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Abstract

We develop a new automatically-computable test for super exogene-
ity, using a variant of general-to-specific modelling. Based on the recent
developments in impulse saturation applied to marginal models under the
null that no impulses matter, we select the significant impulses for testing
in the conditional. The approximate analytical non-centrality of the test
is derived for a failure of invariance and for a failure of weak exogeneity
when there is a shift in the marginal model. Monte Carlo simulations
confirm the nominal significance levels under the null, and power against
the two alternatives.

Keywords: super exogeneity; general-to-specific; test power; indicators; co-
breaking
JEL classifications: C51; C22

1 Introduction

In all areas of policy which involve regime shifts or structural breaks in con-
ditioning variables, superexogeneity of the parameters of conditional models
under changes in the distributions of conditioning variables is of paramount im-
portance. In models without contemporaneous conditioning variables, such as
vector autoregressions, invariance under such shifts is equally relevant. Tests
for superexogeneity have been proposed by Engle, Hendry and Richard (1983),
Hendry (1988), Favero (1989), Favero and Hendry (1992), Engle and Hendry
(1993), Psaradakis and Sola (1996), Jansen and Teräsvirta (1996) and Krolzig
and Toro (2002), inter alia. Ericsson and Irons (1994) overview the literature at
the time of publication. Stanley (2000) provides a more recent survey. Favero
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and Hendry (1992), building on Hendry (1988), considered the impact of non-
constant marginal processes on conditional models, and concluded that location
shifts were essential for detecting violations attributable to the Lucas (1976) cri-
tique. Engle and Hendry (1993) examined the impact on a conditional model of
changes in the moments of the conditioning variables, using a linear approxima-
tion: tests for superexogeneity were constructed by replacing the unobservable
changing moments by proxies based on models of the process generating the
conditioning variables, including models based on ARCH processes (see Engle,
1982), thereby allowing for non-constant error variances to capture changes in
regimes. However, Psaradakis and Sola (1996) claim that such tests have rela-
tively low power for rejecting the Lucas (1976) critique. Jansen and Teräsvirta
(1996) propose self-exciting threshold models for testing constancy in the con-
ditional model as well as superexogeneity. Krolzig and Toro (2002) developed
superexogeneity tests based on a reduced-rank technique for co-breaking shown
by the presence of common deterministic shifts, and demonstrated that their
proposal dominated existing tests (on co-breaking, see Clements and Hendry
(1999) and Hendry and Massman (2005)). We suggest new additions to this set
of possible tests, show that their rejection frequencies under the null are close to
their nominal significance levels, and examine their power properties for failures
of weak exogeneity (WE) and invariance.

The ability to detect outliers and shifts in a model using the dummy satura-
tion technique (see Hendry, Johansen and Santos, 2005) opens the door to this
new class of automatically computable superexogeneity and invariance tests.
The marginal model (or system) is saturated with impulse indicators (entering
an indicator for every observation in feasible subsets: e.g. dummy saturating
the first half of the sample and storing the significant indicators; then checking
the other half) and all significant outcomes are retained. The authors derive
the probability of falsely retaining impulses for a location-scale IID process, and
obtain the distribution of the estimated mean and variance under saturation.
We extend that idea to test the relevance in the conditional model of all the
retained impulses from the marginal models. As we show below, such a test has
the correct size under the null of superexogeneity of the conditioning variables
for the parameters of the conditional model over a range of significance levels
of the marginal model saturation tests. Moreover, it has good power to detect
failures of superexogeneity. Finally, it can be computed automatically — that is
without explicit user intervention, as occurs with (say) residual autocorrelation
tests — once the desired nominal significance of the marginal saturation and
conditional superexogeneity tests have been specified.

Five conditions should be satisfied for an automatic superexogeneity test.
First the test should not require ex-ante knowledge by the investigator of the
timing, signs and magnitudes of any breaks in the marginal processes for the
conditioning variables. The test proposed here uses impulse saturation of the
marginal equations to determine these aspects. Secondly, the correct data gen-
eration process for the marginal variables should not need to be known for the
test to have the desired rejection frequency under the null. That condition is sat-
isfied here when there are no unit roots (stochastic trends) in any variables: we
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will investigate the generalization of the approach to unit root non-stationarity
in due course. Thirdly, the conditional model, should not need to be over-
identified under the alternative of a failure of superexogeneity, as required for
tests in the class proposed (say) by Revankar and Hartley (1973). Fourthly,
the test must have power against any form of failure of superexogeneity or in-
variance in the conditional model when there are location shifts in some of the
marginal processes. Below we establish the general form of the non-centrality
parameters of the proposed tests in the two main cases. Finally, the test should
be computed without additional user intervention. That is true for the impulse
saturation test based on PcGets, although as yet the precise form of the test
procedure is not yet implemented in any released version.1

The structure of the paper is as follows. Section 2 considers superexogeneity
in a regression context to elucidate the testable hypotheses which it entails.
Next, section 3 discusses three different ways in which superexogeneity can fail.
Section 4 describes the impulse saturation tests (see Hendry et. al. 2005) and
how these can be extended to test superexogeneity. Section 5 provides Monte
Carlo evidence on the null rejection frequency (NRF) of the proposed procedure.
Then, section 6 provides detailed analytic derivations for three multivariate
examples of superexogeneity failures, namely a failure of weak exogeneity under
non-constant marginal processes; a failure of invariance of the conditional model
parameters to shifts in those of the marginal distributions; and a failure of WE
with constant marginal processes, which is a case where the proposed tests may
have little power. Section 7 investigates the powers of the proposed tests in an
extensive set of Monte Carlo experiments related to the analysis in section 6 for
a bivariate DGP. Section 8 concludes.

2 Superexogeneity in a regression context

Consider the sequentially factorized joint DGP of an n-dimensional vector process
{xt}:

T∏

t=1

Dx (xt | Xt−1,θ) =
T∏

t=1

Dy|z (yt | zt,Xt−1,φ1)Dz (zt | Xt−1,φ2) (1)

where x′t = (y
′
t : z

′
t) and φ =

(
φ′1 : φ

′
2

)′
= f (θ) ∈ Rk. The parameters of the y

and z processes need to be variation-free for zt to be weakly exogenous for the
parameters of interest ψ = h (φ1), but that does not rule out the possibility
that φ1 may change if φ2 is changed. Superexogeneity augments WE with such
parameter invariance in the conditional model.

When Dx (·) is the multivariate normal, we can express (1) as the uncondi-
tional model:

(
yt
zt

)
∼ Nn

[(
µ1,t
µ2,t

)
,

(
σ11,t σ′12,t
σ12,t Σ22,t

)]
(2)

1PcGets is an Ox Package (see Doornik, 2001, and Hendry and Krolzig, 1999) designed for
general-to-specific automatic model selection.
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where µ1,t and µ2,t are possibly functions of Xt−1. To define the parameters of
interest, we let the economic theory formulation entail:

µ1,t = µ0 + β
′µ2,t (3)

where β is the primary parameter of interest. The Lucas (1976) critique explic-
itly considers a model where expectations (the latent decision variables given
by the µ2,t) are incorrectly modelled by the outcomes zt. From (2) and (3):

E [yt | zt] = µ1,t + σ
′
12,tΣ

−1
22,t

(
zt −µ2,t

)

= µ0 +
(
β′ − σ′12,tΣ−122,t

)
µ2,t + σ

′
12,tΣ

−1
22,tzt

= µ0 + γ1,t + γ
′
2,tzt (4)

where γ′2,t = σ
′
12,tΣ

−1
22,t and γ1,t =

(
β − γ2,t

)′
µ2,t. The conditional variance is

ω2t = σ11,t−σ′12,tΣ−122,tσ21,t. Thus, the vectors of parameters of the conditional
and marginal densities respectively are

φ1,t =
(
µ0 : γ1,t : γ2,t : ω

2
t

)
and φ2,t =

(
µ2,t : Σ22,t

)

When (4) is specified as the regression model for t = 1, . . . , T :

yt = µ0 + β
′zt + εt where εt ∼ IN

[
0, ω2

]
(5)

four conditions must be satisfied for zt to be super exogenous for
(
β, ω2

)
(see,

e.g., Engle and Hendry (1993)):

(a) γ2,t = γ2 is constant ∀t;

(b) β = γ2;

(c) ω2t = ω2 is constant ∀t;

(d) φ1,t is invariant to Cφ2 .

Condition (a) requires that σ′12,tΣ
−1
22,t is constant over time, which could

occur because the two components move in tandem through being connected
by σ′12,t = γ

′
2Σ22,t, as well as because the σij happened not to change over the

sample. Condition (b) then entails that zt is weakly exogenous for a constant β.
Together, (a)+(b) also entail that γ1,t = 0 and hence the conditional expectation
in (4) is independent of µ2,t. Condition (c) then entails in turn that σ11,t −
σ′12,tΣ

−1
22,tσ21,t = σ11,t−β′Σ−122,tβ = ω2 is constant. Finally, in (d), Cφ2 is a class

of interventions changing the marginal process parameters φ2, so (d) requires
no cross-links between the conditional and marginal parameters. When the four
conditions (a)—(d) are satisfied, then:

E [yt | zt] = µ0 + β
′
zt (6)
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in which case zt is super exogenous for β in this model. That requires in turn:

σ′12,t = β
′Σ22,t ∀t. (7)

The necessary condition (7) requires that the means in (3) are interrelated by
the same parameter β as the covariances σ12,t are with the variances Σ22,t.
Under superexogeneity, the joint density is

(
yt
zt

)
∼ Nn

[(
µ0 + β

′µ2,t
µ2,t

)
,

(
ω2 + β′Σ22,tβ β′Σ22,t

Σ22,tβ Σ22,t

)]
(8)

so the conditional-marginal factorization is
(

yt | zt
zt

)
∼ INn

[(
µ0 + β

′zt
µ2,t

)
,

(
ω2 0′

0 Σ22,t

)]
(9)

Consequently, under superexogeneity, the parameters (µ2,t,Σ22,t) can change
in the marginal model:

zt ∼ INn−1
[
µ2,t,Σ22,t

]
(10)

without altering the parameters of (5). Deterministic shift co-breaking will
occur in (8) as

(
1 : β′

)
xt does not depend on µ2,t. Conversely, if zt is not super

exogenous for β, then changes in (10) should affect (5).

3 Failures of superexogeneity

Superexogeneity may fail for any of three reasons:

(i) zt is not weakly exogenous for β, in which case the coefficient in a regres-
sion of yt on zt will not coincide with β;

(ii) the regression coefficient is not constant;

(iii) β is not invariant to changes in Cφ2 .
From (4), when zt is not super exogenous for β but (3) holds:

E [yt | zt] = µ1,t + σ
′
12,tΣ

−1
22,t

(
zt −µ2,t

)

= µ0 + β
′zt +

(
γ′2,t − β′

) (
zt −µ2,t

)

= µ0 + β
′zt +

(
γ′2,t − β′

)
v2,t (11)

where v2,t is the error on the marginal model (10):

zt = µ2,t + v2,t where v2,t ∼ INn−1
[
0,Σ22,t

]

If µ2,t were to be modelled by lagged values of xt, an approach that won’t be
pursued here, the sequential factorization would yield the augmented VAR:

zt = π0 +
s∑

j=1

Πjxt−j + v2,t where v2,t ∼ INn−1
[
0,Σ22,t

]
(12)

The introduction alluded to the currently available tests for superexogeneity.
The next section proposes new tests for superexogeneity based on impulse satu-
ration, after briefly reviewing this procedure as applied to the marginal process.
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4 Impulse saturation tests

A key recent development is that of testing for non-constancy by adding a com-
plete set of impulse indicators

{
1{t}, t = 1, . . . , T

}
to a marginal model (see

Hendry et al. 2005). This procedure can be applied to the marginal models for
the putative super exogenous conditioning variables. First, the associated sig-
nificant dummies in the marginal processes are recorded. Secondly, those which
are retained are tested as an added variable set in the conditional model. Specif-
ically, after the first stage when m impulse indicators are retained, a marginal
model like (12) has been extended to:

zt = π0 +
s∑

j=1

Πjxt−j +
m∑

i=1

ρi,(α1)1{t=ti} + v
∗
2,t (13)

where the coefficients of the significant impulses are denoted ρi,(α1) to emphasize
their dependence on the significance level α1 used in the marginal model. As
just noted, this test has the appropriate null rejection frequency.

The second stage is to add them retained impulses to the conditional model,
yielding

yt = µ0 + β
′zt +

m∑

i=1

τ i,(α2)1{t=ti} + εt (14)

and conduct an F-test for the significance of
(
τ1,(α2), .., τm,(α2)

)
at level α2.

Under the null of superexogeneity, the F-test of the joint significance of the m
impulse indicators in the conditional model should have an approximate F distri-
bution and thereby allow an appropriately sized test: section 5 presents Monte
Carlo evidence confirming this. Under the alternative, the test will have power
in a variety of situations discussed in section 6. Crucially, such a test can be
completely automated, bringing superexogeneity into the purview of hypotheses
about a model that can be as easily tested as (say) residual autocorrelation.

A key feature of such a test is that the null rejection frequency of super-
exogeneity by this F-test in the conditional model should not depend on the
significance level, α1, set for each individual test in the marginal model. Monte
Carlo evidence presented in section 5.1 supports that contention. Thus, the
main consideration for choosing α1 is power against reasonable alternatives to
superexogeneity. Too large a value of α1 will lead to an F-test with large de-
grees of freedom; too small will lead to few, or even no, impulses being retained
from the marginal models. For example, with four regressors and T = 100
then α1 = 0.01 would yield four impulses in general, whereas α1 = 0.05 would
provide 20.

From Hendry and Santos (2005), a variant of the test in (14), discussed
in more detail below, which could have different power characteristics, is to
combine the m impulses detected in all the equations of (13) into an index:

ι1,t =
m∑

i=1

�̂i,(α1)1{t=ti} where �̂i,(α1) =
n−1∑

j=1

ρ̂j,i,(α1) (15)
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so,

ι1,t =
m∑

i=1

n−1∑

j=1

ρ̂j,i,(α1)1{t=ti} (16)

From (16), ι1,t is the linear combination, at time t, of the estimated coefficients
from the retained indicators in each of the n− 1 marginal models.

Hence, the index test of superexogeneity is the test of the null ϕ1 = 0 in:

yt = µ0 + β
′zt + ϕ1,(α2)ι1,t + εt (17)

This provides an alternative scalar test, which should be approximately t-
distributed under the null of superexogeneity. Also, for testing a failure of
invariance, the indices must be interacted with zt as in:

ι2,t =
m∑

i=1

n−1∑

j=1

ρ̂j,i,(α1)zj,t1{t=ti} (18)

and then test for the null of ϕ1 = ϕ2 = 0 in:

yt = µ0 + β
′zt + ϕ1,(α2)ι1,t + ϕ2,(α2)ι2,t + εt (19)

By focusing on the empirically detected departures in the marginal process,
such tests should have power under the alternative: below, we derive their
large-sample non-centralities in three cases.

Alternatively, if some interest resides in which of the zj,t is responsible for
any failure of superexogeneity, then a vector test of the form in (20) could be
used, which might have more or fewer degrees of freedom than the corresponding
F-test in (14):

ι2,t =




ι2,1,t
ι2,2,t
...

ι2,n−1,t


 where ι2,j,t =

mj∑

i=1

ρ̂j,i,(α1)zj,t1{t=ti} (20)

with mj being the number of retained impulses in the marginal model for zj,t.

5 The null rejection frequency of the superexo-

geneity test

In these Monte Carlo experiments superexogeneity holds as the null and we
consider three settings for the marginal process: where there are no breaks in
5.1; a variance change in 5.2; and a mean shift in 5.3. In each case, the baseline
DGP is a bivariate system which can be expressed as (see, e.g., Hendry, (1995)):

(
yt
zt

)
∼ N2

[(
2
1

)
,

(
21 10
10 5

)]
(21)
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which in turn implies β = 2 = γ and ω2 = 1, the parameters of interest in the
conditional econometric model.

The aim of the Monte Carlo experiments is to establish the null rejection fre-
quencies of the extended superexogeneity tests, and ascertain their dependence,
if any, on the nominal significance level for impulse retention in the marginal
process. Thus, impulse saturation of the marginal model and retention of the
relevant indicators should not require us to change the critical values used to test
such indicators in the conditional model. If so, pre-searching for the relevant
dates at which shifts might have occurred in the marginal, does not affect testing
for associated shifts in the conditional. From bivariate normal theory we expect
this to be the outcome, since the errors in the conditional are independent from
those in the marginal.

We consider a constant DGP and two DGPs with changes in the zt process,
all under the null of superexogeneity, where invariance and WE hold before
and after the change in the marginal process. We examine several significance
levels for testing and retaining impulses in the saturated location-scale model
for the marginal, and also allow the significance levels for testing in the condi-
tional to vary. The impulse saturation uses a partition of T/2 with M = 10000
replications conducted in the Monte Carlo experiments.

5.1 Constant marginal under the null of superexogeneity

We use the simple marginal model, defined by:

zt = 1 + vt (22)

where vt ∼ IN [0, 5]. This econometric model mimics the location-scale model
analysis in Hendry et al. (2005). As a sample split of T/2 is used, the econo-
metric models for the marginal are

zt = µ2 +

T/2∑

t=1

ψt1t + ςt (23)

and

zt = µ2 +
T∑

t=T/2+1

ψt1t + ξt (24)

Let Sα1 denote the set of significant dummies in the econometric models (23)
and (24). Hence, the second stage of the extended test is to estimate

yt = βzt +
∑

i∈Sα1

φi1ti + νt (25)

and to test the joint significance of the dummies defined by Sα1 in the conditional
model. Averaging across the M replications, we obtain the average relative
frequency with which a block of indicators included in (25), due to belonging to
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Figure 1: Null rejection frequencies in conditional when α1 varies for a constant
marginal

Sα1 , is retained in the conditional. Given that we have imposed superexogeneity
by design, we expect such a null rejection frequency to be close to the postulated
nominal significance level. This would constitute evidence that no distortion in
selection of indicators was introduced by dummy saturation in the marginal
model followed by testing for joint significance of the retained dummies of the
marginal in the conditional.

However, the marginal tests should not use too low a probability of retaining
impulses, or else the conditional must automatically have a zero null rejection
frequency. At T = 50 and α1 = 0.01, about one impulse per two trials will
be retained, so half the time no impulses will be retained; on the other half
of the trials, about α2 will be retained, so roughly 0.5α2 will be found over-
all, as simulation confirms (unconditional rejection frequencies were recorded
throughout).

Figure 1 reports the empirical rejection frequencies of the null in the condi-
tional model when the significant dummies from the marginal are added as in
(25). As before, α1 represents the nominal significance level used for the t-tests
on each individual indicator in the marginal model (horizontal axis), and α2
represents the significance level for the F and t-tests on the retained dummies
in the conditional (vertical axis).

The simulated null rejection frequencies and the nominal significance levels
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in the conditional model are close for the F and t-tests so long as T × α1 > 3
(see Hendry and Krolzig, 2001). Then, there is no distortion in the number of
retained dummies for either test in the conditional under the null, when t-tests
are used in the marginal model. However, constant marginal processes are the
‘worst-case’: the next two sections consider mean and variance changes where
many outliers are retained, so there are fewer cases of zero impulses to enter in
the conditional leading to a more constant real α2.

5.2 Changes in the variance of zt under the null of super-

exogeneity

The DGP for t > T1 = 0.8T is given by:
(

yt
zt

)
∼ N2

[(
2
1

)
,

(
1 + 20θ 10θ
10θ 5θ

)]
(26)

so σ22,t is multiplied by a positive scalar θ, where σ12,t adjusts accordingly.
Then, the new γ∗2,t is such that:

γ∗2,t =
σ∗12,t
σ∗22,t

=
10θ

5θ
= γ2,t = 2 = β (27)

Hence, the change in φ2,t induced by a change in σ22,t does not cause a change

in γ2,t. Also, γ1,t =
(
β − γ2,t

)
µ2,t = 0. Thus, in this class of DGPs, φ1,t is

invariant to changes in φ2,t induced by changes in σ22,t. Since weak exogeneity
and invariance hold, superexogeneity holds, so the null distributions of the tests
should remain as in subsection 5.1.

Figure 2 reports the empirical rejection frequencies of the null in the condi-
tional model when testing the significant dummies from the marginal. Again, α2
represents the significance level for the F and t-tests on the retained dummies in
the conditional (vertical axis), and the horizontal axis corresponds to the three
values of θ, for α1 = 0.025, throughout. In particular, θ ∈ {2; 5; 10}.

Both the F and t-tests have appropriate null rejection frequencies, even when
the variance of the marginal process changes markedly. Neither test is confused
between variance changes in the marginal and failure of superexogeneity, when
the null holds.

5.3 Changes in the mean of zt under the null of superex-

ogeneity

We modify the baseline DGP (21) to:

(
yt
zt

)
∼ N2

[(
βδµz
δµz

)
,

(
21 10
10 5

)]
(28)

where δ = 1 until t > T1 = 0.8T , in both cases with β = 2. Superexogeneity
holds before and after the level shift. We assume that the variance-covariance
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Figure 2: Null rejection frequencies of F and t-tests in conditional for a variance
shift in the marginal

matrix remains the same before and after the shift, but it could be allowed to
change as well, provided the values matched conditions for superexogeneity.

We consider rather extreme cases of level shifts where the current uncondi-
tional mean of zt is multiplied by factors of δ = 2, δ = 10 up to δ = 100. Figure
3 reports the empirical rejection frequencies where the horizontal axis corre-
sponds to values of δ, again for α1 = 0.025 throughout. For large shifts, when

T > 100 the empirical rejection frequencies are never more than two tenths of
a percentage point away from the nominal significance levels postulated. Both
tests do well for all larger sample sizes in failing to spuriously reject the null of
superexogeneity when the null is true, but are slightly undersized at T = 50 for
small shifts, when sometimes no impulses may be retained.

Overall, we conclude that the new tests have appropriate null rejection fre-
quencies for both constant and changing marginal processes, so we turn to their
ability to detect failures of superexogeneity. This is a two-stage process: first
detect shifts in the marginal, then use those to detect shifts in the conditional.
The power properties of impulse saturation in the first stage will matter but
should be referred to Hendry and Santos (2006).

11



Figure 3: Null rejection frequencies of F and t-tests in the coditional when there
is a mean shift in the marginal

6 Three superexogeneity failures

In this section,2 we derive explicit outcomes for three forms of superexogene-
ity failure, namely weak exogeneity failure when the marginal process is non-
constant in section 6.1; invariance failure in section 6.2; and weak exogeneity
failure when the marginal process is constant in section 6.3. In each case, we ob-
tain the non-centralities and approximate powers of the tests for a known break,
then modify these in light of the stage 1 pre-test for indicators (see Hendry and
Santos, 2006, for this analysis).

2Throughout this section we shall often use the approximation E

[
β̂
]

�

[E (X′X)]−1 E (X′Y). The appendix to this chapter derives the power series expansion
that allows for this approximation. This appendix is based on control variate theory (see,
inter alia, Hendry (1973, 1984) and Hendry and Harrison (1974)).
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6.1 Weak exogeneity failure under non-constancy

Consider the normally-distributed n× 1 vector random variable xt = (yt : z
′
t)
′

where the conditional expectation of yt is

E [yt | zt] = µ1,t + σ
′
12Σ

−1
22

(
zt −µ2,t

)
= µ1,t + γ

′
(
zt −µ2,t

)
(29)

with conditional variance

E
[
(yt − E [yt|zt])2 | zt

]
=
(
σ11 − σ′12Σ−122 σ12

)

where the parameter of interest is β in the theoretical model (ignoring intercepts
for simplicity of exposition):

µ1,t = β
′µ2,t (30)

Then,
yt = β

′zt + (γ − β)′
(
zt −µ2,t

)
+ εt (31)

where εt = yt − E[yt|zt] given (30), so E[εt|zt] = 0. Such a model is a possible
example of the Lucas (1976) critique where the agents’ behavioural rule depends
on E[zt] as in (30), whereas the econometric equation uses zt, leading to (31).

The joint distribution of xt is

(
yt
zt

)
∼ Nn

[(
β′µ2,t
µ2,t

)
,

(
σ11 σ′12
σ12 Σ22

)]
(32)

To complete the model, we postulate an explicit breaking process for {zt}
which will induce a violation in super, as well as weak exogeneity through γ �= β,
where γ = Σ−122 σ12, namely

zt = λ1{t>T1} + v2,t (33)

so E [zt] = λ1{t>T1} = µ2,t. In general, there could be breaks in the different
marginal processes at different times, but little additional insight is gleaned
over the one-off break in (33) which may affect one or more zts. The relevant
moments of the joint process are

E [zt] = λ1{t>T1}

E [yt] = β
′E [zt] = β

′λ1{t>T1}

E [ztz
′
t] = E

[(
λ1{t>T1} + v2,t

) (
λ1{t>T1} + v2,t

)′]
= λλ′1{t>T1} +Σ22

E [ztyt] = E
[(
λ1{t>T1} + v2,t

) (
β′λ1{t>T1} + v1,t

)]
= λ

(
β′λ

)
1{t>T1} +Σ22γ

If the break is not handled, the fitted model is the regression

yt = κ0 + κ
′
1zt + ut (34)
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where E[ztut] = 0. Then, in (34), letting (T − T1) /T = r:

E

[(
κ̂0
κ̂1

)]
�
[
T∑

t=1

(
1 E [zt]

′

E [zt] E [ztz
′
t]

)]−1 [ T∑

t=1

(
E [yt]
E [ztyt]

)]

=

(
1 rλ′

rλ rλλ′ +Σ22

)−1(
rβ′λ

rλ
(
β′λ

)
+Σ22γ

)

=

(
0
β

)
−
(
−rλ′

I

)
dr

where
dr =H

−1
r Σ22 (β − γ) (35)

and H−1
r is the inverse of the determinant. Consequently,

yt = κ0+κ
′
1zt+ut = rλ′dr+(β − dr)′ zt+ut = β

′zt−d′r (zt − rλ)+ut (36)

showing that the coefficients are a function of the proportion r of the sample
affected by the shift in the marginal process. Recursive estimation and testing
for constancy could reveal that problem, but here we consider the extent to
which adding the impulse indicators from the marginal process will also do so.

Adding the impulse dummies to the marginal model at best would yield

zt =
T∑

i=T1+1

ρ̂i,(α1)1{t=ti} + v
∗
2,t

for ti = T1 + 1, . . . , T where

ρ̂i,(α1) = λ+ v2,ti (37)

with
v∗2,t = 0 ∀t > T1

noting that

1{t>T1} =
T∑

i=T1+1

1{t=ti}

Potentially, some irrelevant impulses may be retained and some relevant ones
omitted, both of which could lower the power derived below. However, when a
break occurs, few non-break impulses are retained, although for small values of
λ some of the ρ̂i,(α1) may be omitted.

Recording which impulses matter, and adding these to (34) given (39), yields
the full-sample regression (considering first the case where all relevant impulses
were detected in the marginal model):

yt = τ0 + τ
′
1zt +

T∑

i=T1+1

δi,(α2)1{t=ti} + et (38)
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To see whether such a regression will have any power to detect failures of super-
exogeneity, consider the ‘instantaneous’ relation given by:

E [yt | zt] = ς0,t + ς
′
1,tzt

so that
yt = ς0,t + ς

′
1,tzt + et (39)

where E [et] = 0 and E [ztet] = 0 implying

E

[(
ς0,t
ς1,t

)]
�
(

1 λ′1{t>T1}
λ1{t>T1} λλ′1{t>T1} +Σ22

)−1(
β′λ1{t>T1}

λ
(
β′λ

)
1{t>T1} +Σ22γ

)

=

(
λ′ (β − γ) 1{t>T1}

γ

)

This suggests the model:

yt = γ
′zt + λ

′ (β − γ) 1{t>T1} + et (40)

matching (36), so that adding all the indicators selected from the marginal
model should substantively improve the fit when β �= γ. Indeed, (40) coincides
with the DGP here, so {et} is an innovation process.

The power of the F-test of

H0: δi,α2 = 0 ∀i,

in (38) by an FT−T1T−T1−2
depends on the strength of the superexogeneity violation,

|β − γ|, the magnitudes of the breaks, λ, the sample size T , the relative number
of periods affected by the break, and on α2.

Before deriving that power, we noted above that test power could potentially
be increased by forming indices of the impulses found in the marginal model (see
Hendry and Santos, 2005). Thus, instead of adding the T−T1 individual 1{t=ti},
one could add the composite variables ι1,t and ι2,t as in (15). This always results
in an automatically computed test as

yt = τ0 + τ
′zt + τ2,(α2)ι1,t + τ3,(α2)ι2,t + et (41)

6.1.1 Asymptotic power of the index test

A case where theoretical analysis is feasible is when 1{t>T1} is known, and the
test only depends on the index 1{t>T1}. In this specific case, the index-based test
is equivalent to a Chow (1960) test for a known break point (see Salkever, 1976),
but that equivalence will not hold in general for (say) intermittent changes.
Then, the index-based test is of the null, H0: τ2 = 0 in

yt = τ
′
1zt + τ2,(α2)1{t>T1} + ut (42)

where the DGP is (40) written as

yt = γ
′zt + (β − γ)′ λ1{t>T1} + et (43)
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Since (43) is correctly specified, γ and (β − γ)′ λ are consistently estimated
with

V

[(
̂λ′ (β − γ)
γ̂

)]
� σ2e

(
T∑

t=1

ι21,t E [z′tι1,t]
E [ztι1,t] E [ztz′t]

)−1

=
σ2e
T

(
T

r−1 + λ′Σ−122 λ −λ′Σ−122
−Σ−122 λ Σ−122

)
(44)

The power depends on λ, r, T , σe, α2, as well as on the departure between γ
and β induced by the failure of superexogeneity. Since

et = v1,t − γ′v2,t

then,
σ2e = σ11 − σ′12Σ−122 σ12

Let
Σ−122 =KK

′ so K′Σ22K = In−1

where
K′zt =K

′λ1{t>T1} +K
′v2,t

and λ∗ =
√
rK′λ is the normalized break impact. Then, the non-centrality of

a t-test of H0: τ2 = 0 in (42) is

E
[
tτ2,(α2)(ϕr,α2)

]
=

(β − γ)′ λ
√
Tr

σe

√
1 + rλ′Σ−122 λ

=

√
T (λ∗)

′
K−1 (β − γ)

√
(σ11 − γ′Σ22γ)

√
1 + λ∗ (λ∗)

′
= ϕr,α2

(45)
The non-centrality ϕr,α2 in (45) would be zero if β = γ (no failure of weak
exogeneity), or if λ = 0 or r = 0 (no shift in the marginal process). Other-
wise, ϕr,α2 is monotonically increasing in

√
T , |β − γ| and in λ∗ (even though

increasing λ∗ also increases the denominator), and monotonically decreasing in
σe and Σ22, ceteris paribus.

We compute the power function using the approximation to t2τ2,(α2)(ϕ
2
r,α2)

by a chi-squared with 1 degree of freedom discussed in Hendry (1995), with
t2τ2,(α2)(ϕ

2
r,α2) ∼ χ21

(
ϕ2r,α2

)
, and χ21

(
ϕ2r,α2

)
� hχ2m (0). Then, P

[
χ21
(
ϕ2r,α2

)
> cα2 |H1

]
�

P
[
χ2m (0) > h−1cα2

]
. For example, when ϕ2r,α2 = 5 for cα2 = 4, then h =

51/26 � 2 and m = 13 with P
[
χ213 (0) > 2

]
� 0.9998.

Finally, ϕ2r,α2 should also be the non-centrality of the corresponding F-test.
However, the power may not be monotonic in the arguments of ϕ2r,α2 , since the
degrees of freedom of the F-test alter with r: a given value of λ∗1 achieved by a
larger

√
r will have lower power than that from a smaller

√
r. More precisely,

we approximate the FT−T1T−T1−2

(
ϕr,α2

)
by its numerator χ2k∗

(
ϕr,α2

)
and that in

turn using the more general formulae for k∗ = T − T1 = Tr. Then,

P
[
χ2Tr

(
ϕr,α2

)
> cα2 | H1

]
� P

[
χ2m (0) > h−1cα2

]
(46)
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where

h =
Tr + 2ϕ2r,α2
Tr + ϕ2r,α2

and m =
Tr + ϕ2r,α2

h
(47)

6.1.2 Allowing for stage 1

The above results are conditional on keeping all and only the relevant impulses
from the marginal, but the analysis in Hendry and Santos (2006) revealed that
was itself dependent on the parameters of the marginal DGPs. Nevertheless, we
can extend the analysis to allow for such an effect by distinguishing the number
of elements in the index ι1,t from the length of the break. In a bivariate setting,
corresponding to (40) when the DGP is (43), we have

E

[
̂λ (β − γ)
γ̂

]
�
(

T∑

t=1

E
[
ι21,t
]

E [ztι1,t]
E [ztι1,t] E

[
z2t
]
)−1( T∑

t=1

E [ytι1,t]
E [ytzt]

)

=

(
pdr λpdr
λpdr λ2r + σ22

)−1(
βλpdr

βλ2r + γσ22

)

=

(
λ (β − γ)

γ

)
+
(β − γ)λ2r (1− pd)
λ2r (1− pd) + σ22

(
−λ
1

)
(48)

where pd is the probability of retaining an impulse in the impulse saturated
marginal (see Hendry and Santos, 2006). Comparing (48) with the consistent
estimates and their variances in (44), which result when the break date is known,
the effect of stage 1 selection is bound to be a loss of power. More precisely,
letting the estimated stage 2 model be

yt = κ∗0zt + κ∗1,(α2)ι1,t + ut (49)

leads to a modified non-centrality corresponding to (45) when n = 2 but for
(49), namely

E
[
tκ∗

1
,(α2)

(
ϕ∗r,α2

)]
=

√
Trpd (β − γ)λ

σu

√(
1 + λ2rσ−122

) = ϕ∗r,α2 (50)

so

E
[
t2κ∗

1
,(α2)

(
ϕ∗2r,α2

)]
=

Trpd (β − γ)
2
λ2

σ2u
(
1 + λ2rσ−122

) =
pdσ

2
eϕ

2
r,α

σ2u
= ϕ∗2r,α2

where

σ2u = σ2e + σ22
(1− pd)λ2 (β − γ)2

λ2r (1− pd) + σ22
(51)

Thus, the power falls directly because pd < 1 and indirectly because σ2u > σ2e.
For example, combining the parameter values for the tests just above with a
location shift that delivers3 pd = 0.16 (where λ2 = σ22 = 5, β − γ = 0.25,

3See the analysis in Hendry and Santos (2006) and Santos (2006).
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Tr = 20, σ2e = 1 so σ2u = 1.23), E
[
t2κ∗

1
,(α2)

(
ϕ∗2r,α2

)]
= 0.65, which is a notable

reduction in the non-centrality. However, increasing to λ = 2.5
√
σ22 raises

pd to 0.71 and E[t
2
κ∗
1
,(α2)

(
ϕ∗2r,α2

)
] to 11.4, so the power rises quickly towards

the maximum, essentially reaching that bound by λ = 4
√
σ22. Notice from (51)

that σ2u need not tend monotonically to σ2e as λ increases, although it eventually
converges since pd → 1 as λ gets sufficiently large.

6.2 Invariance failure

We now allow the parameters of the marginal and conditional to be directly
cross-linked, where the marginal remains

zt = λ0,t + v2,t = λ1{t>T1} + v2,t

with E [zt] = λ1{t>T1} = µ2,t. Moreover, there is no ‘direct’ violation of WE,
in that γ = β, but the cross-link between the means violates superexogeneity,
namely µ1,t = β

′
tµ2,t when

βt = β0 + β11{t>T1} (52)

where (
yt
zt

)
∼ Nn

[(
µ1,t
µ2,t

)
,

(
ω2 + β′tΣ22βt β′tΣ22

Σ22βt Σ22

)]
(53)

Thus, the parameters of the conditional distribution shift when those of the
marginal process alter. Since γt = βt,

E [yt | zt] = β′tµ2,t + β′t
(
zt −µ2,t

)
= β′0zt + β

′
1zt1{t>T1} (54)

The marginal model is the same as in the previous section, so ρ̂i,(α1) = λ +

v2,ti from (37), and hence a test based on adding the associated
{
1{t=ti}

}
and{

1{t=ti}zj,ti
}
, or their matching summaries as in (15), should also have power

against violations of invariance, as we now show.
The regression equation postulated by the econometrician is the same as

(34), but the data moments differ for the changed DGP:

E [zt] = λ1{t>T1}

E [yt] =
(
β′0 + β

′
11{t>T1}

)
E [zt] =

(
β′0 + β

′
1

)
λ1{t>T1}

E [ztz
′
t] = E

[(
λ1{t>T1} + v2,t

) (
λ1{t>T1} + v2,t

)′]
= λλ′1{t>T1} +Σ22

E [ztyt] = E
[(
λ1{t>T1} + v2,t

) ((
β0 + β11{t>T1}

)′
λ1{t>T1} + v1,t

)]

=
(
λλ′ +Σ22

)
(β0 + β1) 1{t>T1} +Σ22β0

(
1− 1{t>T1}

)

E [ι2,tyt] = E
[(
1{t>T1} [λ+ v2,t]

) ((
β0 + β11{t>T1}

)′
λ1{t>T1} + v1,t

)]

=
(
λλ′ +Σ22

)
(β0 + β1) 1{t>T1}
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Hence, the implicit full-sample parameters of (34) become

E

[(
κ̃0
κ̃1

)]
�
[
T∑

t=1

(
1 E [zt]

E [zt] E [ztz
′
t]

)]−1 [ T∑

t=1

(
E [yt]
E [ztyt]

)]

=

(
1 λ′r
λr λλ′r +Σ22

)−1(
(β0 + β1)

′
λr

λλ′ (β0 + β1) r +Σ22 (β0 + β1r)

)

=

(
0

β0 + β1

)
−
(
−λ′r
In−1

)(
λλ′r (r − 1) +Σ22

)−1
Σ22β1 (1− r)

which is similar in form to (35), and simplifies to the vector (0 : β0 + β1)
′ when

λ = 0.
The ‘instantaneous’ relation is again given by

yt = ς0,t + ς
′
1,tzt + et (55)

where

ς0,t = E [yt]− ς ′1,tE [zt] = (β0 + β1)′ λ1{t>T1} − ς ′1,tλ1{t>T1} = 0

and

ς1,t �
(
E
[
(zt − E [zt]) (zt − E [zt])′

])−1
E [(yt − E [yt]) (zt − E [zt])]

= Σ−122 E [v1,tv2,t]

= β0 + β11{t>T1}

so as expected

yt = β
′
0zt + β

′
1zt1{t>T1} + et = τ

′
1zt + τ

′
2zt1{t>T1} + et (56)

Since

1{t>T1}zt =
T∑

i=T1+1

1{t=ti}zt =
T∑

i=T1+1

ρ̂i1{t=ti}

(say), then adding a complete set of impulses from the marginal model should
detect departures from superexogeneity. The index equivalent here requires
adding the impulses from the marginal model times zt, so differs from the pre-
vious case, albeit that both indices, ι1,t = 1{t>T1} and ι2,t = 1{t>T1}zt, could
be calculated and added.

6.2.1 Asymptotic power of the test of invariance

Two issues where theoretical analysis can shed light concern the power of the
test based on τ 2 (adding ι2,t as in (56), which is the model analogue of (54), so
that E [et] = 0 = E [et|zt]), and just adding the index 1{t>T1}. First, for adding
ι2,t:

yt = τ
′
1zt + τ

′
2,(α2)

ι2,t + ut (57)
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The variances of the parameter estimates from (57) are approximately

V

[(
τ̃ 1
τ̃ 2

)]
� σ2e

[
T∑

t=1

(
E [ztz′t] E

[
ztι

′
2,t

]

E [ztι2,t] E
[
ι2,tι

′
2,t

]
)]−1

=
σ2e
T

[( (
λλ′r +Σ22

) (
λλ′ +Σ22

)
r(

λλ′ +Σ22
)
r
[(
λλ′ +Σ22

)
r
]
)]−1

=
σ2e

Tr (1− r)

(
rΣ−122 −rΣ−122
−rΣ−122

(
(1− r)

(
λλ′ +Σ22

)−1
+ rΣ−122

)
)

Consequently, as λ∗ =
√
rK′λ, and noting that

(
(1− r)

(
λλ′ +Σ22

)−1
+ rΣ−122

)−1
=
(
λλ′ +Σ22

) (
rλλ′ +Σ22

)−1
Σ22

an F-test of τ 2 = 0 is

E
[
Fτ2,(α2)

(
φ2r,α2

)]
= (T − 2n) r (1− r)

β′1

[(
λλ′ +Σ22

) (
rλλ′ +Σ22

)−1
Σ22

]
β1

σ2e (n− 1)

= (T − 2n) (1− r)
β′1 (K

′)−1
(
λ∗λ∗′ + rI

) (
λ∗λ∗′ + I

)−1
K−1β1

ω2 (n− 1) = φ2r,α2

as et = yt − E [yt|zt] so σ2e = ω2.
In a scalar setting, so n = 2,

E
[
tτ2,(α2)

(
φr,α2

)]
=

β1

√
T
(
λ2 + σ22

)
r (1− r)σ22

σe
√

λ2r + σ22
=

√
T (1− r)β1

√
r + (λ∗)

2

ω∗
√
1 + (λ∗)

2
= φr,α2

with ω∗ = ω/
√
σ22. Again, φr,α2 is monotonically increasing in λ

∗, in β1 and
in r for fixed λ; and because of the form of (52), φr,α2 �= 0 even if λ

∗ = 0.

Then, φ2r,α2 represents the non-centrality of the F-test: this can be checked
by the mean value in the Monte Carlo simulations, using the formula in Johnson
and Kotz (1970, pp. 190) that:

E
[
Fk1k2

(
φ2r,α2

)]
=

k2
(
k1 + φ2r,α2

)

k1 (k2 − 2)
(58)

6.2.2 Allowing for stage 1 effects

Returning to (57), where ι2,t reflects the power of the stage 1 selection of im-
pulses, the estimators become

E

[(
τ̃ 1
τ̃ 2

)]
�
[
T∑

t=1

(
E [ztz′t] E

[
ztι

′
2,t

]

E [ztι2,t] E
[
ι2,tι

′
2,t

]
)]−1 [ T∑

t=1

(
E [ztyt]
E [ι2,tyt]

)]

=

(
β0 −

(
I−R−1Σ22 (1− r)

)
β1

R−1Σ22 (1− r)β1

)
(59)
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where
R =

(
λλ′ +Σ22

)
r (1− pd) +Σ22 (1− r)

The bias effect vanishes when pd = 1 as R = Σ22 (1− r). From (59):

V [τ̃ 2] =
σ2u
T

([(
λλ′ +Σ22

)
pdr
]−1

+R−1
)

so the F-test of τ 2 = 0 has an expected value of

E
[
Fτ2,(α2)

(
φ∗2r,α2

)]
= (T − 2n) (1− r)2

β′1Σ22R
−1
([(
λλ′ +Σ22

)
pdr
]−1

+R−1
)−1

R−1Σ22β1

σ2u (n− 1)
It is difficult to simplify this further, but in the bivariate case, we have

E
[
t2τ2,(α2)

(
φ∗2r,α2

)]
� Tpdβ

2
1

(
λ2 + σ22

)
r (1− r)2 σ222

σ2u
(
λ2r + σ22

) [(
λ2 + σ22

)
r (1− pd) + σ22 (1− r)

]

=
pdσ22 (1− r)σ2e

σ2u
[(
λ2 + σ22

)
r (1− pd) + σ22 (1− r)

]φ2r,α2

6.2.3 Asymptotic power of the incorrect index invariance test

Now, the fitted conditional model is the incorrect specification, assuming a
known break:

yt = (τ
∗
1)
′
zt + τ∗2,(α2)ι1,t + e∗t (60)

with average estimated parameters:

E

[(
τ∗1
τ∗2

)]
=

[
T∑

t=1

(
E [ztz′t] E [ztι1,t]
E [ztι1,t] ι21,t

)]−1 [ T∑

t=1

(
E [ztyt]
E [ytι1,t]

)]

=

( (
λλ′r +Σ22

)
λr

λ′r r

)−1(
rλλ′ (β0 + β1) +Σ22 (β0 + rβ1)

r (β0 + β1)
′
λ

)

=

(
β0 + rβ1
λ′β1 (1− r)

)

Although these estimators are inconsistent for β0 and β1, respectively, the im-
portant issue is the power of the test on the relevance of ι1,t which yields for
r �= 0:

E
[
t2τ∗

2
,(α2)

(
ψ2r,α2

)]
=

√
Trλ′β1 (1− r)

σe∗
√(
1 + rλ′Σ−122 λ

) =
√
Tλ∗′K−1β1 (1− r)√

ω2 + β′1 (K
′)−1K−1β1r (1− r)

√(
1 + λ∗′λ∗

) = ψ2r,α2

noting that

e∗t = β
′
0zt + β

′
1zt1{t>T1} + et − (β0 + β1r)′ zt − β′1λ (1− r) 1{t>T1}

= β′1
[
zt
(
1{t>T1} − r

)
− λ (1− r) 1{t>T1}

]
+ et

= β′1
[(
1{t>T1} − r

) (
λ1{t>T1} + v2,t

)
− λ (1− r) 1{t>T1}

]
+ et

= β′1v2,t
(
1{t>T1} − r

)
+ et
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so

σ2e∗ = E

[
1

T

T∑

t=1

(
β′1v2,t

(
1{t>T1} − r

)
+ et

)2
]
= ω2 + β′1Σ22β1r (1− r)

Thus, ψr,α is again monotonic in λ
∗, but need not be monotonic in r for fixed

λ. Also, t2τ∗
2
,(α2)

(
ψ2r,α2

)
is less powerful than t2τ

2
,(α2)

(
φ2r,α2

)
, as φ2r,α2 > ψ2r,α2 .

Thus, φ2r,α2 , the non-centrality of the F-test, which is applicable in the present
setting, has an important invariance to the source of the superexogeneity failure,
and should exceed ψ2r,α2 .

6.3 Weak exogeneity failure under constancy

Reconsider the bivariate example in (31) above, but where all parameters are
constant, so

yt = β
′zt + et = β

′zt − (β − γ2)′ (zt −µ2) + ηt (61)

with
zt = µ2 + v2,t

but E[et|zt] �= 0 as
et = ηt + (γ2 − β)′ v2,t

and E[ηt|zt] = 0. One mode of generating such a model is when yt = β
′zet + ηt,

but the outcome zt is used in place of the expectation z
e
t . Writing the fitted

model as
yt = τ0 + τ

′
1zt + ut (62)

then,

E

[
τ̂0
τ̂ 1

]
�
(

1 −µ′2
−µ2 (µ2µ

′
2 +Σ22)

)−1(
β′µ2

µ2µ
′
2β +Σ22γ2

)

=

(
(β − γ2)′µ2

γ2

)

so τ̂ 1 estimates the regression coefficient γ2 rather than the structural parameter
β, and correspondingly, E[ztut] = 0 in (62).

Now, only impulses corresponding to randomly large v2,t will be retained,
of which there will be αT on average. The index of these impulses again has
the form:

wt =
αT∑

i=1

ϕ̂i,(α)1{t=ti}

where
ϕ̂i,(α) = v2,ti when |v2,ti | > cα
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Thus,

et = yt − τ0 − τ ′1zt − τ2wt

= β′µ2 + γ
′
2 (zt −µ2) + ηt − (β − γ2)′µ2 − γ′2zt − τ2

αT∑

i=1

ϕ̂i,(α)1{t=ti}

= −τ2
αT∑

i=1

v2,ti1{t=ti} + ηt (63)

Since the largest of the v2,ti in (63) are eliminated by setting τ2 = 0 to deliver
the innovation component ηt, there will be essentially no detectability of the
failure of weak exogeneity.

7 Simulating the powers of automatic superex-

ogeneity tests

We have undertaken simulation analyses for all three scenarios for a bivariate
relation.4 The null DGP is given by (21), implying γ = 2.

7.1 Failure of weak exogeneity under non-constancy

We begin by considering violations of superexogeneity due to a failure of weak
exogeneity (WE), β �= γ although invariance holds. Further, we consider a level
shift in the marginal process. The relationship µ1,t = βµ2,t holds both in the
first and in the second regime, but

µ2,t = λ1{t≥T1} + µ2,0 (64)

and so
µ1,t = βλ1{t≥T1} + βµ2,0 = βλ1{t≥T1} + µ1,0 (65)

Hence βλ is the level shift of yt at T1. We allow βλ to vary across Monte Carlo
experiments, obtaining results associated with level shifts of different magni-
tudes. In particular, d = λ/

√
σ22 takes the values 1, 2, 2.5, 3 and 4. We

also allow β to vary across experiments to obtain different degrees of departure
from WE: in particular, β takes the values 0.75, 1, 1.5 and 1.75, where the first
represents the strongest departure from weak exogeneity, and the last repre-
sents the weakest. Finally, we also consider different sample sizes (T = 100 and
T = 300) and different break points T1. Throughout all Monte Carlo experi-
ments, M = 10000 replications were conducted. For the impulse saturation in
the marginal model, a partition of T/2 was always used.

We begin by investigating the empirical power of the F-test. Table (1) reports
the empirical mean rejection frequencies of the null in the joint F-test when a

4Monte Carlo results for a trivariate relation are available upon request. They lead to the
same conclusions as the ones below.
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sample size of T = 300 is used and 0.05 significance levels are employed both in
the marginal and in the conditional models. The level shift occurs at observation
251. Hence, the second regime has a length of k∗ = 50, so r = 1/6. The power of
the test increases with the decrease in β, as expected, since a smaller β indicates
a stronger violation of the weak exogeneity condition. Furthermore, the power
is also increasing with the magnitude of the level shift. Even mild violations of
the null are easily detected for level shifts of 2.5σ. The non-centrality ϕ2r,α2 in
this bivariate case, from (50), is

ϕ2r,α
2

=
k∗pd (β − γ)2 d2σ22

σ2u (1 + d2r)
(66)

with power pα = P
[
χ2m (0) > h−1cα2

]
where

h =
k∗ + 2ϕ2r,α2
k∗ + ϕ2r,α2

and m =
k∗ + ϕ2r,α2

h
(67)

d β = 0.75 β = 1 β = 1.5 β = 1.75
1.0 0.1910 0.1527 0.0777 0.0539
2.0 0.9722 0.9362 0.5289 0.1497
2.5 0.9999 0.9930 0.9173 0.3388
3.0 1.0000 1.0000 0.9985 0.6527
4.0 1.0000 1.0000 1.0000 0.9672

Table 1: WE failure with level shift in the marginal: T1 = 251, T = 300,
α1 = α2 = 0.05, F-test

In table (2), we investigate the impact of reducing the length of the second
regime to k∗ = 25. All the other defaults from the previous experiments apply.

d β = 0.75 β = 1 β = 1.5 β = 1.75
1.0 0.3767 0.2742 0.0969 0.0601
2.0 0.9999 0.9968 0.8026 0.2376
2.5 1.0000 1.0000 0.9902 0.5045
3.0 1.0000 1.0000 1.0000 0.7970
4.0 1.0000 1.0000 1.0000 0.9839

Table 2: WE failure with level shift in the marginal: T1 = 276, T = 300,
α1 = α2 = 0.05, F-test

Empirical power is never smaller when the break length diminishes: the
degrees of freedom of the F-test must be playing a fundamental role here, as
suggested in section 6.1.1. This is partly the motivation to look into the second
class of superexogeneity tests: those based on an index replacing the indicators.

We now turn to investigate the effect on power of the sample size. Table (3)
reports Monte Carlo results obtained using T = 100. The level shift is assumed
to have occurred at observation 81, yielding k∗ = 20.
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d β = 0.75 β = 1 β = 1.5 β = 1.75
1.0 0.1408 0.1306 0.1057 0.0960
2.0 0.5553 0.4944 0.2805 0.1487
2.5 0.8613 0.8189 0.5484 0.2306
3.0 0.9816 0.9719 0.8447 0.3910
4.0 0.9999 0.9999 0.9972 0.7267

Table 3: WE failure with level shift in the marginal: T1 = 81, T = 100, α1 =
0.05 ∧ α2 = 0.1, F-test

It is worth noticing that, even for a sample size of T = 100, the test has good
power against mild violations of weak exogeneity, provided there is at least a
level shift, even if not too steep (empirical power is acceptable even for β = 1.5
for a break of at least 2.5σ).

The trade-off between length of the break and power is also a feature of
smaller sample sizes, as illustrated in table (5), where a break of length k∗ = 30
is assumed to begin at observation 71. The results for very small level shifts
are negligible. Comparing tables (3) and (5), the increase in the length of the
break reduces its empirical power.

Table (4) investigates the use of a 0.05 significance level in the marginal
whilst a 0.1 significance level is used in the conditional. Clearly, the empirical
rejection frequencies are never smaller that those in table (1).

d β = 0.75 β = 1 β = 1.5 β = 1.75
1.0 0.3063 0.2486 0.1462 0.1099
2.0 0.9878 0.9690 0.6604 0.2512
2.5 1.0000 0.9996 0.9570 0.4743
3.0 1.0000 1.0000 0.9920 0.7700
4.0 1.0000 1.0000 1.0000 0.9847

Table 4: WE failure with level shift in the marginal: T1 = 251, T = 300,
α1 = 0.05 ∧ α2 = 0.1, F-test

d β = 0.75 β = 1 β = 1.5 β = 1.75
2.5 0.2602 0.2447 0.1736 0.1182
3.0 0.7078 0.6805 0.4857 0.2212
4.0 0.9969 0.9955 0.9672 0.5758

Table 5: WE failure with level shift in the marginal: T1 = 71, T = 100, α1 =
0.05 ∧ α2 = 0.1, F-test

With respect to the single-index test, table (6) reports results for a sample
size of T = 100 (α1 = 0.05 and α2 = 0.1). The shift occurs at observation 81,
implying k∗ = 20.
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d β = 0.75 β = 1 β = 1.5 β = 1.75
1.0 0.1477 0.1390 0.1169 0.1094
2.0 0.5860 0.5462 0.3463 0.1860
2.5 0.8322 0.8024 0.5971 0.3025
3.0 0.9522 0.9444 0.8170 0.4730
4.0 0.9969 0.9951 0.9686 0.7228

Table 6: WE failure with level shift in the marginal: T1 = 81, T = 100, α1 =
0.05 ∧ α2 = 0.1, index test

Comparing tables (6) and (3), although the index-based test has higher
empirical power for small shifts (magnitudes σ and 2σ), the joint F-test does
generally better for shifts of higher magnitudes. No test dominates the other,
for the defaults used in this experiment.

Values for the empirical power of the index-based test, in table (6), are
reasonable. The empirical power is decreasing as β gets closer to γ = 2, as
expected. Furthermore, the power is monotonically increasing with the size of
the shift, for any β.

The index-based test is a t-test on a single parameter, so its degrees of
freedom do not depend on the number of indicators picked up from the marginal
model. Hence, it is not to be expected that the test would face similar problems
to those detected with the joint F-test, where a smaller break length could be
associated with higher power.

Table (7) extends the analysis by considering T = 300, α1 = 0.05, α2 = 0.1,
and k∗ = 50. Results are to be compared with table (4).

d β = 0.75 β = 1 β = 1.5 β = 1.75
1.0 0.1932 0.1711 0.1217 0.1000
2.0 0.8661 0.8370 0.6209 0.3139
2.5 0.9874 0.9817 0.9011 0.5720
3.0 0.9997 0.9997 0.9891 0.8015
4.0 1.0000 1.0000 1.0000 0.9687

Table 7: WE failure with level shift in the marginal, T1 = 251, T = 300,
α1 = 0.05 ∧ α2 = 0.1, index test

For this larger sample size, and these significance levels, the joint F-test
dominates the index based test in terms of power. The only exceptions occur
for some intermediate magnitudes, when β = 1.75.

Tables (8) and (9) refer to the double-index test. Confronting with (6) and
(7), respectively, we conclude that for this type of failure of superexogeneity the
single-index test dominates the double-index.
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d β = 0.75 β = 1 β = 1.5 β = 1.75
1.0 0.1277 0.1235 0.1087 0.1052
2.0 0.4855 0.4453 0.2742 0.1515
2.5 0.7668 0.7328 0.5089 0.2452
3.0 0.9323 0.9153 0.7572 0.3956
4.0 0.9951 0.9928 0.9546 0.6484

Table 8: WE failure with level shift in the marginal: T1 = 81, T = 100, α1 =
0.05 ∧ α2 = 0.1, double-index test

d β = 0.75 β = 1 β = 1.5 β = 1.75
1.0 0.1763 0.1575 0.1139 0.0980
2.0 0.8135 0.7772 0.5317 0.2494
2.5 0.9779 0.9681 0.8510 0.4820
3.0 0.9992 0.9986 0.9788 0.7200
4.0 1.0000 1.0000 0.9997 0.9469

Table 9: WE failure with level shift in the marginal: T1 = 251, T = 300,
α1 = 0.05 ∧ α2 = 0.1, double-index test

7.2 Failure of invariance when weak exogeneity holds

We now consider a DGP where the null hypothesis of superexogeneity is false,
but weak exogeneity holds (that is: βt = γt,∀t). Let T1 be such that 1 < T1 < T
and, for t < T1, let the DGP be given by:

(
yt
zt

)
∼ N2

[(
2
1

)
,

(
21 10
10 5

)]
(68)

whilst for t ≥ T1,

(
yt
zt

)
∼ N2

[(
3µ∗2
µ∗2

)
,

(
30 9
9 3

)]
(69)

βt = γt even after the break, but since γt = σ12,tσ
−1
22,t, and the change in σ22 is

not offset by the change in σ12, the vector of parameters φ1,t, which contains
γt, is not invariant to changes in the parameters’ vector of the marginal model
φ2,t, which contains σ22,t.

For the Monte Carlo experiments, we work with the same settings as in pre-
vious subsection. We allow µ∗2 to take values from the set {2; 2.5; 3; 4} implying
a certain set of pairs of unconditional means. Finally, we also allow the break
length, k∗, to vary.

Tables (10) and (11) refer to the joint F-test. Table (10) reports Monte Carlo
results for a sample size of T = 100, with α1 = 0.05 and α2 = 0.1. The break
dates are: T1 = 81, T1 = 71 and T1 = 61 for k∗ = 20, 30, 40, respectively.

Table (10) reveals that the test has good power even for a small sample. An
increase in the length of the break period from k∗ = 20 to k∗ = 30 augments the
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T = 100 k∗ = 20 k∗ = 30 k∗ = 40
µ∗2 = 2.0 0.3982 0.4939 0.5503
µ∗2 = 2.5 0.5438 0.5998 0.5628
µ∗2 = 3.0 0.6810 0.6926 0.5605
µ∗2 = 4.0 0.9108 0.8527 0.5342

Table 10: Invariance failure: T = 100, α1 = 0.05 ∧ α2 = 0.1, F-test

rejection frequency of the null, nearly always. Nonetheless, a further increase
of equal absolute magnitude in the length of the break can reduce power (for
greater level shifts). There is no monotonicity property.

In table (11), we consider a sample of size T = 300. We consider breaks at
observations T1 = 261, T1 = 251, T1 = 201 and T1 = 161, matching respectively,
k∗ = 40, 50, 100 and 140.

T = 300 k∗ = 40 k∗ = 50 k∗ = 100 k∗ = 140
µ∗2 = 2.0 0.5413 0.6008 0.8161 0.8980
µ∗2 = 2.5 0.7404 0.7968 0.8907 0.8157
µ∗2 = 3.0 0.8963 0.9288 0.9456 0.6800
µ∗2 = 4.0 0.9973 0.9991 0.9910 0.2878

Table 11: Invariance failure: T = 300, α1 = 0.05 ∧ α2 = 0.1, F-test

There is good power against failure of superexogeneity, for all break lengths,
even for the smallest mean shifts considered. Notwithstanding, table (11) also
highlights the problem we had just discussed for smaller sample sizes: the length
of the break may adversely affect the power to detect departures from superex-
ogeneity. In the case discussed in table (11), this is clear for k∗ = 140.

We now address the index-based test. We consider only the case where
T = 300. The same defaults as in the previous experiment are used. Table (12)
reports the results.

T = 300 k∗ = 40 k∗ = 50 k∗ = 100 k∗ = 140
µ∗2 = 2.0 0.2016 0.2095 0.2591 0.3167
µ∗2 = 2.5 0.2802 0.2916 0.4034 0.5691
µ∗2 = 3.0 0.3602 0.3836 0.6483 0.8358
µ∗2 = 4.0 0.5725 0.6608 0.9793 0.9967

Table 12: Invariance failure: T = 300, α1 = 0.05 ∧ α2 = 0.1, index test

Comparison of tables (12) and (11) shows that the joint F-test dominates
the index-based test (with the exception of the two largest unconditional mean
shifts for k∗ = 140).

However, in spite of the power dominance of the joint F-test over the index
test, it is also true that power increases monotonically both with the mean shift
and with the break length, for the index test.
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It remains to investigate the effects on power of using a model with two
indices. Adding the two indices to the conditional, with parameters ϕ1 and ϕ2,
the null hypothesis is

H0 : ϕ1 = ϕ2 = 0 (70)

We consider the same departures from invariance as for the previous cases
in this section, and the same break lengths. Results are reported in tables (13)
and (14) with respect to sample sizes of T = 300 and T = 100, respectively.

T = 300 k∗ = 40 k∗ = 50 k∗ = 100 k∗ = 140
µ∗2 = 2.0 0.2257 0.2604 0.4329 0.5453
µ∗2 = 2.5 0.3321 0.3838 0.5285 0.6640
µ∗2 = 3.0 0.4518 0.5020 0.6521 0.8363
µ∗2 = 4.0 0.6300 0.6653 0.9339 0.9939

Table 13: Invariance failure: T = 300, α1 = α2 = 0.025, double-index test

T = 100 k∗ = 20 k∗ = 30 k∗ = 40
µ∗2 = 2.0 0.2440 0.3471 0.4874
µ∗2 = 2.5 0.3526 0.4562 0.5923
µ∗2 = 3.0 0.4829 0.5765 0.7087
µ∗2 = 4.0 0.7630 0.8243 0.9176

Table 14: Invariance failure: T = 100, α1 = α2 = 0.025, double-index test

Tables (13) and (14) should be compared with tables (15) and (16), respec-
tively, which report the empirical rejection frequency of the null for the cases
where the simpler index is used in the conditional, and where significance levels
of 0.025 are used in the marginal and the conditional.

T = 300 k∗ = 40 k∗ = 50 k∗ = 100 k∗ = 140
µ∗2 = 2.0 0.0957 0.1016 0.1249 0.1601
µ∗2 = 2.5 0.1490 0.1576 0.2060 0.3335
µ∗2 = 3.0 0.2260 0.2472 0.3964 0.6473
µ∗2 = 4.0 0.4241 0.4755 0.8746 0.9829

Table 15: Invariance failure: T = 300, α1 = α2 = 0.025, index test

The double-index test has greater power to detect departures of superexo-
geneity for invariance failure, than the corresponding single-index tests. This
claim is valid, irrespective of the choice of significance levels5 . This dominance
of the double-index test was to be expected on the basis of theory results from
section 6.2.

5Complete Monte Carlo results for this comparison are not reported here but are available
on request.
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T = 100 k∗ = 20 k∗ = 30 k∗ = 40
µ∗2 = 2.0 0.1008 0.1175 0.1270
µ∗2 = 2.5 0.1478 0.1557 0.1570
µ∗2 = 3.0 0.2106 0.2139 0.2480
µ∗2 = 4.0 0.3642 0.4276 0.5742

Table 16: Invariance failure: T = 100, α1 = α2 = 0.025, index test

7.3 Failure of weak exogeneity under constancy

Finally, we consider a departure from superexogeneity due to a failure in weak
exogeneity (β �= γ) alone, when invariance holds and there is no level shift. We
consider the following alternative DGP:

(
yt
zt

)
∼ N2

[(
β∗

1

)
,

(
21 10
10 5

)]
(71)

We allow β∗ to take values from the set {0.5; 0.75; 1; 1.25; 1.5; 1.75}, β∗ �= γ
when γ = 2. All the default settings from previous experiments apply. Table
(17) reports the results for sample sizes of T = 100, 200 and 300.

In table (17), apart from the empirical rejection frequencies, we also include
the empirical significance level in the conditional (αc) for each sample size, when
the nominal significance level in the conditional is α2 = 0.1.

T = 100 T = 200 T = 300
β∗ = 0.50 0.096 0.0974 0.1009
β∗ = 0.75 0.096 0.0974 0.1009
β∗ = 1.00 0.096 0.0974 0.1009
β∗ = 1.25 0.096 0.0974 0.1009
β∗ = 1.50 0.096 0.0974 0.1009
β∗ = 1.75 0.096 0.0974 0.1009
αc 0.096 0.0974 0.1009

Table 17: Failure of weak exogeneity under constancy: α1 = 0.05 ∧ α2 = 0.1

As expected, the test has virtually no power against this form of failure of the
superexogeneity hypothesis. Indeed, averaging across M = 10000 replications,
we conclude that the mean rejection frequency is the same for any value of β∗

considered, and virtually the same as it would be the case for β∗ = β = γ = 2,
the value under the null.

8 Conclusion

The concept of automatically computable tests for superexogeneity based on se-
lecting from impulse saturation of the marginal process to test the conditional
is realizable. The tests proposed here have the correct null rejection frequency
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in constant conditional models when the nominal NRF is not too small in the
marginal at small sample sizes (e.g. 0.05), for a variety of marginal processes,
both constant and with breaks. The tests also have power against failures of
superexogeneity when either invariance or weak exogeneity fails and the mar-
ginal process changes. Neither class of tests uniformly dominates the other.
Their theoretical powers were derived analytically for regression models and
explain the simulation outcomes well.

Results of some pilot experiments not reported here suggest very good power
against failures of weak exogeneity with variance breaks in the marginal. How-
ever, this set of results is still rather incomplete and lacks proper theory analysis,
so we have chosen not to include it in this paper.
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Appendix: Control Variate Theory and approximating the expec-

tation of the OLS estimator

The approximations are used in control variate theory: see Hendry (1973),
Hendry and Harrison (1974) and Hendry (1984).

Let
M = E

[
T−1 (X′X)

]

E
[
β̂
]
= E

[
(X′X)

−1
X′y

]
= β + E

[
(X′X)

−1
X′ε

]

= β + E
[(
M+

[
T−1X′X−M

])−1
T−1X′ε

]

= β + E

[(
M

{
Ik +

[
M−1X

′X

T
− Ik

]})−1
X′ε

T

]

= β + E

[(
Ik +

[
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′X

T
− Ik

])−1
M−1X

′ε

T

]

= β + E

[
(Ik +∆)

−1
M−1X

′ε

T

]

where:

M−1X
′X

T
− Ik =∆

with:
E [∆] = 0 and plim

T→∞
∆ = 0

so from Hannan (1970):

∆ = Op
(
T−1/2

)
,

and:

E

[
M−1X

′ε

T

]
= 0 where plim

T→∞
M−1X

′ε

T
= 0,

so:

M−1X
′ε

T
= Op

(
T−1/2

)

Now expand as a power series:

(Ik +∆)
−1
= Ik −∆+Op

(
T−1

)
= Ik −Op

(
T−1/2

)
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so that:

E
[
β̂
]
= β + E

[
(Ik +∆)

−1
M−1X

′ε

T

]

= β + E
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]
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