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Abstract

We develop an alternative approach to providing epistemic conditions for admissible behavior

in games. Instead of using lexicographic beliefs to capture infinitely less likely conjectures, we

postulate that players use tie-breaking sets to help decide among strategies that are outcome-

equivalent given their conjectures. A player is event-rational if she best responds to a conjecture

and uses a list of subsets of the other players’ strategies to break-ties among outcome-equivalent

strategies. Using type spaces to capture interactive beliefs, we show that common belief of

event-rationality (RCBER) implies that players play strategies in S∞W , that is, admissible

strategies that also survive iterated elimination of dominated strategies (Dekel and Fudenberg

(1990)). We strengthen standard belief to consistent belief and we show that event-rationality

and common consistent belief of event-rationality (RCcBER) implies that players play iterated

admissible strategies (IA). We show that in complete, continuous and compact type structures,

RCBER and RCcBER are nonempty, and hence we obtain epistemic criteria for S∞W and IA.

Keywords: Epistemic game theory; Admissibility; Iterated weak dominance; Common

Knowledge; Rationality; Completeness.

1 Introduction

As noted by Samuelson (1992) and many others, there is an intrinsic impossibility in dealing with

common knowledge of admissibility in games, which is known as the inclusion-exclusion problem.

The reason is that a strategy is admissible if and only if it is a best response to a conjecture with

full support. If we capture knowledge by the support of the agent’s belief and assume that she is

rational, that is, she optimizes given her belief, then playing an admissible strategy implies that

she must necessarily consider all strategies of the other players as possible, including the strategies
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that are not admissible. So she cannot know that her opponents play admissible strategies because

she cannot exclude from consideration their inadmissible strategies.

The most appealing approach to dealing with this issue is provided by Brandenburger et al.

(2008), henceforth BFK, by using lexicographic probability systems (LPS) and the notion of as-

sumption in the place of certainty. Roughly speaking, a player with conjectures that form an LPS

can have a fully supported conjecture while “assuming” certain events that are not equal to the

whole state space. BFK show that common assumption of admissibility (RCAR) characterizes

iterated admissibility (IA), but RCAR may be empty in complete type structures. Yang (2009),

Keisler (2009) and Lee (2009) have recently extended BFK’s analysis and obtained non emptiness

of RCAR in complete type structures.

We propose an alternative route. Instead of an LPS-based analysis, we use event-rationality

to allow for players to break ties with lists of subsets of opponents’ strategies. That is, we use

a different notion of rationality: the LPS-based approaches assume that players are lexicographic

expected utility maximizers. We assume that players are event-rational. The two notions of ra-

tionality equally describe admissible behavior. The difference comes into play in the analysis of

interactive beliefs. Interactive beliefs are described by type spaces. In our framework, a type of a

player determines her beliefs over the strategies and types of the other players (as in the standard

framework) and in addition it determines the tie-breaking list that the (event-rational) type uses.

As a result, common belief of event-rationality does not run into the tension of having to exclude

and include the same event. In contrast, in an LPS-based analysis a type of a player determines her

lexicographic beliefs over the strategies and types of the other players, and the inclusion-exclusion

tension is avoided by the use of “assumption” in the place of certainty. Under our approach, we

provide epistemic foundations for both the solution concept proposed by Dekel and Fudenberg

(1990) (S∞W ) and iterated admissibility (IA).

We consider finite two player games in strategic form. The two players are Ann and Bob, denoted

by superscripts “a” and “b”. In order to provide some intuition about event-rationality, note that

if a strategy sa of Ann’s is rational then it is a best response to some conjecture, v ∈ ∆(Sb), where

Sb is the set of Bob’s strategies. If sa is inadmissible and therefore weakly dominated by some

(mixed) strategy σa, then sa and σa give the same payoff for all strategies of Bob on the support

of v while σa is strictly better than sa for all conjectures with support on the complement of the

support of v. Hence, whenever Ann chooses an admissible strategy, it is as if she optimizes given

her conjecture, as usual, but when she is totally indifferent between two strategies she compares

them using a measure with support on the difference between Sb and the support of her conjecture.

We say that she “breaks ties” using the event that is the complement of her support (with respect

to Sb). In other words, Ann is confident in trusting her belief, just like any other rational agent.

But if two of her strategies are outcome-equivalent under her belief, she chooses the one that is
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also optimal under a measure with support being the complement of the support of her belief.

There is nothing particular about breaking ties with respect to the complement of her support

when defining event-rationality. Ann can conceivably break ties using any other set, as long as it is

outside her current frame, that is, disjoint from the support of her belief. Furthermore, Ann need

not use a single such tie-breaking set. She may well have many such sets, each providing extra

validation for her chosen strategy.

The principle behind event-rationality is, therefore, the following: if two strategies are outcome-

equivalent given Ann’s conjecture, then Ann has no way of deciding among them within her frame

of mind: the two strategies yield the same outcome for whichever strategy of Bob she considers

possible. Ann must, therefore, resort to information beyond her frame to make a decision. She

could, for instance, flip coins, that is, resort to fully external means. But in doing so Ann would be

missing information about her two strategies, contained in how they fare against strategies of Bob

that are considered impossible by Ann’s conjecture. Event-rationality postulates that Ann goes

beyond her frame, without changing what she thinks about Bob’s choices.

Turn now to interactive beliefs, captured by type structures. Let T a and T b be the sets of types

of Ann and Bob. A type ta ∈ T a determines Ann’s conjectures over Bob’s choices, Ann’s beliefs

over Bob’s types and so on, together with the tie-breaking list used by Ann. A state for Ann is a

strategy-type pair (sa, ta) and her beliefs over Bob are given by her beliefs over Sb×T b. A strategy-

type pair (sa, ta) of Ann’s is called event-rational if sa is optimal given ta’s conjecture and breaks

ties for all sets in ta’s tie-breaking list. Event-rationality and common belief of event-rationality is

then captured as the intersection of infinitely many events: Ann is event-rational, and so is Bob;

Ann is certain that Bob is event-rational and Bob is certain that Ann is event-rational. And so on.

This yields our RCBER set of states.

Event-rationality captures the idea of choosing a strategy cautiously, in the sense that a strategy

has to be optimal under one’s conjecture, but also pass a series of tie-breaking tests. We also

introduce the idea of cautiously believing an event. Suppose that we intepret each tie-breaking set

of Ann’s as the support of a “secondary” conjecture. Then, we say that Ann cautiously believes an

event if it is the smallest event that is believed by her primary and one of her secondary conjectures.

In other words, Ann cautiously believes an event if it is the sharpest description of how the others

play on which both her primary and one of her secondary conjectures agree that it is true.1 We

say that Ann consistenly believes an event if she believes it (assigns probability 1) and cautiously

believes it. Event-rationality and common consistent belief of event-rationality is again captured

as the intersection of infinitely many events: Ann and Bob are event-rational. Ann consistently

believes that Bob is event-rational and Bob consistently believes that Ann is event-rational. And

so on. This yields our RCcBER set of states.
1We essentially apply cautious belief only on events describing the other player’s strategies.
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Our results are as follows. We characterize the strategies that are compatible with RCBER

by a solution concept, hypo-admissible sets (HAS), which is related to the self-admissible sets

(SAS) of BFK but it is neither weaker or stronger. In a complete structure, RCBER produces

the set of strategies that survive one round of elimination of non admissible strategies followed

by iterated elimination of strongly dominated strategies (S∞W ). We characterize RCcBER with

a solution concept we call hypo-iteratively admissible sets (HIA). In a complete type structure,

the resulting set of strategies is precisely the set of iterated admissible strategies (IA). We then

show that strategies played under RCcBER constitute an SAS, but the converse is not necessarily

true, meaning that the RCcBER construction is more restrictive than the RCAR construction of

BFK. Nevertheless, we show that the RCBER and the RCcBER are nonempty whenever the type

structure is complete, continuous and compact, therefore providing epistemic criteria for S∞W and

IA.

Our approach provides an alternative, effective and simple perspective in dealing with common

“knowledge” of admissibility in games. The solution to the inclusion-exclusion problem lies in

separating what a player knows from the strategies that she includes in her conjectures. This

separation can also be obtained with LPS-based approaches as in BFK, Brandenburger (1992),

Stahl (1995) and Yang (2009). But LPS-based approaches may add technical elements that are

not necessarily relevant for the issue.2 For instance, BFK’s impossibility result suggests that IA is

a solution concept that requires that the players are experienced enough with each other so that

the type structure used to describe their beliefs is not complete (Brandenburger and Friedenberg

(forthcoming)). In other words, it suggests that IA is to be viewed as a strong solution concept, that

is not at the same level as iterated elimination of dominated strategies (IEDS) but rather closer to

Nash equilibria, whose epistemic conditions require incomplete type structures (see Aumann and

Brandenburger (1995) and Barelli (2009)). But this suggestion is an artifact of the technical details

of an LPS-based approach. In fact, RCcBER is more restrictive than RCAR, and it is nonempty

in a complete, continuous and compact type structure.

1.1 Related Literature

Bernheim (1984) and Pearce (1984) provide epistemic foundations for the iteratively undominated

strategies via the concept of rationality and common belief in rationality. Admissibility, or the

avoidance of weakly dominated strategies, has a long history in decision and game theory (see

Kohlberg and Mertens (1986)). However, Samuelson (1992) shows that common knowledge of

admissibility is not equivalent to iterated admissibility and does not always exist. Foundations

for the S∞W strategies (Dekel and Fudenberg (1990)) are provided by Börgers (1994) (using
2A simple example is that lexicographic type structures typically fail to be compact, whereas the universal type

structure, without lexicographic beliefs, is compact.
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approximate common knowledge), Brandenburger (1992) (using lexicographic probability systems

(Blume et al. (1991)) and 0-level belief) and Ben-Porath (1997) (in extensive form games). Stahl

(1995) defines the notion of lexicographic rationalizability and shows that it is equivalent to iterated

admissibility.

BFK use lexicographic probability systems and characterize rationality and common assumption

of rationality (RCAR) by the solution concept of self-admissible sets. They show that rationality

and m-th order assumption of rationality is characterized by the strategies that survive m+1 rounds

of elimination of inadmissible strategies. Finally, RCAR is empty in a complete and continuous

lexicographic type structure when the agent is not indifferent. Hence, although the IA set can be

captured by RmAR, for big enough m (note that games are finite), BFK do not provide an epistemic

criterion for IA. Yang (2009) provides an epistemic criterion for IA, with an analogous version of

BFK’s RCAR, that makes use of a weaker notion of “assumption”. Keisler (2009) and Lee (2009)

independently show that the emptiness of RCAR can be overcome if one drops continuity. The

message from Yang (2009), Keisler (2009) and Lee (2009) is that continuity strengthens the notion

of caution implied by fully supported LPS. The notion of caution implied by event-rationality is

independent of continuity.

The paper is organized as follows. In the following section we illustrate the differences between

the various notions of rationality and belief through examples. In Sections 3 and 4 we set up the

framework and provide the relevant definitions, including event-rationality, RCBER and RCcBER.

In Section 5 we characterize RCBER and show that RmBER (m rounds of mutual belief) generates

S∞W , for big enough m. In Section 6 we characterize RCcBER, show that it is more restrictive

than RCAR of BFK and show that RmcBER generates the IA set, for big enough m. In Section

7 we show that RCBER and RCcBER are always nonempty in compact, complete and continuous

type structures, therefore providing epistemic criteria for S∞W and IA. Finally, the Appendix

provides decision theoretic foundations for event-rationality.

2 Examples

In order to illustrate the differences between the BFK approach and that of the present paper,

consider the following game from Samuelson (1992) and BFK. There are two players, Ann and

Bob.

1 [1]

L R

1 U 1, 1 0, 1

[1] D 0, 2 1, 0
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From Bernheim (1984) and Pearce (1984) we know that rationality and common belief of ratio-

nality (RCBR) is characterized by the best response sets (BRS) and, in a complete structure, the

strategies that survive iterated deletion of strongly dominated strategies.3 Can we get a similar

result for the admissible strategies and the iteratively admissible strategies if we modify the notions

of belief and of rationality? Recall that a strategy is admissible if and only if it is a best response

to a full support measure (no action of the other player is excluded). Then, the obvious solution is

to specify that rationality incorporates full support beliefs.

But such a specification does not always work. In the game above, if Ann is rational, she assigns

positive probability to Bob playing L and R. If Bob is rational, he assigns positive probability to

Ann playing U and D. Hence, Bob plays L. If Ann knows that Bob is rational, she assigns positive

probability only on Bob playing L. But then, Ann is not rational! In other words, the modified

RCBR set is empty for this game.

One solution is obtained using lexigographic beliefs. Suppose Ann’s primary hypothesis assigns

probability 1 to Bob playing L, and her secondary hypothesis assigns probability 1 to Bob playing

R. Bob’s primary hypothesis assigns 1 on U and his secondary hypothesis assigns 1 on D. Then,

Bob playing L is rational because he is indifferent between L and R given his primary measure, but

strictly prefers L given his secondary measure.4 Ann playing U is rational because U is the best

response given her primary measure. She assumes that Bob is rational, because she considers Bob

playing L infinitely more likely than Bob playing R. Similarly, Bob assumes that Ann is rational.

As a result, rationality and common assumption of rationality (RCAR) is nonempty.

A similar result can be obtained if we use the definition of event-rationality in the context of

standard type structures. Suppose Ann’s belief assigns probability 1 to Bob playing L and Bob’s

belief µ assigns probability 1 to Ann playing U. Moreover, Bob has set Sb\supp µ in his tie-breaking

list. Bob playing L is event-rational because he plays best response given his beliefs and, although

L and R are outcome-equivalent under his support, L is better under a conjecture with support

Sb \supp µ. Similarly, Ann is event-rational since, under her conjecture, she does not need to break

ties. Finally, Ann believes that Bob is event-rational and Bob believes that Ann is event-rational.

Hence, rationality and common belief of event-rationality (RCBER) is nonempty.

In the game above RCAR and RCBER produce the same strategies because the IA and the

S∞W sets are equal. However, this is not always true. Consider the following game which illustrates

the difference between RCBER (which yields the S∞W set) and RCcBER (which yields the IA

set).

3Qa ×Qb is a BRS if each sa ∈ Qa is strongly undominated with respect to Sa ×Qb and likewise for b.
4That is, the associated sequence of payoffs under L is lexicographically greater than the sequence under R.
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L R

U 1, 0 1, 3

M 0, 2 2, 2

D 0, 4 1, 1

Since D is strongly dominated, event-rational Ann will not play that strategy. In a complete

structure though, event-rational Ann will play U or M, while event-rational Bob will play L or R.

For example, Ann’s type playing U is event-rational if she assigns probability 1 to Bob playing

L. Ann’s type playing M is also event-rational if she assigns probability 1 to Bob playing R. Note

that Ann never needs to break ties. Moreover, for both U and M there are event-rational types of

Ann’s who assign positive probability to event-rational types of Bob playing L or R. And similarly

for Bob. In other words, these types of Ann believe the event “Bob is event-rational”, Bob’s types

believe the event “Ann is event-rational”, and so on for any finite order of beliefs about beliefs.

Hence, event-rationality and common belief of event-rationality (RCBER) yields the S∞W set,

{U,M} × {L,R}.
Suppose we repeat the same procedure but now impose a stronger form of belief. Take an event

E ⊆ Sb × T b, where Sb, T b is the set of Bob’s strategies and types, respectively. We say that Ann

cautiously believes E if the strategies of Bob described by E is the smallest event that is believed

by her conjecture and one of her secondary conjectures. Say that Ann consistenly believes E if she

believes (assigns probability 1) and cautiously believes it. Imposing event-rationality and common

consistent belief of event-rationality gives us RCcBER.

Which strategies are generated by RCcBER? The first round of RCcBER yields the set of event-

rational types for Ann and event-rational types for Bob, just like RCBER. But the second round

of RCcBER requires that each of Ann’s types consistenly believes the event “Bob is rational”, and

similarly for Bob. Then, all types playing L are excluded. To see this, note that if Bob is event-

rational and consistenly believes event “Ann is event-rational”, then he must cautiously believe

the strategies played by event-rational types of Ann’s, namely {U,M}. The only event-rational

types of Bob playing L (and consistenly believing Ann is event-rational) are the ones that assign

probability 1 on Ann playing M. In order to be able to cautiously believe {U,M}×T a0 , where T a0 is

Ann’s event-rational types, Bob must have U as a tie-breaking set in his list. Moreover, he assigns

probability 1 to M and therefore needs to break ties, because L and R are outcome equivalent given

his support. But L is never a best response for any conjecture with support on U. Hence, Bob,

assigning probability one on M , cannot consistently believe that Ann is event-rational.

In the third round of RCcBER, Ann consistenly believes that Bob consistenly believes that

Ann is event-rational. This means that types of Ann’s playing U are excluded, because those types
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assign positive probability to Bob’s types playing L, and none of them consistently believes that

Ann is event-rational. The only event-rational types of Ann playing M and of Bob playing R survive

all rounds of RCcBER and generate the IA set, {M} × {R}.

3 Set Up

Let (Sa, Sb, πa, πb) be a two player finite strategic form game, with πa : Sa × Sb → R, and

similarly for b (as usual, a stands for Ann, and b stands for Bob). For any given topologi-

cal space X, let ∆(X) denote the space of probability measures defined on the Borel subsets

of X, endowed with the weak* topology. We extend πa to ∆(Sa) × ∆(Sb) in the usual way:

πa(σa, σb) =
∑

(sa,sb)∈Sa×Sb σ
a(sa)σb(sb)πa(sa, sb). Similarly for πb. A strategy sa ∈ Sa is a best

response to a conjecture v ∈ ∆(Sb) if πa(sa, v) ≥ πa(ŝa, v) for every ŝa ∈ Sa. It is denoted by

sa ∈ BRa(v). Similarly for b.

3.1 Admissibility and Event-Rationality

The following definition and Lemma are taken from BFK.

Definition 1. Fix X × Y ⊆ Sa × Sb. A strategy sa ∈ X is weakly dominated with respect to

X × Y if there exists σa ∈ ∆(Sa), with σa(X) = 1, such that πa(σa, sb) ≥ πa(sa, sb) for every

sb ∈ Y and πa(σa, sb) > πa(sa, sb) for some sb ∈ Y . Otherwise, say sa is admissible with respect

to X × Y . If sa is admissible with respect to Sa × Sb, simply say that sa is admissible.

Lemma 1. A strategy sa ∈ X is admissible with respect to X × Y if and only if there exists

σb ∈ ∆(Sb), with supp σb = Y , such that πa(sa, σb) ≥ πa(ra, σb) for every ra ∈ X.

Lexicographic beliefs have been used in dealing with the inclusion-exclusion issue identified by

Samuelson (1992) (see BFK, Brandenburger (1992), Stahl (1995) and Yang (2009)). We follow an

alternative approach, based on “tie-breaking lists.” By a list of subsets of Sb we mean a collection

lb = {F1, ..., Fk}, with Fi ⊂ Sb for every i = 1, ..., k, for some k ≥ 1, with the property that Fi 6= Fj

for every distinct pair i, j ∈ {1, ..., k}. Let Lb be the set that contains all such lists. Because Sb is

a finite set, Lb is also a finite set, and we endow it with the discrete topology. Similarly for a.

For a given conjecture v ∈ ∆(Sb), let σa ∼supp v s
a denote that the mixed strategy σa ∈ ∆(Sa)

satisfies πa(σa, sb) = πa(sa, sb) for every sb ∈ supp v. That is, σa ∼supp v s
a means that σa is

outcome equivalent to sa in supp v.

Definition 2. A strategy sa ∈ Sa is event-rational if there exists a conjecture v ∈ ∆(Sb) and a list

lb ∈ Lb such that:

• sa ∈ BRa(v),
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• for each F ∈ lb with F \ supp v 6= ∅ and mixed strategy σa ∈ ∆(Sa) with σa ∼supp v s
a, there

exists a conjecture v′ ∈ ∆(Sb) with supp v′ = F \ supp v such that πa(sa, v′) ≥ πa(σa, v′),

• Sb ∈ lb.

Likewise for b.

The idea is that Ann uses each of the sets in the list lb to break ties: whenever she has a

conjecture v ∈ ∆(Sb) over Bob’s choices under which sa is optimal and sa is outcome-equivalent

to a (mixed) strategy σa in supp v, Ann uses each F ∈ lb as the “tie-breaking hypotheses”: there

has to exist a conjecture v′ with support on F \ supp v that justifies the choice of sa. Ann is fully

confident in her assessment v and in her best response sa to v as long as there is no σa that is

outcome equivalent to sa in supp v. In that case, her probabilistic assessments are irrelevant, for

whichever other conjecture v̂ with supp v̂ = supp v would not help Ann breaking ties between sa

and σa. In that case, Ann uses the tie breaking list lb.

It is important to note that, although the “tie-breaking hypotheses” are additional measures that

Ann uses to guide her choices, they do not play the role of additional hypotheses in a lexicographic

framework. If sa is indifferent to σa according to v, but not outcome equivalent in supp v, then

there is no need to break ties. Moreover, the tie-breaking sets are not mutually disjoint, as it is the

case with the supports of the measures in a lexicographic probability system. The following lemma

shows the connection between admissibility and event-rationality.

Lemma 2. For each F ∈ lb, if sa is event-rational under lb and v such that supp v ⊆ F , then sa is

admissible with respect to Sa × F . Conversely, if sa is admissible with respect to Sa × F , for each

F ∈ lb and Sb ∈ lb, then sa is event-rational under lb.

Proof. Suppose that sa is event-rational for v such that supp v ⊆ F . If supp v = F then the

result is immediate so suppose supp v ⊂ F and F \ supp v 6= ∅. Suppose there exists σa ∈ ∆(Sa)

with π(σa, sb) ≥ πa(sa, sb) for every sb ∈ F , with strict inequality for some sb ∈ F . Because

sa ∈ BRa(v), we have sa ∼supp v σ
a, which implies that there exists v′ with supp v′ = F \ supp v

and π(sa, v′) ≥ π(σa, v′), a contradiction. Conversely, because sa is admissible with respect to

Sa × Sb, there exists v with supp v = Sb such that sa ∈ BR(v). Moreover, for each F ∈ lb we have

F \ supp v = ∅.

3.1.1 Preference Basis

Turn now to decision theoretic considerations. Instead of using lexicographic beliefs to deal with

counter-factuals, we postulate that a decision maker (Ann) has several theories. Her primary theory

is captured by her preference relation % and the resulting probability measure µ. Let F0 = supp µ
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and write % as %0. Moreover, Ann thinks outside her support, by contemplating counter-factual

scenarios. This is captured by a list of conditional preferences, where the conditioning event is

outside F0. Let Fi be the support of the measure derived from each such conditional preference,

written as %i. Hence, Ann’s list lb contains all Fi, i 6= 0.

Summarizing, Ann’s thought is captured by a list of preferences (%0,%1, . . . ,%k) and the re-

sulting supports (F0, ..., Fk). The primary hypothesis is F0, while all other events are the secondary

hypotheses. F0 describes Ann’s frame of mind, as it contains the states that Ann considers possible.

The secondary hypotheses F1, ..., Fk describe zero probability counter-factuals, since F0 ∩ Fi = ∅
for each i = 1, . . . , k. Ann resorts to the secondary hypotheses only to help her decide between

outcome-equivalent acts. Formally, act x is preferred to act y if x %0 y and if x is outcome-

equivalent to y in F0, then we must also have x %i y for all i = 1, ..., k. The Appendix provides a

more detailed exposition and shows that the notion just defined is equivalent to event-rationality.

3.1.2 Counter-Factuals

It is important to stress that each Fi, i > 0, is considered impossible by Ann, as it is the support

of a preference conditional on an event which is disjoint from her support, F0. Resorting to an

alternative theory to break-ties does not entail considering the alternative theory possible. For

instance, one may wonder what would have happened if Germany had won World War II, and use

it to help deciding whether to move to Germany or not. But one knows that Germany did not win.

The following example illustrates this point further.5

L C R

U 4, 6 0, 0 4, 3

M 0, 0 4, 6 0, 3

D 2, 3 2, 3 0, 0

Suppose that Ann is represented by a measure with support F0 = {L,C} and she contemplates

one counter-factual scenario, that produces a measure with support F1 = {R}. Ann’s subjective

belief assigns 50% probability to L and C respectively. Conditional on F1, Ann’s subjetive belief

assigns 100% probability to R. D is outcome equivalent to a coin-flip between U and M under %0, so

Ann cannot decide between D and this coin-flip, and resorts to F1 for help. Under %1, D is strictly

dominated by the coin flip, so the coin flip is preferred to D (equivalently, Ann’s tie-breaking list

consists of the set R, and there’s no conjecture supported in R that makes D better than the coin

flip, so D is not event-rational). Note that R is weakly dominated by a coin flip between L and

C. So Ann resorts to a secondary theory whereby Bob plays an inadmissible strategy. But, as we
5We thank an anonymous referee for suggesting this example.
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indicated above, this does not mean that Ann does not believe that Bob plays admissible: her

primary theory only considers possible Bob playing either L or C, which are admissible. So Ann

believes that Bob plays admissible, and at the same time Ann uses an alternative theory to help

break ties.

Moreover, the alternative theories are not restricted to be measurable with respect to Bob’s

rationality (or lack of it). The same referee suggested the following modification of the example:

L C R E

U 4, 6 0, 0 4, 3 4, 6

M 0, 0 4, 6 0, 3 0, 0

D 2, 3 2, 3 0, 0 0, 3

Imagine again that Ann is represented by two preferences, with F0 = {L,C} and F1 = {R,E}.
Conditional on F1 Ann’s subjective belief assigns 50% probability to R and E respectively, and %0

is as above. Ann again decides for the coin flip between U and M over D by resorting to %1, which

is a theory that envisages Bob playing an admissible strategy E and an inadmissible strategy R.

Yet again, Ann knows that Bob plays admissible (either L or C).

What is at stake here is our perspective over counter-factuals. Instead of having “infinitely less

likely events” represent what Ann believes is impossible and yet possible, we fix that Ann only

considers F0 possible. The counter-factuals are the events {F1, ..., Fk}, which Ann believes are

impossible. Yet, Ann uses the information about counter-factuals on these events to help break

ties.

Furthermore, in our analysis below we also consider a stronger notion of belief, that of consis-

tent beliefs. Roughly, Ann consistently believes an event if the event is believed by her primary

preference %0 and by one of her secondary preferences %i. In the second example above, say that

Ann is represented by the same %0 as before, F1 = {R} and F2 = {E}. The coin flip between U

and M is again preferred to D, as it is at least as good as D for each of the secondary measures

(strictly preferred under %1). And Ann consistently believes that Bob plays admissible, because

under F0 and F2 Bob plays admissible.

Note that because Ann is not indifferent between two strategies that are outcome equivalent

under her support, she “considers everything to be possible” in terms of how she acts. However,

when reasoning about Bob, she uses her measure µ (and perhaps also an additional secondary

measure, when we consider consistent beliefs) and therefore believes that Bob is event-rational. The

combination of considering everything possible and believing that Bob is event-rational resolves the

inclusion/exclusion tension. In the two examples above, Ann’s primary theory only considers Bob

playing admissible strategies, so Ann includes only admissible strategies. At the same time, event-
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rational Ann breaks ties with counter-factual theories that envisage Bob playing either admissible

or inadmissible strategies, so Ann does not have to include all of Bob’s strategies in her frame of

mind.

3.2 Type Structures and Beliefs

Type structures are used to describe interactive beliefs. Because our notion of rationality has players

using tie-breaking sets, a type of a player must determine a conjecture and a list of tie-breaking

sets. We will use the following notation: ∆̄(X × Y × Z) denotes the space of Borel probablity

measures on the topological space X × Y × Z, endowed with the weak∗ topology, with marginals

on Z as mass points. That is, if µ ∈ ∆̄(X × Y × Z) then the cardinality of supp margZµ is equal

to one. Fix a two-player finite strategic-form game 〈Sa, Sb, πa, πb〉.

Definition 3. An (Sa, Sb)-based type structure with tie-breaking lists is a structure

〈Sa, Sb, La, Lb, T a, T b, λa, λb〉,

where λa : T a → ∆̄(Sb×T b×Lb), and similarly for b. Members of T a, T b are called types, members

of La, Lb are called lists and members of Sa × T a × Sb × T b are called states.

We refer to an (Sa, Sb)-based type structure with tie-breaking lists as simply a type structure.

The types spaces T a and T b are assumed topological. The sets Sa, Sb, La, Lb are finite, and we

endow each with the discrete topology so that they are compact spaces. The belief mappings λa

and λb are assumed Borel measurable. A type structure is complete when λa and λb are surjective

and it is continuous when these belief mappings are continuous. It is straightforward to verify

that the standard construction of all coherent hierarchies of beliefs (c.f. Mertens and Zamir (1985)

and also the Appendix) yields a type structure with continuous and surjective belief mappings

and compact type spaces. Such type structures are called complete, continuous and compact type

structures.

Fix an event E ⊆ Sb × T b and write

Ba(E) = {ta ∈ T a : margSb×T bλ(ta)(E) = 1}

as the set of types that are certain of the event E. This is the standard definition of certainty (as

1-belief): the states of Bob are the strategy type pairs in Sb×T b, and Ann’s beliefs are over Bob’s

states. The belief mapping λa determines such beliefs and also the tie-breaking list used by Ann,

so in determining her beliefs over Bob’s states what matters is the marginal on Sb× T b. Note that

Ba satisfies monotonicity: if Ann is certain of E and E ⊂ F then Ann is also certain of F .

We say that a type of Ann’s cautiously believes event E if projSbE is the smallest event that

is believed by her primary and one of her secondary measures. Fix E ⊆ Sb × T b and define the

cautious belief operator

12



Ba
c (E) = {ta ∈ T a : projSbE ∈ margLbλ

a(ta)}.

A type of Ann’s consistenly believes an event E if she believes and cautiously believes it. That

is, the set of types of Ann that consistently believe an event E ⊆ Sb × T b is given by

Ba
∗ (E) = Ba(E) ∩Ba

c (E).

The appendix provides a preference based characterization of the notions of beliefs defined

above.

3.3 RCBER - Rationality and Common Belief of Event-Rationality

With type structures, a state for Ann is a pair (sa, ta) determining what she plays (sa) and her

state of mind (ta). We extend the definition of event-rationality to strategy-type pairs as follows:

Definition 4. Strategy-type pair (sa, ta) ∈ Sa × T a is event-rational if

• sa ∈ BRa(v), for v = margSbλa(ta),

• for each F ∈ margLbλa(ta) with F \supp v 6= ∅ and mixed strategy σa ∈ ∆(Sa) with σa ∼supp v

sa, there exists a conjecture v′ ∈ ∆(Sb) with supp v′ = F \ supp v such that πa(sa, v′) ≥
πa(σa, v′),

• Sb ∈ margLbλa(ta).

Likewise for b.

Let Ra1 be the set of event-rational strategy-type pairs (sa, ta). For finite m, define Ram induc-

tively by

Ram+1 = Ram ∩ [Sa ×Ba(Rbm)].

Similarly for b.

Definition 5. If (sa, ta, sb, tb) ∈ Ram+1 ×Rbm+1, say there is event-rationality and mth-order belief

of event-rationality (RmBER) at this state. If (sa, ta, sb, tb) ∈
⋂∞
m=1R

a
m ×

⋂∞
m=1R

b
m say there is

event-rationality and common belief of event-rationality (RCBER) at this state.

In words, there is RCBER at a state if Ann is event-rational, Ann believes that Bob is event-

rational, Ann believes that Bob believes that Ann is event-rational, and so on. Similarly for Bob.

Believing that Bob is event-rational means that Ann is certain that Bob only chooses strategies

that are best responses to Bob’s conjectures that Ann considers possible, and that Bob breaks ties

using the sets of strategies in his list.
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Note that for a strategy-type pair (sa, ta) to belong to Ram the following conditions are satisfied.

Strategy sa is a best response to v = margSbλa(ta), margSb×T bλa(ta)(Rbm−1) = 1 and whenever

σa ∼supp v s
a, for each Eb ∈ margLbλa(ta), there exists a conjecture v′ in Eb \ supp v for which

πa(sa, v′) ≥ πa(σa, v′). Notice that Ann is certain that the conjectures of Bob are of the form

v = margSaλb(tb), for tb ∈ projT bRbm−1, and knows that, for each such conjecture, Bob breaks each

tie using some v′ in Eb \ supp v. We show below that this flexibility implies that the set of strate-

gies compatible with RCBER are the ones that survive one round of elimination of inadmissible

strategies, followed by iterated elimination of strongly dominated strategies.

3.4 RCcBER - Rationality and Common consistent Belief of Event-Rationality

Let Ra1 be the set of event-rational strategy-type pairs (sa, ta). For finite m, define Ram inductively

by

R
a
m+1 = R

a
m ∩ [Sa ×Ba

∗ (R
b
m)].

Similarly for b.

The only difference with RCBER is that we use the consistent belief operator instead of the

standard one.

Definition 6. If (sa, ta, sb, tb) ∈ Ram+1 × R
b
m+1, say there is event-rationality and mth-order con-

sistent belief of event-rationality (RmcBER) at this state. If (sa, ta, sb, tb) ∈
⋂∞
m=1R

a
m ×

⋂∞
m=1R

b
m

say there is event-rationality and common consistent belief of event-rationality (RCcBER) at this

state.

Because consistent beliefs are stronger than standard beliefs, RCcBER ⊆ RCBER.

Note again that RCBER and RCcBER avoid the inclusion-exclusion tension. What a type ta

of Ann believes about Bob’s choices is given by the marginal of λa(ta) over Sb. And a type that

knows that Bob’s strategy-type pairs are in R
b
m is a type that assigns positive probability only to

the strategies that are consistent with R
b
m. So many of Bob’s strategies can be excluded from ta’s

consideration, without causing any contradiction in the construction. The event-rational (sa, ta)

resorts to the tie-breaking list margLbλa(ta) to handle counter-factuals, without having to believe

that the counter-factuals are a real possibility.

4 Solution Concepts

4.1 Self-Admissible and Hypo-Admissible Sets

By construction, event-rationality implies playing admissible strategies. If we add common belief

of event-rationality, then the solution concept is that of a hypo-admissible set (HAS) that we
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define below. We compare the HAS with several solution concepts that have been proposed in the

literature. But first a definition.

Definition 7. Say that ra supports sa given Qb if there exists some σa ∈ ∆(Sa) with ra ∈ supp σa

and πa(σa, sb) = πa(sa, sb) for all sb ∈ Qb. Write suQb(sa) for the set of ra ∈ Sa that supports sa

given Qb. Likewise for b.

This is a generalization of the definition in BFK of the support of a strategy sa, which they

denote su(sa). In particular, suSb(sa) = su(sa).

BFK characterize rationality and common assumption of rationality (RCAR) by the solution

concept of a self-admissible set (SAS).

Definition 8. The set Qa ×Qb ⊆ Sa × Sb is an SAS if:

• each sa ∈ Qa is admissible with respect to Sa × Sb,

• each sa ∈ Qa is admissible with respect to Sa ×Qb,

• for any sa ∈ Qa, if ra ∈ suSb(sa), then ra ∈ Qa.

Likewise for b.

In particular, BFK show that the projection of the RCAR into Sa × Sb is an SAS. Conversely,

given an SAS Qa ×Qb, there is a type structure such that the projection of RCAR into Sa × Sb is

equal to Qa ×Qb. BFK discuss the need for the third requirement in the definition of an SAS. In

particular, consider the weak best response sets (WBRS), which does not include a restriction on

convex combinations.

Definition 9. The set Qa ×Qb ⊆ Sa × Sb is a WBRS if:

• each sa ∈ Qa is admissible with respect to Sa × Sb,

• each sa ∈ Qa is not strongly dominated with respect to Sa ×Qb.

Likewise for b.

An “almost” characterization of the WBRS is obtained if, as in Brandenburger (1992) and

Börgers (1994), common assumption of rationality is relaxed to common belief at level 0 of ratio-

nality (RCB0R) (that is, believing E means µ0(E) = 1, where µ0 is the first measure of the agent’s

LPS). More specifically, on the one hand the projection of RCB0R into Sa × Sb is a WBRS. On

the other hand, given a WBRS Qa ×Qb, there is a type structure such that Qa ×Qb is contained

in (but not necessarily equal to) the projection of RCB0R into Sa × Sb.6

We are now ready to introduce the solution concept of hypo-admissible sets (HAS).
6See Section 11 in BFK.
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Definition 10. The set Qa ×Qb ⊆ Sa × Sb is an HAS if:

• each sa ∈ Qa is admissible with respect to Sa × Sb.

For each sa ∈ Qa there is nonempty Q0 ⊆ Qb such that

• sa is admissible with respect to Sa ×Q0,

• for any sa ∈ Qa, if ra ∈ suQ0(sa) and ra is admissible with respect to Sa × Sb then ra ∈ Qa.

Likewise for b.

Note that the first two properties for a WBRS are equivalent to the first two properties for an

HAS and they are implied by the first two properties for an SAS. Hence, the SAS and the HAS are

always WBRS but the opposite does not hold. Moreover, an SAS is not necessarily an HAS and

an HAS is not necessarily an SAS. The differences between the HAS and the SAS can be further

illustrated by the following two solution concepts. The first is S∞W , the set of strategies that

survive one round of deletion of inadmissible strategies followed by iterated deletion of strongly

dominated strategies (Dekel and Fudenberg (1990)).

Definition 11. Set SW i
1 = Si1, for i = a, b be the set admissible strategies and define inductively

for m ≥ 1,

SW i
m+1 = {si ∈ SW i

m : si is not strongly dominated with respect to SW a
m × SW b

m}.

Let S∞W =
⋂∞
m=1 SW

a
m ×

⋂∞
m=1 SW

a
m.

The second is the set of strategies that survive iterated deletion of weakly dominated strategies,

the IA set.

Definition 12. Set Si0 = Si for i = a, b and define inductively

Sim+1 = {si ∈ Sim : si is admissible with respect to Sam × Sbm}.

A strategy si ∈ Sim is called m-admissible. A strategy si ∈
⋂∞
m=0 S

i
m is called iteratively admissible

(IA).

We then have that the S∞W set is both an HAS and a WBRS (but not an SAS) and the IA

set is an SAS and a WBRS (but not a HAS). The following game from Section 2 illustrates the

various definitions.

L R

U 1, 0 1, 3

M 0, 2 2, 2

D 0, 4 1, 1
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The IA set is {M} × {R}. It is an SAS but not an HAS, because although L ∈ su{M}(R) and

L is admissible, it does not belong to the IA set. Moreover, S∞W = {U,M} × {L,R} is an HAS

but not an SAS, because L is not admissible with respect to {U,M}. That is, in a sense the SAS

captures IA whereas the HAS captures S∞W .

4.2 Generalized Self-Admissible and Hypo-Iteratively Admissible Sets

In Section 5 we show that HAS characterizes RCBER with E = S. With a view to obtain a

characterization of RCcBER and to relate it to the concepts presented above, we introduce the

following two solution concepts.

Definition 13. The set Qa ×Qb ⊆ Sa × Sb is an SASPa×P b if:

• each sa ∈ Qa is admissible with respect to Sa × Sb,

• each sa ∈ Qa is admissible with respect to Sa ×Qb,

• for any sa ∈ Qa, if ra ∈ suP b(sa) and ra is admissible with respect to Sa × Sb, then ra ∈ Qa.

Likewise for b.

This is a generalization of the SAS, since the only difference is that the support suP b(sa) is with

respect to an abstract set P b, not Sb. This means that the SAS is equivalent to the SASSa×Sb .7

Moreover, if Qa ×Qb ⊆ P a × P b then an SASQa×Qb is also an SASPa×P b , but the reverse may not

hold. This means that for any P a × P b, an SASPa×P b is also an SAS. Moreover, an SASQa×Qb

Qa ×Qb is also an HAS.

Definition 14. A set Qa×Qb is a hypo-iteratively admissible (HIA) set if there exist sequences of

sets {W a
i }∞i=0, {W b

i }∞i=0, with W a
0 = Sa, W b

0 = Sb, such that for each m ≥ 0,

• each sa ∈W a
m+1 is admissible with respect to Sa ×W b

m and belongs to W a
m,

• for any k, m, where k ≥ m, if sa ∈ W a
k+1, ra ∈ suW b

k
(sa) ∩W a

m and ra is admissible with

respect to Sa ×W b
m, then ra ∈W a

m+1,

• there is k such that for all m ≥ k, W a
m = Qa.

Likewise for b.
7Note that if ra ∈ suSb(sa) and sa is admissible, then ra is also admissible. Hence, the third condition for a

SASSa×Sb is identical to the third condition for a SAS.
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The HIA sets resemble the IA set, with the only difference that one starts with a subset of

admissible strategies and always includes the strategies that are equivalent (in the sense of suQ) to

strategies that survive subsequent rounds. Moreover, the HIA can be thought of as an analogue of

the best response set (BRS).8 If we replace admissible with strongly undominated in the definition

of HIA then we get a BRS. Conversely, each BRS Qa ×Qb can be written as a modified HIA (just

set W a
i = Qa and W b

i = Qb for all i ≥ 1).

5 Characterization of RCBER

Our first result shows that HAS characterizes RCBER. We say that a type structure is rich if for

each type ta that cautiously believes events Ebi × T b, i = 1, . . . , n, where Eb1 ) Eb2 ) . . . ) Ebn,

there exists type ta0 that caustiously believes events Ebi × T b, i = 1, . . . , n − 1, but not Ebn × T b,
and margSb×T bλa(ta) = margSb×T bλa(ta0). In words, for each type there is another type that differs

only in that it cautiously believes fewer events.

Recall our notation: RCBER is given by
⋂∞
m=1R

a
m ×

⋂∞
m=1R

b
m.

Proposition 1. (i) Fix a rich type structure 〈Sa, Sb, La, Lb, T a, T b, λa, λb〉. Then projSa
⋂∞
m=1R

a
m×

projSb
⋂∞
m=1R

b
m is an HAS.

(ii) Fix an HAS Qa ×Qb. Then there is a rich type structure 〈Sa, Sb, La, Lb, T a, T b, λa, λb〉 with

Qa ×Qb = projSa
⋂∞
m=1R

a
m × projSb

⋂∞
m=1R

b
m.

Proof. Throughout we keep the convention that for any two sets, E and F , E × F = ∅ implies

E = ∅ and F = ∅. For part (i), if Qa×Qb = projSa
⋂∞
m=1R

a
m×projSb

⋂∞
m=1R

b
m is empty, then the

conditions for HAS are satisfied, so suppose that it is nonempty and fix sa ∈ Qa = projSa
⋂∞
m=1R

a
m.

Then, for some ta, (sa, ta) is consistent with RCBER and sa is admissible, by Lemma 2. Since ta

believes each Rbm, for all m, it also believes
⋂∞
m=1R

b
m. From the conjuction and marginalization

properties of belief there is v = margSbλa(ta), with support contained in projSb
⋂∞
m=1R

b
m, such

that sa is optimal under v.

Let Q0 = supp v. We have that sa is admissible with respect to Q0 = supp v, which is a subset

of Qb = projSb
⋂∞
m=1R

b
m. Suppose sa ∈ Qa, ra ∈ susupp v(sa) and ra is admissible. From Lemma

D.2 in BFK, ra is optimal under v whenever (sa, ta) ∈ Ra1.9 Because the type structure is rich, there

exists type ta0 that is identical to ta, except that it only cautiously believes events that consider all

strategies in Sb to be possible. Since ra is admissible, we have that (ra, ta0) ∈ Ra1. The same is true

for all Ram, hence the third property for an HAS is satisfied.

8Recall that Qa×Qb is a BRS if each sa ∈ Qa is strongly undominated with respect to Sa×Qb and likewise for b.
9Lemma D.2 specifies that if F is a face of a polytope P and x ∈ F , then su(x) ⊆ F , where su(x) is the set of

points that support x. The geometry of polytopes is presented in Appendix D in BFK.
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For part (ii) fix an HAS Qa×Qb and note that for each sa ∈ Qa which is admissible with respect

to Qsa ⊆ Qb, there is a v with supp v = Qsa under which sa is optimal. We can choose v such that

ra is optimal under v if and only if ra ∈ suQsa (sa) (Lemma D.4 in BFK).10 Define list space Lb

containing element lb = {Sb}. Similarly for b. Define type spaces T a = Qa, T b = Qb, with λa and

λb chosen so that supp λa(sa) = {(sb, lb, sb) : sb ∈ Qsa}, lb = {Sb} and v = margSbλa(sa) for the v

found above. Similarly for b. Note that the type structure is rich, because each type ta does not

cautiously believe Eb × T b, if Eb 6= Sb.

First, we show that for each sa ∈ Qa, (sa, sa) is event-rational. By construction, sa is optimal

under v = margSbλa(sa) and admissible. Hence, (sa, sa) is event-rational and Qa ⊆ projSaRa1.

Suppose (ra, ta) ∈ Ra1, where ta = sa. Then, ra ∈ suQsa (sa) and ra is admissible with respect to

Qsa . From Lemma 2, ra is admissible. From the definition of an HAS this implies that ra ∈ Qa

and Qa = projSaRa1. Applying similar arguments we have that Qb = projSbRb1.

By construction, each ta ∈ Qa puts positive probability only to elements in the diagonal (sb, sb)

which consists of event-rational strategy-type pairs, hence ta believes Rb1 and (sa, sa) ∈ Ra2. This

implies that Ra2 = Ra1 and likewise for b. Thus, Ram = Ra1 and Rbm = Rb1 for allm, by induction. Since

projSaRa1 × projSbRb1 = Qa ×Qb we also have Qa ×Qb = projSa
⋂∞
m=1R

a
m × projSb

⋂∞
m=1R

b
m.

That is, the strategies consistent with RCBER are the hypo-admissible strategies according

to the definition of an HAS. In a complete structure, m rounds of mutual belief generate the

SW a
m × SW b

m strategies.

Proposition 2. Fix a complete structure 〈Sa, Sb, La, Lb, T a, T b, λa, λb〉. Then, for each m,

projSaR
a
m × projSbR

b
m = SW a

m × SW b
m.

Proof. Let T a0 be the set of types ta such that margLbλa(ta) = {Sb}. From Lemma 2 we have

that (sa, ta) ∈ Ra1 implies sa is admissible. Conversely, since we have a complete structure, if sa

is admissible then there exists ta ∈ T a0 such that (sa, ta) ∈ Ra1. Hence, projSaRa1 = Sa1 = SW a
1

and projSbRb1 = Sb1 = SW b
1 . Suppose that for up to m we have that projSaRam = SW a

m and

projSbRbm = SW b
m. Suppose sa ∈ SW a

m+1. Then, sa ∈ SW a
m = projSaRam. Because sa is not

strongly dominated with respect to SW a
m×SW b

m, it is also not strongly dominated with respect to

Sa × SW b
m. Hence, there is a v with supp v ⊆ SW b

m under which sa is optimal. We take (sa, ta),

ta ∈ T a0 , with supp margSb×T bλa(ta) ⊆ Rbm and margSbλa(ta) = v. Because sa is admissible with

respect to Sb, (sa, ta) is event-rational. Because ta ∈ Ba(Rbm) and Rbm ⊆ Rbk, 1 ≤ k ≤ m, we have

that (sa, ta) ∈ Ram+1 and sa ∈ projSaRam+1.

10Lemma D.4 specifies that if x belongs to a strictly positive face of a polytope P , then su(x) is a strictly positive

face of P .
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Suppose sa ∈ projSaRam+1. Then, sa ∈ SW a
m = projSaRam and supp margSbλa(ta) ⊆ SW b

m =

projSbRbm. Because sa is optimal under v, where supp v ⊆ SW b
m, sa is not strongly dominated with

respect to SW b
m and therefore sa ∈ SW a

m+1.

6 Characterization of RCcBER

The following two Propositions show that RCcBER is characterized by the HIA set and RmcBER

generates the IA set in a complete type structure, for big enough m.

Recall our notation: RCcBER is given by
⋂∞
m=1R

a
m ×

⋂∞
m=1R

b
m.

Proposition 3.

(i) Fix a rich type structure 〈Sa, Sb, La, Lb, T a, T b, λa, λb〉. Then projSa
⋂∞
m=1R

a
m×projSb

⋂∞
m=1R

b
m

is an HIA set.

(ii) Fix an HIA set Qa × Qb. Then there is a rich type structure 〈Sa, Sb, La, Lb, T a, T b, λa, λb〉
with Qa ×Qb = projSa

⋂∞
m=1R

a
m × projSb

⋂∞
m=1R

b
m.

Proof. For part (i), if Qa×Qb = projSa
⋂∞
m=1R

a
m× projSb

⋂∞
m=1R

b
m is empty, then the conditions

for an HIA set are satisfied, so suppose that it is nonempty.

Set W a
m = projSaR

a
m for m ≥ 1 and likewise for b. From Lemma 2, all strategies in projSbR

a
m+1

are admissible with respect to Sa ×W b
m and, by construction, belong to projSbR

a
m.

Suppose that for some k, m, where k ≥ m, we have that sa ∈ W a
k+1 = projSbR

a
k+1, ra ∈

suW b
k
(sa) ∩ W a

m and ra is admissible with respect to Sa × W b
m. This implies that for some ta,

(sa, ta) ∈ R
a
k+1, where supp margSbλa(ta) ⊆ W b

k and list margLbλa(ta) contains at least all sets

W b
l , for l ≤ m. Because the type structure is rich, there exists type ta0, with list margLbλa(ta0)

that contains all sets W b
l , for l ≤ m, and nothing else. Moreover, ta0 is identical to ta in all other

respects. Since ra ∈ suW b
k
(sa), ra is optimal given margSbλa(ta0). Moreover, ra is admissible with

respect to Sa ×W b
l , for l ≤ m.

All these imply that (ra, ta0) ∈ Ram+1. The third condition is satisfied because projSa
⋂∞
m=1R

a
m×

projSb
⋂∞
m=1R

b
m is nonempty and the strategies are finite.

For part (ii), fix an HIA set Qa × Qb, with sequences of sets {W a
m}m=n′

m=0 , {W b
m}m=n

m=0 , where

W a
n′ = Qa and W b

n = Qb. Construct the following type structure. Similarly for a. For each m ≥ 1,

for each sa ∈W a
m, find the measure v(sa,m) with support on W b

m−1 such that ra is a best response

to v(sa,m) if and only if ra ∈ suW b
m−1

(sa). This is possible because of Lemma D.4 in BFK. Type

ta(sa,m) has a marginal v(sa,m) on Sb, marginal lb = {W b
0 , . . . ,W

b
m−1} on Lb (ommitting W b

m−j

if it is equal to W b
m−j−1) and assigns positive probability only to strategy-types (sb, tb(sb,m− 1)),

for sb ∈ W b
m−1. Finally, assign to each sa ∈ Sa type ta(ra, 0) which is equal to ta(ra, k), for some

ra ∈W a
k , k > 0.
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We now show that RCcBER generates the HIA set. For m = 1, we show that projSaR
a
1 =

W a
1 . Suppose that sa ∈ W a

1 . Because sa is admissible and a best response to v(sa, 1), we have

(sa, ta(sa, 1)) ∈ Ra1 and sa ∈ projSaR
a
1. Suppose ra ∈ projSaR

a
1. Then, ra is a best response to

some measure v(sa, k+1), k ≥ 0, for sa ∈W a
k+1 and ra ∈ suW b

k
(sa)∩W a

0 . Because (ra, ta(sa, k+1))

is event-rational, ra is admissible. Therefore, by the second property for an HIA set, ra ∈ W a
1 .

Moreover, by construction, for each sa ∈W a
1 , (sa, ta(sa, 1)) ∈ Ra1, and similarly for b.

Assume that for up to m, projSaR
a
m = W a

m and for each sa ∈ W a
m, (sa, ta(sa,m)) ∈ R

a
m.

Similarly for b. Suppose that sa ∈ W a
m+1. By construction, sa is a best response to v(sa,m + 1),

which has a support of W b
m = projSbR

b
m, and it is admissible with respect to Sa ×W b

m. Moreover,

margLbta(sa,m + 1) = {W b
0 , . . . ,W

b
m} and type ta(sa,m + 1) assigns positive probability only

to types (sb, tb(sb,m)) ∈ R
b
m, for sb ∈ W b

m. This implies that (sa, ta(sa,m + 1)) ∈ R
a
m+1 and

sa ∈ projSaR
a
m+1. Suppose ra ∈ projSaR

a
m+1. By construction, the only measures that have

support which is a subset of W b
m are measures that are associated with strategies sa that belong

to W a
k+1, where k + 1 > m. Hence, (ra, ta(sa, k + 1)) ∈ Ram+1 and ra is a best response to some

measure v(sa, k + 1). By construction, ra ∈ suW b
k
(sa). Moreover, ra is admissible with respect to

Sa ×W b
m. Hence, by the second property for an HIA set we have that ra ∈W a

m+1.

Proposition 4. Fix a complete type structure 〈Sa, Sb, La, Lb, T a, T b, λa, λb〉. Then, for each m,

projSaR
a
m × projSbR

b
m = Sam × Sbm.

Proof. For m = 1, Lemma 2 and a complete structure imply projSaR
a
1 = Sa1 . Suppose that for up

to m we have that projSaR
a
m = Sam and projSbR

b
m = Sbm. Suppose sa ∈ Sam+1. Then, sa ∈ Sam =

projSaR
a
m. Because sa is admissible with respect to Sam × Sbm, it is also admissible with respect

to Sa × Sbm and we can take (sa, ta) such that supp margSb×T bλa(ta) = R
b
m, margSbλa(ta) = v,

margLbλa(ta) = {Sb, Sb1, . . . , Sbm}. Then, (sa, ta) is event-rational and ta ∈ Ba
∗ (R

b
k) for all k ≤ m,

which implies that (sa, ta) ∈ Ram+1 and sa ∈ projSaR
a
m+1.

Suppose sa ∈ projSaR
a
m+1. Then, sa ∈ Sam = projSaR

a
m and there exists ta such that (sa, ta) ∈

R
a
m+1 and supp margSbλa(ta) ⊆ Sbm = projSbR

b
m. Because ta ∈ Ba

∗ (R
b
m), Sbm ∈ margLbλa(ta).

Hence, we have that sa is admissible with respect to Sam × Sbm and sa ∈ Sam+1.

6.1 Comparison with BFK

BFK’s LPS-based approach uses the following construction. Let L+(X) be the space of fully

supported LPS’s over X, that is, the space of finite sequences σ = (µ0, . . . , µn−1), for some integer

n, where µi ∈ ∆(X) and
⋃n−1
i=0 supp µi = X. In addition, the measures µi in σ are required to

be non-overlapping, that is, mutually singular. A lexicographic type structure is a type structure
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where λa : T a → L+(Sb×T b), and similarly for b. An event E is assumed if and only if the closure

of the event is equal to the union of the supports of the first j levels of the player’s LPS. That

is, there is a level j such that the player assigns probability one to the event E for all of his/her

hypothesis up to level j, and assigns probability zero to the event for all of his/her hypothesis of

levels higher than j. Yang (2009) uses a weaker notion that allows the levels higher than j to assign

positive (and strictly smaller than 1) weights to the event. The use of lexicographic beliefs is to be

contrasted with our use of standard beliefs.

RCAR in BFK is characterized by the SAS and RmAR (m levels of mutual assumption) pro-

duces the IA set in a complete structure, for big enough m. Since RmcBER generates the IA set

as well, it is important to know what is the relationship between RCAR and RCcBER in terms of

the solution concepts they generate. The following Proposition and examples show that RCcBER

generates a strict subclass of SAS, hence it is a more restrictive notion than RCAR. However,

as we show in the following section, RCcBER and RCBER are always nonempty in a complete,

continuous and compact structure, unlike RCAR. Let Aa and Ab be the set of Ann’s and Bob’s

admissible strategies, respectively.

Proposition 5.

(i) Fix a type structure 〈Sa, Sb, La, Lb, T a, T b, λa, λb〉. Then projSa
⋂∞
m=1R

a
m × projSb

⋂∞
m=1R

b
m

is an SASAa×Ab.

(ii) Fix an SASQa×Qb Qa ×Qb. Then there is a type structure 〈Sa, Sb, La, Lb, T a, T b, λa, λb〉 with

Qa ×Qb = projSa
⋂∞
m=1R

a
m × projSb

⋂∞
m=1R

b
m.

Proof. For part (i), if Qa×Qb = projSa
⋂∞
m=1R

a
m× projSb

⋂∞
m=1R

b
m is empty, then the conditions

for SASAa×Ab are satisfied, so suppose that it is nonempty. By definition of event-rationality and

Lemma 2, each sa ∈ Qa = projSa
⋂∞
m=1R

a
m is admissible with respect to Sa × Sb and Sa ×Qb.

Suppose sa ∈ Qa, ra ∈ suAb(sa) and ra is admissible. This implies that for any ta, (sa, ta) ∈⋂∞
m=1R

a
m implies that supp margSbλa(ta) ⊆ Ab and ra is optimal under v = margSbλa(ta) (Lemma

D.2 in BFK). Because ra is admissible we have that (ra, ta) ∈ Ra1. For each m ≥ 2, (sa, ta) ∈ Ram
implies that ta believes and cautiously believes Rbm−1. Because projSbRbm−1 ⊆ Ab and ra ∈ suAb(sa),

we have that (ra, ta) ∈ Ram and ra ∈ Qa.
For part (ii) fix an SASQa×Qb Qa×Qb and note that for each sa ∈ Qa which is admissible with

respect to Qb, there is a v with supp v = Qb under which sa is optimal. We can choose v such

that ra is optimal under v if and only if ra ∈ suQb(sa) (Lemma D.4 in BFK). Define type spaces

T a = Qa, T b = Qb, La = la, Lb = lb, where la = {Sa}, lb = {Sb}, with λa and λb chosen so that

supp λa(sa) = {(sb, lb, sb) : sb ∈ Qb} and supp λb(sb) = {(sa, la, sa) : sa ∈ Qa}.
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By construction and applying similar arguments as in the proof of Proposition 1, we have that

Qa = projSaR
a
1 and Qb = projSbR

b
1. Moreover, each type ta ∈ Qa puts positive probability only

to elements in the diagonal (sb, lb, sb), which consists of event-rational strategy-type pairs, hence

ta consistently believes Rb1. Since lb = {Sb}, we have that Ram = R
a
1 and R

b
m = R

b
1 for all m,

by induction. Since projSaR
a
1 × projSbR

b
1 = Qa × Qb we also have Qa × Qb = projSa

⋂∞
m=1R

a
m ×

projSb
⋂∞
m=1R

b
m.

In words, for a given type structure, the strategies compatible with RCcBER form a subclass of

all of the SAS, and there is a class of SAS (the Qa×Qb sets that are SASQa×Qb) whose strategies are

compatible with RCcBER for some type structure. Because an SASQa×Qb Qa×Qb is an SASAa×Ab

but the converse is not true, Proposition 5 does not provide a characterization of RCcBER. It

does show, however, that RCAR, which is characterized by SAS (BFK, Proposition 8.1), is less

restrictive than RCcBER.

In fact, the following game provides an example of an SAS that is not an SASAa×Ab and cannot

be generated by RCcBER for any type structure. Hence, RCcBER generates a strict subclass of

SAS.

L C R

U 1, 1 2, 1 1, 1

M 2, 2 0, 1 1, 0

D 0, 1 4, 2 0, 0

Note that all strategies except for R are admissible and that {U}×{L,C} is an SAS but not an

SASAa×Ab . The reason is that D and M are in the support of a mixed strategy (assigning weight

1/2 to each) that is equivalent to U given that Bob plays his admissible strategies L and C, but

not given the set of all strategies Sb. Since D and M are not included in {U} × {L,C}, this is not

an SASAa×Ab .

We now argue that {U}×{L,C} cannot be the outcome of RCcBER. First, note that if this were

the case, the types of Ann included in RCcBER should assign zero probability to Bob playing R.

Note also that U is a best response only when Pr(L) = 2
3 and Pr(C) = 1

3 and, for these conjectures,

also M and D are best responses. Is it possible that M and D are excluded because types playing

these strategies are not {L,C}-rational or Sb-rational? No, because M and D are admissible with

respect to both {L,C} and Sb. Hence, under RCcBER, for any type structure, whenever U is

included, M and D are included as well.

In the following game all strategies are admissible, hence an SAS is equivalent to an SASAa×Ab .

23



L C R

U 1, 1 2, 1 1, 1

M 2, 2 0, 1 1, 5

D 0, 1 4, 2 0, 0

The same arguments show that RCcBER cannot produce {U} × {L,C} which is both an SAS

and an SASAa×Ab but not an SASQa×Qb . Hence, we cannot have a tighter characterization in terms

of Proposition 5.

7 Possibility Results for RCBER and RCcBER

Since the games are assumed to be finite, Propositions 2 and 4 suggest that RmBER and RmcBER

generate the S∞W and IA sets, respectively, for m large enough. However, an epistemic criterion for

S∞W and IA has to be the same across all games and therefore independent of m. Below we show

that RCBER and RCcBER are nonempty whenever the type structure is complete, continuous and

compact (and recall that the universal type structure (Mertens and Zamir (1985) and Appendix)

satisfies these properties), hence providing an epistemic criterion for S∞W and IA.

Proposition 6. Fix a complete, continuous and compact type structure 〈Sa, Sb, La, Lb, T a, T b, λa, λb〉.
Then RCBER and RCcBER are nonempty.

Proof. First note that from Propositions 2 and 4, the sets Ram ×Rbm and Ram ×R
b
m are non-empty

for each m ≥ 1.

We first show that Ra1 is closed. Note that T a is compact. For any sequence (san, t
a
n) in Ra1, we

have san ∈ BR(van), where van = margSbλa(tan). If (san, t
a
n)→ (sa, ta), then van → va = margSbλa(ta),

implying that sa ∈ BR(va). Also, because Sa is finite, we have sa = san for large n, so sa ∈ BRa(van).

Further, because Sb is finite, we can choose a subsequence with supp van = supp vak for all indices

n, k and a fortiori supp va ⊂ supp van. Let σa satisfy σa ∼supp va s
a. If supp va = supp van we

have σa ∼supp van sa. Hence, for each Fi ∈ margLbλa(ta), there exists vi with support equal to

Fi \ supp va, such that πa(sa, vi) ≥ πa(σa, vi). If supp va 6= supp van, then because sa ∈ BRa(van)

and σa ∼supp va sa , it must be that there exists µ ∈ ∆(Sb) with πa(sa, µ) ≥ πa(σa, µ) and

supp µ = supp van \ supp va (µ can be taken as the conditional of van on supp van \ supp va). Now

put µ′ = αµ+ (1−α)vi for some α ∈ (0, 1), note that supp µ′ = Fi \ supp va and that πa(sa, µ′) ≥
πa(σa, µ′). That is, (sa, ta) ∈ Ra1, so it is a closed subset of the compact space Sa × T a.

Consider Ra2 = Ra1 ∩ [Sa ×Ba(Rb1)], and pick a convergent sequence (san, t
a
n) therein, with limit

(sa, ta). Because Rb1 is closed and λa is continuous, we have lim suptan→ta λ
a(tan)(Rb1) ≤ λa(ta)(Rb1).
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Hence margSb×T bλa(ta)(Rb1) = 1 because margSb×T bλa(tan)(Rb1) = 1 for every n. Also, event-

rationality follows from an argument similar to the argument above, and we conclude that Ra2 is

compact. Inductively, Ram is compact for all m. It follows that
⋂
m≥1R

a
m 6= ∅ because the family

{Ram}m≥1 has the finite intersection property: for any finite list {m1, . . . ,mK} of positive numbers,

let mk be the largest. Then we know that Ramk 6= ∅ and it is included in
⋂K
k=1R

a
mk

.

We also have compactness of the sets Ram. Pick a sequence (san, t
a
n) in Ram converging to (sa, ta),

and without loss of generality focus on a subsequence with supp margLbλa(tan) = supp margLbλa(tak)

for all n, k. Because those marginals are mass points, and Lb is finite, it must be that case

that supp margLbλa(tan) = supp margLbλa(ta). Repeat the argument in the first paragraph of

the proof to conclude that (sa, ta) is event-rational because (san, t
a
n) is event-rational for each n,

and projSbR
b
m−1 ∈ margLbλa(ta), so (sa, ta) ∈ Ram. Hence we have a nested sequence of non-empty

compact spaces, so by the finite intersection property, we have
⋂
m≥1R

a
m 6= ∅.

The same arguments apply to b.

8 Conclusion

We showed that event-rationality can be used to analyze common belief of admissibility in games.

In particular, epistemic criteria for S∞W and for IA are obtained. Moreover, IA is placed at the

same level as IEDS as a solution concept. IA does require that players know more about each other

than IEDS does (i.e. common consistent belief of event-rationality instead of common belief of

rationality), but it certainly does not require that players know each other’s conjectures. The fact

that each player can perform the IA procedure on her own by considering that the other players

only play admissible strategies, much as each player can perform the IEDS procedure on her own

(by considering that the other players only play rational strategies), suggests that the epistemic

requirements for IA ought not be much more restrictive than those for IEDS, as we indeed show

using RCcBER.

Finally, because we adopt a perspective different from LPS-based approaches, our analysis is a

straightforward extension of the standard analysis of common knowledge of rationality. That is,

by noting that admissibility can be captured by breaking ties outside of one’s conjectures, we are

able to separate beliefs from conjectures and work with standard type spaces.

A Preference Basis

Let Ω be a state space and A the set of all measurable functions from Ω to [0, 1]. For simplicity,

assume that Ω is finite (modulo technical details, the considerations below carry through in a more

general state space). A decision maker has preferences over elements of A. We assume that the
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outcome space [0, 1] is in utils. That is, all preferences considered below agree on constant acts over

an outcome space, so the Bernoulli indices are uniquely defined and omitted from the analysis that

follows. For x, y ∈ A, 0 ≤ α ≤ 1, αx+(1−α)y is the act that at ω gives payoff αx(ω)+(1−α)y(ω).

Unless otherwise noted, we assume that a preference relation % satisfies completeness, transitivity,

independence and has an expected utility representation.

Definition 15. x %E y if for some z ∈ A, (xE , zΩ\E) % (yE , zΩ\E).

Note that for preferences satisfying the aforementioned axioms, (xE , zΩ\E) % (yE , zΩ\E) holds

for all z if it holds for some z. An event E is Savage null if x ∼E y for all x, y ∈ A. For a given

%, the set N(%) ⊂ Ω denotes the union of all non Savage null events according to %.

Fix a game and the resulting set of available acts B. An act x ∈ B is event-rational if there

exist a preference % and a list l = {F1, ..., Fk}, with Fi ⊂ Ω for i = 1, ..., k such that

• x % y for every y ∈ B,

• for each Fi ∈ l with Fi \N(%) 6= ∅ and act y ∈ B with x(ω) = y(ω) for all ω ∈ N(%), there

exists a preference %′ with N(%′) = Fi \N(%) such that x %′ y,

• Ω ∈ l.

Therefore, the definition of event-rationality is identical to that of the main text.

Consider a decision maker represented by a list of preferences {%i}ki=0 with N(%i)∩N(%0) = ∅
for i = 1, ..., k and N(%i) = Ω\N(%0) for some i.11 The interpretation is that N(%0) is the primary

hypothesis of the decision maker, and the secondary hypotheses {N(%i)}ki=1 are probability-zero

counter-factuals. The preference %0 is the decision maker’s “primary preference”, and she resorts to

the “secondary preferences” in {%i}ki=1 to break ties. Formally, given a list of preferences {%i}ki=0

satisfying the aforementioned two properties we define an induced preference relation over acts, %c,

as follows:

Definition 16. x %c y if and only if either

• x %0 y and x 6= y on N(%0) or

• x = y on N(%0) and x %i y for i = 1, ..., k.

Note that %c is incomplete but transitive. An act x is %c-rational if x %c y for every y ∈ B.

Proposition 7. An act x is %c-rational if and only if it is event-rational.
11One can think of conditional preferences, as in Luce and Krantz (1971), Fishburn (1973) and Ghirardato (2002).
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Proof. By definition, if x is %c-rational, then it is event-rational under %=%0 and l = {F1, ..., Fk},
with Fi = N(%i) ∪N(%0) for i = 1, ..., k.

Conversely, let x be event-rational under %̂ and l = {F1, ..., Fk}. If x 6= y on N(%̂), then x %c y

using %0= %̂. So let us focus on acts in C = {y ∈ B : y = x on N(%̂)}. Let m = #Ω \N(%̂), and

note that the set C can be identified as a convex in [0, 1]m, with x ∈ C. For each i = 1, ..., k where

Ei = Fi \N(%̂) 6= ∅, let Bi = {r ∈ Rm+ : r|Ei � x|Ei}, where x|Ei denotes the vector x restricted to

states in Ei. Note that Bi ∩ C = ∅, because otherwise there would exist an act y that is outcome-

equivalent to x and strictly preferred to x for any preference %′ with N(%′) = Ei, contradicting

event-rationality of x. Because Bi is also convex, by the separating hyperplane theorem there exists

αi ∈ Rm with αi · r > αi · y for all r ∈ Bi and y ∈ C. Take rε ∈ Rm+ with rε(ω) = x(ω) for ω /∈ Ei
and rε(ω) = x(ω) + ε for ω ∈ Ei and ε > 0. Then rε ∈ Bi. Letting ε→ 0, we have rε → x and we

obtain αi · x ≥ αi · y for every y ∈ C.

Also, αi can be chosen to satisfy αi(ω) > 0 only if ω ∈ Ei. Otherwise, say that αi(ω′) > 0

and ω′ /∈ Ei. If y(ω′) = 0 for every act in B, then αi(ω′) can be set equal to zero without loss. If

x(ω′) = 0 and there exists y ∈ C with y(ω′) > 0, then it cannot be the case that Fi = {ω′} for

any i = 1, ..., k. So set y(ω) = x(ω) for every ω 6= ω′ and y(ω′) > x(ω′), with y ∈ C. Such a y

exists because Ei 6= Ω \N(%̂) (if it was equal, then ω′ would not exist) and there is no Fi equal to

{ω′}. Then αi · rε > αi · y, for the rε constructed above. But as ε→ 0, rε → x and αi · x < αi · y
by construction. This contradicts αi · rε > αi · y for all ε. In the case that x(ω′) > 0, change

the rε above by having rε(ω′) = 0, while keeping the other values. Then as ε → 0, we must get

αi · rε < αi · x, another contradiction. So the support of αi is contained in Ei.

Moreover, because for each y ∈ C there exists %′ with N(%′) = Ei and x %′ y, it must be that

α(ω) > 0 if ω ∈ Ei. If not, then there is ω′ ∈ Ei with αi(ω′) = 0, and there is no other α′i with

α′i(ω
′) > 0 that would separate Bi and C. Now take the original rε and y ∈ C with y(ω′) > x(ω′).

Such a y must exist, for otherwise there would exist the required α′i. But there is no %′ with

N(%′) = Ei and x %′ y, a contradiction. So it must be that αi(ω) > 0 if and only if ω ∈ Ei.
Normalizing αi yields a probability distribution νi with supp νi = Ei for which x is a better

response than any y ∈ C. Let %i be the preference relation represented by the underlying Bernoulli

index and νi. The construction above is true for every i = 1, ..., k. Setting %0= %̂ and collecting

the list {%0,%1, ...,%k} it follows that x is %c-rational.

In what follows, for ease of notation, we use Ni = N(%i) for i = 0, ..., k, x �iE y to denote that

x is preferred to y according to %i conditional on E (according to Definition 15), and x =0E y to

denote that x(ω) = y(ω) for all ω ∈ N0 ∩E 6= ∅. The notions of beliefs we use in the main text are

as follows.

Definition 17. Event E is believed under %c if N0 ⊂ E.
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Definition 18. Event E is cautiously believed under %c and i if E = N0 ∪Ni.

In words, the decision maker believes an event E if she believes it according to her primary

preference; and she cautiously believes it if it is the smallest event that is believed according to

her primary and one other of her preference relations. Note that it may well be that i = 0, so

E = N0 is cautiously believed. Ann consistenly believes E if she believes and cautiously believes it.

In the text, cautious belief is restricted to events that describe strategies only. Here we deal with

the general case, so that cautious belief is equivalent to consistent belief. It is straightforward to

consider a product state space Ω = Ω1 × Ω2 and define belief for events on Ω and cautious belief

for events on Ω1.

We now define a notion of conditional %c-preference that is consistent with tie-breaking ideas.

Definition 19. Say that x �cE y under i if

• x �0E y or

• x =0E y, x �iE y and x %j y for every j 6= i.

Say that x �cE y if x �cE y for some i. Note that x �cE y under i and x =0E y necessarily mean

that i > 0.

Definition 20. An event E is non trivial under %c and i if

• there is a pair x, y with x �cE y under i, and

• if ω ∈ E is such that there is no pair x, y with x �cω y, then there is a pair x, y with x = y on

N0 such that x �cE(ω) y under i, where E(ω) = E ∩ (N0 ∪ {ω}).

Definition 21. An event E satisfies strict determination under %c and i if for all x, y, x �cE y
under i implies x �c y.

The following Lemma characterizes cautious belief with respect to non-triviality and strict

determination.

Lemma 3. There exists i such that E is cautiously believed under %c and i if and only if it is non

trivial and satisfies strict determination under %c and i.

Proof. By non triviality, E ∩ N0 6= ∅, for otherwise there would exist no pair x, y with x �cE y.

Assume by way of contradiction that there exists ω̂ ∈ N0 \E. Also, let ω′ ∈ E ∩N0. Set x(ω′) = 1

and zero otherwise, and set

y(ω) =


a if ω = ω̂

b if ω = ω′

0 otherwise
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where a > v0(ω′)(1−b)
v0(ω̂) , 0 < b < 1, and v0 is the conjecture associated with %0. Then, conditional on

E, the payoff of x is equal to 1 whereas the payoff of y is b < 1, so x �cE y; But the unconditional

payoff of x is equal to v0(ω′) whereas the payoff of y is av0(ω̂) + bv0(ω′), so y �c x, contradicting

strict determination. Hence N0 ⊂ E. Therefore, if for all ω ∈ E there exists a pair x, y with x �cω y,

then E ⊂ N0, and we conclude that E = N0 ∪Ni, with i = 0.

If there is ω ∈ E for which there is no pair x, y with x �cω y, then ω /∈ N0. By non triviality,

there is a pair x, y with x = y on N0 with x �cE(ω) y under i, meaning that x �iE(ω) y, which in

turn means that ω ∈ Ni and i 6= 0. Hence we must have E ⊂ N0 ∪Ni. Similarly to above, assume

by way of contradiction that there exists ω̂ ∈ Ni \ E. Also, let ω′ ∈ E ∩Ni. Construct x and y as

follows: x = y on N0, and on Ω\N0 x and y are as above, with a > vi(ω
′)(1−b)
vi(ω̂) . Strict determination

is again violated, so we must have N0 ∪Ni ⊂ E, and we conclude that E = N0 ∪Ni with i > 0.

Conversely, assume that E = N0 ∪Ni for some i. Let x = 1 on N0, 0 otherwise and y(ω) = 0

for every ω. Then x �c0 y and x �cE y under i. For the second condition, if i = 0, then E = N0

and there does not exist ω ∈ E such that there is no pair x, y with x �cω y. If i 6= 0, pick ω ∈ Ni

(so ω /∈ N0). Set x = y on N0, x(ω) = 1, y(ω) = 0 and x = y = 0 elsewhere. Then x �cE(ω) y, so

non triviality is satisfied.

Finally, let x �cE y under i. If x �0E y then x �0 y, implying that x �c y. If x =0E y, x �iE y
and x %j y for every j 6= i, then x = y on N0, x �i y and x %j y for every j 6= i, which again

means that x �c y. So strict determination is satisfied.

Corollary 1. An event E is believed under %c if and only if it satisfies strict determination under

%c and i = 0 and there exists a pair x, y with x �cE y under i = 0.

B Sequentially rationalizable choice

The preference basis provided above postulates that the decision maker is represented by a list of

conditional preferences, as in Luce and Krantz (1971), Fishburn (1973) and Ghirardato (2002), to

name a few. We also provide an alternative, more direct approach using choice correspondences

rather than preferences, based on Manzini and Mariotti (2007). In particular, we show that event-

rational strategies can be generated by a procedure of sequentially maximizing under two rationales

(strict preferences). Note that although Manzini and Mariotti (2007) use their model to explain

cyclical patterns of choice, we show that the particular choice modelled here does not exhibit cyclical

patterns.

Let X be a finite set of alternatives with |X| > 2. Given an asymmetric preference relation �,

denote the set of �-maximal elements of S ⊆ X by

max(S;�) = {x ∈ S : @ y ∈ S for which y � x}.
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Let P(X) be the set of all nonempty subsets of X. A choice correspondence γ : P(X) ⇒ X

selects a set of alternatives from each element of P(X).

Definition 22. A choice correspondence is sequentially rationalized by an ordered pair (�1,�2) of

asymmetric relations, with �i⊆ X ×X for i = 1, 2, if

γ(S) = max(max(S;�1);�2) for all S ∈ P(X).

We call �i a rationale.

If γ is a function then it is called a Rational Shortlist Method (RSM) by Manzini and Mariotti

(2007). It is characterized with respect to two axioms, Weak WARP and Expansion. Manzini and

Mariotti (2007) also show that RSMs have empirical content, in the sense that they only allow for

a specific type of irrationality and are testable.

We say that list l = {F1, ..., Fk} is proper under measure µ if supp µ ∩ F = ∅ for each F ∈ l
and supp µ ∪ F = X for some F ∈ l. If µ is understood, we just say that list l is proper.

We assume that the agent uses a sequentially rationalizable choice, using two rationales. The

first rationale is the Pareto criterion. Suppose there are two strategies σ1, σ2, that are outcome

equivalent under the support of her primary conjecture. Then, the agent has no way of distin-

guishing between the two according to her primary conjecture, and she resorts to her secondary

measures. Because these are not ordered (as in lexicographic preferences), she treats them equally.

In particular, she strictly prefers σ1 to σ2 if and only if σ1 Pareto dominates σ2.

Definition 23. Say that �1 satisfies the Pareto criterion given proper list l = {F1, ..., Fk} and

measure µ if there exist measures µi, where supp µi = Fi, i = 1, . . . k, such that for each pair of

strategies σ1, σ2, we have σ1 �1 σ2 if and only if σ1 ∼supp µ σ2, πa(σ1, µi) ≥ πa(σ2, µi) for all

i = 1, . . . , k, and πa(σ1, µi) > πa(σ2, µi) for some i.

Ann strictly prefers σ1 to σ2 according to �1 if and only if they are outcome equivalent under

her primary measure µ and σ1 Pareto dominates σ2, under her secondary measures. Note that if σ1

and σ2 are not outcome equivalent given supp µ, then they are not ranked according to �1, which

is therefore incomplete but transitive.

The second rationale, �2, is derived from Ann’s primary measure.

Definition 24. Say that asymmetric and transitive preference �2 is derived given proper list l =

{F1, ..., Fk} and measure µ if there exist measures µi, where supp µi = Fi, i = 1, . . . k, such that

for each pair of strategies σ1, σ2,

• πa(σ1, µ) > πa(σ2, µ) implies σ1 �2 σ2,

• πa(σ1, µi) > πa(σ2, µi), for some i, and σ1 ∼supp µ σ2, implies σ2 �2 σ1.
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The first condition specifies that �2 respects the strict preferences implied by conjecture µ.

To understand the second condition, note that if σ1 ∼supp µ σ2, then Ann cannot distinguish

between the two strategies given the support of her primary measure and uses the Pareto criterion.

Because πa(σ1, µi) > πa(σ2, µi), for some i, there are two cases. First, σ1 Pareto dominates σ2

under her secondary measures. Then, having σ2 �2 σ1 would contradict σ1 �1 σ2. Second,

πa(σ2, µj) > πa(σ1, µj) for j 6= i, which means that the Pareto criterion does not rank σ1 and

σ2, because no strategy dominates the other. This means that Ann has no way of distinguishing

between the two strategies by relying to the two rationales, so we specify that neither σ2 �2 σ1 nor

σ1 �2 σ2 is true.12

Lemma 4. Suppose that (�1,�2) sequentially rationalizes γ, where �1 satisfies the Pareto criterion

and �2 is derived given proper list l and measure µ. If {sa} = γ(∆(S)), then sa is admissible with

respect to Sa × Eb, where Eb = supp µ ∪ Fi, for each Fi ∈ l.

Proof. Suppose that {sa} = γ(∆(S)) and fix Fi ∈ l. Let Eb = supp µ ∪ Fi. Suppose there exists

σa ∈ ∆(Sa) with πa(σa, sb) ≥ πa(sa, sb) for every sb ∈ Eb, with strict inequality for some sb ∈ Eb.
We first show that sa ∈ BRa(µ). Suppose not. Then, there exists σ such that πa(σ, µ) > πa(sa, µ),

which implies that σ �2 s
a. By the definition of sequential rationalizability, σ /∈ max (∆(S);�1).

But this implies that there exists σ′ ∈ max (∆(S);�1), such that σ′ ∼supp µ σ, σ′ �1 σ and sa �2 σ
′.

These imply that πa(sa, µ) ≥ πa(σ′, µ) = πa(σ, µ), a contradiction. Because sa ∈ BRa(µ), we

have sa ∼supp µ σ
a. If sa and σa are ranked by �1, then sa �1 σ

a and πa(sa, µi) ≥ πa(σa, µi),

supp µi = Fi, a contradiction.

If sa and σa are not ranked by �1, there are two cases. First, σa /∈ max (∆(S);�1), which

implies that there exists σ′ ∈ max (∆(S);�1) such that σ′ �1 σ
a. This implies that σ′ ∼supp µ σ

a

and πa(σ′, µi) ≥ πa(σa, µi), for all i, with strict inequality for some i. Hence, sa and σ′ are not

ranked by �1, which implies that either there exist i and j such that πa(sa, µi) > πa(σ′, µi) and

πa(σ′, µj) > πa(sa, µj), or πa(σ′, µi) = πa(sa, µi) for all i. In the latter case and because of the

transitivity of the Pareto criterion, sa Pareto dominates σa and sa �1 σ
a, a contradiction. In the

former case, sa and σ′ are not ranked by �2. This is impossible, because transitivity and the fact

that γ picks a unique element from ∆(S) imply that sa �2 σ
′.

Second, σa ∈ max (∆(S);�1). Because sa and σa are not ranked by �1, we have that either

there exist i and j such that πa(sa, µi) > πa(σa, µi) and πa(σa, µj) > πa(sa, µj), or πa(σa, µi) =

πa(sa, µi) for all i. In the latter case, σa cannot weakly dominate sa on Eb = supp µ ∪ Fi, a

contradiction. In the former case, sa and σa are not ranked by �2. This is impossible, because

transitivity and the fact that γ picks a unique element from ∆(S) imply that sa �2 σ
a.

12Note that there is the case where σ1 ∼suppµ σ2 and πa(σ2, µi) = πa(σ1, µi), for all i. This is the case of total

indifference, so it is plausible that Ann could have a ranking between σ1 and σ2, for example by flipping a coin.
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Then, we can define event-rationality given a type space as follows.

Definition 25. Strategy-type pair (sa, ta) ∈ Sa × T a is event-rational if {sa} = γ(∆(S)) and

(�1,�2) sequentially rationalizes γ, where �1 satisfies the Pareto criterion and �2 is derived given

proper list margLbλa(ta) and measure margSbλa(ta).

Finally, we show that sequentially rationalizable choice does not exhibit cyclical patterns. For

ease of notation, write γ(x1x2) instead of γ({x1, x2}).

Definition 26. No Binary Cycles For all x1, . . . , xn+1 ∈ X: [γ(xixi+1) = xi, i = 1, . . . , n] =⇒
[x1 = γ(x1xn+1)].

We show that if γ is restricted to be a function, it satisfies no binary cycles.

Lemma 5. Suppose that (�1,�2) sequentially rationalizes function γ, where �1 satisfies the Pareto

criterion and �2 is derived given proper list l and measure µ. Then γ satisfies no binary cycles.

Proof. We first show for n = 3. The argument easily generalizes for n > 3. Note that both �1 and

�2 are transitive. Suppose x1 = γ(x1x2) and x2 = γ(x2x3). To prove by contradiction, suppose

that x3 = γ(x1x3).

There are two cases. First, x3 �1 x1. This implies that x3 ∼supp µ x1 and πa(x3, µi) > πa(x1, µi)

for some i. Hence, x1 �2 x3. If x1 �1 x2 then x3 �1 x2, a contradiction. If x2 �1 x3 then x2 �1 x1,

a contradiction. If x1 �2 x2 and x2 �2 x3 then x1 �2 x3, a contradiction.

Second, x3 �2 x1. If x1 �1 x2 and x2 �1 x3 then x1 �1 x3, so x1 = γ(x1x3), a contradiction.

If x1 �2 x2 and x2 �2 x3 then x1 �2 x3, a contradiction. If x1 �2 x2 and x2 �1 x3 then,

because x3 �2 x1, we have x3 �2 x2. But x2 �1 x3 implies x3 �2 x2, a contradiction. Finally, if

x1 �1 x2 and x2 �2 x3, because x3 �2 x1, we have x2 �2 x1. But x1 �1 x2 implies x2 �2 x1, a

contradiction.

C Type Spaces

In what follows, let ∆̄(X ×Lb) denote the space of Borel probability measures on X ×Lb endowed

with the weak∗ topology, and with marginals on Lb (La for Bob’s construction) as mass points. Let

Ωa
1 = Sb × Lb and T a1 = ∆̄(Sb × Lb). Inductively set Ωa

k+1 = Sb × Lb × T bk where

T ak+1 = {(µa1, ..., µak, µak+1) ∈ T ak × ∆̄(Ωa
k+1) : margΩak

µak+1 = µak}

likewise for b. Then the standard arguments in the literature (Mertens and Zamir (1985)) show

the existence of compact spaces T a and T b, with T a homeomorphic to ∆̄(Sb × T b × Lb) and T b

homeomorphic to ∆̄(Sa × T a × La). Letting λa and λb denote the homeomorphisms, we have

constructed a complete, continuous and compact type structure.
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It is important to emphasize a conceptual point here. The two players form beliefs about

beliefs about what is relevant for rational choices. That is, Ann has beliefs over Sb×Lb, and these

beliefs are given by a conjecture over Sb and a point belief over lists (that is, a single list, not a

general probability distribution over Lb). What is relevant for event-rational choices is precisely

the conjecture and the list. But Ann does not know what Bob’s beliefs are, and the hierarchies of

beliefs about beliefs constructed above yield a type structure as the one we use in the paper. Also

important, given Proposition 7, it is without loss to consider hierarchies of beliefs over Sb × Lb,
instead of hierarchies of beliefs over lists of preferences: it suffices that players keep track of the

supports of the secondary measures.
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