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Abstract

We study a simple dynamic model of social learning with local informational exter-
nalities. There is a large population of agents, who repeatedly have to choose one,
out of two, reversible actions, each of which is optimal in one, out of two, unknown
states of the world. Each agent chooses rationally, on the basis of private information
(s)he receives by a symmetric binary signal on the state, as well as the observation
of the action chosen among their nearest neighbours. Actions can be updated at
revision opportunities that agents receive in a random sequential order. Strategies
are stationary, in that they do not depend on time, nor on location.
We show that:
if agents receive equally informative signals, and observe both neighbours, then

the social learning process is not adequate and the process of actions converges ex-
ponentially fast to a con�guration where some agents are permanently wrong;
if agents are unequally informed, in that their signal is either fully informative

or fully uninformative (both with positive probability), and observe one neighbour,
then the social learning process is adequate and everybody will eventually choose the
action that is correct given the state. Convergence, however, obtains very slowly,
namely at rate

p
t:

We relate the �ndings with the literature on social learning and discuss the prop-
erty of e¢ ciency of the information transmission mechanism under local interaction.



1 Introduction

In many economic and social situations, we make our decisions after observing the
choices of others. We can learn from such choices, since they can reveal private
information that others hold. If there is uncertainty over which decision is more
pro�table, observing others can help us to form a more precise evaluation and make
a better choice. Of course, observing others can also lead to conformism, in so far as
we decide to change our original decision just to follow.
The process of learning from others has �rst been studied by Bikhchandani et al.

(1992), and Banerjee (1992). These papers focused on a simple case in which agents,
endowed with some private information, act sequentially and make one irreversible
choice, after observing the entire history of actions taken by their predecessors. This
set up was, of course, very convenient to simplify the analysis, but, at the same time,
quite restrictive.
One of the features that restrict the applicability considerably is that every agent

can observe the whole set of choices made by others. In most cases, we do not observe
everyone�s decisions but only those made by agents that we know, like our friends
and neighbours. We know, for example, which restaurant our friends go to, which
bank they use, which car they bought. We may try to infer information from their
actions. But this inference is, of course, very complicated. While we observe their
actions, and can take these into account to make our decision, they themselves could
have gone through a similar process when it was their turn to make a choice. They
could have observed our decision, and those of their friends and neighbours, that we
cannot observe. And their neighbours, in turn, could have observed the decisions of
others, and so on. Clearly, when we take all this into account, we realize that the
process of social learning is quite an intricate and complex phenomenon.
The purpose of our paper is to shed some light on social learning when agents

can only observe a subset of actions taken by others, namely, the actions of their
neighbours We are interested in understanding how the local interaction among agents
develops in the process of social learning. The �rst issue that we tackle here is whether
the transmission of information through local observation can lead to converge in
beliefs and in actions in the whole population. The second is the characterization of
the speed at which information is transmitted.
The seminal papers by Bikhchandani et al. (1992), and Banerjee (1992) illustrated

a striking phenomenon: in their set up, eventually agents decide to disregard their
private information and just conform to the prevailing action chosen by predecessors.
Conformism eventually prevails, and it may well be that the entire population settles
on the wrong action and that the beliefs never converge to the truth. It is worth
mentioning that this occurs despite the population is only formed of rational, Bayesian
agents.
In situations in which agents can only observe their neighbours�decisions, should

we still expect uniformity of behavior? Can we still expect agents to neglect their
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private information? Will the population as a whole converge eventually to the right
decision? And in the positive case, will the convergence be slow or fast?
When the agents�observation is limited to their neighbours�choices, the amount of

information that they receive is limited and the possibility of learning seems reduced.
On the other hand, the way in which this information is disseminated in society may
be more e¢ cient, since agents may rely more on their private information, and feed
this into the social learning process by their choice of actions. Therefore, the social
learning process under local interactions can di¤er in many ways from the one studied
in the canonical models.
We depart from the canonical social learning model in di¤erent ways. First, as we

said, we assume that agents can only observe the behavior of their neighbours, i.e. a
subset of other individuals who live close by, on an appropriately characterized spatial
structure. Second, we let each agent revise her or his original decision repeatedly,
and speci�cally postulate that updating takes place in a random sequential order.
We see these assumptions as particularly appropriate to the set up of our model that
involves a large population of individuals, who only have limited information about
the environment where they are to take decisions. These di¤erent features a¤ect the
process of social learning.
In particular, we address two complementary issues. The �rst concerns the social

learning process in terms of its asymptotics. Starting from an initial random con�g-
uration of beliefs in the population, will social learning eventually show consensus in
the aggregate, or will di¤erent actions coexist inde�nitely? Is social learning com-
plete, in the sense that beliefs will converge to the truth? Is it at least adequate,
in the sense that all agents will choose the action that is optimal given the state of
the world? Second, we aim at evaluating the social learning process in terms of its
convergence rates. We believe that this issue is particularly relevant when analyzing
processes of information transmission and social learning, as the distinction between
slow convergence to the truth and fast convergence to the false is not an obvious one,
neither in practical terms, nor in terms of e¢ ciency. For the setting we use, we are
able to provide analytical solution for the speed of convergence of the dynamic of
actions, and by pursuing a space-time analysis (i.e. by relating the two dimensions,
time and space, over which our process is de�ned) we also study the process of cluster
formation.
The analysis of the rate of convergence is particularly important in the study of

social learning. It is now clear that the results of the �rst models of herding on the
complete blockage of information (informational cascade) is essentially an extreme
example of an informational ine¢ ciency. This type of extreme ine¢ ciency depends
on speci�c features of the models, in particular, on the discreteness of the action
space. While this result may not be very robust to perturbations of the model of
learning, the �nding that the actions by early agents can have a disproportionate
e¤ect on the decisions of successors, and that there can be informational ine¢ ciencies
in the process of social learning seems, instead, independent of the technicalities of
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the model. This �nding is, indeed, the main lesson that we learn from this literature
(Gale (1996); Chamley (2004); Bikhchandani et al. (2005)). After all, even if there is
not a complete blockage of information, but the dissemination of information is very
slow, the result is that the society may be choosing the wrong decision for a very
long while. Therefore, being able to characterize the speed of learning is of crucial
importance for our understanding of the process of information dissemination.
The main result of the paper shows that, in our model of social learning with local

interactions, whenever equally informed individuals use optimal stationary strategies,
i.e. strategies that only depend on their current information (and not on history,
nor on location) learning cannot be complete and the process of actions converges
exponentially fast to a con�guration where somebody is permanently wrong. The
intuition for this is that since information is highly decentralized, it can happen that
inward looking groups of agents who received the same signal may continue choosing
the same, perhaps incorrect, action, inde�nitely. We then study a variation of the
model where agents are unequally informed, in the sense that some receive a fully
informative signal and some receive a completely uninformative signal (which they
rationally disregard). We �nd that in this case learning is adequate and the process
of social learning converges to a state where everybody is choosing the correct action.
Convergence, however, obtains very slowly.
The paper is organized as follows. Sections 2 and 3 describe the general framework

of the set up. Sections 3.1 and 3.2 analyze the properties of the dynamic processes of
learning and contain the main results of the paper. Section 4 relates these �ndings
to the existing literature. Section 5 concludes.

2 The Economy

We consider a set 
 = f0; 1g of possible states of nature. In the economy there is
a set X of countably many agents. Each agent x 2 X has to choose an action in
the set A = f0; 1g. Time runs continuously and each agent can be called to choose
an action more than once. In particular, each individual may choose a new action
at a random exponential time, with mean 1. In any small time interval at most one
agent can reassess her or his decision, and every agent is equally likely to receive an
updating opportunity. As a result of these assumptions, agents choose actions in a
random sequential order. We denote the action chosen by individual x at time t by
�t(x) 2 A.
Information
Initially, each agent has uniform priors, i.e., (s)he believes that both states of the

world are equally likely. Then, (s)he gathers information on the state of the world
in two ways. At time t = 0 (s)he observes a private symmetric binary signal on the
realized state of nature. We denote the signal observed by agent x by ��(x) : 
 !
f0; 1g, where the index � 2 fw; sg refers to the signal precision. An agent can receive
a strongly-informative signal, with precision qs � Pr[�s(x) = 1 j ! = 1] = Pr[�s(x) =
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0 j ! = 0] 2 (0:5; 1] or a weakly-informative signal with precision qw � Pr[�w(x) =
1 j ! = 1] = Pr[�w(x) = 0 j ! = 0] 2 [0:5; qs). Note that, conditional on a state
of nature, the signals that agents receive are independently distributed. The level of
information in the economy depends of course on the proportion of agents receiving
the strongly-informative or the weakly-informative signal. We denote the probability
that each agent receives a strongly-informative signal by r.
Having observed the signal at time 0, each agent makes her or his �rst choice,

�0(x). When the agent receives another opportunity to take a decision (i.e., to revise
the choice previously made), (s)he observes the decisions taken by a subset of other
agents in the population. This is the second way in which (s)he gathers information on
the state of nature. We provide each agent with a spatial location on a 1-dimensional
lattice Z1 (an address), and assume that (s)he can only interact with the set of agents
who live in her or his vicinity. Formally, we take X � Z1 and de�ne the set of x�s
nearest neighbours as N(x) = fy :k y � x k= 1g, i.e., the set of 2 agents who live at
Euclidean distance 1 from agent x: We denote these two agents by x� 1 and x + 1;
and the information set upon which agent x takes a decision, as I(x).
Payo¤
Agent x has the following payo¤ function, depending on the action chosen and on

the state of nature:

U(�t(x); !) =

�
2! � 1 if �t(x) = 1,
0 if �t(x) = 0.

(1)

This formulation rules away any potential strategic e¤ect on the part of agents,
as the choice of �t(x) only depends on the assessment of the probability that ! 2 

is the true state of the world. On the basis of the information available, x at time t
chooses �t(x) to maximize E[U(�t(x); !)jIt(x)] and sticks to this decision until a new
updating opportunity arises.
If we denote the belief at time t that ! = 1 by �t(x) = Pr[! = 1 j It(x)], then the

optimal strategy for x at t is

��t (x) =

8<:
1 if �t(x) > 0:5,
f0; 1g if �t(x) = 0:5,
0 if �t(x) < 0:5.

(2)

or, equivalently,

��t (x) =

8<:
1 �t(x) > 0,
f0; 1g �t(x) = 0,
0 �t(x) < 0.

(3)

where �t(x) � log Pr[!=1jIt(x)]
Pr[!=0jIt(x)] denotes the log-likelihood ratio (LLR) for agent x at

time t and clearly �t(x) � exp[�t(x)]=[1 + exp[�t(x)]]:
Equilibrium
An equilibrium of a social learning process is a pro�le of optimal strategies, one

for each agent.

4



De�nition 1 (Equilibrium) An equilibrium of the social learning process is a pro-
�le of strategies f��(x)gx2X such that, for all x 2 X, ��(x) : I(x) ! f0; 1g and
��(x) 2 argmax�(x)2f0;1gE[U(�(x); !)jI(x)].
Clearly, an equilibrium is absorbing for our learning processes if there exists a

time T such that for any x 2 X and for any t > T , ��t (x) = �
�(x): The dynamics are

as follows.
Agent x makes a decision at time t = 0 and then can revise it whenever (s)he has

an updating opportunity. Let f�xlg, l = 0; 1; 2; ::: be the sequence of times when x
receives an updating opportunity, with �x0 � 0. Furthermore, let ��xl (x) denote x�s
LLR at time �xl. Given ��xl (x), agent x will optimally choose an action according to
(2). Agent x�s dynamics of choices is then given by

�t(x) = ���xl
(x) for �xl � t < �xl+1 and l = 0; 1; 2; :::

We shall regard any state of the learning process as � 2 f0; 1gX and we denote by
j � j the number of agents choosing action 1 in state �. We shall denote by �t the state
of the stochastic dynamic process at time t and we are interested in characterizing
its evolution over time and over space. At the beginning of time, �Nature�chooses
! and each agent x receives a signal ��(x) which determines �0(x). The process then
evolves stochastically in continuous time. We refer to the process of social learning
as to the dynamic process generated by the collection of all individual actions and
we are interested in analyzing the properties of these dynamics.

3 Social Learning Processes

Before proceeding, we �nd it useful to discuss the relation between a canonical model
of social learning and a model of social learning with local interactions, as in our
framework. This will allow us to motivate the speci�c assumptions that lead to our
results and choose appropriate benchmarks.
Consider the standard model of sequential social learning proposed by Bickchan-

dani et al. (1992) and suppose that each agent can directly observe the signals
received by the others. Suppose that qs = qw � q 2 (0:5; 1), i.e., that each agent x
receives a signal of the same precision to compute her or his initial LLR as:

�0(x) = 2

�
log

q

1� q

�
(�(x)� 1

2
).

Suppose that agent x could directly observe the private signals received by all other
agents y, and for the sake of the argument suppose agents are numbered 1; 2; ::; n; ::.
The updated LLR on the basis of this information set I(n) = f�(n); �(y) for y � ng
will be:

�(n) = 2

�
log

q

1� q

�
(�(n)� 1

2
) + 2

�
log

q

1� q

�X
y<n

(�(y)� 1
2
).
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Notice that the order in which other agents�signals are observed does not matter,
in that observations are exchangeable. Assume that the true state of the world is
! = 0. Then, by assumption, the random variables �(:) have mean 1 � q and, as a
result, E[�(:) j ! = 0] = 1 � 2q is strictly negative. This implies that �(n) tends to
�1, as agent n observes all other agents�signals. In other words, the assessment of
the probability that state ! = 1 is true, �(n) � exp[�(n)]=[1 + exp[�(n)]], will tend
to zero exponentially fast, as the number of observations increases. Therefore, in a
canonical model of social learning in which agents can sequentially observe all signals,
learning is complete in the sense that beliefs converge to the truth (and, hence, their
actions to the correct decisions), i.e., Pr[limn!1 �(n) = �(n) = !] = 1 for all n. In
particular, convergence obtains exponentially fast.
As a result, in a typical model of social learning, the observability of private

information is by itself enough to guarantee that the outcome of the learning process
is informationally e¢ cient. Actions are clearly not as informative as signals are in
this setting: potential ine¢ ciencies may arise when agents only observe the actions
taken by others and not the signals that led to those choices. Indeed, in the classical
model of sequential social learning these ine¢ ciencies take the extreme form of an
informational cascade, in which beliefs do not converge to the truth and the entire
population settles on the wrong action.
Things are di¤erent if interaction is local, as in our framework. To see this, assume

that agents do observe signals (and not actions), but only those of their nearest
neighbours, i.e. assume that I(x) = f�(x); �(x � 1)g. Since information is limited,
agents�beliefs, as measured by their LLR, are necessarily bounded, as each agent can
observe at most three signals. As a result, we cannot expect any convergence in beliefs
to the truth in this case: since information is highly decentralized, it can happen that
inward looking groups of agents who received the same signal may continue choosing
the same action (perhaps the incorrect one) inde�nitely.
Essentially, in a model of social learning with local interactions, the public ob-

servability of the neighbours�signals is not enough to achieve e¢ ciency in the process
of information transmission. Observing actions may in fact improve e¢ ciency, as
actions taken by one�s neighbour may convey information on signals received by that
neighbour�s neighbours and so on. This transfer of information can potentially trickle
to and from any agent and enhance the e¢ ciency of the social learning process. How-
ever, unlike signals, actions necessarily show a degree of correlation which agents
ought to rationally account for, when making their choices.
In order for this spatial correlation to be recognized and fully exploited in the

inference process, one may think that endowing agents with the ability to convey
more information might su¢ ce. In fact, it turns out that this could be the case
only in the very special case of the following example. Suppose agents are numbered
1; 2; ::; n; :::, updating opportunities are assigned sequentially, in exactly that given
order, and each agent can only observe her or his predecessor. Suppose further that,
when observed, agents could also show their LLR, or in other words, their posterior,
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i.e. I(n) = f�(n� 1); �(n)g: As LLR are additive, clearly:

�(n) = �(n� 1) + 2
�
log

q

1� q

�
(�(n)� 1

2
)

and by exactly the same logic used at the beginning of this Section, one can show
that the social learning process is complete, in the sense that beliefs converge to
the truth. The key feature of this example is that �(n � 1) constitutes a su¢ cient
statistic of all the signals upon which it is based (i.e. all the signals that agent
n � 1 has observed before being observed by agent n). This is no longer true in a
locally interactive model where agents update repeatedly and in a random order, and
where, by analogy, I(x) = f�(x � 1); �(x)g: In fact, in this case, the information
contained in �(x� 1), which in principle could indirectly reveal information on x� 2;
x� 3 and so forth, would already contain the information revealed by �(x) through
the observation of x on the part of x � 1. In essence, this is due to the fact that,
whenever interaction is local, information sets are not disjoint1.
In order for agents to be able to correctly draw inference upon the observation of

their neighbours�action, one should endow each agent with a very rich information
set, that should include not only the history of actions chosen in their neighbourhood,
but also, the exact order with which updating opportunities have been assigned until
that point. Although our model assumes that agents are able and willing to perform
Bayesian updating, we take the view that these requirements are unreasonable in
the set up of a large population of agents. As a result, we introduce the following
modeling assumption.

De�nition 2 (Limited Memory) If at time t agent x gets an opportunity, (s)he
observes the action taken in her neighbourhood at that time. As a result, at each
revision opportunity, agent x takes decisions on the basis of the following information
set:

It(x) �
�

f��(x)g at t = 0,
f�t(y); y 2 fx� 1gg at t > 0.

It is important to note that we are assuming that the agent observes only her or his
neighbours�current decisions. (S)he has limited memory, in that she remembers her
signal, but she possibly forgets past decisions and observations. As, by construction,
information is limited both over space (only nearest neighbours can be seen) and
over time (only current actions can be observed), we focus on strategies that are
stationary:

�(x) : I(x)! f0; 1g
1A very neat analysis of a model where agents repeatedly encounter and fully reveal their posterior

beliefs to each other over time is provided in Du¢ e et al. (2009). Their model does not have a spatial
dimension and the authors are able to characterize explicitely the convergence of the cross-sectional
distribution of beliefs to a common posterior.
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where, for each t, we regard It(x) � I(x) � f0; 1g3:
We are interested in characterizing the properties of social learning processes with

local interactions in terms of the degree of informational e¢ ciency they achieve. For
the reasons we mentioned above, requiring complete learning would be too demanding
in a model of social learning with local interactions, since beliefs are, by construction,
bounded, and the local interactive structure of the model embeds an amount of spatial
correlation in actions. A weaker requirement is, instead, that all agents eventually
choose the correct action, as in the following de�nition:

De�nition 3 (Adequate Learning) The social learning process shows adequate
learning if

lim
t!1

Pr[�t(x) = ! for all x in X] = 1.

In fact, 0 � limt!1 Pr[�t(x) = !] � 1 is the limit measure of agents who are
correct (in the sense that they choose the action appropriate for the true state of the
world) and it can be thought of as a measure of how informationally e¢ cient the
social learning process is.
We shall now address these issues with reference to our speci�c models.

3.1 Equally Informed Agents

In this SubSection, we focus on the case in which qs = qw � q 2 (0:5; 1). In this
case, at the beginning of time, each agent receives a signal commonly known to have
precision q > 0:5. Note that this is the only case contemplated by the standard model
of social learning.
The next result shows that in this set up, the use of optimal stationary strategies

leads to extreme ine¢ ciency in the process of information transmission under local
interactions.

Theorem 4 If each agent x receives a symmetric binary signal with precision q >
0:5 and can observe both neighbours, then the process of social learning with local
interactions is not adequate, and limt!1 Pr[�t(x) = ! for all x in X] = 0. The process
converges exponentially fast to a con�guration where some agents are permanently
wrong.

The proof of the Theorem is contained in Appendix A. The logic of the proof
relies on the explicit characterization of the process of inference underlying agents�
optimal choices. We recall that, in our model, stationary strategies are of the form
�(x) : f0; 1g3 ! f0; 1g; where x chooses on the basis of the con�guration of actions
within her or his neighbourhood, as well as on the realization of their signal, i.e.

It(x) =

�
f�(x)g at t = 0,

f�t(x); �t(x� 1)g at each t = �x.
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where �x denote any random time at which x receives an updating opportunity.
Let � i (i = 1; 2; :::) denote the sequence of random times at which agents in the

population have an opportunity to revise their choice. In other words, � 1 is the �rst
time an agent (randomly chosen) has the opportunity to change his or her choice, � 2

is the second time, etc. Consider the following stationary strategy:
S1: At any time �x: if �(x� 1) = �(x+ 1), then choose �(x) = �(x� 1)

if �(x� 1) 6= �(x+ 1), then stick to �(x)
Recall that by the assumptions of the model, Pr[�x = � y = � i] = 0 (i.e., no two

agents act at the same time) and Pr[�x = � i] = Pr[� y = � i] for all x; y (i.e. within
any time period agents are equally likely to receive an updating opportunity). Hence,
to show that the above strategy is optimal, we need to show that it is so at any
time, i.e., for any �x = � i, and at any stage of the revision process, i.e., for any �xl,
l = 1; 2; ::.
To start the analysis, it is useful to notice that this strategy is clearly optimal if

x is the �rst agent to receive an updating opportunity. To see this, note that at time
t = 0, upon receiving the signal �(x), agent x has an LLR equal to

�0(x) = 2 log

�
q

1� q

��
�(x)� 1

2

�
and, given the incentive structure, �0(x) = �(x) is the optimal choice at time t = 0.
Since at time t = 0 all agents are playing their signals, agent x information set will
consist of f�(x) = �0(x); �(x� 1) = �0(x� 1)g and

��1(x) = 2 log

�
q

1� q

�
f
�
�(x)� 1

2

�
+

�
�(x� 1)� 1

2

�
+

�
�(x+ 1)� 1

2

�
g.

As a result, the above strategy is the only optimal strategy if x is the �rst agent to
receive an updating opportunity. As such, it is a candidate to be an optimal strategy
at any time �x > 0. By induction, Remark 7 shows that this strategy is optimal
as long as it is followed by all other agents. On the basis of this result, Remark 8
proceeds to characterize the equilibrium of the social learning process, as well as to
compute the rate of convergence of the process of action choices. Finally, Remark 9
emphasizes that this social learning process with local interactions gives rise to an
extreme form of informational ine¢ ciency.
The above result shows that if agents use optimal stationary strategies the prob-

ability that the whole population learns to behave optimally, given the state of the
world, is zero. The process of social learning may in fact get absorbed in one of an
in�nite number of states where someone chooses the correct action and someone does
not. In essence, the reason for this endemic multiplicity of stable limit con�gurations
is that agents are extremely inward looking, in the sense that their choices are entirely
determined by what happens inside their small neighbourhood, and although neigh-
bourhoods are overlapping, information fails to be transmitted. To see this, consider
the border between a cluster (of at least two agents) choosing action 0 and a cluster

9



(of at least two agents) choosing action 1. As each of the two bordering agents has at
least one neighbour choosing the same action as they do, none of them will ever �ip
and information transmission will come to a halt. It is interesting to consider what
would happen if such bordering agents did not rely so much on their private (possibly
wrong) information and allowed for the possibility of changing action in any situation
where the actions chosen by their neighbours were in con�ict. In what follows, we
build on this intuition by analyzing a model where agents have relatively less infor-
mation about their neighbours, but are heterogeneous in terms of the quality of their
private information, with some agents being perfectly informed and some perfectly
uninformed. One implication of these assumptions is that those agents who are aware
of being uninformed will disregard their private information and be more prone to
changing actions. As we shall show below this modeled heterogeneity signi�cantly
improves the e¢ ciency of the mechanism of information transmission.

3.2 Unequally Informed Agents

We now move to a di¤erent scenario, in which agents receive signals of a di¤erent
precision. We study, in particular, the case in which some agents in the population
are perfectly informed, while others receive an uninformative signal. In terms of
our notation, this means that qs = 1, qw = 0:5 and that the probability that each
agent receives a strongly-informative signal or a weakly-informative signal are both
positive, i.e., r 2 (0; 1). Also, we assume that at each time x is to take a decision,
(s)he observes the action currently chosen by only one of her or his two neighbours,
drawn at random in fx� 1g.
The main di¤erence with respect to the model previously analyzed is that now

information is not homogeneous among agents: while agents who receive a fully infor-
mative signal will always choose the correct action independently of their neighbours,
agents who receive a (fully) uninformative signal will draw Bayesian inference on the
basis of their observation, that now consists of the action currently chosen by a single
neighbour. The next result shows that the properties of the entailed social learning
process with local interactions are very di¤erent in this set-up.

Theorem 5 If each agent is perfectly informed with probability r (and perfectly un-
informed otherwise), and can observe one neighbour (randomly chosen), then the
process of social learning with local interactions is adequate, as Pr[limt!1 �t(x) = !
for all x in X] = 1. The process converges slowly (at rate

p
t) to a con�guration

where all agents choose the correct action.

The proof is contained in Appendix B and its logic parallels that of the previous
Section. Since agents who are perfectly informed always choose the correct action, the
focus is on the characterization of the behaviour of the remaining uninformed agents.
For convenience, we denote agents who are perfectly informed as x and agents who
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are perfectly uninformed as x. Under the assumptions of this model,

It(x) =

�
f�(x)g at t = 0,

f�t(x); �t(y); Pr[y = x� 1] = Pr[y = x+ 1] = 0:5g at each t = �x.

Consider the following stationary strategy for agent x:
S2: At any time �x: choose �(x) = �(y)
This strategy posits that when the evidence provided by the observation of the

neighbours is strong (i.e. when both neighbours choose the same action), agent
x optimally chooses to agree with them (as (s)he did in the previous model), but
whenever the actions observed by x provide only weak evidence on the unknown
state (i.e. when neighbours disagree), agent x may choose any of the two actions
with equal probability. Remark 11 shows that strategy S2 is optimal for any agent x,
as long as it is followed by all other uninformed agents. Remark 12 characterizes the
limit behaviour of this social learning process and Remark 13 evaluates the degree of
informational e¢ ciency of this model.

4 Related Literature

The literature on social learning has been growing very fast over the last decades. A
variety of models have been used to shed light on the way in which information is
transmitted among economic agents who have to take decisions under uncertainty.
Within this literature, social learning refers to the fact that agents learn from observ-
ing actions taken by other individuals. Early models known as herding and informa-
tional cascades show that individuals who take choices sequentially and observe the
choices made by others, may actually ignore their private information and base their
decisions entirely on what is publicly observed. Herds may occur because the infor-
mational content of the history of choices of agents in the economy overwhelms the
information contained in their private signals. Since in this case agents�information
is not revealed through their actions, the social learning process may never converge
to the truth.
Recent contributions to the theory of social learning have extended these models

to account for situations where agents do not observe the entire history of the actions
chosen. Though the amount of information they receive is limited in this case, the
way in which this is disseminated in society may be more e¢ cient, since agents may
rely more on their private information, and feed this into the social learning process
by their choice of actions. The overall e¤ect on social learning is hence unclear
and results to date in the literature on social learning with limited memory lead to
di¤erent conclusions.
The intuition that a small sample size may be e¢ cient because it can enhance

the di¤usion of private information is formalized in Smith and Soerensen (2008),
who study a model of sequential herding with random sampling. They show that

11



under some circumstances (unbounded beliefs) learning is complete, while under other
circumstances (bounded beliefs) informational cascades can occur in �nite time.
The consideration that more information is revealed in a larger sample sizes is

instead dominant in Banerjee and Fudenberg (2004), who analyze a model of rational
�Word of Mouth�communication in a large population. They show that under such
conditions learning is complete even if beliefs are bounded if the sample size is at
least 2 and, furthermore, private information becomes irrelevant if the sample size is
greater than 3.
Imperfect information in this set up, might however lead beliefs and actions to

cycle forever (see, for example, Celen and Kariv (2004)).
Gale and Kariv (2004) analyze a situation where observability is limited to the

actions taken by their neighbours, as agents belong to a social network and can only
observe the decisions of the other agents to whom they are connected. In their model,
agents act simultaneously, have perfect recall, and can revise their previous decisions.
Their results show that, under some conditions, despite the fact that agents cannot
observe the entire population, eventually, uniformity of actions occurs.
Acemoglu et al. (2010) analyze a model in which agents observe past actions

of a stochastically-generated neighbourhood of individuals, where each agent knows
the identity of their neighbours. They show that, when beliefs are unbounded and
there is some minimal amount of expansion in observations), asymptotic learning
obtains (meaning that actions converge to the correct one). The authors also provide
conditions under which the same is true even when private beliefs are bounded, for a
large class of stochastic network topologies.
Finally, the issue of imperfect observability is also discussed in Eyster and Rabin

(2008) and in Guarino and Jehiel (2009) in contexts in which agents are not fully
rational. The fact that observability is imperfect can actually alleviate some biases
that bounded rationality produces in a classical model of learning with a continuous
action space (as in Lee (1992)).

5 Conclusions

In our economy, a large population of individuals have to choose one out of two
available actions. Each action is optimal in one of two unknown states of the world.
Agents repeatedly and reversibly choose an action, the payo¤to which will materialize
when the state of the world realizes. Agents derive a posterior probability on the basis
of a symmetric binary signal that they receive and by observing a sample of other
agents, called their neighbours. Observed choices can be informative, since signals are,
and this raises an issue of informational externality. While signals are generated by a
probability distribution that is exogenously given to each agent, observed choices are
endogenous to the model and, given the postulated spatial structure of the process,
show a potentially high degree of spatial correlation.
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We have studied two social learning processes, one in which agents are homogenous
in the quality of the private information they receive (as measured by the precision
of their signals) and one in which the quality of the information di¤ers (in that some
agents are perfectly informed, while others are completely uninformed). We have
compared the two social learning processes in terms of the probability with which
they may prove to be adequate, i.e. reach a con�guration where every agent adopts
the action that is optimal given the true state of the world. As we pointed out, since
beliefs are bounded by the local nature of the social interaction, complete learning
is out of reach within this class of models. We have shown that the speci�c kind
of heterogeneity embedded in the second model guarantees that, albeit very slowly,
the social learning process is adequate, since it converges to a con�guration where all
agents adopt the correct action. This cannot be so in the �rst model, as the social
learning process gets absorbed exponentially quickly in a con�guration where some
agents permanently adopt the incorrect action. The explicit characterization of the
rates of convergence proves to be relevant if one wants to compare the two models
in terms of informational e¢ ciency: while in the �rst model we observe a quick and
complete blockage of information transmission, in the second information does get
disseminated, but this occurs very slowly.
We conclude with a few remarks and conjectures.
Neither the heterogeneity in the quality of private information, nor the existence

of someone who is perfectly informed, are, per se, su¢ cient to guarantee that the
social learning process is adequate. To see this, consider the model of Section 3.1 and
suppose 1 � qs > qw 2 (0:5; qs), i.e. assume that all agents receive an informative
signal, but some agents are better informed than others. We conjecture that for a
non empty set of parameters (qs; qw) in this range the result of Theorem 4 would
carry on in this case as well. In fact, consider the extreme case in which the better
informed agents receive a perfectly informative signal, i.e. qs = 1. Any such an agent,
say for example agent 0; knows the true state of the world and sticks to �(0) = !
independently of the actions adopted in her or his neighbourhood. This relevant
information cannot however be transmitted to others, in that, since agents �1 are
themselves informed, it could be enough for them to have their �other�neighbour, �2
respectively, be choosing the wrong action, 1�!, in order for them to be permanently
wrong in their choice of actions. Also, the speed at which the social learning process
converges would still be driven by the use of strategy S1 on the part of the less
informed agents, and hence would still be exponentially fast.
Heterogeneity of information, coupled with the existence of some perfectly unin-

formed agents, i.e. for 1 > qs > qw = 0:5 is not per se su¢ cient to guarantee that
the social learning process is adequate. To see this consider the model of Section 3.2:
it can be shown that strategy S2 would still be optimal for the uninformed agents in
this case. Also, for a non empty set of values of qs in this range, a better informed
agent, say 0, would play her or his signal independently of their neighbours. As a
result, with positive probability uninformed agents �1 will learn agent 0�s action,
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and transmit it to agents �2 etc. The social learning process could however fail to
be adequate, because Theorem 10 may not hold, since with positive probability some
better informed agents could receive the wrong signal and never correct their initial
decision.
In essence, su¢ cient conditions that guarantee that the social learning process is

adequate, are the existence of some agents who know the truth and unerringly choose
the correct action, together with the existence of some agents who, being poorly
informed, are willing to learn it. In this case, a process of slow clustering on the
correct decision ensues. Our explicit characterization of the convergence rates shows
that, perhaps surprisingly, the speed at which this cluster grows does not depend on
the proportion of perfectly informed agents in the population: the estimate of which
in (6) holds in fact unaltered for any value of the parameter 0 � r < 12.

2Clearly, for r = 0 the social learning process could fail to be adequate, as it would only show
consensus on a particular action, not necessarily the correct one.
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Appendix A

Theorem 6 If each agent receives a symmetric binary signal with precision q >
0:5, and can observe both neighbours, then the process of social learning with local
interactions is not adequate, and limt!1 Pr[�t(x) = ! for all x in X] = 0. The process
converges exponentially fast to a con�guration where some agents are permanently
wrong.

The proof of the Theorem is split into a few Remarks: Remark 7 shows that the
model admits an equilibrium; Remark 8 characterizes limit behaviour and convergence
rates of this process of social learning with local interactions and �nally Remark 9
evaluates the degree of informational e¢ ciency of the process.

Remark 7 Suppose all agents y 6= x choose stationary strategy S1. Then this strategy
is also optimal for x at any time �xl.

Proof. First, suppose that �x1 = � 1. Then, the statement is true as proved above,
since �0(y) = �(y) for all y. Suppose now that �x1 > � 1. Let us describe the process
of inference undertaken by agent x in such a case (i.e., if (s)he knew that at least
one other agent had received an updating opportunity before). We drop the time
subscript for notational convenience. Due to the symmetry of the model, WLOG we
consider �(x) = 0.
Let us consider �rst the case in which �(x � 1) = 1. Agent x needs to infer

�(x�1) on the basis of I(x) = f�(x) = 0 = �(x); �(x�1) = 1; �(x+1)g. By Bayesian
updating,

Pr[�(x� 1) = 1 j I(x)] �
(Pr[�(x� 1) = 1 j �(x� 1) = 1; �(x) = 0; �(x+ 1)] Pr[�(x� 1) = 1 j �(x) = 0; �(x+ 1)])

(Pr[�(x� 1) = 1 j �(x� 1) = 1; �(x) = 0; �(x+ 1)] Pr[�(x� 1) = 1 j �(x) = 0; �(x+ 1)] +
+Pr[�(x� 1) = 1 j �(x� 1) = 0; �(x) = 0; �(x+ 1)] Pr[�(x� 1) = 0 j �(x) = 0; �(x+ 1)])�1

If � (x�1)1 > �x1, this probability is one, as x � 1 is playing her or his signal, by
construction. If � (x�1)1 < �x1 and agent x�1 has followed strategy S1, this probability
is also equal to one, since Pr[�(x � 1) = 1 j �(x � 1) = 0; �(x) = 0; �(x + 1)] = 0.
Hence an agent who observes a neighbour choosing an action di¤erent from the action
(s)he herself is choosing, infers that neighbour is playing her signal:

Pr[�(x� 1) = 1 j I(x)] = 1.

Let us consider now the case of �(x� 1) = 0. Agent x needs to infer �(x� 1) on
the basis of I(x) = f�(x) = 0 = �(x); �(x� 1) = 0; �(x+1)g. If � (x�1)1 > �x1, clearly
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�(x � 1) = �(x � 1) = 0. If � (x�1)1 < �x1 and agent x � 1 has followed strategy S1,
then by a logic analog to that followed in the previous paragraph,

Pr[�(x� 1) = 0 j �(x� 1) = 1; �(x) = 0; �(x+ 1)] = Pr[�(x� 2) = 0 j I(x)]

and
Pr[�(x� 1) = 0 j �(x� 1) = 0; �(x) = 0; �(x+ 1)] = 1

Let Pr[�(x� 2) = 0 j I(x)] � 1�� and Pr[�(x� 1) = 1 j �(x) = 0; �(x+1)] � 1� �.
Then,

Pr[�(x� 1) = 1 j I(x); � (x�1)1 < �x1 ] �
(1� �)(1� �)

(1� �)(1� �) + �
Note that � is the belief that agent x has on the signal of x� 1 being equal to zero.
As such, � depends on the value of �(x+ 1), i.e., either

Pr[�(x� 1) = 1 j �(x) = 0; �(x+ 1) = 1] = 0:5

or

Pr[�(x� 1) = 1 j �(x) = 0; �(x+ 1) = 0] < Pr[�(x� 1) = 1 j �(x) = 0] < 0:5

Hence � � 0:5 and, for all 0 � � � 1,

Pr[�(x� 1) = 1 j I(x); � (x�1)1 < �x1 ] �
(1� �)

(1� �) + �
1��

�  < 1

2
,

As a result,

Pr[�(x� 1) = 1 j I(x)] � Pr[� (x�1)1 < �x1 ] <
1

2
.

Hence an agent who observes a neighbour choosing the same action as (s)he herself
is choosing, infers that the neighbour is more likely to be playing her signal (than to
have used an updating opportunity).
As a result of the above considerations, and for y 2 fx � 1g the conditional

expectations of �(y) are

E[�(y) j �(x) = 0; �(y) = 1] = 1, and

E[�(y) j �(x) = 0; �(y) = 0] < 1

2
.

We now proceed to show that, given these conditional expectations, the strategy
is optimal for x at time �x1 for any possible I(x) = f�(x) = 0 = �(x); �(x� 1)g.
Let us �rst prove the "if" part. Suppose that I(x) = f�(x) = 0; �(x � 1) =

�(x+ 1) = 1g. By the above considerations �(x� 1) = �(x+ 1) = 1. Hence:

�1(x) � 2 log

�
q

1� q

��
E[�(x� 1) j I(x)] + �(x) + E[�(x+ 1) j I(x)]� 3

2

�
=

= 2 log

�
q

1� q

��
2� 3

2

�
= log

�
q

1� q

�
> 0
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Now let us prove the "only if" part. We have to consider di¤erent cases.
Case a): Suppose that I(x) = f�(x) = 0; �(x� 1) = �(x+ 1) = 0g. By the above

considerations E[�(x� 1) j I(x)] < 0:5. Hence:

�1(x) � 2 log

�
q

1� q

��
E[�(x� 1) j I(x)] + �(x) + E[�(x+ 1) j I(x)]� 3

2

�
=

< 2 log

�
q

1� q

��
1� 3

2

�
= � log

�
q

1� q

�
< 0

since q > 0:5; as assumed.
Case b): Suppose that I(x) = f�(x) = 0; �(x�1) = 0; �(x+1) = 1g (or viceversa).

By the above considerations E[�(x � 1)] j I(x)] < 0:5) and E[�(x + 1) j I(x)] = 1.
Hence:

�1(x) � 2 log

�
q

1� q

��
E[�(x� 1) j I(x)] + �(x) + E[�(x+ 1) j I(x)]� 3

2

�
=

< 2 log

�
q

1� q

��
1

2
+ 1� 3

2

�
= 0

since q > 0:5; as assumed.
This concludes the proof that, under the stated assumptions, this strategy is

optimal at time �x1 = �
i for i = 1; 2; ::: (i.e. at the �rst updating opportunity that

agent x gets, independently of when this opportunity arises). We now show that the
statement holds at any time �xl for l = 2; 3:::
Consider �x2 > �x1 and let I2(x) = f�(x) = 0; ��x2 (x� 1)g denote x�s information

set at time �x2 : If ��x1 (x) = �(x), clearly the previous part of the proof holds in
this case as well. Suppose instead that ��x1 (x) 6= �(x). In this case x has �ipped to
�(x) = 1 at time �x1, because ��x1 (x � 1) = 1. By the reasoning above, this means
that x could perfectly infer that �(x� 1) = 1. Hence, strategy S1 is optimal at time
�x2 as well. In other words, at the second updating opportunity and for any x :

either ��x1 (x) = 1 and �1(x) = log
�
q

1� q

�
or ��x1 (x) = 0 and �1(x) = � log

�
q

1� q

�
An entirely analog reasoning shows that the strategy is also optimal at any time �xl

for l > 2; when one notices that in between any �xl+1 and �xl within x�s neighbourhood
the number of agents x� 1 such that �(x� 1) = �(x) cannot decrease. To see this,
consider �x3 > �x2 and let I3(x) = f�(x) = 0; ��x3 (x � 1)g. If ��x2 (x) = �(x) = 0, it
must be that also ��x1 (x) = �(x) = 0 (since it must have been that ��x1 (x� 1) = 1)
and the �rst part of the proof holds. If ��x2 (x) = 1 6= �(x) = 0, then x must have
�ipped either at time �x1 or at time �x2, and again we know from the previous part
of the proof that strategy S1 was optimal in those cases. As a Corollary, the above
reasoning shows that, within this model, each agent can �ip at most once.
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Remark 8 If agents use strategy S1, the characterization of the limit behaviour of
the social learning process is as follows3.
Let fb�g be the set of con�gurations such that, for each x in X, there is at least a

y in N(x) = f�(x� 1)g such that �(y) = �(x). Then, starting from any given initial
distribution, �!; the process converges in probability to a con�guration �1 2 fb�g:

P �
!

[ lim
t!1

�t = �1] = 1

Convergence obtains exponentially fast:

P �
!

[�t 6= �1] / exp[�t]
Proof. We shall �nd it convenient to model transitions in terms of �ip rates, i.e., the
rates at which �t(x) �ips to 1 � �t(x). By �ip rate c we mean that the probability
that the transition occurs in an in�nitesimal time dt is cdt:We shall denote �ip rates
by c(x; �t) to emphasize their dependence on the current state of action chosen in the
population and assume that Pr[�t(x) j 1� �t(x)] = c(x; �t)t+ o(t).
By Remark 7, the �ip rates for this process are:

c(x; �) =

�
1 �(y) 6= �(x) 8y = fx� 1g
0 otherwise

and the characterization of b� follows by simple inspection of these.
To show that the process of actions converges, let �x;y(t) = 1 if �t(x) 6= �t(y),

and 0 otherwise. Recall that agents live on a one-dimensional lattice X = Z1 =
f::;�2;�1; 0;+1;+2; ::g: De�ne the following function:

�t =
X
x2X

X
y2N(x)

exp[�jx+ yj]�x;y(t)

Note that, by construction, 0 � �t < � <1. We shall show that, starting from �0,
at any time in which any x �ips from �(x) to 1 � �(x), this function decreases by a
strictly positive amount. To this aim, let �t(x) be:

�t(x) =
X
y2N(x)

exp[�jx+ yj]�x;y(t)

and for simplicity4 take x = 0, with neighbours y 2 f�1;+1g:

�t(0) =
X

y2f�1;+1g

exp[�jyj]�0;y(t)

3In stating the results, we use the following additional notation. We denote any probability
distribution over the state space by �t, and the initial distribution by �

!. Since at time t = 0
choices are determined by the signals and in any given state of the world ! these are stochastically
independent, this initial distribution is by construction a product measure. As for any t > 0 choices
may instead depend on the spatial con�guration of action chosen within neighbourhoods, �t will
typically display an amount of spatial correlation.

4This is done WLOG, since the initial distribution that determines the initial condition is (a
product measure and hence) traslation invariant.
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Note that agent x = 0 will �ip if and only if
P

y �0;y(t) = 2; and, by the construction
of the model, this can happen with positive probability. Suppose that this happens.
Then the drop in � at site 0, after the �ip occurred, is equal to 2 exp[�1] which is
strictly positive. As the same argument applies to any generic site, this implies that
the function �t is strictly decreasing at any time at which an agent �ips action.
Let b� � b�(b�) be the value of this function at any stable con�guration b� such that

limt!1 �t = b� and consider b�t � �t� b� along the realizations of the process leading
to b�. To show that convergence obtains exponentially fast we will show that there
exists k > 0 and " > 0 such that:

P�0 [b�t > 0] � k�0 exp[�"t]
To this aim, we need to make the transition from convergence along integer times
(as in b�t) to convergence in real time (for �t). Let �x;y[(n � 1)t; nt] for n � 1 andb�nt = [b�(n�1)t;nt] � Pk=1;:::;t

b�(k�1)t;kt. Since, by construction, b� is �nite, E[b�t] is
also �nite. Since b� � � <1, then bb� � (�)�1b� � 1. Let

e� � E[exp[�bb�nt]] < 1
which is true for a small positive �. This implies that:

Pr[b�nt > 0] � e�n
and since P�0 [b�s > 0] is monotonic in s, for k � e��1 and for " � t�1 log e��1 the
assert is proved.

Remark 9 If agents use strategy S1, the process of social learning with local inter-
actions is not adequate and

Pr[ lim
t!1

�t(x) = ! for all x in X] = 0

Proof. Recall that the initial choice of actions is produced by a product measure:
Pr�!=1 [� : �(x) = 1] = q or Pr�!=0 [� : �(x) = 1] = 1 � q respectively. Since 0:5 <
q < 1 the probability that any two adjacent agents receive the same signal is strictly
positive. Once this happens, as the above Remark shows, these agents will never �ip.
Hence, this process fails to satisfy De�nition (3) and learning is not adequate.
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Appendix B

Theorem 10 If each agent is perfectly informed with probability r and perfectly unin-
formed otherwise, and can only observe a randomly drawn neighbour, then the process
of social learning with local interactions is adequate, as Pr[limt!1 �t(x) = ! for all
x in X] = 1. The process converges slowly (at rate

p
t) to a con�guration where all

agents choose the correct action.

The proof of the Theorem is split into three Remarks: Remark 11 shows that
an equilibrium exists, Remark 12 characterizes the limit behaviour and Remark 13
evaluates the degree of informational e¢ ciency of this model. The logic of the proof
parallels that of the previous Section.

Remark 11 Suppose all agents y 6= x choose strategy S2. Then this strategy is also
optimal for x at any �xl.

Proof. We follow exactly the same logic as that of Remark 7 and describe the
process of inference undertaken by agent x at time �xl ; (we drop the time subscript
for notational convenience). Notice that, within this model, agent x cannot draw any
inference from his or her signal. Also, agent x cares about his or her neighbours �
signal only insofar as they are informed.
Since q(x) = 0:5 by construction, �0(x) = 0:
Suppose �x1 = �

1 (i.e. agent x is the �rst to receive an updating opportunity) and
�(x) = 1. Agent x needs to compute �1(x) on the basis of I(x) = f�(x); ��x1 (y)g, for
y 2 fx� 1g, resulting in:

�1(x) � log
Pr[�(y) j ! = 1]Pr[! = 1]
Pr[�(y) j ! = 0]Pr[! = 0]

=

8<: log
r+(1�r) 1

2

(1�r) 1
2

= log
�
1+r
1�r
�
> 0 if �(y) = �(x) = 1

log
(1�r) 1

2

r+(1�r) 1
2

= log
�
1�r
1+r

�
< 0 if �(y) 6= �(x) = 1

Since Pr[y = x� 1] = Pr[y = x + 1] = 0:5, this shows that S2 is optimal at time
�x1 = �

1.
Consider �x > � 1 and let I�x(x) = f��x(x); ��x(y))g denote x�s information set at

time �x: When drawing inference, agent x has now to consider the possibility that
agent y may have received an updating opportunity and may have used strategy S2.
As x is uninformed, �(x) = 0. Let s � Pr[� y < �x], i.e. the probability that agent y
has received an updating opportunity before agent x.
Suppose y = x� 1 , �(x� 1) = 1 and �(x) = 1. Then:

Pr[�(x� 1) = 1 j ! = 1] = r + (1� r)f(1� s)1
2
+ s[�(x� 2)1

2
+ 1

2
]g

Pr[�(x� 1) = 1 j ! = 0] = (1� r)f(1� s)1
2
+ s[�(x� 2)1

2
+ 1

2
]g
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where the term in square brackets refers to the possibility that x� 1 might have
chosen �(x � 1) = 1 as a result of S2 (and hence observed either �(x � 2) = 1 or
�(x) = 1). Notice that, by construction, �(x� 2) 2 f0; 1g is given at time �x.
Suppose y = x+ 1 , �(x+ 1) = 0 and �(x) = 1.
Then:

Pr[�(x+ 1) = 0 j ! = 1] = (1� r)f(1� s)1
2
+ s[1

2
(1� �(x+ 2))]g

Pr[�(x+ 1) = 0 j ! = 0] = r + (1� r)f(1� s)1
2
+ s[1

2
(1� �(x+ 2))]g

where the term in square brackets refers to the possibility that x+ 1 might have
chosen �(x + 1) = 0 as a result of S2 (and hence observed either �(x + 2) = 0 or
�(x) = 1). Notice that, by construction, �(x+ 2) 2 f0; 1g is given at time �x.
As a result,

�(x) � log
Pr[�(y) j ! = 1]Pr[! = 1]
Pr[�(y) j ! = 0]Pr[! = 0]

=

8<: log
r+(1�r)f(1�s) 1

2
+s[�(x�2) 1

2
+ 1
2
]g

(1�r)f(1�s) 1
2
+s[�(x�2) 1

2
+ 1
2
]g > 0 if y = x� 1; �(y) = 1 = �(x)

log
(1�r)f(1�s) 1

2
+s[ 1

2
(1��(x+2))]g

r+(1�r)f(1�s) 1
2
+s[ 1

2
(1��(x+2))]g < 0 if y = x+ 1; �(y) = 0 6= �(x)

Since Pr[y = x � 1] = Pr[y = x + 1] = 0:5, this shows that S2 is optimal at any
time �x.

Remark 12 If agents use strategy S2, the characterization of the limit behaviour of
the social learning process is as follows.
Let �! be the con�gurations where �(x) = ! for all x 2 X Then, starting from

any given initial condition, �!; the process converges in probability to con�guration
�!:

P �
!

[ lim
t!1

�t = �
!] = 1

Convergence obtains slowly, namely at rate
p
t:

P �
!

[�t 6= �!] /
1p
t

Proof. Let us denote the population of agents as X [ X, where x 2 X are the
informed agents and x 2 X are the uninformed agents. By construction, the �ip
rates for this process fc(x; �); c(x; �)g are:

c(x; �) = 0 (4)

c(x; �) =

� 1
2

P
y2fx�1g �(y) �(x) = 0

1
2

P
y2fx�1g(1� �(y)) �(x) = 1

(5)

By simple inspection, it is clear that only the state for which �(x) = ! for all x
in X is stationary for this process. However, since the process � de�nes a continuous
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time Markov chain on the state-space S = Z1 which is countable, but in�nite, we need
to prove that the process is ergodic, i.e. that starting from any initial distribution
�!, the process will converge to �! with probability one (�rst part of the assert).
We proceed as follows. Let SN be �nite sets that increase to S, such that

limN!1 SN = S. De�ne the following �ip rates:

cNi =

8<:
fc(x; �); c(x; �)g if x;x 2 SN

0 if x;x =2 SN and �(x) = i
1 if x;x =2 SN and �(x) 6= i

Let us call the process de�ned by these �ip rates Si;N(t). Notice that this process is
equal to the original process for all x;x in SN and characterized by all coordinates
set equal to i for x;x not in SN .
Let �0S0;N(t) be the law of the process characterized by �ip rates cN0 when the

initial distribution is given by all 0 at time 0 and let �1S1;N(t) be the law of the
process characterized by �ip rates cN1 when the initial distribution is given by all 1 at
time 0: As the original process is attractive5, so are the processes cNi and, by Theorem
2.7 in Liggett (1985):

�0S0;N(t) � ��S(t) � �1S1;N(t)
for � 2 (0; 1); and

lim
N!1

lim
t!1

�0S0;N(t) = lim
t!1

�0S(t)

lim
N!1

lim
t!1

�1S1;N(t) = lim
t!1

�1S(t)

WLOG suppose ! = 1. Then limt!1 �
0S0;N(t) = limt!1 �

1S1;N = �1;N ; that is,
as t ! 1; independently of the initial distribution, the process restricted on SN
converges to a con�guration all ones. In fact Si;N(t) is a �nite Markov chain over
SN ; and as there is a unique absorbing state (�1N � f�(x) = 1 for all x 2 SNg) we
know that the unique ergodic distribution posits pointmass one on this state. As
limN!1 SN = S; il follows that

lim
N!1

lim
t!1

�0S0;N(t) = lim
N!1

lim
t!1

�1S1;N(t) = lim
N!1

�1;N = �1

and the �rst part of the assert follows.
To prove the second part of the statement, we need to compute the rate of con-

vergence for this process. Notice that the rate at which social learning takes place is

5We say that, for �; � 2 f0; 1gZ1 , � � � if �(x) � �(x) for all x 2 Z1. Then a process is de�ned
to be attractive (or monotonic) if, whenever � � � �ip rates satisfy the following:

c(x; �) � c(x; �) if �(x) = �(x) = 0

c(x; �) � c(x; �) if �(x) = �(x) = 1
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given by the speed with which those uninformed agents who are choosing the incorrect
action, �ip to the correct one. Hence we need to study the dynamics of choices of the
individuals in _X. We notice that this dynamics is analog to that of the Voter�s model
(Liggett (1985), Section 1 and 3, Chapter V or in Bramson and Gri¤eath (1980)), well
studied in the statistical literature. In the Voter�s model, a voter at x 2 Zd changes
his opinion at an exponential rate (with mean one) proportional to the number of
2d nearest neighbours with the opposite opinion. If 2d neighbours disagree with the
person at x, the �ip rate is 1. It can be seen by equation (4) that this is exactly the
dynamics of the uninformed agents in our model. Hence, although the asymptotics of
our model are substantially di¤erent from those of the Voter�s model, the dynamics
is exactly the same.
To show that learning occurs at rate

p
t we proceed as follows. As the process is

de�ned in the two dimensions of time and space, we shall �nd it useful to relate these
two dimensions in a space-time analysis. In particular, we characterize a clustering
process, by relying on the local speci�cation of the model. With the term �cluster�
we mean the length of a segment with all connected individuals choosing the same
action. In order to see how the size of a cluster increases with time, we shall later
express the length of a cluster as a function of t. Formally, given a con�guration, �,
we de�ne a cluster as the connected components of fx : �(x) = 0g or fx : �(x) = 1g;
the size of a cluster of ones in a segment of side l around the origin as:

j �l j=j fx : �(x) = 1; x 2 [�l; l]g j

and the mean cluster size of � around the origin as:

C(�) = lim
l!1

2l

�number of clusters of � in [�l; l]�
whenever this limit exists.
Given the asymptotics described, we already know that the mean cluster size

tends to grow inde�nitely. To prove the statement, we need to show that the mean
cluster size, C�!(�t), grows in probability at rate

p
t, in the sense that:

C�!(�t)

t1=2
!p K

where K is a positive constant depending on !. Since, as stated before, this model
reproduces the of the Voter�s model, this statement is proved in Bramson and Grif-
feath (1980). In fact, Theorem 7, p. 211 of that paper also provides the following
estimate for the lower and upper bound of the limit expected value of the above
quantity (re-written with our parametrization):

p
�

�
1

21+r
2
1�r
2
)

�
� lim

t!1
E[
C�!(�t)

t1=2
] � 2

 �
1+r
2

�2
+
�
1�r
2

�2�
1+r
2

� �
1�r
2

� !
p
� (6)

where � = 3: 141 6:
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Remark 13 If agents use strategy S2 , the process of social learning with local inter-
actions is adequate, in that

lim
t!1

Pr[�t(x) = ! for all x in X] = 1

Proof. Recall that the initial condition is produced by a product measure: Pr�!=1 [� :
�(x) = 1] = 1+r

2
or Pr�!=0 [� : �(x) = 1] = 1�r

2
respectively. Hence, by the previous

Remark, the assert follows.
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