

of conditioning on selection - holds. Section 4 concludes.
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2 A theoretical approach to factorizing and con-

ditioning in dynamic bivariate models

Theorem 1 Consider the sequential, bivariate normal:
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π10

π20




+





π11 π12

π21 π22










yt−1

zt−1




 ,





σ11 σ12

σ12 σ22











(1)

where xt = (yt : zt)
′
, t = 1, ...., T , and hence Xt−1 is the information set con-

taining the history of yt and zt, such that:

Xt−1 = (Yt−1 : Zt−1)
′ (2)

Consider the conditional econometric model:

yt|zt,Xt−1 = β0 + β1yt−1 + β2zt + β3zt−1 + ζt (3)

where ζt ∼ IN [0, σ11.2], with σ11.2 = σ11−σ12σ
−1
22
σ12, and the marginal model

zt|Xt−1 = π20 + π21yt−1 + π22zt−1 + ωt (4)

with ωt ∼ IN [0, σ22]. Let the parameter vector of the conditional be φ1 =

(β0 : β1 : β2 : β3 : σ11.2)
′
and the parameter vector of the marginal be φ2 =

(π20 : π21 : π22 : σ22)
′
. In general, neither strong nor super exogeneity hold.

Assume that |β1| ≤ 1, and |π22| ≤ 1. There are no indicators in the DGP. Con-

sider augmenting the marginal model with an impulse indicator It{1:t=t∗}, which

turns out to be statistically significant and suppose adding such an indicator to

the conditional. Suppose further there are no past shocks either in the history of

ζt or in the history of ωt.
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Under the null of the indicator having a zero coefficient in the conditional,

we claim that size in the conditional is independent from the significance level

used in the marginal, that is:

P

(
|tIt∗ ,conditional | > cα2 |

∣∣∣tI
t∗
,marginal

∣∣∣ > cα1
)
= P

(∣∣∣tI
t∗
,conditional

∣∣∣ > cα2
)

(5)

where α1 is the significance level used in the marginal, α2 is the significance

level used in the conditional and t is the relevant t-ratio. Hence, there is no

need to condition on selection.

Proof. Start by noticing that keeping an impulse indicator in the marginal

means

P (|tIt∗ ,marginal| > cα1) (6)

We shall assume this arises due to a rare draw from the error distribution:

|ωt| > m
∗, where it follows from (4) that ωt is the error in the marginal model.

Define the random variable St,

St|Xt−1 = yt|Xt−1 − σ12σ
−1
22
zt|Xt−1 (7)

Then, the random vector (St|Xt−1 : zt|Xt−1)
′ can be written as





St|Xt−1

zt|Xt−1




 =





1 −σ12σ

−1
22

0 1










yt|Xt−1

zt|Xt−1




 (8)
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where M =





1 −σ12σ

−1
22

0 1




. Given gaussianity of





yt|Xt−1

zt|Xt−1




 due to (1):





St|Xt−1

zt|Xt−1




 ∼ N

[
Mµ,MΣM′

]

where µ is the vector of means in (1), so that

Mµ =





π10 + π11yt−1 + π12zt−1 + σ12σ

−1
22
(π20 − π21yt−1 − π22zt−1)

π20 + π21yt−1 + π22zt−1




 (9)

and

MΣM
′ =





σ11−σ12σ

−1
22
σ12 0

0 σ22




 (10)

It then follows that the marginal for St|Xt−1 is gaussian:

St|Xt−1 ∼ N
[
π10 + π11yt−1 + π12zt−1 + σ12σ

−1
22
(π20 − π21yt−1 − π22zt−1) , σ11.2

]

(11)

which is to say

yt|Xt−1−σ12σ
−1
22
zt|Xt−1 = π10+π11yt−1+π12zt−1+σ12σ

−1
22
(π20 − π21yt−1 − π22zt−1)+ζt

(12)

and given independence of St|Xt−1 and zt, the density of St|zt,Xt−1 is also that

of (12), so

yt|zt,Xt−1−σ12σ
−1
22
zt|Xt−1 = π10+π11yt−1+π12zt−1+σ12σ

−1
22
(π20 − π21yt−1 − π22zt−1)+ζt

(13)

where σ12σ
−1
22
zt|Xt−1 is a constant due to conditioning on zt. So, if (13) is

independent from zt, yt|zt,Xt−1 which only differs from St|Xt−1 by a constant,
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is also independent of zt. Rewriting in the parameters of interest,

yt|zt,Xt−1 = β0 + β1yt−1 + β2zt + β3zt−1 + ζt (14)

where we now know that ζt is independent of ωt in marginal. So, assuming an

impulse will be retained in the conditional if |ζt| > b
∗,

P (|ζt| > b
∗| |ωt| > m

∗) = P (|ζt| > b
∗) (15)

P (|ζt∗ | > b
∗) is therefore necessary for an indicator to be retained in the condi-

tional at time t∗.

3 Monte Carlo evidence

In order to provide simulation evidence in support of the irrelevance of con-

ditioning on selection in some dynamic models, we have conducted a series of

Monte Carlo experiments. Several DGP designs were tried: the next subsection

refers to stationary marginal models. Neither strong not super exogeneity hold

(there is an ADL (1,1) structure both in the marginal and in the conditional,

precluding strong exogeneity; stationarity in both models is not incompatible

with weak exogeneity as was recently shown by Santos (2007) in a clear contra-

diction with the results in Psaradakis and Sola (1996)); subsection 2 assumes

the same conditional model, whilst the marginal was designed to be strongly

exogenous for yt and to have a unit root; subsection 3 differs from the previous

one in that the marginal is stationary, and from the first in that the marginal

is strongly exogenous with respect to yt. In subsection 4, the marginal is still

strongly exogenous for yt but the conditional has a unit root. Finally, in sub-

section 5, a unit root is imposed both in the marginal and in the conditional,
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albeit the marginal still being strongly exogenous for yt. In nearly all scenarios,

experiments were conducted for samples of sizes T = 300, T = 200, T = 100 and

T = 50. M = 10000 replications were conducted for every experiment. α1, the

significance level used for impulse saturation in the marginal model, took values

from the set {0.1; 0.05; 0.025; 0.01}. α2 is the empirical rejection frequency (real

size) in the conditional. For each table, irrelevance of conditioning on selection

exists if, for any given column, there is no systematic change in α2 with the

value chosen for α1. Two words of caution should be placed here:

- the theorem of the previous section refers to t-testing of an individual

indicator retained from the marginal. Here, we allow for the possibility that

several indicators are retained from the marginal, as the marginal has effectively

been impulse saturated in every replication. Hence, a joint F-test on the retained

indicators is used in the conditional (as in Hendry and Santos, 2007). The

automatic super exogeneity test should not conduct an individual significance

test in the conditional for every dummy retained from the marginal: size would

not be kept under control, as the probability of spurious retention would be

(1− α2) ;

- it is well known in the model selection literature (see, e.g., Hendry and

Krolzig, 2001) that nominal and real sizes diverge when stringent nominal sig-

nificance levels are used for small samples. This should be taken into account

when analysing the tables. The rule suggested by Hendry and Krolzig (2001)

is that the significance level should be such that α2T > 3. Therefore, even if

we report a wider variety of results these should be the ones deserving special

attention.
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3.1 Weak exogeneity and stationarity

Consider the DGP:
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(16)

yielding the marginal and conditional models:

zt|Xt−1 = 1.5 + 0.4yt−1 + 0.55zt−1 + εz,t (17)

yt|zt,Xt−1 = 2 + 0.7yt−1 − 0.15zt−1 + 0.5zt + εt (18)

WE holds, since we are interested in the parameters of the vector φ1 = (β0 : β1 : β2 : β3 : σ11.2)
′.

Neither strong nor super exogeneity hold. Tables (1) to (4) report the nominal

significance levels used in the marginal for impulse saturation and the real sig-

nificance levels when F-testing is used in the conditional. The sample split was

defined at T/2 and M = 10000 replications were conducted.

α1\α2 α2 = 0.01 α2 = 0.025 α2 = 0.05 α2 = 0.1
α1 = 0.01 0.01 0.023 0.046 0.093
α1 = 0.025 0.01 0.024 0.049 0.094
α1 = 0.05 0.01 0.025 0.048 0.098
α1 = 0.1 0.01 0.023 0.048 0.099

Table 1: Real significance levels in the conditional with retained dummies from
impulse saturated marginal model: T = 300, marginal and conditional in (17)
and (18)

Clearly, for no sample size does it seem that empirical rejection frequencies

of the null joint hypothesis of none of the selected indicators being significant

in the conditional are being influenced in any systematic way by the choice of

α1. .
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α1\α2 α2 = 0.01 α2 = 0.025 α2 = 0.05 α2 = 0.1
α1 = 0.01 0.01 0.022 0.042 0.081
α1 = 0.025 0.01 0.024 0.048 0.097
α1 = 0.05 0.01 0.023 0.048 0.093
α1 = 0.1 0.01 0.023 0.046 0.093

Table 2: Real significance levels in the conditional with retained dummies from
impulse saturated marginal model: T = 200, marginal and conditional in (17)
and (18)

α1\α2 α2 = 0.01 α2 = 0.025 α2 = 0.05 α2 = 0.1
α1 = 0.01 0.01 0.016 0.039 0.061
α1 = 0.025 0.01 0.023 0.042 0.087
α1 = 0.05 0.01 0.024 0.048 0.098
α1 = 0.1 0.01 0.023 0.049 0.096

Table 3: Real significance levels in the conditional with retained dummies from
impulse saturated marginal model: T = 100, marginal and conditional in (60)
and (61)

3.2 Strong exogeneity and unit roots

For the simulations in this section, we consider the same conditional process as

above. However, the marginal process is now:

zt|Xt−1 = 1.5 + zt−1 + εz,t (19)

Hence, we simultaneously consider the imposition of strong exogeneity and a

unit root in the marginal. Tables (5)-(8) report the results for the same sample

sizes as previously.

The tables reveal that under strong exogeneity, the presence of a unit root in

the marginal does not have a significant impact on real size in the conditional.

Again, this seems to be independent from size in the marginal.
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α1\α2 α2 = 0.01 α2 = 0.025 α2 = 0.05 α2 = 0.1
α1 = 0.01 0.01 0.012 0.023 0.045
α1 = 0.025 0.01 0.018 0.035 0.068
α1 = 0.05 0.01 0.023 0.043 0.086
α1 = 0.1 0.01 0.023 0.045 0.091

Table 4: Real significance levels in the conditional with retained dummies from
impulse saturated marginal model: T = 50, marginal and conditional in (17)
and (18)

α1\α2 α2 = 0.01 α2 = 0.025 α2 = 0.05 α2 = 0.1
α1 = 0.01 0.0096 0.023 0.046 0.0931
α1 = 0.025 0.0112 0.0236 0.0489 0.0943
α1 = 0.05 0.01 0.0248 0.0485 0.098
α1 = 0.1 0.01 0.023 0.045 0.1

Table 5: Real significance levels in the conditional with retained dummies from
impulse saturated marginal model: T = 300, marginal in (19), conditional in
(18) (strong exogeneity and unit root in marginal)

3.3 Strong exogeneity with stationarity in marginal and

conditional

Consider strong exogeneity without imposing a unit root in the marginal. For

the simulations in this section, the DGP will entail the following marginal and

conditional models:

zt|Xt−1 = 1.5 + 0.55zt−1 + εz,t (20)

and

yt|zt,Xt−1 = 1.25 + 0.7yt−1 − 0.15zt−1 + 0.5zt + εt (21)

assuming the same variance-covariance matrix in the bivariate normal. Tables

(9)-(12) report the results on real size in the conditional for the usual sample

sizes.

It is once more clear that real α2 behaves independently of nominal α1.

11



α1\α2 α2 = 0.01 α2 = 0.025 α2 = 0.05 α2 = 0.1
α1 = 0.01 0.0096 0.0225 0.0426 0.0873
α1 = 0.025 0.0097 0.0248 0.0483 0.097
α1 = 0.05 0.0096 0.0245 0.0488 0.096
α1 = 0.1 0.0104 0.0242 0.048 0.091

Table 6: Real significance levels in the conditional with retained dummies from
impulse saturated marginal model: T = 200, marginal in (19), conditional in
(18) (strong exogeneity and unit root in marginal)

α1\α2 α2 = 0.01 α2 = 0.025 α2 = 0.05 α2 = 0.1
α1 = 0.01 0.0064 0.0161 0.032 0.064
α1 = 0.025 0.0099 0.023 0.045 0.091
α1 = 0.05 0.0111 0.024 0.051 0.098
α1 = 0.1 0.0097 0.0263 0.049 0.096

Table 7: Real significance levels in the conditional with retained dummies from
impulse saturated marginal model: T = 100, marginal in (19), conditional in
(18) (strong exogeneity and unit root in marginal)

3.4 Strong exogeneity with stationarity in the marginal

and a unit root in the conditional

For the pilot simulations in this section, the DGP will entail the following mar-

ginal and conditional models:

zt|Xt−1 = 1.5 + 0.55zt−1 + εz,t (22)

and

yt|zt,Xt−1 = 1.25 + yt−1 − 0.15zt−1 + 0.5zt + εt (23)

and the same variance-covariance matrix as in the bivariate normal. Table

(13) reports the results on real size in the conditional, in a pilot Monte Carlo

experiment for T = 200. From table (13), we conclude that conditioning on

selection is irrelevant for the models considered here as well.
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α1\α2 α2 = 0.01 α2 = 0.025 α2 = 0.05 α2 = 0.1
α1 = 0.01 0.0064 0.0147 0.027 0.048
α1 = 0.025 0.0083 0.02 0.037 0.072
α1 = 0.05 0.0082 0.022 0.043 0.088
α1 = 0.1 0.0098 0.0214 0.044 0.086

Table 8: Real significance levels in the conditional with retained dummies from
impulse saturated marginal model: T = 50, marginal in (19), conditional in
(18) (strong exogeneity and unit root in marginal)

α1\α2 α2 = 0.01 α2 = 0.025 α2 = 0.05 α2 = 0.1
α1 = 0.01 0.0103 0.0238 0.0468 0.0952
α1 = 0.025 0.0096 0.0254 0.0462 0.0892
α1 = 0.05 0.0099 0.023 0.0475 0.0981
α1 = 0.1 0.0106 0.0248 0.048 0.0984

Table 9: Real significance levels in the conditional with retained dummies from
impulse saturated marginal model: T = 300, marginal and conditional in (20)
and (21) (strong exogeneity with stationarity)

3.5 Strong exogeneity with a unit root in marginal and

another in conditional

For the simulations in this section, the DGP will entail the following conditional

and marginal models:

zt|Xt−1 = 1.5 + zt−1 + εz,t (24)

and

yt|zt,Xt−1 = 1.25 + yt−1 − 0.15zt−1 + 0.5zt + εt (25)

and the same variance-covariance matrix as in the bivariate normal. Table

(14) reports the results on real size in the conditional, in a pilot Monte Carlo

experiment for T = 200. The same conclusion as to irrelevance of conditioning

applies.
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α1\α2 α2 = 0.01 α2 = 0.025 α2 = 0.05 α2 = 0.1
α1 = 0.01 0.008 0.02 0.042 0.09
α1 = 0.025 0.011 0.026 0.048 0.096
α1 = 0.05 0.0093 0.024 0.047 0.099
α1 = 0.1 0.0098 0.025 0.047 0.096

Table 10: Real significance levels in the conditional with retained dummies from
impulse saturated marginal model: T = 200, marginal and conditional in (20)
and (21) (strong exogeneity with stationarity)

α1\α2 α2 = 0.01 α2 = 0.025 α2 = 0.05 α2 = 0.1
α1 = 0.01 0.007 0.0165 0.034 0.071
α1 = 0.025 0.0097 0.0235 0.046 0.095
α1 = 0.05 0.011 0.025 0.05 0.104
α1 = 0.1 0.011 0.028 0.052 0.103

Table 11: Real significance levels in the conditional with retained dummies from
impulse saturated marginal model: T = 100, marginal and conditional in (20)
and (21) (strong exogeneity with stationarity)

4 Conclusion

In this paper we have established that two-stage super exogeneity tests where

indicators in the conditional model are tested for after prior selection in the

marginal can be conducted without the need for bootstrapped critical values.

Monte Carlo results extend the baseline result to wider classes of models: in-

cluding non stationary ones.
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