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a b s t r a c t

The paper deals with optimal portfolio choice problems when risk levels are given by coherent risk mea

sures, expectation bounded risk measures or general deviations. Both static and dynamic pricing models

may be involved. Unbounded problems are characterized by new notions such as (strong) compatibility

between prices and risks. Surprisingly, the lack of bounded optimal risk and/or return levels arises for

important pricing models (Black and Scholes) and risk measures (VaR, CVaR, absolute deviation, etc.).

Bounded problems present a Market Price of Risk and generate a pair of benchmarks. From these bench

marks we introduce APT and CAPM like analyses, in the sense that the level of correlation between every

available security and some economic factors explains the security expected return. The risk level non

correlated with these factors has no influence on any return, despite the fact that we are dealing with risk

functions beyond the standard deviation.

1. Introduction

General risk functions are becoming very important in finance

and insurance. Since Artzner et al. (1999) introduced the axioms

and properties of the ‘‘Coherent Measures of Risk” many authors

have extended the discussion. The recent development of new

markets (insurance or weather linked derivatives, commodity

derivatives, energy/electricity markets, etc.) and products (infla

tion linked bonds, equity indexes annuities or unit links, hedge

funds, etc.), the necessity of managing new types of risk (credit

risk, operational risk, etc.) and the (often legal) obligation of pro

viding initial capital requirements have made it necessary to over

come the variance as the most used risk measure and to introduce

more general risk functions. It has been proved that the variance is

not compatible with the Second Order Stochastic Dominance if

asymmetries and heavy tails are involved (Ogryczak and Ruszczyn

ski, 1999).

Hence, it is not surprising that the recent literature presents

many interesting contributions focusing on new methods for mea

suring risk levels. Among others, Föllmer and Schied (2002) have

defined the Convex Risk Measures, Goovaerts et al. (2004) have

introduced the Consistent Risk Measures, Rockafellar et al.

(2006a) have defined the General Deviations and the Expectation

Bounded Risk Measures, and Brown and Sim (2009) have intro

duced the Satisfying Measures.

Many classic actuarial and financial problems have been revis

ited using new risk functions. For instance, pricing and hedging is

sues in incomplete markets (Föllmer and Schied, 2002; Nakano,

2004; Staum, 2004; Balbás et al., 2010, etc.), as well as equity

linked annuities hedging issues (Barbarin and Devolder, 2005),

optimal reinsurance problems (Balbás et al., 2009), portfolio insur

ance linked problems (Annaert et al., 2009) and other practical

topics.

With regard to portfolio choice and asset allocation problems,

among others, Alexander et al. (2006) compare the minimization

of the Value at Risk (VaR) and the Conditional Value at Risk (CVaR)

for a portfolio of derivatives (such a portfolio is obviously com

posed of asymmetric securities and, therefore, the standard devia

tion is not appropriate), Calafiore (2007) studies ‘‘robust” efficient

portfolios in discrete probability spaces if the risk measure is the

absolute deviation, Schied (2007) focuses on optimal investment

with convex risk measures, Quaranta and Zaffaroni (2008) studies

‘‘robust” optimization of the VaR, Zhiping and Wang (2008) deals

with ‘‘two sided” coherent risk measures and optimal portfolios,

and Miller and Ruszczynski (2008) analyze efficient portfolios with

coherent risk measures. Other authors have also dealt with gener

alizations of the Sharpe ratio, the introduction of benchmarks

along the lines of the Market Portfolio of the classic Capital Asset
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Pricing Model (CAPM), and the extension of formulas relating ex

pected returns to some kind of generalized betas, also along the

lines of the CAPM. For instance, Stoyanov et al. (2007) have intro

duced new ratios related to many risk measures such as CVaR,

and leading to various benchmark portfolios (see also further

extensions of Zakamouline and Koekebbaker, 2009), and Johnston

(2009) has combined the classical CAPM with the Asymptotic sin

gle Risk Factor approach so as to compute capital requirements

for credit and equity exposures. Similarly, Rockafellar et al.

(2006b,c)) have analyzed portfolio choice problems when risk lev

els are given by deviation measures, have introduced benchmarks,

and have defined new betas related to the deviation they are using

that preserves the usual relationship between beta and expected

return. Rockafellar et al. (2007) have also shown the possible exis

tence of equilibrium if agents deal with general deviations.

The present paper considers a general measure of risk q. Both
expectation bounded risk measures and deviations are included

in the analysis, as well as coherent risk measures. Then, we present

a classic risk/return mathematical programming problem whose

solutions are the efficient portfolios. An important novelty is that

this portfolio choice problem involves both q and the market pric

ing rule denoted by P. From a theoretical point of view, consider

ing P seems to present some advantages with respect to the usual

analysis focusing on the distributions of the available assets’ re

turns. Indeed, P will be characterized by the Stochastic Discount

Factor (SDF) zp of the economy (Chamberlain and Rothschild,

1983, or Duffie, 1988) which will permit us to study many proper

ties by connecting the SDF zp of P and the sub gradient Dq of q.
The paper’s outline is as follows. Section 2 presents the nota

tions and the general framework we are going to deal with. Section

3 will be devoted to studying the properties of the efficient portfo

lios. The section is divided into three subsections. In the first one

the general portfolio choice problem is discussed, and necessary

and sufficient optimality conditions are provided (Theorem 3). This

seems to be one of the first times that those kinds of conditions are

given for maybe infinite dimensional portfolio choice problems. As

said above, we use pricing rules rather than return distributions,

which allows us to consider dynamic pricing models (the Black

and Scholes model, for instance) leading to infinite dimensional

optimization problems.

We use Theorem 3 in the second subsection of Section 3 so as to

present many cases leading to meaningless economic properties.

So, although the notion of compatibility between pricing rules

and risk measures has been defined in Balbás and Balbás (2009),

this paper deals with its implications in portfolio choice. Theorem

4 shows that risk levels may tend to 1 while expected returns

simultaneously tend to 1 if the lack of compatibility applies. We

also point out that many important risk measures (VaR, CVaR,

weighted CVaR or WCVaR, Dual Power Transform or DPT, etc.) are

not compatible with very important pricing models (Black and

Scholes, Heston, etc.). All of these cases lead to unbounded risk

and returns.

We also introduce the new notion of strong compatibility be

tween a pricing rule and a risk measure (Definition 2). Once again,

the lack of strong compatibility makes the expected return be un

bounded, although the risk level remains bounded in this case. This

pathological situation applies for very important compatible risk

measures and deviations (the measure of Wang, the Compatible

Conditional Value at Risk or CCVaR, the absolute deviation, the

absolute down side semi deviation, etc.) along with important

pricing models (Black and Scholes, Heston, etc.). Theorem 6 and

its remarks clarify this finding, which may be of great interest to

managers and traders. Indeed, many risk measures are used in

practice so as to compute capital requirements, so an unbounded

optimal risk/return problem may provide practitioners with prac

tical tools to obtain significant decreases in risk levels and capital

requirements, which are sometimes also understood as opportu

nity costs. Finally, there are two additional remarkable findings

in this subsection. Firstly, we define the new deviation measure
eN so as to overcome the incompatibility of the CVaR and the

WCVaR with respect to the Black and Scholes model. Secondly,

we show that the standard deviation is strongly compatible with

every pricing rule.

The third subsection of Section 3 is devoted to those situations

presenting strong compatibility. In such a case we will introduce

the benchmark and the Capital Market Line (CML) for a general

couple ðP;qÞ, as well as the Market Price of Risk.

The fourth section of the paper deals with extensions of the

classic Arbitrage Pricing Theory (APT) and CAPM. With respect to

the important contributions of Rockafellar et al. (2006b) our ap

proach seems to present four major novelties. First, it also applies

for expectation bounded or coherent risk measures. Second, it also

deals with the APT model. Third, it clarifies that this type of analy

sis only makes sense in the presence of strong compatibility. And

fourth, our betas are essentially different from those of Rockafellar

et al. (2006b), and they are similar to those of the classic CAPM and

APT (which uses the standard deviation). We do not use the risk/

deviation measure q so as to define the betas. On the contrary, they

are given by the covariance between the returns of the analyzed

security and the factors explaining the market (APT) or the bench

mark generating the CML (CAPM). This fact seems to reflect an

advantage since one can clearly see that the betas and the system

atic risk indicate correlation with the factors/market, while the

specific risk and the specific noise have null correlation with the

factors/market, and, therefore, cannot be explained by them. In this

sense, the betas are reflecting the information about the analyzed

security that is given by the factors/market, and the approach be

comes quite parallel to that of the classical APT or CAMP. This could

be another advantage provided by the use of pricing rules and the

SDF, a major concept in Financial Economics.

Summarizing, there seems to be several contributions in this

paper. First, we provide general optimality conditions in a portfolio

choice problem that may involve static and dynamic pricing mod

els. Second, we introduce the new notion of strong compatibility

between prices and risks and study the effect of both the lack of

compatibility and the lack of strong compatibility. We point out

that the lack of (strong) compatibility applies in very important

Financial Economics models. Third, models with a market price

of risk are also characterized and analyzed, and they also may in

volve dynamic pricing models. Finally, we present APT and

CAPM like developments are for general risk measures, and do

not modify the classic definitions of the betas. On the contrary, sys

tematic risks depend on the correlations with the factors/market,

whereas idiosyncratic risks and noises will be non correlated with

them.

Section 5 summarizes the most important conclusions of the

paper.

2. Preliminaries and notations

Consider the probability space ðX;F ;lÞ composed of the set of

‘‘states of the world” X, the r algebra F and the probability mea

sure l. If p 2 ½1;1Þ; Lp will denote the space of R valued random

variables y on X such that EðjyjpÞ < 1; EðÞ representing the mathe

matical expectation. If q 2 ð1;1� is its conjugate value (i.e.,

1=pþ 1=q 1), then the Riesz Representation Theorem (Horvàth,

1966) guarantees that Lq is the dual space of Lp, where L1 is com

posed of the essentially bounded random variables. A special

important case arises for p q 2.

Consider a time interval [0, T], a subset T � ½0; T� of trading

dates containing 0 and T, and a filtration ðF tÞt2T providing the
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arrival of information and such that F 0 f;;Xg and F T F . We

will denote by Y � L2 a closed subspace composed of reachable

pay offs, i.e., if y 2 Y there exists an adapted to the filtration

ðF tÞt2T price process of a self financing portfolio ðStÞt2T , such that

ST y, a.s. Then, if PðyÞ S0, following usual conventions we will

suppose that the pricing rule

P : Y ! R

providing us with the price PðyÞ of every y 2 Y is linear and contin

uous.1 As usual, the market will be said to be complete if Y L2.

Assume the existence of a riskless asset. Denote by rf P 0 the

risk free rate. The equality

PðkÞ ke
rf T ð1Þ

must hold for every k 2 R.

Being Y a Hilbert space the Riesz Representation Theorem im

plies the existence of a unique zp 2 Y such that

PðyÞ e rf TEðyzpÞ ð2Þ

for every y 2 Y . zp is usually called ‘‘Stochastic Discount Factor”

(SDF), and is closely related to the Market Portfolio of the CAPM

(Duffie, 1988).

Expression (1) implies that

ke
rf T PðkÞ e rf TkEðzpÞ;

which leads to

EðzpÞ 1: ð3Þ

Let p 2 ½1;2� and

q : Lp ! R

be the general risk function that a trader uses in order to control the

risk level of his final wealth at T. Denote by

Dq fz 2 Lq; EðyzÞ 6 qðyÞ;8y 2 Lpg:2 ð4Þ

The set Dq is obviously convex. We will assume that Dq is also

rðLq; LpÞ compact,3 and

qðyÞ Max f EðyzÞ : z 2 Dqg ð5Þ

holds for every y 2 Lp. Furthermore, we will also impose the exis

tence of eE 2 R; eE P 0, such that

Dq � fz 2 Lq; EðzÞ eEg: ð6Þ

Summarizing, we have:

Assumption 1. The set Dq given by (4) is convex and rðLq; LpÞ
compact, (5) holds for every y 2 Lp; z eE a.s. is in Dq and (6) holds.

The assumption above is closely related to the Representation

Theorem of Risk Measures stated in Rockafellar et al. (2006a). Fol

lowing their ideas, it is easy to prove that the fulfillment of

Assumption 1 holds if and only if q is continuous and satisfies:

(a) Translation invariance

qðyþ kÞ qðyÞ eEk

for every y 2 Lp and k 2 R.

(b) Homogeneity

qðayÞ aqðyÞ

for every y 2 Lp and a > 0.

(c) Sub additivity

qðy1 þ y2Þ 6 qðy1Þ þ qðy2Þ

for every y1; y2 2 Lp.

(d) Mean dominating

qðyÞP eEEðyÞ ð7Þ

for every y 2 Lp.4

It is easy to see that if q is continuous and satisfies Properties a),

b), c) and d) above with eE 1 then it is also coherent in the sense of

Artzner et al. (1999) if and only if

Dq � Lqþ fz 2 Lq;lðzP 0Þ 1g: ð8Þ

Particularly, interesting examples with eE 1 are the Expectation

Bounded Risk Measures of Rockafellar et al. (2006a). For instance,

the Conditional Value at Risk (CVaR) and the Weighted Conditional

Value at Risk (WCVaR) (Rockafellar et al., 2006a), the Compatible

Conditional Value at Risk (CCVaR) of Balbás and Balbás (2009), the

Dual Power Transform (DPT) of Wang (2000) and the Wang Mea

sure (Wang, 2000), among many others.5 Particular interesting

examples with eE 0 are the deviation measures of Rockafellar

et al. (2006a). Among others, the classical p deviation given by

rpðyÞ ½EðjEðyÞ yjpÞ�1=p ð9Þ

or the downside p semi deviation given by

rp ðyÞ ½EðjMax fEðyÞ y; 0gjpÞ�1=p ð10Þ

which are also particular cases of Orlicz deviation measures (Cheri

dito and Tianhui, 2009).

Finally, let us remark that with L2 being a Hilbert space there

are orthogonal projections on every closed subspace. In particular,

we will focus on uY and up, the orthogonal projections on Y and

the linear manifold Lð1; zpÞ � Y , respectively (see Maurin, 1967,

for further details about the orthogonal projection in Hilbert

spaces).

3. Portfolio choice

3.1. General approach

Let us consider the following portfolio choice problem,

Min qðyÞ

EðyzpÞ 6 erf T

EðyÞP R

y 2 Y

8
>>><
>>>:

ð11Þ

where R > erf T represents the minimum required return. Bearing in

mind (2), expression (11) minimizes the risk of a reachable pay off

whose global price is not higher than one and whose expected value

1 The absence of arbitrage implies that S0 must remain the same if there is more

than one self-financing portfolio whose final value equals y 2 Y .
2 Notice that q2[2,1].
3 See Horvàth (1966) for further details about rðLq; LpÞÿ compact sets.

4 In fact, the properties above are almost the same as to those used by Rockafellar

et al. (2006a) to introduce their Expectation Bounded Risk Measures.
5 The measure of Wang may be defined by

qðyÞ
Z 1

0

VaRtðyÞdgðtÞ;

g : ½0;1� ! ½0;1� given by

gðtÞ WðaþW 1ðtÞÞ

with a > 0 and W denoting the cumulative function of the standard normal distribu-

tion. The author showed that this measure reflects interesting properties in the the-

ory of choice, along the lines of Yaari (1987). A generalization of the Wang transform

may be found in Goovaerts and Laeven (2008), where the authors draw on risk mea-

sures to price derivative securities.
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is at least R. Thus it is a standard Risk/Return approach with q as the

risk measure. Of course, higher quantities of money may be in

vested. Since q and E are homogeneous the solution of (11) will

be multiplied by C > 0 if C denotes the value of the quantity to in

vest and the first and second constraints become EðyzpÞ 6 Cerf T and

EðyÞP RC, respectively.

The minimization of risk measures is a complex problem that

may be addressed by several methods. Among others, the ap

proaches of Ruszczynski and Shapiro (2006) or Rockafellar et al.

(2006b) appropriately overcome those problems generated by

the lack of differentiability of q. Nevertheless, we will follow the

method of Balbás et al. (2009) and, accordingly, we will transform

(11) in the new problem

Min h

hþ EðyzÞP 0; 8z 2 Dq

EðyzpÞ 6 erf T

E yð ÞP R

h 2 R; y 2 Y

8
>>>>>><
>>>>>>:

ð12Þ

h 2 R and y 2 L2 being the decision variables. Following the paper

above, (5) allows us to prove that y solves (11) if and only if there

exists h 2 R such that ðh; yÞ solves (12), in which case

h qðyÞ

holds. Furthermore, with similar arguments to those in Balbás et al.

(2009), one can show that Problem

Max erf Tk1 þ Rk2

Eðyðk1zp k2 zÞÞ 0; 8y 2 Y

z 2 Dq; k1 P 0; k2 P 0

8
><
>:

is the dual of (12), k1; k2 2 R and z 2 Dq being the decision variables.

The first constraint means that k1zp k2 z 2 YT , YT denoting the

orthogonal subspace of Y. Then it is equivalent to

uYðk1zp k2 zÞ 0, which, along with 1 2 Y and zp 2 Y , lead to

the following dual problem

Max erf Tk1 þ Rk2

uYðzÞ k1zp k2

z 2 Dq; k1 P 0; k2 P 0

8
><
>:

: ð13Þ

Proposition 1. EðuY ðzÞÞ
eE for every z 2 Dq.

Proof. Obviously z uYðzÞ 2 YT , and 1 2 Y , so EðuYðzÞÞ EðzÞ.

Therefore, the conclusion follows from (6). h

Consequently, we can simplify (13). Indeed, taking expecta

tions in the first restriction of (13), and taking into account (3)

we have

k1 k2 þ eE:

Thus, changing the variable k2 k; k1 kþ eE we have the following

problem equivalent to (13)

Max ðR erf TÞk eEerf T

uYðzÞ ðeE þ kÞzp k

z 2 Dq; kP 0

8
><
>:

ð14Þ

Problems (12) and (14) involve the infinite dimensional Hilbert

space L2. Thus, the absence of the so called ‘‘duality gap” is not guar

anteed, i:e:, the dual optimal value may be strictly lower than the

primal one (Luenberger, 1969). To overcome this caveat we have

to verify the fulfillment of the Slater qualification, which requires

an additional assumption.

Assumption 2. There exists y 2 Y such that EðyzpÞ 6 erf T and

EðyÞ > erf T .6

Proposition 2. Problem (12) is feasible and satisfies the Slater qual

ification, i.e., there exists ðh; yÞ 2 R� Y satisfying the three constraints

of (12) as strict inequalities.

Proof. Consider the pay off y satisfying the conditions of Assump

tion 2, a positive constant C < 1, and for a 2 R;a > 0, take

ya ay ðaerf T CÞ:

Then, (3) trivially shows that EðyaÞ tends to 1 as so does a whereas

EðyazpÞ 6 C. Hence, we can fix a large enough to guarantee the ful

fillment of the second and third constraints as strict inequalities. In

addition, the function Dq 3 z ! EðyazÞ 2 R is continuous and Dq is

compact, so taking h > Max f EðyzÞ; z 2 Dqg the first constraint is

satisfied as a strict inequality too. h

The Slater qualification ensures the absence of duality gap

(Luenberger, 1969). Thus, one can give the Strong Duality Theorem

below, whose proof is omitted because a similar one may be found

in Balbás et al. (2009).

Theorem 3. Suppose that y� 2 Lp and ðk�; z�Þ 2 R� Lq. Then, they

solve (11) and (14) if and only if the following Karush Kuhn Tucker

conditions

ðk� þ eEÞðEðy�zpÞ erf TÞ 0

k�ðEðy�Þ RÞ 0

Eðy�zpÞ 6 erf T

Eðy�ÞP R

uY ðz
�Þ ðeE þ k�Þzp k�

Eðy�uY ðz
�ÞÞ 6 Eðy�uY ðzÞÞ 8z 2 Dq

k� P 0; z� 2 Dq

8
>>>>>>>>>>>><
>>>>>>>>>>>>:

ð15Þ

are fulfilled. Moreover, the dual solution is attainable if (11) is bounded,

in which case the optimal value of both (11) and (14) becomes

ðR erf TÞk� eEerf T .

3.2. Cases with unbounded optimal risk or return

We devote this subsection to illustrating the existence of exam

ples leading to meaningless situations from a economic point of

view. Surprisingly, some of these examples will involve very

important pricing models (for instance, Black and Scholes) and

very important risk measures (for instance, CVaR). Non pathologi

cal cases will be analyzed in the next subsection.

We will consider two notions: Compatibility and strong com

patibility between the pricing rule P and the risk measure q.

Definition 1. Balbás and Balbás, 2009The pricing rule P and the

risk measure q are said to be compatible if there are no sequences

ðynÞ
1
n 1 � Y

such that erf TPðynÞ EðynzpÞ 6 0 for every n 2 N and

LimnqðynÞ 1.

Next, let us show the existence of pathological situations.

6 Since Eðy0zpÞ 1 and Eðy0Þ 1 if y0 1 is a riskless security, and Eðye rf TzpÞ 6 1

and Eðye rf T Þ > 1, Assumption 2 only imposes the existence of a risky security whose

expected return is higher than the interest rate.
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Theorem 4. P and q are not compatible if and only if Problem (11) is

unbounded, i.e., if and only if for every R > erf T the risk level may tend

to 1 whereas the expected return is at least R.

Proof. Take y0 (11) feasible (its existence is guaranteed by Propo

sition 2) and the sequence ðynÞ
1
n 1 of the definition above. Then,

Eððy0 þ ynÞzpÞ 6 Eðy0zpÞ 6 erf T whereas qðy0 þ ynÞ 6 qðy0Þ þ qðynÞ
obviously tends to 1. Hence, it is sufficient to show that

Eðy0 þ ynÞP R. Eðy0 þ ynÞ Eðy0Þ þ EðynÞP Rþ EðynÞ. (7) leads to

EðynÞP
1

E
qðynÞP 0 because eE > 0 and qðynÞ 6 0 for n 2 N large

enough.7

Conversely, if P and q are compatible then

qðyÞP eEEðyzpÞ

for every y 2 Y (Balbás and Balbás, 2009), and this implies that

qðyÞP eEerf T for every y 2 Y such that EðyzpÞ 6 erf T . h

Remark 1. There are many examples that fit in the latter theorem.

For instance, Balbás and Balbás (2009) have shown that the CVaR,

the WCVaR and the DPT are not compatible with the Black and

Scholes model and the Heston models, among many other classic

pricing models related to derivative securities. All of these cases

lead to portfolio choice problems such that there are available

strategies whose risk becomes 1 while their expected return

becomes as large as desired. Moreover, since

VaRl0
ðyÞ 6 CVaRl0

ðyÞ

holds for every level of confidence l0 2 ð0;1Þ and every y 2 L2, if we

fix R > erf T then for the Black and Scholes and for the Heston pricing

model one can find a sequence of reachable pay offs whose ex

pected return remains higher than R while their VaRl0
tends to 1.

Remark 2. An obvious consequence of Theorems 3 and 4 is that

the compatibility of P and q is equivalent to the feasibility of

(14), i.e., the existence of kP 0 and z 2 Dq such that

uY ðzÞ ðeE þ kÞzp k ð16Þ

holds.

The second important notion in this section is the ‘‘strong

compatibility”.

Definition 2. The pricing ruleP and the risk measure q are said to

be strongly compatible if there exist k > 0 and z 2 Dq such that (16)

holds.

The lack of strong compatibility will also lead to pathological

situations.

Theorem 5. Suppose that P and q are compatible but they are not

strongly compatible. Then:

(a) The dual solution ðk�; z�Þ exists and satisfies k� 0.

(b) The (11) optimal value equals eEerf T and does not depend on R.

Proof. Since P and q are compatible Theorem 4 shows that (11) is

bounded, so Theorem 3 implies the existence of a dual solution

ðk�; z�Þ. The lack of strong compatibility implies that k� 0, since

there are no (14) feasible solutions with strictly positive k. More

over, (14) makes it obvious that the optimal value equals eEerf T
and does not depend on R. h

Remark 3. If the lack of strong compatibility occurs, then once

again we are facing a meaningless phenomenon from an economic

point of view. Indeed, Theorem 5b points out that the minimum

risk level will remain constant and equal to eEerf T , while the

expected return R may tend to 1. As in the previous case of lack

of compatibility, there is no market price of risk either, since the

expected return may increase as desired without any increment

of risk. The only difference between both scenarios is given by

the behavior of the optimal risk level. If there is no compatibility

it may go to 1. If there is compatibility but there is no strong

compatibility then it remains the same ð eEerf TÞ.

Next let us see that the lack of strong compatibility frequently

holds for complete markets.

Theorem 6. Suppose that for every d > 0

lðzp < dÞ > 0: ð17Þ

If the market is complete ðY L2Þ and q is coherent and expectation

bounded then P and q are not strongly compatible.

Proof. Since the market is complete uY becomes the identity map.

Furthermore, eE 1 because q is expectation bounded. Therefore,

(16) becomes

z ð1þ kÞzp k: ð18Þ

Suppose that P and q are strongly compatible and take k > 0 and

z 2 Dq satisfying (18). Given d > 0 one has that

l zp <
d

1þ k

� �
> 0;

and (18) implies that lðz < d kÞ > 0. Taking d < k one has that

lðz < 0Þ > 0. On the other hand, the coherence of q and (8) show

that zP 0. Hence, we have a clear contradiction. h

Remark 4. There are many examples of complete markets satisfy

ing (17). For instance, the Black and Scholes model (Wang, 2000, or

Hamada and Sherris, 2003). It may be also proved that the Heston

model and other Stochastic Volatility models satisfy (17). All of

these models are not strongly compatible with any coherent and

expectation bounded risk measure. Very important examples of

such a measures are the CCVaR and the Wang measure, among oth

ers. For all of these cases there is no market price of risk, and the

optimal value of (11) always equals erf T and does not depend

on R. In other words, one can construct a portfolio whose expected

value is as large as desired and whose risk level remains bounded

and constant.

Remark 5. Balbás and Balbás (2009) have shown that the CCVaR

and the Black and Scholes model are compatible, but the latter

remark points out that they are not strongly compatible. For the

Black and Scholes model, and for every level of confidence

l0 2 ð0;1Þ, one has that (Balbás and Balbás, 2009)

CCVaRl0
ðyÞ Max fCVaRl0

ðyÞ; PðyÞerf Tg:

Since the CCVaR is coherent and expectation bounded, and follow

ing Rockafellar et al. (2006a) to construct deviations, one can define

the new deviation measure

eNl0
ðyÞ Max fCVaRl0

ðyÞ; PðyÞerf Tg þ EðyÞ;

which satisfies the requirements of Assumption 1 for eE 0. It is

easy to see that eNl0
and the Black and Scholes model are strongly

compatible. Indeed, we could otherwise find a sequence

ðynÞ
1
n 1 � Y with EðynzpÞ 6 erf T for every n 2 N; ðeNl0

ðynÞÞ
1
n 1

bounded from above and ðEðynÞÞ
1
n 1 going to 1. Therefore,

ðCCVaRl0
ðynÞÞ

1
n 1 ðeNl0

ðynÞÞ
1
n 1 ðEðynÞÞ

1
n 1 would go to 1. Thus,

7 Notice that eE 0 cannot hold because (7) would imply qðyÞP 0 for every y 2 Lp ,

and Definition 1 could not hold.
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(11) would be unbounded and Theorem 4 would imply that the

CCVaR would not be compatible with the Black and Scholes

model.

Finally, let us indicate that a similar remark applies if the role of

the CVaR is played by the WCVaR.

Remark 6. It is worth noting that the absence of compatibility can

not hold if q is a deviationmeasure. Indeed, notice that eE 0 in such

a case, so (7) points out that q does not achieve negative values and,

therefore, it cannot tend to 1, i.e., Definition 1 cannot hold.

However, the lack of strong compatibility may still hold. For

instance, take the absolute deviation (9) for p 1

qðyÞ r1ðyÞ EðjEðyÞ yjÞ:

Then, according to Rockafellar et al. (2006a),

Dq fz EðzÞ; z 2 L1; kzk1 6 1g:

Therefore, Dq is obviously composed of (essentially) bounded ran

dom variables. In addition, (16) and eE 0 lead to

z kzp k

for complete markets (uY is the identity map). Nevertheless, if zp is

unbounded (Black and Scholes, Heston etc.), the latter equality im

plies that k 0, i.e., there is no strong compatibility. Is also interest

ing to note that the absolute deviation is the unique p deviation

(see (9)) compatible with the Second Order Stochastic Dominance

and the standard utility functions (Ogryczak and Ruszczynski,

1999, 2002). Finally, it is also easy to see that the absolute semi

deviation ((10), p 1) is not strongly compatible with the Black

and Scholes and the Heston models either. It trivially follows from

r1 ðyÞ r1ðyÞ=2.
8

Remark 7. Finally, it is also remarkable that the standard devia

tion is strongly compatible with every pricing rule. Indeed, for

q r2 we have that (Balbás et al., 2009)

Dq fz 2 L2;EðzÞ 0;r2
2ðzÞ 6 1g: ð19Þ

Then, (3) shows that kzp k 2 Dq if k > 0 is small enough so as to

satisfy k2r2
2ðzp 1Þ 6 1. Furthermore, the equality E 0 and

uYðkzp kÞ kzp k show that Equality (16) holds.

3.3. Models with a market price of risk

This subsection will deal with models where the strong compat

ibility holds. Thus, henceforth we will assume the following

Assumption 3. There exists strong compatibility betweenP and q.

Theorem 7. The dual solution ðk�; z�Þ exists, does not depend on

R > erf T and satisfies k� > 0. The (11) and (14) optimal value equals

ðR erf TÞk� eEerf T .

Proof. Assumption 3 and Theorem 4 show that (11) and (14) are

bounded and Theorem 3 shows that (14) attains its optimal value.

Moreover, it is obvious that this optimal value coincides with the

solution of

Max k

uYðzÞ ðeE þ kÞzp k

z 2 Dq; kP 0

8
><
>:

: ð20Þ

The remaining statements are now trivial. h

Remark 8. According to (15) the solutions of (11) and (14) are

characterized by

Eðy�zpÞ erf T

Eðy�Þ R

uY ðz
�Þ ðeE þ k�Þzp k�

Eðy�uY ðz
�ÞÞ 6 Eðy�uY ðzÞÞ 8z 2 Dq

k� > 0; z� 2 Dq

8
>>>>>><
>>>>>>:

ð21Þ

since k� þ eE P k� > 0. The two first equalities show that the (11)

constraints are saturated, so R is the real expected return of the

investment.

Remark 9. If y� solves (11) the absence of duality gap (Theorem 3)

and k� > 0 (Theorem 7) for the dual solution imply that

qðy�Þ ðR erf TÞk� eEerf T ;

and, therefore,

R
1

k�
ðqðy�Þ þ eEerf TÞ þ erf T : ð22Þ

One can interpret that 1
k�
represents the Market Price of Risk, in the

sense that there is an affine relationship between optimal risks and

returns, and the expected return R increases 1
k�
units per unit of the

risk increment. Due to the analogy with the usual Capital Asset Pric

ing Model the affine function (22) will be called Capital Market Line

(CML).

Remark 10. Henceforth fix

R0 > erf T ð23Þ

and take y�0, solution of (11). Consider ðk�; z�Þ such that y�0 and ðk�; z�Þ

satisfy (21). Then bearing in mind (3) and Proposition 1 it is easy to

see that

ay� ðaerf T erf TÞ 2 Y

and ðk�; z�Þ also satisfy (21) if aðR0 erf TÞ þ erf T replaces R0. Since

aðR0 erf TÞ þ erf T takes all the values within ðerf T ;1Þ as so does a
within the interval ð0;1Þ, it is clear that the dual solution does

not depend on R0 and the primal one is a combination of y�0 and

the riskless asset leading to the required expected return.

The remaining efficient portfolios (solutions of (11)) that arise

as R varies are combinations of the risk free asset and the

benchmark y�0. So, for R > erf T the discussion above shows that

the proportion a to invest in the benchmark y�0 must satisfy

R aðR0 erf TÞ þ erf T

which leads to

a
R erf T

R0 erf T

and

1 a
R0 R

R0 erf T

will be invested in the riskless security.

Every portfolio y 2 Y with PðyÞ 1 and EðyÞ R > 1 must be

replaced by

R erf T

R0 erf T
y�0 þ

R0 R

R0 erf T
erf T

Eðy erf TÞ

Eðy�0 erf TÞ
y�0 þ

Eðy�0 yÞ

Eðy�0 erf TÞ
erf T ð24Þ

so as to reach an efficient portfolio with optimal risk level. The opti

mal risk level

8 It may be proved that the (11)-optimal value is not attainable if we consider the

deviations r1 or r1 and the Black and Scholes model. Hence, the lack of strong

compatibility means that one can construct a portfolio whose deviation is as close to

zero as desired (but higher than zero) and whose expected return is as large as

desired too.
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Eðy erf TÞ

Eðy�0 erf TÞ
qðy�0Þ

eE Eðy�0 yÞ

Eðy�0 erf TÞ
erf T ð25Þ

will be called systematic risk of y, and the remaining risk

qðyÞ
Eðy erf TÞ

Eðy�0 erf TÞ
qðy�0Þ þ

eE Eðy�0 yÞ

Eðy�0 erf TÞ
erf T ð26Þ

will be called idiosyncratic or specific.

4. CAMP and APT-like models

The object of this section is to prove that CAPM and APT like for

mulas also hold in the general framework we are dealing with. To

this purpose we will consider the portfolio

y�1 upðy
�
0Þ 2 Lð1; zpÞ;

orthogonal projection of the benchmark y�0 on the linear manifold

Lð1; zpÞ generated by the riskless asset and the SDF. Since

y�1 y�0 2 Lð1; zpÞ
T , orthogonal subspace of Lð1; zpÞ (Maurin, 1967),

one has that Eðy�1 y�0Þ Eððy�1 y�0ÞzpÞ 0, which gives

Eðy�1Þ Eðy�0Þ R0 ð27Þ

and

Eðy�1zpÞ Eðy�0zpÞ erf T : ð28Þ

In particular, y�1 is (11) feasible.

Hereafter, the variance of a random variable y 2 L2 and the

covariance between two random variables y1; y2 2 L2 will be de

noted by r2
2ðyÞ and Cðy1; y2Þ, respectively.

In the classic CAPM and APT models one must assume that the

market is not risk neutral, which means that the Market Portfolio

is not a riskless security (Duffie, 1988). In fact, our Assumption 2

also imposes a non risk neutral market.

Proposition 8. The market is not risk neutral, i:e:, the benchmarks y�0
and y�1 are not riskless securities (are not zero variance). Therefore, the

SDF zp is not a riskless security either and Lð1; zpÞ Lð1; y�1Þ.

Proof. If y�0 were riskless security then y�0 2 Lð1; zpÞ and

y�1 upðy
�
0Þ y�0 would be a riskless security too. Thus, let us show

that y�1 is not a riskless security. Indeed, suppose that y�1 is constant.

(23) and (27) show that y�1 > erf T , and therefore, Eðy�1zpÞ y�1EðzpÞ

y�1 owing to (3), which contradicts (28).

Furthermore, y�1 2 Lð1; zpÞ points out that zp is not a riskless

security either since otherwise the dimension of Lð1; zpÞ would

equal one and y�1 would have to be risk free. Finally, the equality

Lð1; zpÞ Lð1; y�1Þ is already trivial. h

Theorem 9 (APT like formula). Suppose that fy1; y2; . . . ; ykg � Y is

a linearly independent system such that Cðyi; yjÞ 0 for i – j. Suppose

also that the benchmark y�1 satisfies

y�1 2 Lð1; y1; y2; . . . ; ykÞ:
9

Then, for every reachable pay off y 2 Y we have that

y EðyzpÞ
Xk

j 1

bjðyj EðyjzpÞÞ þ ey ð29Þ

and

Eðy yzpÞ
Xk

j 1

bjðEðyj yjzpÞÞ;

ey 2 Y satisfying

EðeyÞ 0; PðeyÞ 0; and Cðey; yjÞ 0; j 1;2; . . . ; k ð30Þ

and bj being the regression coefficient

bj

Cðy; yjÞ

r2
2ðyjÞ

ð31Þ

j 1;2; . . . ; k. In particular, if PðyÞ PðyjÞ 1, j 1;2; . . . ; k, then

y erf T
Xk

j 1

bjðyj erf TÞ þ ey ð32Þ

and

Eðy erf TÞ
Xk

j 1

bjðEðyj erf TÞÞ: ð33Þ

Corollary 10 (CAPM like formula). For every reachable pay off

y 2 Y we have that

y EðyzpÞ bðy�1 erf TÞ þ ey

and

Eðy yzpÞ bðEðy�1 erf TÞÞ;

ey 2 Y satisfying

EðeyÞ 0; PðeyÞ 0; and Cðey; y
�
1Þ 0;

and b being the regression coefficient

b
Cðy; y�1Þ

r2
2ðy

�
1Þ

: ð34Þ

In particular, if PðyÞ 1, then

y erf T bðy�1 erf TÞ þ ey ð35Þ

and

Eðy erf TÞ bðEðy�1 erf TÞÞ: ð36Þ

Proof. Let us prove Theorem 9 since Corollary 10 is a trivial conse

quence if one bears in mind (2) and (28). Obviously, if

Rj EðyjÞ; j 1;2; . . . ; k,

1;
yj Rj

r2ðyjÞ

 !k

j 1

8
<
:

9
=
; � Y

is an orthonormal system. Thus, the Projection Lemma of Hilbert

Spaces (Maurin, 1967) establishes the existence of

ey 2 Lð1; y1; y2; . . . ; ykÞ
T such that

y ~b0 þ
Xk

j 1

~bj

yj Rj

r2ðyjÞ

 !
þ ey; ð37Þ

where

~b0 EðyÞ

and

~bj E y
yj Rj

r2 yj
ÿ �

 ! !
; ð38Þ

j 1;2; . . . ; k. ey 2 Lð1; y1; y2; . . . ; ykÞ
T trivially leads to (30), and

multiplying by zp and taking expectations in (37) one has

9 Notice that this condition is equivalent to zp 2 Lð1; y1; y2; . . . ; ykÞ due to

Lð1; zpÞ Lð1; y�1Þ.
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~b0 PðyÞerf T
Xk

j 1

~bj

PðyjÞe
rf T Rj

r2ðyjÞ

 !
:

Whence (37) becomes

y PðyÞerf T
Xk

j 1

~bj

yj PðyjÞe
rf T

r2ðyjÞ

 !
þ ey;

which, due to (2), leads to (29) if one takes

bj bj=r2ðyjÞ; j 1;2; . . . ; k. Moreover, (31) trivially follows from

(38). The remaining expressions, (32) and (33), are now

obvious. h

Remark 11. Expressions (32) and (33) are clearly similar to those

of the classical APT model. They indicate that the real y erf T and

the expected Eðy erf TÞ risk premiums may be given by a family

of non correlated factors that generate the benchmark y�1 if one

adds the riskless asset. One only needs to estimate the systematic

risk levels bj, given by (31), which yield the sensitivity of the secu

rity (pay off) y with respect to the j th factor explaining the mar

ket. The committed error ey has neither correlation with the

factors nor with the benchmark y�1, and, therefore, it is something

specific of the security y.

Analogously, (35) and (36) indicate that the real y erf T and the

expected Eðy erf TÞ risk premiums may also be given by the real

y�1 erf T and the expected Eðy�1 erf TÞ risk premiums of the

benchmark y�1. The relationship is given by the systematic risk

level b given by (34). Once again the error ey has no correlation

with the benchmark y�1 and it is specific to the asset/portfolio we

are analyzing.

As stated in Remark 10, given y 2 Y with PðyÞ 1 one can

construct an efficient portfolio with the same expected return but

lower risk. (24) and (36) show that the efficient portfolio is

by�0 þ ð1 bÞerf T ;

where b is given by (34). The systematic risk (25) of y becomes

bqðy�0Þ
eEð1 bÞerf T ;

which is clearly given by b once qðy�0Þ is known, i.e., bmay be under

stood as a measure of the systematic risk.

q being a homogeneous, translation invariant and sub additive

risk measure implies that

qðyÞ qðerf T þ bðy�1 erf TÞ þ eyÞ

6 bqðy�1Þ
eEð1 bÞerf T þ qðeyÞ: ð39Þ

Since y�0 is efficient (28) and (27) prove that

qðy�0Þ 6 qðy�1Þ;

with equality if and only if y�1 y�0. Thus, bearing in mind (39), if

bP 0 the specific (26) risk of y will be

qðyÞ bqðy�0Þ þ
eEð1 bÞerf T 6 bqðy�1Þ

eEð1 bÞerf T þ qðeyÞ

bqðy�0Þ þ
eEð1 bÞerf T

bðqðy�1Þ qðy�0ÞÞ þ qðeyÞ;

and, therefore, we have an upper bound for the idiosyncratic risk

that depends on ey and the difference of risk between both bench

marks. The term bðqðy�1Þ qðy�0ÞÞ will vanish if and only if y�1 y�0.

In the particular case of the Standard Deviation q r2 (see

(9)), if Y is generated by a static approach (T f0; Tg, only one

trading date), it is known that y�0 2 Lð1; zpÞ, which obviously im

plies that y�1 y�0, and both the benchmark y�0 providing the effi

cient portfolios and the one y�1 providing the CAPM like formulas

(35) and (36) coincide. Then, it may be interesting to characterize

those properties leading to an identical situation if q is a more

general risk measure or deviation and the pricing model may be

dynamic.

Remark 12. Consider the dual solution ðk�; z�Þ that may obtained

by solving the linear problem (20). y�1 y�0 holds if and only if there

exist x1; x2 2 R such that y�0 x1 þ x2zp. Since ðy�0; k
�; z�Þ must

satisfy (21) we have that

x1 þ x2Eðz2pÞ erf T

x1 þ x2 R0

(

must hold, which, taking into account Proposition 8 and

0 < r2
2ðzpÞ Eðz2pÞ EðzpÞ

2
Eðz2pÞ 1, shows that y�1 y�0 if and

only if

y�0
R0ð1þ r2

2ðzpÞÞ erf T

r2
2ðzpÞ

R0 erf T

r2
2ðzpÞ

zp: ð40Þ

The fulfillment of (40) is easy to verify once y�0 has been computed,

or by checking whether

R0ð1þ r2
2ðzpÞÞ erf T

r2
2ðzpÞ

R0 erf T

r2
2ðzpÞ

zp; k
�; z�

� �

satisfies (21).

Despite the fact that the latter remark characterizes the fulfill

ment of y�1 y�0, one can also give other conditions that only re

quire solving the linear problem (20).

Theorem 11. Consider the dual solution ðk�; z�Þ. y�1 y�0 holds if and

only if qð zpÞ Eðzpz�Þ.

Proof. The latter remark states that y�1 y�0 holds if and only if (40)

holds. (21) implies that it is equivalent to the inequality

E
R0ð1þ r2

2ðzpÞÞ erf T

r2
2ðzpÞ

R0 erf T

r2
2ðzpÞ

zp

� �
uYðz

�Þ

� �

6 E
R0ð1þ r2

2ðzpÞÞ erf T

r2
2ðzpÞ

R0 erf T

r2
2ðzpÞ

zp

� �
uYðzÞ

� �
8z 2 Dq

Manipulating, and taking into account Proposition 1, the previous

inequality is equivalent to

EðzpuY ðz
�ÞÞP EðzpuYðzÞÞ 8z 2 Dq:

Since zp 2 Y and z uY ðzÞ 2 YT we have EðzpuY ðzÞÞ EðzpzÞ 8z 2 Dq,

and the inequality is equivalent to

Eðzpz
�ÞP EðzpzÞ 8z 2 Dq

and the result trivially follows from (5). h

Consequently, for the Standard Deviation, which is strongly

compatible with every pricing model due to Remark 7, the equality

y�1 y�0 also holds for dynamic approaches.

Corollary 12. If q r2 then y�1 y�0.

Proof. Remark 7 shows that there are (14) feasible solutions ðk; zÞ

with k > 0. Hence, if ðk�; z�Þ solves (14) k� > 0. Suppose that we

prove that

ðk�; z�Þ
1

r2ðzpÞ
;

1

r2ðzpÞ
zp

1

r2ðzpÞ

� �
ð41Þ

solves (14). Then
8



Eðzpz
�Þ E

1

r2ðzpÞ
z2p

1

r2ðzpÞ
zp

� �
Eðz2pÞ 1

r2ðzpÞ

Eðz2pÞ EðzpÞ
2

r2ðzpÞ

r2
2ðzpÞ

2

r2ðzpÞ
r2ðzpÞ r2ð zpÞ

and the latter theorem applies. Let us now see (41). Since

z� uY ðz
�Þ and uY ðz

�Þ k�zp k� are orthogonal the Pythagorean

Theorem of Hilbert Spaces (Maurin, 1967) and (6) lead to

r2
2ðz

�Þ kz�k22 kz� uYðz
�Þk22 þ kuYðz

�Þk22 P kk�zp k�k22

r2
2ðk

�zp k�Þ:

Moreover, since 1P r2
2ðz

�Þ due to (19), kz� uY ðz
�Þk22 > 0 would

lead to 1 > ðk�Þ2r2
2ðzp 1Þ. Then for a > 1 and small enough

ak�ðzp 1Þ would have zero expectation and a variance lower than

one, i:e:, ak�ðzp 1Þ would be (14) feasible due to (19). Since

ak� > k� because a > 1 and k� > 0, we have a contradiction because

ðk�; z�Þ cannot solve (14).

Consequently, z� uY ðz
�Þ 0, and z� uY ðz

�Þ k�zp k�. As

above, 1 > ðk�Þ2r2
2ðzp 1Þ cannot hold, so

ðk�Þ2r2
2ðzp 1Þ 1;

which ends the proof. h

5. Conclusions

This paper deals with the general portfolio choice problem and

the classic APT and CAPM models when risk levels are given by risk

measures beyond the variance. We include in the analysis expecta

tion bounded risk measures, coherent risk measures and general

deviation measures. This seems a topic of interest since the vari

ance presents some drawbacks. For instance, it is not always com

patible with the Second Order Stochastic Dominance. With respect

to the reachable pay offs, we focus on the pricing rule and the SDF

rather than the distribution of the returns of the available securi

ties. Consequently, this analysis may apply for both static and dy

namic pricing models.

First of all, we give general optimality conditions, despite the le

vel of generality for both risks and prices. Secondly, we introduce

new notions such as strong compatibility between prices and risks.

Surprisingly, the lack of (strong) compatibility leads to unbounded

portfolio choice problems, despite the fact that obtaining economic

interpretations for that is complex. Nevertheless, the lack of

(strong) compatibility holds for very important risk measures

(VaR, CVaR,WCVaR, CCVaR, DPT, Wang, absolute deviation, absolute

downside semi deviation, etc.) and pricing models (Black Scholes,

Heston, other derivative linked pricing models, etc.). Thirdly, we

also characterize and analyze models with a market price of risk,

which may also involve dynamic pricing models. A CML is gener

ated and two major benchmarks are introduced. Finally, we pres

ent APT and CAPM like developments, and they do not modify

the classic definitions of the betas. On the contrary, systematic

risks only depend on correlations with the factors/market, whereas

idiosyncratic risks and noises have null correlation with the fac

tors/market.
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