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Abstract

We show how to obtain the exact power envelope of tests for a unit root
against trend-stationary alternatives, under normality. This is in contrast
to the asymptotic power envelope derived by Elliott, Rothenberg and Stock
(1996), and is used to indicate the lack of power of unit root tests in …xed
sample sizes.

1. INTRODUCTION

The issue of testing for a unit root in economic time series has generated a con-

siderable literature, both theoretical and empirical. Stock (1994) provides a good

up-to-date reference to this large and detailed literature. Here we address one

¤A much earlier version of some of these results was produced while the …rst author visited
Monash University. He thanks them for their generous hospitality. Helpful comments from
seminar audiences at Aarhus, Canterbury, ESEM98, the European University Institute, Monash,
Southampton, and Surrey, and from two anonymous referees, are gratefully acknowledged. The
usual disclaimer applies. This research was funded in part by an ARC grant.



particular feature of testing for a unit root, namely the exact power properties

of a common class of tests of a unit root against trend-stationary alternatives.

While this issue of exact power has received some attention in the recent liter-

ature (e.g. Bhargava (1986, 1996), Hwang and Schmidt (1993)), much of the

remaining analysis has been asymptotic in nature.

We show how to obtain the exact power envelope of tests for a unit root against

trend-stationary alternatives, under normality. This exact power envelope traces

out the maximum possible power of any such test, in a sense to be made precise

later. Evaluating the exact power envelope for this testing problem is both feasible

(making use of Dufour and King’s (1991) related analysis) and informative.

The next section outlines the precise testing problem under consideration.

Section 3 discusses the derivation and interpretation of the exact power envelope

for tests of a unit root against trend-stationary alternatives. The exact power

envelope is based upon the notion of point optimal tests introduced to econo-

metrics by King (1987a), following a related statistical literature on hypothesis

testing (e.g. Lehmann (1959), Kadilaya (1970); see also Pere (1997)). This exact

power envelope is in contrast to the asymptotic power envelope derived by Elliott,

Rothenberg and Stock (1996), and considered in Section 4. Section 5 provides a

numerical illustration of the exact power envelope, and compares it with the exact

power function for a representative unit root test. The …nal section o¤ers some

conclusions about the usefulness of the exact power envelope.

2. TESTING FOR A UNIT ROOT

The simplest possible framework for testing for a unit root takes the form of testing

the null hypothesis H0 : ¯ = 1 in (e.g.) the AR(1) model with an intercept

yt = ®+ ¯yt¡1 + "t , t = 1; :::; T
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where it is assumed (e.g.) that the errors "t s IN(0; ¾2), and y0 is an unknown

constant. However, under the alternative that ¯ 6= 1 this model does not allow for
a trend, and so is not well-suited to testing the null hypothesis that yt is di¤erence-

stationary against the alternative hypothesis that yt is trend-stationary. Indeed,

West (1988) shows that tests in such a model are inconsistent against trend-

stationary alternatives.

Because of this, we consider an alternative framework proposed by Bhar-

gava (1986), and subsequently used by DeJong et al. (1992) and Schmidt and

Phillips (1989), that is better suited to testing di¤erence-stationarity against

trend-stationarity. For an observed time series yt we postulate

yt = ¹+ ®t+ ut1 (2.1)

ut = ¯ut¡1 + "t , "t s IN(0; ¾2)

together with some assumptions about an initial error u0. As is well known, this

can be rewritten to obtain

yt = [¹(1¡ ¯) + ®¯] + ®(1¡ ¯)t+ ¯yt¡1 + "t .

Thus under the null hypothesis H0 : ¯ = 1, this simpli…es to the di¤erence-

stationary model

yt = ®+ yt¡1 + "t ,

i.e. a random walk with drift parameter ®. However, under the (one-sided)

alternative hypothesis H¡
a : ¯ < 1; we obtain

yt = ° + ±t+ ¯yt¡1 + "t ,

where ° = ¹(1¡¯)+®¯ and ± = ®(1¡¯). With j¯j < 1, this is a trend-stationary
model. Note that the framework from which we can derive these simple di¤erence-

stationary and trend-stationary models is simply that of a static linear regression
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(of yt upon an intercept and a linear trend) with AR(1) errors. Also, in all that

follows, we assume that the errors "t are normally distributed.

3. DERIVATION OF THE EXACT POWER ENVELOPE

Dufour and King (1991) introduced the most powerful invariant (MPI) test of

H0 : ¯ = 1, against the particular (point) alternativeHa : ¯ = ¯1 (where j¯1j < 1).
In the regression error speci…cation ut = ¯ut¡1+ "t, we permit the AR coe¢cient

¯ to take any …nite value. Following Dufour and King (1991), we specify the

initial regression error as u0 = d0"0, where d0 6= 0 is unknown, and "0 s N(0; ¾2)
independent of "t, t = 1; :::; T . We consider tests which satisfy two conditions.

Firstly, they are invariant to transformations of y = (y0; y1; y2 ;...;. yT )0 of the

form

y¤ = °0y+X° X = [¶ : t]

where ¶ and t denote vectors of ones, and a linear trend respectively. Durbin and

Watson (1971) show the optimality of the Durbin-Watson statistic under such

a transformation group. Secondly, we require that the null distribution of the

test does not depend on d0, de…ned above. Dufour and King (1991) show that

this can be achieved by extending the transformation group by including in the

transformed model a dummy variable for the initial observation.

Dufour and King’s (1991) Theorem 5 provides a MPI test of the null hypothesis

H0 : ¯ = ¯0 against the point alternative Ha : ¯ = ¯1, by de…ning a point optimal

invariant (POI) test (see King (1987b) for further details) that is invariant under

the group of transformations described above, and thus has the correct size for

any d0 value. The MPI test is most powerful against the point alternative, given

the above assumptions, and is invariant by design, as described above. For our

case where ¯0 = 1 and ¯1 < 1, the MPI test of H0 : ¯ = 1 against Ha : ¯ = ¯1
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(where j¯1j < 1) takes the form of rejecting H0 for small values of

MPI (¯1; d¤0) =
v0Q0MQv
v0v

(2)

where v is a T £ 1 normally distributed random vector depending upon the ob-

served y = (y1; y2 ;..., yT )0 , and Q and M are particular T £ T …xed matrices,
given ¯1 and d¤0. See Dufour and King (1991) for the de…nitions of v, Q and M .

Note that to apply Dufour and King’s (1991) Theorem 5, we have to specify

both a value of the point alternative ¯1 and some value (not necessarily the true

value) d¤0 of d0. Although it would be possible to avoid the arbitrary choice of

d¤0 by considering a larger invariance group such that the MPI test (and not just

its null distribution) does not depend on d0, Dufour and King (1991) indicate

that such tests have very inferior power properties compared with the MPI tests

considered here. In practice (as we shall see) the arbitrary choice of d¤0 appears

to make little di¤erence to test properties.

Computationally, the principal advantage of the MPI test is that it can be

expressed as a ratio of quadratic forms in normal variables. Hence using numerical

methods (see, e.g., King (1987a) and Ansley et al. (1992)) we can calculate to

any desired accuracy both (i) the exact critical value for any desired test size; and

(ii) the exact power against any …xed alternative.

Of course, operationally the MPI test requires knowledge of, or priors upon,

the values of the …xed point alternative ¯1 (< 1). In most practical circumstances

this is an unrealistic assumption, and this limits that practical appeal of such MPI

tests. However, this MPI test can be used more generally to construct (empirically

or graphically) the power envelope of tests of H0 : ¯ = 1, against H¡
a : ¯ < 1,

by considering a range of ¯1 values. For each point alternative within this range,

the MPI test is (by design) the most powerful test (within the invariance group)

against that point alternative. This power envelope gives the maximum attainable
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power of any test (satisfying the given invariance property) over the region ¯ < 1.

It is important to note that this power envelope delineates exact powers for any

given sample size T . The power envelope indicates how de…cient (relative to this

power envelope) a particular unit root test’s power is for speci…c alternatives ¯1.

King (1990) summarises computational issues involved in evaluating the power

envelope.

4. COMPARISON WITH THE ASYMPTOTIC POWER

ENVELOPE

Elliott et al. (1996) adopt a related, but more particular, analysis. They employ a

local-to-unity asymptotic approximation to derive the asymptotic power envelope

of tests for a unit root. As with Dufour and King’s (1991) approach, and that

detailed here, they assume a normally distributed model. They argue (p. 814) that

their asymptotic power envelope analysis provides “simpler and more interpretable

results” than Dufour and King’s exact POI tests.

Their analysis covers a wider range of models than that considered here (where

attention is restricted to testing H0 : ¯ = 1 in (1)). For example, they consider

cases which allow for linear models (as in (1)) where the deterministic components

are slowly evolving. Nonetheless, a brief comparison with their analysis in the

case where the deterministic components are an intercept and a linear trend (i.e.

equation (1) above) is useful.

Their local-to-unity asymptotic approximation allows the parameter space to

be a shrinking neighbourhood of unity (i.e. ¯ = 1) as the sample size T ! 1.
In particular they reparameterise the model so that c ´ T (¯ ¡ 1), and then
let c be constant as T ! 1. Then a likelihood ratio test statistic yields an
asymptotically most powerful test of H0 : ¯ = 1 against the alternative that
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c = c1 ´ T (¯1 ¡ 1): This test is asymptotically point optimal against the point
alternative that c = c1. The family of asymptotically point optimal tests (for

di¤erent c1 values) de…nes the asymptotic power envelope function ¦(c). Each of

these tests has an asymptotic power curve tangent to the power envelope at one

point (c = c1). For the case of interest here, the asymptotic power functions of

the standard Dickey-Fuller tests are “well below” the power envelope (p. 822).

Aside from this use of the asymptotic power envelope to obtain re…ned tests, a

direct comparison with the exact power envelope is not straightforward. Because

of the local-to-unity asymptotic approximation employed, i.e. c ´ T (¯¡1), where
c is held constant as T !1, Elliott et al.’s tabulations and graphed asymptotic
power envelopes are not readily interpretable without further direct evaluation.

Nonetheless, we can make some rough comparisons. For example, by inspection

from their Figure 3, which deals with the case of interest here (i.e. equation (1)),

we can see that the asymptotic power functions for the Dickey-Fuller statistics are

very close to the asymptotic power envelope for values of c between 0 and about¡5
(or about ¡7 for the b½¿ statistic). If we take T ¼ 50, then this implies a range of
values for ¯ ¼ 1+ c

T
between approximately (0:9¡1), or about (0:86¡1). Thus for

this local (to unity) range of ¯ values, the asymptotic power functions lie “close”

to the asymptotic power envelope. Of course, this is not directly interpretable in

terms of the exact power functions.

Elliott et al. (1996) indicate an advantage of their asymptotic power envelope

analysis over Dufour and King’s (1991) exact approach: namely that it avoids

having to make strong assumptions about the initial error u0 (and thus d¤0). The

cost of this simpli…cation, however is that their analysis is purely asymptotic.

We now consider an illustration of the alternative exact power envelope approach

argued here.

7



5. NUMERICAL ILLUSTRATION

We consider two tests for the null hypothesisH0 : ¯ = 1. One of these, based upon

the Sargan-Bhargava statistic (see Sargan and Bhargava (1983) and the extension

by Bhargava (1986)) is used as a representative test for a unit root. For example,

Edmonds et al. (1992) conclude that the Sargan-Bhargava test has comparatively

good power properties. The other test statistic is the MPI test described above,

and is used to construct the power envelope of tests for a unit root.

The Sargan-Bhargava statistic is

SB =

PT
t=2(yt ¡ yt¡1)2 ¡ 1

T¡1(yT ¡ y1)2
1

(T¡1)2
PT

t=1

©
(T ¡ 1)yt ¡ (t¡ 1)yT ¡ (T ¡ t)y1 ¡ (T ¡ 1)[y ¡ 1

2
(y1 + yT )]

ª2
This is a locally most powerful invariant test in the neighbourhood of ¯ = 1 of the

di¤erence stationarity null hypothesis H0 : ¯ = 1, against the trend-stationary

alternative H¡
a : ¯ < 1 in (1), and is invariant to the values of ¹ and ¾

2. Table I of

Bhargava (1986) gives 5% (exact) critical values for sample sizes T = f20 (5) 50
(10) 100g. Note that as SB can be written as a quadratic form in normal variates,
its size and exact power function can be evaluated by numerical methods.

The (exact) MPI test given in (2) above is used to construct the (exact) power

envelope in the following way. For a given value of d¤0, set ¯1 = 1, and use (2) to

obtain the critical value appropriate to a test of desired size. Then use this critical

value together with (2) to evaluate the rejection probability (i.e. test power) of the

MPI test against the alternative thatHa : ¯ = ¯1 (for some ¯1 satisfying j¯1j < 1).
This is, by design, a POI test against that speci…c alternative Ha : ¯ = ¯1. Of

course, given ¯1 and the appropriate critical value, the power function can be

evaluated over a range of alternative values for ¯, but only at ¯ = ¯1 will the

exact power function coincide with the power envelope. This is then repeated for

a range of ¯1 values, at each stage providing another tangency point to the power

envelope.
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In the calculations reported in Table 1, all critical values are evaluated at exact

size 0.05. The range of values for ¯ is {1.0 0.95 0.9 0.8 0.85 0.75 0.5}, and the

powers are evaluated for two sample sizes, T = f25; 50g. Note that the values
reported here for the power envelope all refer to calculations assuming d¤0 = 1.

Alternative values for d¤0 of 0:1 or 10 typically made no practical di¤erence to the

calculations, and so are not reported.

The tabulations of the exact power envelope and exact power function for the

Sargan-Bhargava statistic SB indicate two key properties. First, for the sample

sizes considered here the Sargan-Bhargava test has an exact power function that

lies remarkably close to the exact power envelope, especially for ¯ close to unity.

To the extent that this test is a representative test of a unit root, with reasonably

favourable power properties compared to many competitor tests (see, e.g., Stock

(1994)), this suggests that there is little to gain (by way of increased power) by

seeking alternative tests. Note that this is not clear from Elliott et al.’s (1996)

asymptotic power envelope analysis; there the power function/power envelope

discrepancies seemed larger.

Second, this exact power envelope emphasises the following point which has

been made repeatedly in the literature but is often still ignored by practitioners.

This is that these unit root tests are not at all powerful for these sample sizes,

even against “plausible” trend-stationary alternatives not too close to the null ¯

value of unity. For example, with T = 50, the exact power envelope indicates

that no well-behaved unit root test will have power against the point alternative

¯ = 0:85 better than 0.193 ! Thus this reinforces earlier warnings (see, e.g.,

Campbell and Perron (1991) and Stock (1994)) about the possible inappropriate

use of unit root tests in these circumstances, with conventional signi…cance levels.
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TABLE 1

Exact Powers for Exact Size 0.05

T=25

Sargan- Power

¯ Bhargava Envelope

0.95 0.054 0.055

0.9 0.066 0.067

0.85 0.084 0.087

0.8 0.109 0.115

0.75 0.141 0.149

0.5 0.432 0.460

T=50

Sargan- Power

¯ Bhargava Envelope

0.95 0.066 0.068

0.9 0.107 0.114

0.85 0.177 0.193

0.8 0.277 0.302

0.75 0.404 0.442

0.5 0.918 0.962
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6. CONCLUSIONS

This paper attempts to make two simple points. Firstly, obtaining information

about some exact features of unit root tests is feasible. For a standard framework

for testing for a unit root against trend-stationary alternatives, Dufour and King’s

(1991) results can be adapted to permit numerical evaluation of the exact power

envelope, without recourse to simulation methods. Secondly, this exact power

envelope can be very informative about unit root tests. This was illustrated by

a simple numerical example, with the following conclusions that reinforce earlier

simulation-based …ndings. For alternative values of ¯ near to 1, but “represen-

tative” of trend-stationary models, best possible power is awful. Also, existing

tests are “close” to attaining “best possible” power, so there is little to gain in

searching for more sophisticated (powerful) tests. If higher power is desired, what

is needed is more information, in particular more observations. Alternatively,

Hansen (1995) suggests that adding correlated covariates to the regression can

yield large power gains1.

The techniques illustrated here can be generalised, while still making use of

Dufour and King’s (1991) results. For example, their linear regression model with

AR(1) errors could be extended to “bigger” design matrices (to allow for, e.g.,

seasonal dummies, or structural breaks).

1We are grateful to Niels Haldrup for this observation.
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