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A Method of Estimating the Average Derivative, the

multivariate case.

Anurag N Banerjee¤

Department of Economics

University of Southampton
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Abstract

The paper uses local linear regression to estimate the \direct" AverageDerivative

± = E (D [m (x)]) ; where m (x) is the regression function. The estimate of ± is the

weighted average of local slope estimates. We prove the asymptotic normality of the

estimate under conditions which are di®erent from the conditions used by HÄardle-

Stoker (H-S) (1989). Using Monte-Carlo simulation experiments we give some small

sample results comparing our estimator with the H-S estimator under our conditions

for asymptotic normality.

JEL codes: C13, C14, C15
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1 Introduction

Let (Yt;Xt), t = 1; : : : ; T be a multivariate sample from an unknown distribution F (y;x)

which is generated from the following model

Yt = m(Xt) + ut; t = 1; : : : ; T (1)

where m(x) is the unknown regression function, and the conditional expectation of ut

given Xt is zero, i.e. E(utjXt) = 0. We assume x is a l ¡ dimensional vector.1

Further, we assume that the regression function m(x) is di®erentiable. We de¯ne the

average slope or the average derivative (A.D) of the regression function m(x) as

± =
Z
D [m(x)] f(x)dx = E (D [m(x)]) (2)

where f(x) is the marginal density of X's and D [m(x)] is the ¯rst derivative of m. We

can argue that ± represents sensible "coe±cients" of changes in x. We can also show by

integrating by parts.

± = E (L (X)Y )

where L(X) = ¡D [f(X)] =f(X).
The primary interest for Average Derivative Estimation (A.D.E) comes from the Gen-

eral Index Model. where

m(x) = G(x0¯)

then E (D [m]) = E (dG=d(x0¯)) ¯ is proportional to ¯ 8 x: So ± = E [dG=d(x0¯)]¯ = °¯;
for some °; is proportional to ¯. We can equivalently replace ¯ by µ = ¯=°, by normalising

as m(x) = G(x
0
µ) st. E[dG=d(x

0
µ)] = 1. Thus it can be interpreted as units of change in

y to changes in x. HÄardle and Stoker (1989) gives an application of it with a \Collision

Data".

The use of A.D in the context of Partial Index Models is also useful. For this x is

partitioned as (x(1);x(2)) into a l ¡ l vector of x(1) and l of vector x(2), and partition

± analogously as (±1; ±2). average derivatives will measure the true coe±cient when the

regressions obeys a Partial Index Structure ( Newey and Stoker (1989) ) if

m(x) = G(x0(1)¯;x(2))

1Banerjee (1994) analyses the case of l = 1:
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then ±1 equals ¯1 up to a scale. With an estimator b±1 of ±1, we can extend the A.D.E

method to ¯tting a l+ 1 dimensional regression in the second stage, as Ĝ(x0(1)
b±1;x(2)). If

the model is multiple index form as

m(x) = G(x0(1)¯1;x
0
(2)¯2)

then ±2 is likewise proportional to ¯2 (namely E[dG=d(x0(2)¯2)]). Again the A.D.E method

is easily extended.

A.D.E's are also used in speci¯c measurement problems in economics. A primary ex-

ample by HÄardle, Hilderbrand and Jerison (1991) is on measuring the positive de¯niteness

of the aggregate income e®ects matrix for assessing the "Law of Demand".

The A.D.E is used to estimate the following matrix.

±jj0 = E

Ã
dE(YjYj0jx)

dx

!

where Yj = demand for the jth good and x = income level.

Further applications are suggested by the central role of derivatives in economic mod-

elling in form of marginal reactions and elasticities. Examples like pro¯t maximisation of

¯rms can be given. In this problem the ¯rm equate their marginal pro¯t derived from a

particular good to the price of that good. The average marginal reaction can be assessed

by the A.D estimate of the marginal pro¯t. One such example is given in Stoker (1992).

2 Method of Estimation.

Several methods have been suggested to estimate ±, the Average Derivative. HÄardle

and Stoker (1989) proposed an \indirect" estimate, b±hs which is the sample analog of

E [L(X)Y ]. This method estimates the covariance between L(X) and Y , using consistent
non-parametric estimators of f(X) and D [f (X)]. Stoker (1991b) de¯nes the \direct"

Average Derivative Estimate, the sample analog of E(D [m(X)]) as b±d using the average

of the consistant non-parametric estimator of D [m(X)] : Stoker also shows the asymptotic

equivalence of the \direct" and \indirect" estimators. The consistent estimates used in

the \direct" and \indirect" estimator are generally kernel estimators of the respective

functions. The estimator we are going to de¯ne, uses local linear regression as a method.
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We shall only assume some smoothness properties of the regression function and mo-

ment restrictions on the random variables which we state the next section. One important

di®erence in this method from the other methods is that there are no smoothness assump-

tions on the marginal density of X, i.e. f(x). We do assume that, the support of X is

the compact set S , without loss of generality it is assumed to be a subset of [0; 1]l. Unlike

the HÄardle and Stoker method, the Fisher's information L(X) may not exist. Therefore
the \indirect" estimator will not exist as well. For example suppose X is distributed

U [0; 1], then L(X) does not exist. This case will not be covered by the method proposed
by HÄardle and Stoker. On the other hand if X is distributed with a Normal density we

cannot use our method since we assume the domain of f (x) to be a compact interval.

Though in this case we can use the HÄardle and Stoker method. So comparisons of our

two methods in terms of the asymptotics cannot be made and our methods complement

the HÄardle and Stoker method.

Let us motivate our method when x is univariate. Without loss of generality, let S be

the interval [0; 1]: This interval is then partitioned, in equal intervals. We denote the

partition as P . Let the partition be 0 < t1 < t2 < : : : < tk¡1 < 1, we denote (tr; tr+1] as

Hr (Hr is called a bin ). These bins are of equal size (jHrj = h). In the bins, which have
at least 3 observations we linearly regress Yt on Xt, st. Xt 2 Hr. We denote the coe±cient
of the slope of the regression as ^̄r. This is a least squares estimate of the tangent of the

regression curve m(x), in the interval Hr.

We then take the an weighted average of the slopes in each of the bin Hr. The weights

are taken to be the average number of observations in the bin Hr.

Let us now generalise the idea when the dimension of x is l:

Assume without loss of generality, the interval [0; 1] is the domain of the marginal

density of Xi. We partition the domain, in equal intervals and denote the partition as Pi.

Let the partition be 0 < ti1 < ti2 < : : : < ti(ki¡1) < 1, we denote (t
n
r ; t

n
r+1] as Hri (Hri is

called a bin in the xthi dimension).These bins are of equal size (jHrij). The partition for
the whole of domain of f(x) is then P =P1 £ : : :£Pl where Hr = Hr1 £ : : :£Hrl is the
bin to be considered in this l¡ dimensional space. Notice the number of bins is now at
most k = k1 £ : : :£ kl: We shall only consider those bins such that Hr ½ S: Note that

when x is univariate then Hr ½ S for all r: The same is true if X 0
its are independent. The
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rest of the method is similar to the univariate case.

Suppose we have atleast p ¸ l+ 2 points in Hr, we linearly regress yt on xt as

yt = ®r + ¯
0
rxt , s:t Xt 2 Hr:

We denote the estimate coe±cient of the slope of the regression, ¯r as

^̄
r = [S

r
x]
¡1

TX

t=1

(xt ¡ ¹xr) I fxt 2 Hrg yt

where Srx =
TX

t=1

(xt ¡ ¹xr) (xt ¡ ¹xr)
T I fxt 2 Hrg

and ¹xr =
1

T

TX

t=1

xtI fxt 2 Hrg :

This is a least squares estimate of the tangent of the regression curve m(x), within the

interval Hr.

We then take the an weighted average of the slopes in each of the bin Hr . The weights

are taken to be the average number of observations in the bin Hr, denoted by

wr =
1

T

TX

t=1

Ifxt 2 Hrg:

where I is the indicator function.

De¯nition 1 We de¯ne our Average Derivative estimator as

±̂ =
kX

r=1

wr b̄
rIfTr ¸ pg

where Tr = wrT , the number of observations in the rth bin and k is the number of bins.

Note that in de¯nition (1), we assume that if there are insu±cient number of observa-

tions to regress, the observations in the bin contribute nothing to the Average Derivative

Estimate.

We will show, under some assumptions made later that asymptotically

p
T (±̂ ¡ ±) 'N

³
0; V arfm0(X)g + ¾2u§¡1

´
;

where ¾2u is the variance of ui's and § is the variance-covariance matrix of X.

We also show that the large sample variance V arfm0(X)g+¾2u§¡1 can be consistently
estimated by the following estimator.
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De¯nition 2 We de¯ne the estimated variance of ±̂ as

V̂ =
kX

r=1

wr ^̄r ^̄r
0
IfTr ¸ pg ¡ ±̂±̂ 0

3 Distributional properties and comparison with HÄardle-

Stoker Estimator.

3.1 Large Sample Results

We shall now prove some large sample results under the following assumptions

A1 The support of f(x) is the compact set S ½ [0; 1]l and f (x) is uniformly bounded

above by a constant C , for some C > 0.

A2 The second derivative of m(x),D2 [m] ; exists and bounded.

A3 The variance of ut is E(u2t jXt) = ¾2u, exists and is bounded.

A4 As T ¡! 1,
p
Th ¡! 0 and

log(T )

Th
¡! 0:

We will make some brief comments on the assumptions. The ¯rst assumption (A1) is

not a popular assumption is the non-parametric econometrics literature. This assumption

of f(x) > 0 is necessary to ensure that there is atleast p¡ observations in each bin to

perform the required regression (in large sample). However we also want the density to

be bounded above since we do not want to put too much weight on any particular ^̄r:

The smoothness assumption of the regression function (A2) is also necessary for the same

reason. Assumption three (A3) is a standard assumption for linear models. Finally the

last assumption (A4) ensures that the size of the bins shrinks at the rate of
p
T ; but

the size should not get too small too quickly (log(T)=T h ¡! 0) otherwise there will be

insu±cient number of observations in the bin to do a regression.

Theorem 1 Under the stated assumptions A(1) to A(4) we have the following

p
T

³
b± ¡ ±

´
D! N

³
0; V ar (D [m (X)]) + ¾2u§

¡1
´
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where b± is the A.D.E de¯ned in De¯nition 1.

The interesting thing to observe here is that if m(x) is linear (i.e. m(x) = ® + ¯ 0x)

then the asymptotic variance coincides with the asymptotic variance of the classical Least

Squares estimator of ¯. Note that in case ofm(x) being linear, ± = ¯. So in this particular

case we get a standard classical result. This implies that in the case of linearity we will

not lose e±ciency when compared to the Least Square Estimation method.

Theorem 2 Under the assumptions A(1) to A(4) we have the following

cV P! V ar (D [m (X)]) + ¾2u§
¡1

where cV is the estimated variance of b± as de¯ned in De¯nition 2.

Theorem (2) facilitates the measurement of precision of ±̂ as well as the inference on hy-

potheses about ±. For instance, getting interval estimates using the estimated covariance

matrix of b±; cV.

Moreover, consider testing restrictions of Ho : ± = ±0. Tests of this hypothesis can be

based on the Wald type W statistic

W =
³
b± ¡ ±o

0́ cV¡1
³

b± ¡ ±o
´

(3)

which will have a limiting Â2 distribution.

As a practical application, since we do not require the density f (x) to vanish, our

method can be used to test for linearity or stability by dividing the data into di®erent

regions and calculating the ADE of each region and testing for equality like a Chow test

using (3).

3.2 Small Sample Results

We will now study the small sample properties of our estimator and compare it with

the Hardle Stoker Estimator. We do so by using Monte Carlo simulations on a model

satisfying the assumptions listed before.
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Model

We study a univariate model as described below,

m(x) = 1 ¡ x+ x2

u » N (0; ¾2u)

X » U [0; 1]

Therefore, for this model:

± = 0

and

V arfD [m(x)]g + ¾2u§¡1 =
1

3
+ 12¾2u

Let us describe the algorithm for computing our estimate.

Algorithim

Step(0) Generate f(Xt; Yt)gTt=1 from the model.

Step(1) Choose the size of the bin such that it satis¯es A(4).

Step(2) Divide the domain into k parts as described before.

Step(3) Compute the Least Square Estimate, ^̄r with at least 3 observations in each bin,

Hr. Compute the ratio #0fXt2 Hrg=T = wr. Multiply and get ^̄rwr.

Step(4) Add ^̄rwr over all bins, Hr and get the estimate ±.

Choice of Bin Size.

As observed before the size of the bin is inversely proportional to the number of partitions.

We describe here an adhoc method of choosing h from the data size (T). We will use

A(4) and the \de¯nition of limit" to choose our bin width. We have,

p
Th ¡! 0 and

log(T)

Th
¡! 0 as T ¡! 1:
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implies given ² > 0 , 9 T st. for T ¸ T
p

Th � ², and from these two

inequalities we have
log(T)

T ²
� h � ²p

T

From this we ¯x h as follows. Taking equalities on both sides, we have

log(T)

T²
=

²p
T

log(T )1=2

T 1=4
= ²

so we get

h =
log(T )1=2

T 3=4

so

k =

2
64

vuut T
p
T

log(T)

3
75

Simulations and Descriptive Statistics.

We generate s (= 1000) datasets of size T (= 50; 200; 400) from the model we consider.

Then with these data sets we estimate ± with the method described before and get the

estimated value of ± (±̂T). We will denote by b±T (i) as the estimated value of ± of the

ith simulation (i.e. with the ith dataset). With these b±T (i) we calculate the following

summary descriptive statistics, to show how the estimator behaves. We shall now give a

brief description of the summary statistics.

Mean of b±T (i)0s = b±T =
1

s

sX

i=1

b±T (i)

Variance of b±T (i)0s = V (b±T ) =
1

s

sX

i=1

(b±T (i)¡ b±T )2

MSE of b±T (i)0s = MSE(b±T ) =
1

s

sX

i=1

(b±T(i) ¡ ±)2

Further more we will look at the estimate of the Pr(¡ 3p
T

p
V + ± � b±T � 3p

T

p
V + ±),

where V = V ar (D [m(X)]) + ¾2u=¾
2
x . This is a natural statistic to look at, since by the

Theorem in the previous section we know that

Pr(¡ 3p
T

p
V + ± � b±T � 3p

T

p
V + ±)

asy» ©(¡ 3p
T

p
V + ± � b±T � 3p

T

p
V + ±)
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for large T .

So we can look at the following estimate of the above probability as

cPr =
1

s

sX

i=1

I(¡ 3p
T

p
V + ± � b±T (i) � 3p

T

p
V + ±)

This probability gives us an estimate of how accurately our b±T estimates ± in small samples.

Results

In the model described before, we vary the error variance (¾2u = 1; 4; 9), so as the dis-

turbance of the error increases we expect to see a larger variation about the mean of the

estimates b±T and the actual ± (± = 0 in this model). The results are tabulated in Table 1.

We see as expected with the decrease of sample size the variation increases. The closeness

of V (b±T ) and MSE(b±T ) tells us that our b±T 's are close to the actual, with increasing ¾2u
and sample size T .

[Table1]

3.3 Comparisons with HÄardle-Stoker Method

The HÄardle-Stoker method (1989) uses the indirect estimate

b±hs =
1

T

TX

t=1

yt
dDfh (xt)
bfh (xt)

where bfh (xt) and dDfh (xt) are the kernel density estimates with a bandwidth h: It has

been shown in (HÄardle-Stoker 1989) that under some assumptions

p
T

³
b±hs ¡ ±

´ asy¼ N
³
0; V ar (D [m (X)]) + ¾2uE (L(X))2

´
(4)

when the error term u is uncorrelated with X: In his article, Stoker (1991b), de¯nes the

"direct" estimator of ± de¯ned as

b±d =
1

T

TX

t=1

D [cm (xt)] I
³

bfh (xt) > b
´

where cm (xt) is the (Nadaraya-Watson) kernel regression estimator of m (x) ; is asymp-

totically eqivalent to the indirect estimator b±hs: He also ¯nds under similar conditions of
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the H-S estimator,
p
T

³
b±d ¡ ±

´
has the same asymptotic distribution as in (4). Given

this we shall compare only the b±hs estimator with our proposed b±:

Comparing the asymptotic variances of the b±hs or b±d (4) and the asymptotic variance

of b± (Theorem 1), we see that by Rao-Cramer inequality,

V ar (D [m (X)]) + ¾2uE (L(X))2 > V ar (D [m (X)]) + ¾2u§¡1:

But does this implies that b± is asymptotically more e±cient than b±hs or b±d ? The answer

to that question is not necessarily so, since assumption (A1) used to derive the asumptotic

violates the assumption of smoothness of f needed for the asymptotic normality of HÄardle-

Stoker A.D.E 2. Also H-S assumptions on f violates assumption A1, since we need the

assumption of compact support of f for asymptotic normality of b±:. Hence they can only

be compared through simulation methods.

We use the same model as in (4) 3. To compute the H-S estimator bandwidth of the

Kernel, h is taken to be T¡2=7, the optimal bandwidth obtained by minimising the MSE

(HÄardle, Hart, Marron and Tsybakov (1991)). We use the Gaussian Kernel to compute

the density.

[Table2]

Generally as expected our proposed A.D.E b± out performs b±hs in this simulation, the

reason being that model violates the condition for asymptotic normality of b±hs: So our

estimator complements the H-S estimator.

4 Conclusion

The paper proposes an alternative method of estimating the Average Derivative Estimate

(A.D.E). We propose the method of averaging the local OLS slopes to estimate the A.D.E.

We prove the asymptotic normality of our A.D.E under some regularity assumptions.

These assumptions are similar but not same as the assumptions under which HÄardle-Stoker

2Assumption 1, f (x) = 0; at the boundary of the support and.assumption 5 all derivatives of f (x) of

order l + 2; exists. (HÄardle-Stoker, 1989)
3Notice that the assumption that X » U (0; 1) violates the assumption of smoothness of f needed for

the asymptotic normality of HÄardle-Stoker A.D.E.

11



(H-S) proved the (asymptotic) normality of their A.D.E. Stoker (1991b) also de¯nes a

"direct" estimator of ±; and shows the assymptotic equivalence of the direct and the H-

S estimator. The H-S estimator requires some smoothness conditions on the density of

explanatory variable f (x) : Our method we do not require such assumptions but we need

f (x) to have compact support. It might be worthwhile to point out that by not requiring

the density f (x) to vanish, our method can be used to test for linearity or stability by

dividing the data into di®erent regions and calculating the ADE of each region and testing

for equality like a Chow test.

The method described, is applied to a model with single regressor, assuming the

density of x to be uniform. We simulate and compare the small sample results of H-S

estimator with our estimator using various measures of performance. The results also

indicate that our estimator performs better than H-S estimator under the given situation

where asymptotic conditions of the HÄardle Stoker method is not strictly applicable. Our

method thus complements the H-S method.
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Tables

Table 1: Simulation results:

T = 400 b±T V (b±T) MSE(b±T) cPr

¾2u = 1 0.0322 0.0853 0.08643 0.99

¾2u = 4 -0.1044 0.2032 0.2141 0.98

¾2u = 9 -0.0984 0.4790 0.4887 0.98

T = 200 b±T V (b±T) MSE(b±T) cPr

¾2u = 1 0.0127 0.1909 0.1911 0.98

¾2u = 4 0.0119 0.4327 0.4329 0.98

¾2u = 9 -0.0845 0.7585 0.7657 0.99

T = 50 b±T V (b±T ) MSE(b±T ) P̂

¾2u = 1 0.0183 0.6835 0.6838 0.97

¾2u = 4 -0.0712 1.8086 1.8137 0.97

¾2u = 9 0.1628 3.5835 3.6101 0.99

Table 2: Comparison with HÄardle-Stoker method

T = 100 b±hs b± MSE(b±hs) MSE(±̂)

¾2u = 1 -1.128 0.0575 3.8334 0.2003

¾2u = 4 1.6077 -0.0328 2.6459 0.6492

¾2u = 9 -0.1951 -0.1951 4.2662 1.4613

where

Mean of b±hs(i)0s = b±hs =
1

100

100X

i=1

b±hs(i)

MSE of b±hs(i)0s = MSE(b±hs) =
1

100

100X

i=1

(b±hs(i) ¡ ±)2
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Appendix.

Lemma 1 Under the assumptions, we have as T ! 1;

1) sup
1<r<k

T ¡
1
4

°°°°°
1

T

TX

t=1

xtx
0
tI fxt 2 Hrg ¡ pr¹2

°°°°°
P! 0

2) sup
1<r<k

T ¡
1
4

°°°°°
1

T

TX

t=1

xtI fxt 2 Hrg ¡ pr¹1

°°°°°
P! 0

3) sup
1<r<k

T ¡
1
4

°°°°°
1

T

TX

t=1

xtutI fxt 2 Hrg
°°°°°
P! 0

4) sup
1<r<k

T ¡
1
4

°°°°°
1

T

TX

t=1

utI fxt 2 Hrg
°°°°°
P! 0

5) sup
1<r<k

T ¡
1
4

°°°°°
1

T

TX

t=1

I fxt 2 Hrg ¡ pr
°°°°°
P! 0

where

pr =
Z

Hr
f (x) dx; ¹1 = E (xt) and ¹2 = E (xtx

0
t) :

Proof of Lemma 1: Observe that, if Mr; (1 � r � k) are a collection of independent

random variables then,

Pr

(
sup
1<r<k

kMrk > "
)
= 1¡

kY

r=1

(1¡ Pr (kMrk > "))

so

Pr

(
sup
1<r<k

kMrk > "
)

! 0

iif
kY

r=1

(1¡ Pr (kMrk > ")) ! 1

iif
kX

r=1

Pr (kMrk > ")! 0

if
kX

r=1

E kMrk2 ! 0 (using Chebyshev's inequality) (5)

Thus, if
Pk
r=1E kMrk2 ! 0; then sup1<r<k kMrk P! 0:
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1) LetMr = T¡
1
4 1
T

PT
t=1 (xtx

0
tI fxt 2 Hrg ¡ pr¹2) ; so

E kMrk2 =
p
TE

°°°°°
1

T

TX

t=1

(xtx
0
tI fxt 2 Hrg ¡ pr¹2)

°°°°°

2

�
p
T
1

T 2
E

°°°°°

TX

t=1

xtx
0
t (I fxt 2 Hrg ¡ pr)

°°°°°

2

+ E

°°°°°pr

Ã
1

T

TX

t=1

xtx
0
t ¡ ¹2

!°°°°°

2

�
p
T
1

T 2
E

°°°°°

TX

t=1

xtx
0
t (I fxt 2 Hrg ¡ pr)

°°°°°

2

+ p2rE

°°°°°pr

Ã
1

T

TX

t=1

xtx
0
t ¡ ¹2

!°°°°°

2

�
p
T
1

T 2
E

Ã
TX

t=1

kxtx0tk jI fxt 2 Hrg ¡ prj
!2
+ p2rE

°°°°°

Ã
1

T

TX

t=1

xtx0t ¡ ¹2

!°°°°°

2

�
p
T
1

T 2
ConstE

Ã
TX

t=1

jI fxt 2 Hrg ¡ prj
!2

0
B@
(since xt's are bounded

and E (xtx
0
t) = ¹2

1
CA

=
p
T
1

T 2
Const

2
64

PT
t=1E (I fxt 2 Hrg ¡ pr)2

+
PT
t<t0=1E jI fxt 2 Hrg ¡ prjE jI fxt 2 Hrg ¡ pr j

3
75

(since xt's are independent)

=
p
T
1

T 2
Const

h
T pr (1 ¡ pr) +

³
T
2

´
(2pr (1¡ pr))2

i

� Const:

"
1p
T
pr + pr

p
Th

#
:

Therefore summing over r we get

kX

r=1

E kMrk2 < Const:
"
1p
T
+

p
Th

#
:

Hence as T ! 1, the expression above goes to zero since
p
Th ! 0:

The proofs of 2) 3) 4) and 5) are similar to 1).

Lemma 2 Assume A(2) and A(4), if Tr ¸ p then ,

^̄
r =D [m( ¹xr)] +R

(1)
r + µr

where,

sup
1�r�k

R(1)r
P= o

³
T¡

1
2

´

and µr = [Srx]
¡1

TX

t=1

(xt ¡ ¹xr) I fxt 2 Hrgut:
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Proof of Lemma 2: We have

^̄
r = [S

r
x]
¡1 X

t2Ir
ext;ryt = [Srx]

¡1 X

t2Ir
ext;rm(xt) + µr;

where ext;r = (xt ¡ ¹xr)I fxt 2 Hrg and Ir = ft : xt 2 Hrg :

Take a Taylor series expansion around ¹xr of m(xt); for those xt 's which are in Hr:

m(xt) = m( ¹xr) + ex0t;rD [m( ¹xr)] +
1

2
ex0t;rD

2 [m(»tr)] ext;r

for some »tr between xt and ¹xr: Therefore

[Srx]
¡1 X

t2Ir
ext;rm(xt) = D [m( ¹xr)] + R(1)r

where

R(1)r =
1

2

"
Srx=T

tr (Srx=T)

#¡1 P
t2Ir ext;rexTt;rD

2 [m(»tr)] ext;r
tr (Srx)

and

Srx =
X

t2Ir
ext;r ex0t;r

using the previous lemmas. Taking the norm

Note that by lemma (1), we have

1

T
Srx

P! pr
³
¹2 ¡ ¹21

´
= pr§

therefore

tr
µ 1
T
Srx

¶
P! prtr (§)

combining we get

Srx=T

tr (Srx=T)
P! §

tr (§)
"
Srx=T

tr (Srx=T )

#¡1
P!

"
§

tr (§)

#¡1
P= O (1)
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Also
°°°
P
t2Ir ext;rex0t;rD

2 [m(»tr)] ext;r
°°°

tr (Srx)

�
P
t2Ir kext;rk

°°°ex0t;rD
2 [m(»tr)] ext;r

°°°

tr (Srx)

�
P
t2Ir kext;rk

°°°ex0t;rext;r
°°°

tr (Srx)
Const

�
p
Th

P
t2Ir

°°°ex0t;rext;r
°°°

tr (Srx)
Const

= O
³p
T h

´

Hence R(1)r
P= o

³p
T

´
since by assumption

p
Th! 0:

Lemma 3 We have for a given p;

kX

r=1

wrD[m( ¹xr)]IfTr > pg =
1

T

TX

t=1

D[m(xt)] +R
(2) + R(3)

where R(2); R(3)
P
= o

³
T¡

1
2

´
:

Proof of Lemma 3: Let us de¯ne

R(2) =
kX

r=1

wrD[m( ¹xr)]IfTr > pg ¡
kX

r=1

wrD[m( ¹xr)]IfTr > 0g

R(3) =
kX

r=1

wrD[m( ¹xr)]IfTr > 0g ¡ 1

T

TX

t=1

D[m(xt)]

then
k(T)X

r=1

wrD[m( ¹xr)]IfTr > pg =
1

T

TX

t=1

D[m(xt)] + R
(2) +R(3)

We shall now show R(2); R(3)
P
= o

³
T ¡

1
2

´

°°°R(2)
°°° =

°°°°°

kX

r=1

wrD[m( ¹xr)] (IfTr > pg ¡ IfTr > 0g)
°°°°°

=

°°°°°

kX

r=1

wrD[m( ¹xr)]Ifp > Tr > 0g
°°°°°

� M1

°°°°°

kX

r=1

wrIfp > Tr > 0g
°°°°° ,
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where M1 is the upper bound for D[m( ¹xr)]: Since the random variable
Pk
r=1wrIfp >

Tr > 0g is positive we have to show that

E

Ã
kX

r=1

wrIfp ¸ Tr > 0g
!

! 0

therefore

E

Ã
kX

r=1

wrIfp ¸ Tr > 0g
!
=

kX

r=1

E (wrIfp ¸ Tr > 0g)

=
1

T

kX

r=1

E (TrIfp ¸ Tr > 0g) =
1

T

kX

r=1

pX

j=1

jpjr (1¡ pr)T¡j

=
1

T

kX

r=1

pr

8
<
:

pX

j=1

jpj¡1r (1 ¡ pr)T¡j
9
=
;

Since
Pp
j=1 jp

j¡1
r (1 ¡ pr)T¡jis bounded we have

E

Ã
kX

r=1

wrIfp > Tr > 0g
!
= O

³
T¡1

´

hence
°°°R(2)

°°° = o (T¡1)

Now let us consider

°°°R(3)
°°° =

°°°°°

kX

r=1

wrD[m( ¹xr)]IfTr > 0g ¡ 1

T

TX

t=1

D[m(xt)]

°°°°°

�
°°°°°°

kX

r=1

wr

0
@D[m( ¹xr)]¡

1

Tr

X

i2Ir
D[m(xt)]

1
A IfTr > 0g

°°°°°°

�
kX

r=1

wr

°°°°°°
1

Tr

X

i2Ir
(D[m( ¹xr)]¡D[m(xt)])

°°°°°°
IfTr > 0g

�
kX

r=1

wr
1

Tr

X

i2Ir

°°°D2
h
m(» 0t;r)

i°°° kxt ¡ ¹xr)k IfTr > 0g

= O

0
@

kX

r=1

wr
1

Tr

X

i2Ir
kxt ¡ ¹xr)k

1
A

= O

Ã
kX

r=1

wrh

!
= O (h) (Since

kX

r=1

wr = 1)

then
°°°R(3)

°°° = o
³
T¡

1
2

´
since by assumption h = o

³
T¡

1
2

´
.
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Lemma 4 Under the assumptions, we have

sup
1<r<k

p
T

°°°µr ¡ §¡1Sxu
°°° P! 0

where

µr = [S
r
x]
¡1

TX

t=1

(xt ¡ xt) I fxt 2 Hrg ut

and Sxu =
1

T

TX

t=1

(xt ¡ xt) ut:

Proof of Lemma 4: We have,

µr = [S
r
x]
¡1 Srxu

=

2
4 1
Tr

X

t2Ir
ext;rexTt;r

3
5
¡1
1

Tr

TX

t=1

ext;rut

where

ext;r = (xt ¡xt)I fxt 2 Hrg

This can be written as �
1

wr
Srx

¸¡1 1
wr

1

T

TX

t=1

ext;rut

we have from previous lemmas

Srx
T

P= pr§ and wr
P= pr

by assumption as pr > 0; for all r and § is positive semi-de¯nite, we have

�
1

wr
Srx

¸¡1
P! §¡1; uniformly (6)

also notice that

p
T
1

T 2
E

°°°°°
1

T

TX

t=1

xtutI fxt 2 Hrg ¡ 1

T

TX

t=1

xtutpr

°°°°°

2

=
p
T
1

T 2
E

Ã
TX

t=1

kxtk jI fxt 2 Hrg ¡ prjut
!2

�
p
T
1

T 2
Const

2
64

PT
t=1

h
E (I fxt 2 Hrg ¡ pr)2E (u2t jxt)

i

+
PT
t<t0=1E [jI fxt 2 Hrg ¡ prjE jI fxt 2 Hrg ¡ pr jE (jutut0 jjxt)]

3
75
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following similar steps in the proof of lemma (1)

p
T
1

T 2
E

°°°°°
1

T

TX

t=1

xtutI fxt 2 Hrg ¡ 1

T

TX

t=1

xtutpr

°°°°°

2

= O

Ã
1p
T
pr + pr

p
Th

!

since E (u2t jxt) and E (jutut0 jjxt) are bounded. Therefore

1p
T

kX

r=1

E

°°°°°
1p
T

TX

t=1

xt (I fxt 2 Hrg ¡ pr)ut
°°°°°

2

= O

Ã
1p
T
+

p
Th

!

Using the same techniques as in lemma 1, we proof that

sup
1<r<k

°°°°°
1

T

TX

t=1

xtutI fxt 2 Hrg ¡ pr
1

T

TX

t=1

xtut

°°°°°
P! 0

we can proof similarly for

sup
1<r<k

°°°°°
1

T

TX

t=1

xtI fxt 2 Hrg ¡ pr
1

T

TX

t=1

xt

°°°°°
P! 0

Therefore

sup
1<r<k

kSrxu ¡ Sxuk P! 0

Combining with (6) we get the result.

Lemma 5 Under the assumptions,

p
T

kX

r=1

wrµrIfTr > pg D! N
³
0; ¾2u§

¡1
´
:

Proof of Lemma 5: Using the previous lemma we can show that

p
TµrIfTr > pg P=

p
T§¡1SxuIfTr > pg+

p
TR(4)r ;

where sup1�r�k R
(4)
r

P
= o

³
T¡

1
2

´
: After multiplying and both sides by w0rs and summing

across all the bins we have

p
T

kX

r=1

wrµrIfp > Trg P
=

p
T§¡1Sxu

kX

r=1

wrIfTr > pg +
p
T

kX

r=1

wrIfTr > pgR(4)r :

We can easily show that
¯̄
¯
Pk
r=1wrIfTr > pg ¡ 1

¯̄
¯ P! 0; and since

°°°°°

kX

r=1

wrIfTr > pgR(4)r
°°°°° �

°°°°° sup1�r�k
R(4)r

°°°°°
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We have
°°°
Pk
r=1wrIfTr > pgR(4)r

°°° P! 0:

Observe that by central limit theorem and as u P! 0 we have,

p
TSxu =

1p
T

TX

t=1

(xt ¡ ¹1) ut ¡
p
T (xt ¡ ¹1) u

D= N
³
0;§¾2

´
:

Therefore
p
T§¡1Sxu

D= N
³
0;§¡1¾2

´
:

giving us
p
T

kX

r=1

wrµrIfTr > pg D! N
³
0; ¾2u§

¡1
´
:

Proof of Theorem 1: From lemma (2) we can write

p
T b± =

p
T

kX

r=1

wr b̄
rIfTr > pg

=
p
T

kX

r=1

wr
³
D [m( ¹xr)] + R

(1)
r

´
IfTr > pg+

p
T

kX

r=1

wrIfTr > pgµr

where sup1�r�kR
(1)
r

P
= o

³
T¡

1
2

´
(since by assumption

p
T h! 0):Therefore

Pk
r=1wrR

(1)
r IfTr >

pg P= o
³
T ¡

1
2

´
: Further using lemma 3 we can write

p
T

kX

r=1

wrD [m( ¹xr)] IfTr > pg P=
1p
T

TX

t=1

D[m(xt)] +
p
TR(2) +

p
TR(3):

As
³p
TR(2);

p
TR(3);

Pk
r=1wrR

(1)
r IfTr > pg

´
P
= o

³
T¡

1
2

´
;we have

p
T

kX

r=1

wr b̄
rIfTr > pg P

=
1p
T

TX

t=1

D[m(xt)] +
p
T

kX

r=1

wrIfTr > pgµr:

Using central limit theorem we show that

1p
T

TX

t=1

D[m(xt)]
D
= N (0; V ar (D [m (x)]))

and by lemma (5) we have

p
T

kX

r=1

wrµrIfTr > pg D! N
³
0; ¾2u§

¡1
´
:
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Since
Pk
r=1wrµrIfTr > pgand 1p

T

PT
t=1D[m(xt)] are uncorrelated by assumption, we

prove that

p
T

kX

r=1

wr b̄
rIfTr > pg

D! N
³
0;V ar (D [m (x)]) + ¾2u§

¡1´

Proof of Theorem 2: We shall use lemma (2) and the fact that x! xx0 is continuous

mapping, to show that

b̄
r
b̄ 0
r
P= D [m( ¹xr)]D [m( ¹xr)]

0 + µrµ
0
r:

Then we use the proof of lemma (3) and the fact D [m( ¹xr)]D [m( ¹xr)]
0 is di®erentiable to

get
kX

r=1

wr b̄
r
b̄ 0
rIfTr > pg P=

1

T

TX

t=1

D [m(xt)]D [m(xt)]
0 +

kX

r=1

wrµrµ
0
rIfTr > pg

By weak law of large numbers we have,

1

T

TX

t=1

D [m(xt)]D [m(xt)]
0 P! E

³
D [m(x)]D [m(x)]0

´

As in lemma (4) we can show that

sup
1<r<k

T
°°°µrµ0r ¡ §¡1SxuS 0xu§¡1

°°° P! 0;

and again by weak law of large numbers we have,

TSxuS
0
xu

P! ¾2u§ as E (SxuS
0
xu) = ¾

2
u§

implying

sup
1<r<k

°°°Tµrµ
0
r ¡ ¾2u§¡1

°°° P! 0

Therefore

kX

r=1

wrµrµ
0
rIfTr > pg

P
= ¾2u§

¡1
kX

r=1

wrIfTr > pg

P= ¾2u§
¡1 since

kX

r=1

wrIfTr > pg P
= 1
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From previous theorem we also know that

b±
P

! ± = E (D [m(x)])

Hence

cV P! V ar (D [m (x)]) + ¾2u§
¡1:
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