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Abstract

The paper uses local linear regression to estimate the “direct” Average Derivative
6 = E(D[m(x)]), where m (x) is the regression function. The estimate of 6 is the
weighted average of local slope estimates. We prove the asymptotic normality of the
estimate under conditions which are different from the conditions used by Hardle-
Stoker (H-S) (1989). Using Monte-Carlo simulation experiments we give some small
sample results comparing our estimator with the H-S estimator under our conditions

for asymptotic normality.
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1 Introduction

Let (Y3, X¢),t =1,...,T be a multivariate sample from an unknown distribution F(y,x)

which is generated from the following model
Y}:m(Xt)—i—ut,t:L...,T (1)

where m(x) is the unknown regression function, and the conditional expectation of w
given X; is zero, i.e. E(u|X;) = 0. We assume x is a [ — dimensional vector.!
Further, we assume that the regression function m(z) is differentiable. We define the

average slope or the average derivative (A.D) of the regression function m(x) as

b= /D [m(x)] f(x)dx = E (D [m(x)]) (2)

where f(x) is the marginal density of X’s and D [m(x)] is the first derivative of m. We
can argue that ¢ represents sensible ”coefficients” of changes in x. We can also show by
integrating by parts.
6=E(L(X)Y)
where £(X) = =D [f(X)] /f(X).
The primary interest for Average Derivative Estimation (A.D.E) comes from the Gen-

eral Index Model. where

m(x) = G(x'0)

then E (D [m]) = E (dG/d(X'3)) 8 is proportional to 3V x. So 6§ = E[dG /d(x 3)]3 = 8,
for some 7, is proportional to 3. We can equivalently replace 3 by 6§ = [ /v, by normalising
as m(x) = G(x'0) st. E[dG/d(x'0)] = 1. Thus it can be interpreted as units of change in
y to changes in x. Hérdle and Stoker (1989) gives an application of it with a “Collision
Data”.

The use of A.D in the context of Partial Index Models is also useful. For this x is
partitioned as (X(l),X(Q)) into a [ — 1 vector of x(1) and 1 of vector X(2), and partition
6 analogously as (01,0,). average derivatives will measure the true coefficient when the

regressions obeys a Partial Index Structure ( Newey and Stoker (1989) ) if

m(x) = G(Xl(l)ﬁ, X(2))

'Banerjee (1994) analyses the case of [ = 1.



then 6; equals 81 up to a scale. With an estimator 51 of 61, we can extend the A.D.E
method to fitting a [ + 1 dimensional regression in the second stage, as CAT'(X’(U&, X(2)). If

the model is multiple index form as
m(x) = G(Xl(l)ﬂlaxl(2)ﬂ2)

then 65 is likewise proportional to 2 (namely E[dG /d(x(582)]). Again the A.D.E method
is easily extended.

A.D.E’s are also used in specific measurement problems in economics. A primary ex-
ample by Hardle, Hilderbrand and Jerison (1991) is on measuring the positive definiteness
of the aggregate income effects matrix for assessing the ” Law of Demand”.

The A.D.E is used to estimate the following matrix.

dE(Y;Y|x
dz
where Y; = demand for the j good and x = income level.

Further applications are suggested by the central role of derivatives in economic mod-
elling in form of marginal reactions and elasticities. Examples like profit maximisation of
firms can be given. In this problem the firm equate their marginal profit derived from a
particular good to the price of that good. The average marginal reaction can be assessed

by the A.D estimate of the marginal profit. One such example is given in Stoker (1992).

2 Method of Estimation.

Several methods have been suggested to estimate §, the Average Derivative. Hardle
and Stoker (1989) proposed an “indirect” estimate, Sns which is the sample analog of
E [L£(X)Y]. This method estimates the covariance between L(X) and Y, using consistent
non-parametric estimators of f(X) and D [f(X)]. Stoker (1991b) defines the “direct”
Average Derivative Estimate, the sample analog of E(D [m(X)]) as é4 using the average
of the consistant non-parametric estimator of D [m(X)] . Stoker also shows the asymptotic
equivalence of the “direct” and “indirect” estimators. The consistent estimates used in
the “direct” and “indirect” estimator are generally kernel estimators of the respective

functions. The estimator we are going to define, uses local linear regression as a method.
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We shall only assume some smoothness properties of the regression function and mo-
ment restrictions on the random variables which we state the next section. One important
difference in this method from the other methods is that there are no smoothness assump-
tions on the marginal density of X, i.e. f(x). We do assume that, the support of X is
the compact set S, without loss of generality it is assumed to be a subset of [0, 1]". Unlike
the Hérdle and Stoker method, the Fisher’s information £(X) may not exist. Therefore
the “indirect” estimator will not exist as well. For example suppose X is distributed
U0,1], then £(X) does not exist. This case will not be covered by the method proposed
by Hardle and Stoker. On the other hand if X is distributed with a Normal density we
cannot use our method since we assume the domain of f(x) to be a compact interval.
Though in this case we can use the Hardle and Stoker method. So comparisons of our
two methods in terms of the asymptotics cannot be made and our methods complement
the Hardle and Stoker method.

Let us motivate our method when z is univariate. Without loss of generality, let S be
the interval [0,1]. This interval is then partitioned, in equal intervals. We denote the
partition as P. Let the partition be 0 < t; <ty < ... <ty_; <1, we denote (¢,,t,,] as
H, (H, is called a bin ). These bins are of equal size (|H,| = h). In the bins, which have
at least 3 observations we linearly regress Y; on X,, st. X, € H,. We denote the coefficient
of the slope of the regression as .. This is a least squares estimate of the tangent of the
regression curve m(x), in the interval H,..

We then take the an weighted average of the slopes in each of the bin H,. The weights
are taken to be the average number of observations in the bin H,.

Let us now generalise the idea when the dimension of z is [.

Assume without loss of generality, the interval [0, 1] is the domain of the marginal
density of X;. We partition the domain, in equal intervals and denote the partition as P;.
Let the partition be 0 < #;1 < ti2 < ... <tj,—1) < 1, we denote (&7',1,,] as H,, (H,, is
called a bin in the 2" dimension).These bins are of equal size (| H,,|). The partition for
the whole of domain of f(x) is then P =P; x ... x P, where H, = H, X ... X H,, is the
bin to be considered in this | — dimensional space. Notice the number of bins is now at
most k = k1 X ... x k;. We shall only consider those bins such that H, C S. Note that

when z is univariate then H, C S for all r. The same is true if X/,s are independent. The



rest of the method is similar to the univariate case.

Suppose we have atleast p > [ + 2 points in H,, we linearly regress 1 on x; as
Yt = Qp + ﬁfnxt , s.t Xy € H,.

We denote the estimate coefficient of the slope of the regression, 3, as

T
B =[Sy (ke — %) T{x¢ € Hy }
t=1
T
where ST = (x; — X,.) (x; — x,)" I{x, € H,}

=1
| T

and X, = Tthl{Xt eH,}.
t=1

This is a least squares estimate of the tangent of the regression curve m(x), within the
interval H,.
We then take the an weighted average of the slopes in each of the bin H,. The weights

are taken to be the average number of observations in the bin H,, denoted by
1T
wy ==>_ I{x € H,}.
T3
where [ is the indicator function.

Definition 1 We define our Average Derivative estimator as
A k ~
0= Z wrﬁrl{Tr 2 p}
r=1
where T, = w, T, the number of observations in the r** bin and k is the number of bins.

Note that in definition (1), we assume that if there are insufficient number of observa-
tions to regress, the observations in the bin contribute nothing to the Average Derivative
Estimate.

We will show, under some assumptions made later that asymptotically
VT (8 —6) ~ N (0,Var{m/(X)} + 0257,

where az is the variance of u;’s and X is the variance-covariance matrix of X.
We also show that the large sample variance Var{m/(X)} +02X~! can be consistently

estimated by the following estimator.



Definition 2 We define the estimated variance 0f3 as

k , .
V= Z w35, [{Tr > p} — 66

r=1

3 Distributional properties and comparison with Hardle-

Stoker Estimator.

3.1 Large Sample Results

We shall now prove some large sample results under the following assumptions

A1 The support of f(x) is the compact set S C [0,1]' and f(x) is uniformly bounded

above by a constant C', for some C' > 0.
A2 The second derivative of m(z),D? [m], exists and bounded.
A3 The variance of u; is F(u?|X:) = 02, exists and is bounded.

A4 As T — oo,

ﬁh—>0andlogﬂ—(g)—>0.

We will make some brief comments on the assumptions. The first assumption (A1) is
not a popular assumption is the non-parametric econometrics literature. This assumption
of f(x) > 0 is necessary to ensure that there is atleast p — observations in each bin to
perform the required regression (in large sample). However we also want the density to
be bounded above since we do not want to put too much weight on any particular ﬁ;.
The smoothness assumption of the regression function (A2) is also necessary for the same
reason. Assumption three (A3) is a standard assumption for linear models. Finally the
last assumption (A4) ensures that the size of the bins shrinks at the rate of VT, but
the size should not get too small too quickly (log(T")/Th — 0) otherwise there will be

insufficient number of observations in the bin to do a regression.
Theorem 1 Under the stated assumptions A(1) to A(4) we have the following
VT (6—-6) 2 N (0,Var (D [m (X)]) + 0257)
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where § is the A.D.E defined in Definition 1.

The interesting thing to observe here is that if m(x) is linear (i.e. m(x) = a + 'x)
then the asymptotic variance coincides with the asymptotic variance of the classical Least
Squares estimator of 3. Note that in case of m(x) being linear, 6 = (3. Soin this particular
case we get a standard classical result. This implies that in the case of linearity we will

not lose efficiency when compared to the Least Square Estimation method.

Theorem 2 Under the assumptions A(1) to A(4) we have the following

—

V L Var (D[m(X))) + 025
where V is the estimated variance of & as defined in Definition 2.

Theorem (2) facilitates the measurement of precision of ¢ as well as the inference on hy-
potheses about ¢. For instance, getting interval estimates using the estimated covariance
matrix of 4, V.

Moreover, consider testing restrictions of H, : 6 = 6. Tests of this hypothesis can be

based on the Wald type W statistic
W= (6-8)V'(s-6) (3)

which will have a limiting x? distribution.

As a practical application, since we do not require the density f (x) to vanish, our
method can be used to test for linearity or stability by dividing the data into different
regions and calculating the ADE of each region and testing for equality like a Chow test
using (3).

3.2 Small Sample Results

We will now study the small sample properties of our estimator and compare it with
the Hardle Stoker Estimator. We do so by using Monte Carlo simulations on a model

satisfying the assumptions listed before.



Model

We study a univariate model as described below,

m(z) = 1—x+2?
u ~ N(0,07)
X ~ U,1]

Therefore, for this model:

and

Var{D [m(x)]} + o5~ = é + 1202

u

Let us describe the algorithm for computing our estimate.
Algorithim
Step(0) Generate {(X:,Y;)}., from the model.

Step(1) Choose the size of the bin such that it satisfies A(4).

Step(2) Divide the domain into k parts as described before.

Step(3) Compute the Least Square Estimate, ﬁ; with at least 3 observations in each bin,
H,. Compute the ratio #0{X,c H,}/T = w,. Multiply and get 3, w,.

Step(4) Add Brwr over all bins, H, and get the estimate ¢.

Choice of Bin Size.

As observed before the size of the bin is inversely proportional to the number of partitions.

We will use

We describe here an adhoc method of choosing h from the data size (7).
A(4) and the “definition of limit” to choose our bin width. We have,

log (T)

ﬁh—>0and——>OaST—>oo.

Th



implies given € > 0,3 T st. for T >T va —— U ¢, and from these two

inequalities we have

los(M) o <

Te VT

From this we fix h as follows. Taking equalities on both sides, we have

log(T") €
Te T
log(T)"/?

T1/4 €

so we get
log(T)"/?

h = T3/4

SO

| [ 7vT

log(T )J

Simulations and Descriptive Statistics.

We generate s (= 1000) datasets of size T (= 50,200, 400) from the model we consider.
Then with these data sets we estimate 6 with the method described before and get the
estimated value of § (87). We will denote by 67(i) as the estimated value of 6 of the
i simulation (i.e. with the i dataset). With these 67(i) we calculate the following
summary descriptive statistics, to show how the estimator behaves. We shall now give a

brief description of the summary statistics.

Mean of 6(i)'s = ET == 3" 80 (3)
=1
~ ~ 125 ~ =
Variance of 6r(i)'s = V(ér) == (6r(i) — 67)
s

~ ~ 1
MSE of 6T(i)/8 = MSE((ST) = ;

Further more we will look at the estimate of the Pr(—%\/VqL 6 [ ST O 73?\/7 + 6),
where V = Var (D [m(X)]) + 02/0o%. This is a natural statistic to look at, since by the

Theorem in the previous section we know that

3 ~ 3
Pr(—=—=VV +6 1 6p [] ==
I‘( T ﬁ

VT

=
T

V480 85 0 —=T 4 6)

VT

VIV +6) W o(-



for large T'.

So we can look at the following estimate of the above probability as

3

18 -
== I(——=VV +6 U0 6p(i) U V +0)
i=1

3
VT VT
This probability gives us an estimate of how accurately our 57 estimates § in small samples.

Results

In the model described before, we vary the error variance (02 = 1,4,9), so as the dis-

turbance of the error increases we expect to see a larger variation about the mean of the
estimates ET and the actual § (6 = 0 in this model). The results are tabulated in Table 1.
We see as expected with the decrease of sample size the variation increases. The closeness
of V(é7) and MSE(67) tells us that our 67’s are close to the actual, with increasing o2

and sample size T

[Tablel]

3.3 Comparisons with Hardle-Stoker Method

The Hérdle-Stoker method (1989) uses the indirect estimate
~ 1 E ljf X
S = = Z y tAh_(t)
= Jn(x)

where [ (x;) and D fy (x;) are the kernel density estimates with a bandwidth A. It has
been shown in (Hardle-Stoker 1989) that under some assumptions

VT (85— 6) R N (0,Var (D [m (X)) +02E (L(X))?) (4)

when the error term u is uncorrelated with X. In his article, Stoker (1991b), defines the

?direct” estimator of 6 defined as

-~

= 3 DIl () > b)

where m (x;) is the (Nadaraya-Watson) kernel regression estimator of m (x) , is asymp-

totically eqivalent to the indirect estimator ghs. He also finds under similar conditions of

10



the H-S estimator, \/T(Sd — 6) has the same asymptotic distribution as in (4). Given
this we shall compare only the ghs estimator with our proposed 5.
Comparing the asymptotic variances of the ghs or Sd (4) and the asymptotic variance

of & (Theorem 1), we see that by Rao-Cramer inequality,
Var (D [m(X)]) + 02E (£(X))* > Var (D [m (X)]) + 023"

But does this implies that 5 is asymptotically more efficient than Shs or Sd ? The answer
to that question is not necessarily so, since assumption (A1) used to derive the asumptotic
violates the assumption of smoothness of f needed for the asymptotic normality of Hardle-
Stoker A.D.E 2. Also H-S assumptions on f violates assumption A1, since we need the
assumption of compact support of f for asymptotic normality of 5.. Hence they can only
be compared through simulation methods.

We use the same model as in (4) 3. To compute the H-S estimator bandwidth of the
Kernel, h is taken to be T-%7, the optimal bandwidth obtained by minimising the MSE
(Hérdle, Hart, Marron and Tsybakov (1991)). We use the Gaussian Kernel to compute
the density.

[T'able2]

Generally as expected our proposed A.D.E § out performs &y, in this simulation, the
reason being that model violates the condition for asymptotic normality of &,. So our

estimator complements the H-S estimator.

4 Conclusion

The paper proposes an alternative method of estimating the Average Derivative Estimate
(A.D.E). We propose the method of averaging the local OLS slopes to estimate the A.D.E.
We prove the asymptotic normality of our A.D.E under some regularity assumptions.

These assumptions are similar but not same as the assumptions under which Hardle-Stoker

2Assumption 1, f (z) = 0, at the boundary of the support and.assumption 5 all derivatives of f () of

order I + 2, exists. (Hérdle-Stoker, 1989)
3Notice that the assumption that X ~ U (0, 1) violates the assumption of smoothness of f needed for

the asymptotic normality of Hardle-Stoker A.D.E.
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(H-S) proved the (asymptotic) normality of their A.D.E. Stoker (1991b) also defines a
”direct” estimator of 6, and shows the assymptotic equivalence of the direct and the H-
S estimator. The H-S estimator requires some smoothness conditions on the density of
explanatory variable f (x). Our method we do not require such assumptions but we need
f (x) to have compact support. It might be worthwhile to point out that by not requiring
the density f (x) to vanish, our method can be used to test for linearity or stability by
dividing the data into different regions and calculating the ADE of each region and testing
for equality like a Chow test.

The method described, is applied to a model with single regressor, assuming the
density of x to be uniform. We simulate and compare the small sample results of H-S
estimator with our estimator using various measures of performance. The results also
indicate that our estimator performs better than H-S estimator under the given situation
where asymptotic conditions of the Hardle Stoker method is not strictly applicable. Our
method thus complements the H-S method.

12
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Tables

Table 1: Simulation results:

T=400| 6r |V(ép) |MSE®Ss) | Pr
JZ = 0.0322 | 0.0853 | 0.08643 | 0.99
o2 = -0.1044 | 0.2032 0.2141 0.98
JZ = -0.0984 | 0.4790 0.4887 0.98
=20 6, |vEn|mseGcy]| P
JZ = 0.0127 | 0.1909 0.1911 0.98
o2 = 0.0119 | 0.4327 0.4329 0.98
JZ = -0.0845 | 0.7585 0.7657 0.99
T=50] or |VGr)|MSEGH]| P
g =11 0.0183 | 0.6835 0.6838 0.97
02 =41-0.0712 | 1.8086 1.8137 0.97
i =91 0.1628 | 3.5835 3.6101 0.99
Table 2: Comparison with Hardle-Stoker method
T=100| b 5 | MSEG) | MSE®)
3 =1 -1.128 | 0.0575 3.8334 0.2003
o2 =4 | 1.6077 |-0.0328 2.6459 0.6492
i =9 |-0.1951]-0.1951 4.2662 1.4613
where
R - 100
Mean of 6ps(i)'s = Ops = 100 2 Z (5hs
. N 100
MSE of 6ns(i)'s = MSE(6ps) = 0 > (5h5( ) —6)?
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Appendix.

Lemma 1 Under the assumptions, we have asT — oo,

1 T
1) sup T —Z xx, ] {x¢ € H,} — prpy £
1<r<k jj t=1
T &
2) sup 1777 —Z J{x, € H} —popy|| 50
1<r<k jj t=1
1 &
3) sup T77 ||= Y xpul {x
1I<r<k jjtzl
1 &
4) sup T77 ="
1I<r<k jjtzl
1 &
5 sup T77 ||=> I{x; € H}—p, £
1<r<k jjt:

where

=] FO)dx, =B (x) and py = E (xix))
H,

Proof of Lemma 1: Observe that, if M,, (1 (I r [] k) are a collection of independent
random variables then,
k
prf sup M > <} =1~ L0~ Pr (M > )
I<r<k r=1
SO

Pr{ sup ||M,|| >8} —0

1<r<k

k
if [ (1—Pr(|M.|>¢)—1

r=1

k
if S Pr(|M,|| > &) — 0

r=1

k
if Y E|M,|>—0 (using Chebyshev’s inequality) (5)

r=1

’:[‘hus7 if fo:l E ||]-\/J:T'||2 - 07 then SUP1<r<k ||MT|| i 0.

16



1) Let M, = T3+ 57 (X I {x¢ € H,} — prpsy), 8

2

E M, | \/_EH Z xexiI {x¢ € Hy} — prisy)
t=1

2 2

1 1 &
N ﬁﬁE t(I{x: € H.} —p,)| +E|pr <T2xtxé—u2>
t=1
1 ? 1 ?
VT |k s € 1 - )| 408 pr(fgxtx;—u?)

2 2
1

T (3 I 1€ 21} =) 4928 (33— )
t=1

( (since x;’s are bounded \
\ and E (x;x;) = py }

I E(I{x, € H}—p,)?
:ﬁ%Cmst[ i Yo B (I {x }—pr)
[ +Zt<t’:1E|I{Xt € Hr}_pr’Eu{xt € Hr} _pr| J

. 2
0 ﬁ%C’onstE (Z |I{x, € H,} _pr|>
t=1

(since x;’s are independent)

1
= ﬁﬁConst {Tpr (1—p)+ (g) (2pr (1 — pr))ﬂ
+ pT\/_h]

- Const. N
[ﬂ

Therefore summing over r we get

k
ST E||M, || < Const

1
= ' [\/T
Hence as T' — oo, the expression above goes to zero since VTh — 0.

The proofs of 2) 3) 4) and 5) are similar to 1).

+\/Th] .

Lemma 2 Assume A(2) and A(4), if T, > p then ,
Br = D[m(x,)] + RV + 6,
where,

sup Rgl) £, (T*%)
10rk
T
and 0, = [SI7'> (x,— %) I {x;, € H}u,.

t=1

17



Proof of Lemma 2: We have

Br = [S;]il Z it,ryt - [S;]il Z )th,rm(xt) + 97"7

tely telr

where x;, = (x¢ — %) [ {x¢ € H,} and I, = {t : x, € H,}.
Take a Taylor series expansion around X, of m(x;), for those x; ’s which are in H,.
_ - _ 1_ _
m(x:) = m(X) +X;,.D [m(%;)] + EXQ,TDQ [m(&e)] Xt

for some &, between x; and x,.. Therefore

8571 3 %i,mlx,) = Dm(%,)] + RY

tel,
where 3 o i
RL — 1|_SJ/T Yien Xt Xy, D7 [m(€er)] Xer
T T2 sy I E0)
and
S, = Z it 'f‘i't T
tcl,

using the previous lemmas. Taking the norm

Note that by lemma (1), we have

1
—Sr

T a:_P)pr (IJ’2_I‘I’%) :prz

therefore
1
tr <?S;> L petr (2)

combining we get

S’ /T p X%
(

tr(St/T)  tr(2)

] ] o

18



Also

|Srer, %eaXp, D2 [mlE,)] e,
tr (ST)

0 Zte]r ||)~(t,7‘|| it,rDQ [m(gtr)] it,r

et 1Xerll Xt Ko
tr (ST)
> tel,
O VTh
VT tr (ST)

=0 (VTh)

Hence Rﬁl) Lo (ﬁ) since by assumption ﬁh — 0.

Lemma 3 We have for a giwen p,

Zw Dim(x)I{T, > p} = ZD +R® + RO

where R(Z) RG ) £ =0 <T‘5) .
Proof of Lemma 3: Let us define

Zwr m(x,)|I{T, > p} — ZwT m(x) ] I{T, >0}

Zwr m(x,)|I{T. >O}——ZD (x¢)]

then
k(T)

Zwr m(5)] I{T, > p} = = ZD )]+ R® + RO

We shall now show R®, R®) L (T_Jf)

HR<2>H — Zw,,, I T, > py — H{T, > 0})H
<) I{p>1T, > O}H
UJ M1 Zwr
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where M is the upper bound for D[m(x,)]. Since the random variabley_*_

T, > 0} is positive we have to show that

E(iwrl{pZT»O}) —

r=1

therefore

E(iwwmzﬂ>m):iEwumzﬂ>m>

r=1 r=1

1 1 kE p . .
== E(LIp>T>00) == 3> il (1—pr)

r=1 r=1j=1

1 k p T

r=1 =1 )

Since Y-0_; jpi ' (1 — p,)" Jis bounded we have
k
E (Z w,I{p>T, > 0}> =0 (T—l)
r=1

hence HR(Q)H =o(T™)

Now let us consider

S

W@Wﬂiw (ST > 0} 53 Dl

{D )] —=—)_ D[m \]T 0

\ [m( ZEXI: } {T > 0}

0 Zwr ?XI: (D[m(x,)] — D[m(x:)))|| I{T > 0}

DzwjzyW[@meﬁxmuﬂ>m
(s )
=0 X w3 - %)
5T )

~0 (Zl wTh> — O(h) (Since iwr ~ 1)

r=1

then HR(3) H =0 (T*'é) since by assumption h = o (T*'é).

20
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Lemma 4 Under the assumptions, we have

-t qu

1<r<k

where

T

=[S Y (% — =) I {x¢ € H,} uy

t=1
1 T
and Swu :?z:: Xt—Xt
Proof of Lemma 4: We have,
0. =[S} S5,

v L
Xt rX o —_— Xt,rut

gttt nE

where

)Nit,r = (Xt —X_t)]{Xt € HT}

This can be written as .

1 111 Z

_S;} I Z X¢,rUt

w’f‘
we have from previous lemmas
T

?x £ p.% and w, £ p,

by assumption as p, > 0, for all » and ¥ is positive semi-definite, we have

oy _1
—s;} P, 5171 miformly (6)
w’l"

also notice that

2

1 1L 1 E
ﬁﬁE H? > xeud {x¢ € H,} — ?Z XUt Pr

:ﬁ% <Z||xt|||l{xt€H} pr|ut)2

ST B {xe € HY —p,)” E(u}]xe)]

1
d \/TﬁConst .
+ Y cva B {xt € Hr} —pr| E|I{x¢ € Hr} — pr| E (Jusup || x¢)]
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following similar steps in the proof of lemma (1)

2

1 T
ﬁﬁE H thutf {x; € H} — Z Xt Ut Pr
T3

t=1

= <\/—pr+pq~\/_h>

since E (u?|x;) and E (|uuy||x;) are bounded. Therefore
2

:O<%+ﬁh>

\/—th (I {x; € H,} = p,)uy

Using the same techniques as in lemma 1, we proof that

T
sup thutf {x, € H,} — Py Z x| 2 0
1<r<k t:1
we can proof similarly for
d P
sup ZXtI{XtEH} P th =0
1<r<k | T} T3

Therefore

P
sup ||Sr, — Szl — 0
1<r<k

Combining with (6) we get the result.
Lemma 5 Under the assumptions,
ﬁzkj w0, {T, > p} % N (0,02571).
r=1
Proof of Lemma 5: Using the previous lemma we can show that
VTO,I{T, > pt £ VTS18, I{T, > p} + VTRW,

where supq R,(fl) £, (T_'é) . After multiplying and both sides by w/.s and summing

across all the bins we have

k k k
VTS w,0.1{p >T,} EVTS 'S0 Y w, J{T, > p} + VT S w,J{T, > p}RY.
r=1 r=1 r=1
We can easily show that ’Zle w, I{T, > p} — 1‘ L0, and since

sup R£,4)
1070k

H{T, > p}RW| O
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We have Hzlle w, I{T, > p}Rsfl)H )

Observe that by central limit theorem and as @ L0 we have,

VTS = == 3 (30 — ) e — VT (K5 — ) T

VT &5
2N (O, 202)
Therefore
VIS8 2N (0,5767%).
giving us

k
VTS w,0,I{T, >p} & N (0,0257).

r=1
Proof of Theorem 1: From lemma (2) we can write
k
VS = VTS w117, >
= TZw (Dm(x)] + BRW) {T, >p}+ﬁZwI{T > p}o,
r=1

where supy ., RV = o (T 2) (since by assumption VTh — 0).Therefore >F_; w, RIVI{T, >

p} =0 (T—z) . Further using lemma 3 we can write
T
TZwr I I{T. > p} 5—2 +VTR® +/TR®).
VT 5
S (\/TR(Z), VTR® >k w,ROI{T, > p}) Lo ( ) ,we have

\/_Zw,ﬂrl{T >p \/—ZD m(x;)] + ﬁiw,«I{Tr > pl}o,.

Using central limit theorem we show that

IS}

T
= Dlm(x)) £ N (0.Var (D m ()
and by lemma (5) we have
ﬁéwrerl{ﬂ >p} 2 N (0,0227").
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Since ¢, w,0,.I{T, > p}and 7152?:1D[m(xt)] are uncorrelated by assumption, we
prove that

k
VTS wiB I{T: > p} 2 N (0.Var (D m (x)) +075"")

Proof of Theorem 2: We shall use lemma (2) and the fact that  — x2’ is continuous

mapping, to show that

k!

8,5, £ Dm(x)| D [n(x)] + 6.6,
Then we use the proof of lemma (3) and the fact D [m(x,)] D [m(x;,)] is differentiable to

get
k T k
S wn B BT, > p £ 3 D m(x)] D [mlx,)]' + 3 w,6,0,1{T; > p)
r=1 t=1 r=1
By weak law of large numbers we have,
1 & /P /
= 2. D[m(x))] Dm(x)] = E (D [m(x)] D [m(x)]')

t=1

As in lemma (4) we can show that

sup T
1<r<k

0.0, — 5SS, 7 S0,
and again by weak law of large numbers we have,
TSwuShy 2 02 as E (SpuShy,) = 025

implying

sup HTOTO;, - UiE_IH Lo
1<r<k

Therefore

k k
> we0,0.I{T, > p} L o2 w I{T, > p}

r=1 r=1

P 1.
= 2%~ since

k
S w, I{T, > pt £1

r=1
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From previous theorem we also know that

Hence
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