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Abstract

We calculate the time series of the speed of convergence for 21 high-income countries over the period:

1953-1996, using low-pass filtered time series of per-capita GDP which are thus isolated from the in-

fluence of the short-run business cycle components. The observed patterns contradict the conventional

‘time-invariant speed of convergence’ hypothesis. Furthermore, dynamic panel data analysis provides

strong evidence of the existence of stationary long cycles in the per capita GDP time series. We develop

and estimate a technology-diffusion-based endogenous growth model, which shows that the endogenous

growth of the domestic knowledge stock can account for the long cycles observed in the data.
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1 Introduction

The study of the speed of convergence is basically concerned with understanding how the time series

of per capita GDP converges to its (conditional) steady-state trend. By empirically measuring the

speed of convergence, growth economists aim to obtain identification of the growth mechanism that

generates the data. In this regard, the existing literature on conditional convergence has appeared to

be a bit single-minded in that, it focuses on achieving an accurate estimate of a time-invariant speed of

convergence. This narrow focus, i.e., the ‘time-invariant speed of convergence’ hypothesis, originated in

a broad class of neoclassical growth models, e.g., the Solow-Swan model, the Ramsey-Cass-Koopmans

model (See Solow (1956), Swan (1956), Ramsey (1928), Cass (1965) and Koopmans (1965)) and their

variations1. The equilibrium transition paths in these models all follow a first order autoregressive

process2, e.g., a first-order differential or difference equation.

Under the ‘time-invariant speed of convergence’ hypothesis, one can derive the speed of convergence

from the estimate of the average speed of convergence. This hypothesis therefore provides a theoretical

underpinning for the cross-sections estimations, which form the bulk of the vast literature on conditional

convergence (see for example, Mankiw et al. (1992), Barro and Sala-I-Martin (1992)). The consensus

that emerges from the cross-sections literature is that the logarithm of per capita income converges to

its steady-state trend at the speed of about 2% per year, i.e., each year, the deviation from the trend

shrinks by about 2%. However, if the ‘time-invariant speed of convergence’ hypothesis does not hold,

then the estimate of the average speed of convergence will become less meaningful, and the speed of

convergence must be understood in radically different light.

In this paper, we critically reexamine the ‘time-invariant speed of convergence’ hypothesis on both

empirical and theoretical grounds. Empirically, we calculate the speed of convergence (of log per capita

GDP toward the linear trend) for 21 high-income countries over the period 1953-1996, using low-pass

filtered time series which are isolated from the short-run business cycle components. The observed

patterns show that the speed of convergence is time-dependent in an important way. First, even after

the removal of short-run business cycle components from the data, the time series of the speed of

convergence have both positive and negative values, implying both convergence toward and transitory

divergence from the long-run trend. Second, the time series of the speed of convergence fluctuate around

1 For example, the augmented Solow model with human capital (Mankiw, Romer and Weil (1992)), and the Ramsey

model with international capital flows (Barro, Mankiw and Sala-I-Martin (1995)).
2 In these models, even if the dynamic system has multiple independent state variables, e.g., as in the Ramsey-Cass-

Koopmans model, there happens to be only one stable autoregressive root (eigen value); then the unique saddle-path-stable

transition dynamics becomes a first-order dynamic system.
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zero at some low frequencies, indicating low-frequency cyclical components in the per capita GDP time

series. We then use autoregressive models with linear time trend and country-specific intercepts to fit the

low-pass filtered/smoothed time series of per capita GDP. Model selection tests indicate that the best

model to describe the data is the fourth order autoregressive - AR(4) - model, the complex autoregressive

roots of which identify two bands of frequencies for the cyclical components. The first has a cyclical

period of around 10 years, attenuating around 10% per year in amplitude. The second has a much

longer cyclical period, which is above 50 years, and is more persistent with a rate of attenuation around

5% per year, hence “a long wave” in the processes of conditional convergence. The empirical results

hence contradict the conventional ‘time-invariant speed of convergence’ hypothesis. Consequently, they

reject the theoretical models which predict time-invariant speed of convergence, including a broad class

of neoclassical growth models as explanations for long-term economic growth.

In order to explain these newly found empirical regularities, we develop a technology diffusion-based

endogenous growth model in this study. In our setting, an economy’s domestic knowledge stock can

deviate from its steady-state trend. The growth of domestic knowledge stock is a function of intentional

R&D investments and the stock of opportunities of emulating the world technological frontier. Each

country’s steady-state trend of domestic knowledge stock is determined by its country fixed effects. The

convergence of each country’s per capita income towards its steady-state trend, is primarily influenced

by the trend-reversion process of its domestic knowledge stock. In the market economy, the intensity of

investments in R&D and progress in technology is affected by the prospect of asset value appreciation.

International technological diffusion is found to ultimately drive long-term conditional convergence, and

the long-run appreciation (depreciation) of asset values. Sufficient strength of asset value appreciation,

however, can complicate the long-run trend reversion with overshootings, hence create long waves in

conditional convergence.

The transition dynamics of the model economy is determined by its characteristic polynomial. By

matching the theoretical characteristic polynomial to its empirical counterparts, we can estimate the

structure model.3 With empirically plausible parameters, the model can accurately reproduce the

frequencies and the rates of attenuation of the cycles empirically established. The close match between

the theory and the empirical regularities suggests that the long term growth (transition dynamics) of

per capita income is primarily determined by the trend-reversion process of the domestic knowledge

stock and total factor productivity (TFP). The neoclassical mechanism of capital deepening only plays

a secondary role.

3 In doing so, we need to calibrate three of the parameters to the values commonly agreed in the empirical growth

literature.
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2 Related Literature

Our research contributes to the empirical literature on conditional convergence. It differs from both the

cross sections literature (e.g., Mankiw et al. (1992), Barro and Sala-I-Martin (1992)) and the existing

panel data literature (e.g., Islam (1995), Caselli, Esquivel and Lefort (1996)) in that we abandon the

restriction that the long-term growth should be an AR(1) process, or, equivalently, the ‘time-invariant

speed of convergence’ hypothesis.4 Our finding of long waves in conditional convergence suggests that

future empirical research on growth convergence should take into account the low-frequency cyclicality

of the long-term trend-reversion processes of per capita incomes.

The theoretical model extends those developed by Tong and Xu (2004) and Tong and Xu (2006),

and is related to the work by Barro and Sala-I-Martin (1997) and Howitt (2000). All these models study

the influence of international technological diffusion on domestic R&D investments, and they all predict

that the growth rate of every country converges to a common steady-state rate. Tong and Xu (2004)

and Tong and Xu (2006) study the joint determination of steady-state trend of per capita income and

financial institutions, which is absent in the current paper. There is a close comparison between the

current model and Barro and Sala-I-Martin (1997) in that both of them extend the variety expansion

model due to Romer (1990). The key departure of our model from Barro and Sala-I-Martin (1997)

is that we use a discrete time setting while their model is of continuous time. One justification for

preferring the discrete-time setting to the continuous one is that the former can conveniently capture

the lumpiness of the time scale of R&D projects.5 This difference generates an interesting difference

in the transition dynamics between the two settings: while Barro and Sala-I-Martin (1997) predicts an

AR(1) autoregressive conditional convergence process and hence a time-invariant speed of convergence,

as do the neoclassical growth models, our setting can generate stationary long cycles in the trend-

reversion process. Since these model all predict convergence of growth rate, they do not address the

issue of long-run growth rate divergence of the poorest countries relative to the rich countries. As an

exception, a very recent contribution by Aghion, Howitt and Mayer-Foulkes (2005), which also models

the influence of international technological diffusion on domestic investments in innovations, predicts a

‘poverty trap’ and growth rate divergence for countries which suffer from severe credit constraints.

As a study of long waves, our finding inevitably relates to the notion of Kondratieff cycles, Schum-

peter’s theory of business cycles, and Kuznets’ critique. Kondratieff (1935) identified cycles of about 50

years’ length in a number of price, consumption and production series between the period of 1780-1921.

4 Another recent study on growth convergence, which departs from the ‘time-invariant speed of convergence’ hypothesis

is Phillips and Sul (2003).
5 In contrast, in the Barro and Sala-I-Martin (1997) model, the time scale of an R&D project can be infinitely short.
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Schumpeter (1939) was an attempt to link the Kondratieff cycles and the movement in innovations.

Kuznets (1940) pointed two difficulties with Schumpeter’s analysis. The first is the lack of convincing

explanation for the “bunching” of innovations over time. The second is the difficulty of subjecting the

theoretical claims to statistical time series analysis; particularly, the lack of reliable statistical means

to differentiate the long cycles from the much more clearly marked shorter cyclical swings called into

question the validity of the Kondratieff cycles. The lack of (empirical) regular recurrence is the main

reason why Kondratieff cycles are not recognized by modern economics. The long waves of conditional

convergence which we identify in the current study differ from the Kondratieff cycles as conventionally

understood. First, the former are identified by much more rigorous statistical analysis of time series.

Second, we find that the amplitudes of the long cycles attenuate over time at non-negligible rate, there-

fore they do not recur with the same the amplitudes, and will die out eventually if not ‘renewed’ by

exogenous shocks. The lack of regular recurrence of the long cycles is a prediction of our findings, rather

than a contradiction.

The remainder of the paper is organized as follows: Section 2 documents a set of new empirical

regularities about conditional convergence. Section 3 constructs and analyzes a discrete-time technology

diffusion-based endogenous growth. Section4 calibrates and estimates the model. Section 5 concludes.

3 New Empirical Regularities about Conditional Convergence

In the existing literature on conditional convergence, the speed of convergence β is featured in the

following equation:6

(1) ln
yit

y∗it
= (1− β)t ln

yi0

y∗i0
,

which implies7

(2) ln
yit+1

y∗it+1
− ln

yit

y∗it
= −β ln

yit

y∗it

where yit is the per capita income of country i at time t, y∗it is the time-invariant steady-state log-linear

trend of per capita income and y∗it = y∗i0e
gyt ≈ y∗i0 (1 + gy)

t, gy is the common trend rate of growth, y∗i0
6 In the literature the following alternative specification is often used:

ln
yit

y∗it
= e−βt ln

yi0

y∗i0
,

which is a close approximation when β is close to 0.
7 The respective alternative formulation is:

ln
yit+1

y∗it+1
− ln

yit

y∗it
= −

(
1− e−β

)
ln
yit

y∗it
.
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is the country-specific intercept.

Without loss of generality, we can define the speed of convergence as

(3) βit � −
ln yit+1
y∗it+1

− ln yit
y∗it

ln yit
y∗it

.

Studying the behavior of the time series of βit can reveal some properties of the trend-reversion

process of per capita GDP. Using panel data can increase the signal-noise ratio by adding the cross-

sectional variation. However, one has to be cautious when pooling the cross-country time series together

because uncontrolled heterogeneity may violate the assumption of common trend growth rate. To reduce

the probability of this problem one can confine the pooling to a group of richest countries, which are less

likely to diverge in long-run growth rate. Since the speed of convergence is a property of long-run growth,

its measurement needs to be isolated from the influence of the short-run business cycles components. To

that end, one can use the highpass or bandpass filters to remove the short-run cyclical components from

the time series of per capita GDP. In this investigation, we employ the Hodrick-Prescott filter8 (Hodrick

and Prescott (1997)) to smooth the 21 per capita GDP time series (from year 1950 to 2000) of richest

countries from the Penn World Table Mark 6.1 (Heston, Summer and Aten). Using the approximate

bandpass filter due to Baxter and King (1999) gives a very similar outcome. The deviation of ln yit

from the linear trend, ln yit
y∗it

, can be measured as the error term νit in following regression:

(4) ln yit = ln y
∗

i0 + gyt+ νit.

Figure 1 plots the entire panels of ln yit
y∗it

against time9. Conditional convergence relies on that ln yit
y∗it

being stationary. The standard deviation does appear to be bounded. Furthermore, the Im-Pesaran-

Shin and Maddala-Wu tests for unit root in panel data (see Im, Pesaran and Shin (2003) and Maddala

and Wu (1999)) can reject the unit root hypothesis10. Figures 2 displays the time series of speed

of convergence and the deviation of ln yit from the linear trend for all the countries in the sample.

To eliminate extreme values in the speed of convergence, any values above 1 or below −1 have been

truncated at 1 and −1 respectively in the figure. It is now plainly evident that the speed of convergence

is both country-specific and time-dependent. Two related novel empirical patterns emerge from the

figure11 as follow:
8 The smooth parameter is set to λ = 7 for the annual data, which according to Ravan and Uhlig (2002), is consistent

with setting λ = 1600 for the quarterly data in the business cycles literature. The effect is to remove the usual business

cycle components with periods of 2-8 years.
9 The results from the OLS regression are shown in Figure 10 in Appendix A. The results reported here are based on a

two-step estimation, which first obtains a more efficient estimate of the trend growth rate by taking into account the serial

correlation in the error term. More details about this are provided in later part of this section.
10 More details about unit root tests will be provided later in this section.
11 Figure 11 in Appendix A shows the results based on the OLS estimation. They confirm what is reported here.
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Stylized fact A The speed of convergence has both positive and negative values; accordingly the time

series of per capita GDP can both converge toward and (transitorily) diverge from the long-run

trend.

This pattern is consistent with Phillips and Sul (2003)’s emphasis on the role of time-dependence of

the speed of convergence in reconciling long-run convergence and transitory divergence among economies

which share the same steady-state trend. Closer examination of the alternation between convergence

and divergence reveals the following pattern.

Stylized fact B Each time series of the speed of convergence fluctuates around 0 with below the usual

short-run business cycle frequencies; accordingly the time series of per capita GDP has some

long-run cyclical components.

Although the overall mean of the speed of convergence among the entire panels is .0244658, indicating

an overall conditional convergence, the richness of the panel data information reveals that the devil is

in the details. The novel finding here is the cyclical nature of the trend-reversion process of per capita

GDP, which we try to understand in the remainder of the paper.

Figure 3 plots the time series of the speed of convergence and the deviation of ln yit from the linear

trend for nine example countries: Austria, Belgium, Spain, Israel, Italy, Japan, Norway, New Zealand

and Portugal. One commonality of these nine countries is that their time series of per capita GDP all

overshot (i.e., crossed) their long-run trend once within the sample period. All except New Zealand

overshoot the trend from below. Each of the nine panels displays a clear pattern of cyclicality. Figure

4 shows the periodograms (spectral density functions) of ln yity∗it
for these nine countries, which provide

a crude indication of the major cyclical components of ln yit
y∗it

. In all the nine panels it can be seen that

a lot of variance of ln yity∗it
is at the low frequency end (between 0-0.125, i.e., cyclical period longer than

8 years); particularly, there is a peak value between 0-0.02 (i.e., longer than 50 years cyclical period).

These frequencies (or cyclical periods) are characteristic of the dynamic system of long-run growth.

They imply that the time series of the logarithm per capita GDP has corresponding complex regressive

roots. For each different characteristic frequency, we need a complex conjugate pair regressive roots:

so for a single characteristic frequency, we need at least an AR(2) model to describe ln yit; for two

characteristic frequencies, we need at least an AR(4) model.

We conjecture that the behavior of ln yit is best described by an AR(n) model (n ≥ 2) with common

time trend and individual intercept as follows:

(5) ln yit = ui + φ0t+
n∑

s=1

φs ln yit−s + εit,

7
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where εit is i.i.d. with zero mean. It is essential to assume that ln yit does not have a unit root, i.e.,

formally,
∑n
s=1 φs �= 1. The above equation can be reformulated as the following:

(6) ln
yit

yit−1
= ui + φ0t+ θ0 ln yit−1 +

n−1∑

j=1

θj ln
yit−j

yit−j−1
+ εit,

where θ0 =
∑n
s=1 φs − 1, θj = −

∑n
s=j+1 φs. Therefore the null hypothesis for the unit root test is H0:

θ0 = 0.

We use the Im-Pesaran-Shin and Maddala-Wu tests (see Im et al. (2003) and Maddala and Wu

(1999)) to test the unit root (null) hypothesis against the alternative hypothesis H1: θ0 < 0 for a

variety of values of n ranging from 2 to 8. It turns out that for n = 2 and 4, the null hypothesis is

rejected at 0.05; for other values of n the null hypothesis can not be robustly rejected. These results

have two important implications. First, they confirm the stationarity assumption. Second, they provide

a useful guidance on how n should be selected. Therefore we should use the AR(2) and AR(4) models.

Furthermore, the likelihood ratio tests also strongly reject the AR(1) model against the AR(2) and

AR(4) models respectively, hence strongly rejecting the conventional hypothesis of time-invariant speed

of convergence.

We start with the AR(2) model, for which the characteristic polynomial is:

(7) X2 − φ1X − φ2,

which has complex roots if and only if

(8) φ21 + 4φ2 < 0.

The existence of complex roots of (7) would imply cyclical transition path. We can test a second null

hypothesis that the trend-reversion process is not cyclical, which can be formulated as H2: φ21+4φ2 ≥ 0,

against the alternative hypothesis H3: φ21 + 4φ2 < 0.

The regression and test results are reported in Table 1. The test of H2 against H3 is by the Wald test

of nonlinear restriction. The four sets of estimations (1)-(4) use different data filters or band widths.

For regressions (1) and (2) we remove the usual business cycle components which have cyclical periods

in the range of 2-8 years. For regressions (3) and (4) the cycles removed range between 2-11 and 2-10

years respectively. And we alternate between the HP filter and BK filter for similar bandwidth. The

variation in the data filtering procedures and the bandwidths allows us to check the robustness of the

results.

The null hypothesis H2 is rejected at the confidence level of 1%. The test result is not sensitive

to the data filtering technique we use. The rejection of hypothesis H2 is confirmative of a cyclical

trend-reversion process.
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(1) (2) (3) (4)

HP filter BK filter HP filter BK filter

(λ = 7) (pl, ph= 2, 8 (λ = 25) (pl, ph= 2, 10

k = 3) k = 4)

ln yit−1 (φ1) 1.924
∗∗∗

1 .902122
∗∗∗

1 .952687
∗∗∗

1.935067
∗∗∗

(.0127003) (.0088477) (.0093619) (.0072537)

ln yit−2 (φ2) -.9374352
∗∗∗

-.9165936
∗∗∗

-.963349
∗∗∗

-.9449827
∗∗∗

(.0122747) (.0133463) (.0090374) (.0072845)

t (φ0) .0003591
∗∗∗

.0003834
∗∗∗

.0002761
∗∗∗

.0001812
∗∗∗

(.0000389) (.0000452) (.0000245) (.0000183)

observation 903 903 861 861

R2 0.9999 0 .9999 0 .9999 0.9999

hypothesis H2 vs. H3 rejected
∗∗∗

re jected
∗∗∗

re jected
∗∗∗

rejected
∗∗∗

cyclical period τ 55 .438 54.620 61.249 55.705

rate of attenuation γ .031788 0 .04261 2 0 .018 5 .03070 1

Table 1: Regression of logarithm of per capita GDP - AR(2)

(Note: *** indicates statistical significance at 1% level.

From the estimated coefficients we can retrieve the cyclical period τ and the rate of attenuation of

amplitude γ, using the following formula:

(9) τ =






2π

arcsin
|Im(χ)|
|χ|

if Re (χ) ≥ 0

2π

arcsin |Im(χ)|
|χ|

+π
if Re (χ) < 0

,

and

(10) γ = 1− |χ| ,

where χ is a complex root of (7). The estimations of the AR(2)model suggest that the dominant cyclical

component in long-term growth should have a period of oscillation of above 50 years, and an attenuation

rate of up to 4.3% per year. These imply a “long wave” in the process of conditional convergence.

Figure 5 plots the error terms from the AR(2) regression (1). The time series of the mean error shows

clear cyclical pattern with the cyclical period around 10 years. This is suggestive of the restrictiveness

of the AR(2) model in accounting for some significant cyclical component. To address this problem,

10
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Figure 5: The error term of the AR(2) regression (1)
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Figure 6: The error term of the AR(4) regression (5)

next we estimate the AR(4) model, for which the characteristic polynomial model is:

(11) X4 − φ1X
3 − φ2X

2 − φ3X − φ4,

the complex roots of which determine the cyclical periods and the rates of amplitude attenuation. Also,

the trend grow rate can be inferred as follows:

(12) gy =
φ0

1−
∑n
s=1 φs

for AR(n) model.

Table 2 summarizes the results of estimating the AR(4) model. Again four sets of estimations are

obtained using different data filters or band widths. The R2 for each regression here is extremely large,

as is for each AR(2) regression. This is due to the fact that the predominant cross-section variance is

well explained by the lagged cross-section variances; and the time series have been smoothed by the

11



low-pass filters, which have removed the high-frequency components from the variance of the original

time-series. Figure 6 plots the error terms of the AR(4) regression (5), which can be compared to Figure

5. Besides a significant reduction (roughly halving) in the variance of the errors, it is also apparent

that the cyclical component with cyclical period of around 10 years disappears from the mean error

time series. The likelihood ratio test also indicates that the AR(4) model is significantly better than

the AR(2) model.

Using the AR(4) model, the estimated cyclical periods of the long waves are longer than using

the AR(2) model, they are in the range between 60-70 years. The cause for this difference relates

to the fact that the AR(2) model is mis-specified and fails to account for the around 10-year-period

cyclical components. As a result the error term is serially correlated and also correlated with the lagged

dependent variables. The resultant bias in the OLS estimator then induces a bias in the estimation of

the long cycle period. The AR(4) results confirm the existence of a type of shorter cycles with periods

between 9-14 years in the conditional convergence process. These cycles match what have been known

as the Juglars in the old business cycle literature12 (see for example, Schumpeter (1939) and Kuznets

(1940)). To check the robustness of results of the AR(4), we also estimate an AR(6) model. The results,

which are summarized in Table 3, are close to the AR(4) results for the first two cyclical components and

the trend growth rate gy.13 Besides, they suggest that some high-frequency business cycle components

(around 4-5 year cyclical period) do “leak” through the HP filter; but have little effect on the AR(4)

estimator.

The current results suggest that the long waves with sizeable amplitudes are unlikely to have regular

recurrences because their amplitudes attenuate over time. If not “renewed” or “reenforced” by exogenous

shocks, they tend to die out eventually. The rate of attenuation of the long waves are in the range

between 3-6% per year, implying ‘half lives’—the time that it takes for half of initial amplitude to be

eliminated—from 11 to 23 years. It is unlikely that exogenous shocks could sustain a sizeable amplitude

of the long wave.

The lack of regular recurrence of the long waves in a single time series is illustrated by the example

of the UK. Figure 7 shows the logarithm of per capita income of the UK from year 1830 to 2001 (Data

source: Maddison (2003)) and its linear trends. The spectral density functions for the pre-1914 era and

post-1945 era are presented in Figures 8 and 9. It can be seen that a long wave (i.e., with cyclical period

longer than 50 year) was more strongly present in the pre-1914 era (hence Figure 8) than the post-1945

12 In that literature, cycles were usually called by the names of economists who identified them. Therefore cycles with

periods between 50-60 years are Kondratieffs; between 15-25 years: Kuznets’; between 7-11 years: Juglars; around 40

months: Kitchins.
13 Actually, we use the AR(6) result of the trend growth rate in the 2-step estimation of equation (4).
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(5) (6) (7) (8)

HP filter BK filter HP filter BK filter

(λ = 7) (pl, ph= 2, 8 (λ = 25) (pl, ph= 2, 10

k = 3) k = 4)

ln yit−1 (φ1) 3.312033
∗∗∗

3.279736
∗∗∗

3.568417
∗∗∗

3.394918
∗∗∗

(.0316516) (.0278954) (.0276212) (.0271036)

ln yit−2 (φ2) -4.369273
∗∗∗

-4.339645
∗∗∗

-4.957507
∗∗∗

-4.575488
∗∗∗

(.0880009) (.0761624) (.0780728) (.0748587)

ln yit−3 (φ3) 2.752199
∗∗∗

2.782082
∗∗∗

3.189778
∗∗∗

2.926294
∗∗∗

(.0877513) (.0766304) (.0767245) (.074257)

ln yit−4 (φ4) -.6993725
∗∗∗

-.7269854
∗∗∗

-.8026889
∗∗∗

-.7489372
∗∗∗

(.0312118) (.0282277) (.0261588) (.0263697)

t (φ0) .0000976
∗∗∗

.0001035
∗∗∗

.0000459
∗∗∗

.0000697
∗∗∗

(.0000155) (.0000183) (.00000659) (.0000131)

observation 861 861 819 819

R2 1.0000 1.0000 1.0000 1.0000

cyclical period τ1 63 .094 66 . 946 68 .655 71 .537

rate of attenuation γ1 .056757 .057331 .034 69 .049817

cyclical period τ2 10 .005 9.1935 13 .071 10 .446

rate of attenuation γ2 .113 39 .095509 .07187 4 .08922 4

growth rate gy .02211933 .02150609 .02296034 .02169331

Table 2: Regression of logarithm of per capita GDP - AR(4)

era (hence Figure 9). If the rate of attenuation is 4.5% per year, then the amplitude of a long wave will

shrink to 0.0048 of its original size after 116 years (i.e., from 1830 to 1946). The lack of its recurrence

in the post-1945 era is hardly surprising. This example illustrates the point that one cannot interpret

this kind of lack of regular recurrence as evidence of non-existence of long waves.

In summary, the empirical results presented in this section are at odds with the conventional as-

sumption that the long-term conditional convergence has a time-invariant speed of convergence. Conse-

quently, they are not consistent with growth models which predict a time-invariant speed of convergence,

including a broad class of neoclassical growth models. It challenges growth theories to reproduce the

long cyclical components in the trend-reversion processes of per capita incomes. In the next section, we

develop a theoretical technology-diffusion-based endogenous growth model to explain the new empirical
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HP filter τ1 γ1 τ2 γ2 τ3 γ3 gy

(λ = 7) 64.491 .066664 10.749 0.13782 4.8035 0.4893 .02236098

Table 3: The results of an AR(6) regression
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Figure 7: Logarithm of per capita GDP of the UK and its linear trends. The vertical lines indicate year

1914 and 1945 respectively. (A structural change in the linear trend is assume for the post-1945 era.)

regularities.

4 The Model

The model economy exists for an infinite number of periods labelled t = 0, 1, 2, · · · ,∞. There are L

identical consumers who live forever, each has one unit of labor supply per period. Each consumer’s

utility maximization problem is:

(13)
max

∑
∞

s=t
1

(1+ρ)s−t

(
(cs)

1−θ

1−θ − 1
)

s.t. : bs+1 = ws + bs (1 + rs)− cs,

where cs is consumption, ρ is the utility discount rate, θ is the parameter of preference over smoothness

of consumption, ws is wage income, bs is the holding of risk-free bond or bank deposit, with interest

rate rs. The Euler equation for optimal consumption is

(14)
cs+1

cs
=

(
1 + rs

1 + ρ

) 1
θ

.
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Denote by r the steady-state (balanced growth path) value of rs, and gy the steady-state growth rate

of consumption; we have the following results:

(
1 + r

1 + ρ

) 1
θ

= 1+ gy,

and

(15) r = (1 + ρ) (1 + gy)
θ − 1.

Production in this economy comprises a final good sector and an intermediate good sector. The final

good sector is perfectly competitive, and it has the following Cobb-Douglas/CES production function14

with intermediate inputs xit, labor input L1t, and output:

(16) Yt = L1−α1t

(
At∑

i=1

x
α
σ
it

)σ
, 0 < α < 1 and σ > α,

where At is the number of varieties of intermediate goods, which is also a measure of domestic knowledge

stock. Parameter σ determines whether the different varieties of intermediate goods are direct comple-

ments or direct substitutes. If σ > 1 (respectively σ < 1) then a new variety is a direct complement

(respectively a direct substitute) to the existing varieties because it increases (respectively decreases)

their marginal products.15 The assumption: σ > α rules out the possibility of σ = α, which is the case

that all the intermediate goods are perfect substitutes. The firm’s maximization program is

(17) max
xit,L1t

(

L1−α1t

(
At∑

i=1

x
α
σ
it

)σ
− (1 + rt)

At∑

i=1

pitxit − L1twt

)

,

where pit is the rental price of intermediate good xit, and wt is the wage of labor in period t. The

final good producers pay the intermediate goods producers at the beginning of each period to get the

inputs, and sell their own products and pay their workers at the end of each period. The inverse demand

functions for intermediate goods and labor are:

(18) pit =
L1−α1t α

(∑At
i=1 x

α
σ

ti

)σ−1
x
α
σ
−1

it

(1 + rt)

14 This type of production function has been originally used by Spence (1976) and Dixit and Stiglitz (1977) in studies

on monopolistic competition and product selection/diversification, and is now standard in the growth literature.
15 To see this, note the cross-partial derivative

∂2Yt

∂xi∂xj
=
σ − 1

σ
α
2
L
1−α
1t

(
At∑

s=1

x
α

σ

st

)σ−1

x
α

σ
−1

it x
α

σ
−1

jt � 0 if σ � 1.
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and

(19) wt =
(1− α)Yt

L1t
.

The producer of intermediate good i is a monopolist with the following profit maximization program:

max
pit,xit

πit = max
pit,xit

(pitxit − dxit) ,(20)

s.t. : pit =
L1−α1t α

(∑At
i=1 x

α
σ
it

)σ−1
x
α
σ
−1

it

(1 + rt)

where d is the depreciation rate of the intermediate good stock, which can be produced from the final

good on a one-to-one basis. It can be shown that the Nash equilibrium of the game is symmetric, so

the subscript i can be dropped. Using the following approximation based on the assumption that At is

sufficiently large whenever appropriate
(
σ − 1

At
+ 1

)
≈ 1,

then it can be shown that equilibrium levels of output, price and profit in each intermediate good sector

are given by,

(21) xt =
α

2
1−α (At)

σ−1
1−α

σ
1

1−α d
1

1−α (1 + rt)
1

1−α

L1t,

(22) pit =
σd

α
,

and

(23) πt =
(σ
α
− 1
)
dxt =

α
1+α
1−α (σ − α) (At)

σ−1
1−α

σ
1

1−αd
α

1−α (1 + rt)
1

1−α

L1t.

Both xt and πt are proportional to L1t and decreasing in (1 + rt)
1

1−α . They both are proportional

to (At)
σ−1
1−α . So given that At has a time trend in steady state, xt and πt both have a positive time trend

in steady state if σ > 1.

The equilibrium relative price of labor is given by

(24)
wt

(1 + rt)
=

(1− α)α
2α
1−α

σ
α

1−αd
α

1−α (1 + rt)
1

1−α

(At)
σ−α
1−α .

Denote by Kt the aggregate capital stock (employed in the final good sector), and define

Kt � Atxt =
α

2
1−α (At)

σ−α
1−α

σ
1

1−αd
1

1−α (1 + rt)
1

1−α

L1t,
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thereby, the final good sector output is

Yt = (At)
σ−αL1−α1t (Kt)

α ,

and the aggregate (final good) production function is

(25) Yt = (Nt)
1−α L1−α (Kt)

α ,

where Nt � (At)
σ−α
1−α

(
L1t
L

)
corresponds to the labor augmenting factor, or (Nt)

1−α can be seen as what

is known as the total factor productivity (TFP).

Denote by k̂t and yt the capital stock per effective unit of labor and (final good) output per capita

respectively, then we have

(26) k̂t �
Kt

NtL
=

xt

(At)
σ−1
1−α L1t

=
α

2
1−α

σ
1

1−α d
1

1−α (1 + rt)
1

1−α

,

and

(27) yt �
Yt

L
= Ntk̂

α
t .

It is clear from the above expressions that k̂t is stationary in steady state given that rt is stationary,

and yt has a positive time trend since σ > α. It follows that

(28) ln
yt

y∗t
= ln

Nt

N∗

t

+ α ln
k̂t

k̂∗t
= ln

Nt

N∗

t

−
α

1− α
ln
1 + rt

1 + r
.

where y∗t and N∗

t are the steady-state trends of yt and Nt. The implication is that the deviation of

ln yt from its steady-state trend ln y∗t is determined by the deviation of lnNt from its steady-state trend

lnN∗

t and the deviation of ln k̂t (or ln (1 + rt) respectively) from its steady-state level ln k̂∗t (or ln (1 + r)

respectively).

Define the relative technological development position at � At
Aft

, where Aft � Af0 (1 + gf )
t is the

knowledge stock of the world frontier and gf is the constant growth rate of knowledge stock at the

world frontier. The number of new intermediate products introduced in period t+1 as results of R&D

activities at t is determined by the productivity of the R&D sector, δ
(at)

η , the labor input in the R&D

sector, L2t, and the domestic knowledge stock at the time, At, i.e.,

(29) At+1 −At =
δ

(at)
ηL2tAt.

L2t is determined by the labor market clearing condition:

(30) L2t = L−L1t.
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The aggregate R&D productivity δ
(at)

η decreases with at. This is a standard feature of the technology-

diffusion-based endogenous growth model. This feature is the driving force of trend-reversion of At, and

parameter η measures the strength of the trend reversion.16

The aggregate R&D productivity is affected by some country fixed effects which are parameterized

by δ. It covers a broad range of factors, including what Parente and Prescott (1994) call the “barriers

to technology adoption”.

Define the growth rate of domestic knowledge stock as

(31) gt �
At+1 −At

At
.

It follows from (29) that

(32) gt = δ (at)
−η L2t,

which implies that in our model the growth domestic knowledge stock is determined by the allocation

of labor force between production and R&D.

Denote by Vt the value of the ownership of one intermediate good firm. With free entry into the

R&D sector, equilibrium entails the following zero-profit condition:

(33) Vtδ (at)
−η L2tAt −

wt

1 + rt
L2t = 0

where Vtδ (at)
−η L2tAt is the expected present value of an R&D project that employs L2t units of labor,

wt
1+rt

L2t is the present value of its labor cost. Reorganizing using eq. (24), therefore

(34) Vt =
(1− α)α

2α
1−α (At)

σ−1
1−α (at)

η

δσ
α

1−αd
α

1−α (1 + rt)
1

1−α

.

The asset value of a firm, Vt, is proportional to (At)
σ−1
1−α . It thus has a positive time trend in steady

state if σ > 1, which implies that the stock price should have a positive time trend in steady state.

Then factor (σ − 1) determines the strength of the asset value appreciation. If At grows faster (slower)

than its trend rate, ceteris paribus, then the appreciation of asset value will be faster (slower) than the

corresponding trend rate.

16 To see this, note that the R&D productivity δ (at)
−η can be rewritten as

δ

(
At

Aft

)−η
= δ

(
A∗t
Aft

At

A∗t

)−η
= δ

(
a
∗ At

A∗t

)−η
= δ (a∗)

−η
e
−η ln

At

A∗
t ,

where a∗ is the steady-state value of at and A∗t = a∗Aft is the steady-state trend of At. Hence δ (at)
−η is a decreasing

function of ln At
A∗
t

, which is a measurement of the deviation of At from its steady-state trend A∗t . Parameter η determines

the effect of this deviation on R&D productivity.
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The size of R&D labor force is given by

L2t =
gt (at)

η

δ
,

and hence from eq. (23) it follows that the dividend income from the ownership of an intermediate firm

is

(35) πt =
α
1+α
1−α (σ − α) (At)

σ−1
1−α

(
L− gt(at)

η

δ

)

σ
1

1−αd
α

1−α (1 + rt)
1

1−α

.

The non-arbitrage condition of an equilibrium

(36) πt+1 + Vt+1 = (1 + rt)Vt,

implies

(37) gt+1 =
δL

(at+1)
η −

σ (1− α)

(
(1+rt+1)

1
1−α (at)

η

(1+rt)
α

1−α (at+1)
η

)

α (σ − α) (1 + gt)
σ−1
1−α

+
σ (1− α)

α (σ − α)
.

When the domestic knowledge stock of an economy grows at the rate of gt, its position of relative

development changes according to the following identity:

(38) at+1 ≡ at
1 + gt

1 + gf
,

thereby, it catches up if gt > gf ; it lags behind if gt < gf ; in the steady state, gt = g∗ = gf and

at+1 = at = a∗.

The final good market clearing condition is given by

(39) Yt = Ct+1 + xt+1At+1 − (1− d)xtAt

which implies

(40)

(
L− gt+1(at+1)

η

δ

)

σ
1

1−αd
1

1−α (1 + rt+1)
1

1−α

=

α
2α
1−α

(
1

1+gt

)σ−α
1−α

(
L−

gt(at)
η

δ

)

σ
α

1−α d
α

1−α (1+rt)
α

1−α

(
1 + α2(1−d)

σd(1+rt)

)
− ĉt+1

α
2

1−α

,

where ĉt+1 � Ct+1

(At+1)
σ−α
1−α

is the normalized level of total consumption. The Euler condition (14) can now

be rewritten as

(41) ĉt+1 =

(
1 + rt

1 + ρ

) 1
θ ĉt

(1 + gt)
σ−α
1−α

.

Equations (38), (37), (40) and (41) can be used to construct a recursive system of difference equations

(54), which is shown in appendix B.
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The complete set of steady-state values of the four state variables are given by (55) in Appendix B.

Here we only show the following result:

(42) a∗ =

(
αδL

r + αgf

) 1
η

.

Clearly, the steady-state level of at, hence, the steady-state trend of At, depends on parameter δ, which

summarizes all the information about the country fixed effects.

To analyze the transition dynamics of the model, we log-linearize the difference equations system

(54) as follow:

(43)






ln at+1a∗ = ln ata∗ + ln
1+gt
1+g∗

ln 1+gt+11+g∗ = B1 ln
at
a∗
+B2 ln

1+gt
1+g∗ +B3 ln

1+rt
1+r∗ +B4 ln

ĉt
ĉ∗

ln 1+rt+11+r∗ = G1 ln
at
a∗ +G2 ln

1+gt
1+g∗ +G3 ln

1+rt
1+r∗ +G4 ln

ĉt
ĉ∗

ln ĉt+1
ĉ∗
= D2 ln

1+gt
1+g∗ +D3 ln

1+rt
1+r∗ + ln

ĉt
ĉ∗

where the coefficients Bi, Gi for i = 1, 2, 3 and Dj for j = 2, 3 are defined in Appendix B. The

characteristic polynomial of the above linear difference equations system is:

(44) X4 + ψ1X
3 + ψ2X

2 + ψ3X + ψ4,

where the coefficients ψi for i = 1, 2, 3, 4 are also are defined in Appendix B. Let χj for j = 1, 2, 3, 4 be

the roots of eq. (44), i.e., the eigen values of the system (43). Then the time series of ln ata∗ , ln
1+gt
1+g∗ ,

ln 1+rt
1+r∗ and ln ĉt

ĉ∗
are all solutions to the same fourth-order linear difference equation as follows:

(45) zt = −ψ1zt−1 − ψ2zt−2 − ψ3zt−3 − ψ4zt−4,

i.e., they all follow the same AR(4) process, and have the same general solution:

(46) zt = C̃k1χ1 + C̃k2χ2 + C̃k3χ3 + C̃k4χ4,

where C̃kj , for j = 1, 2, 3, 4, and k = ln ata∗ , ln
1+gt
1+g∗ , ln

1+rt
1+r∗ and ln ĉtĉ∗ , are arbitrary constant coefficients.

5 Calibration and Estimation of the Model

In what follows we show that the time series of ln yt
y∗t

should (approximately) follow the AR(4) process

given by eq. (45). From (28) it follows that

ln
yt

y∗t
=

σ − α

1− α
ln

At

A∗t
+ ln

L1t

L∗1
−

α

1− α
ln
1 + rt

1 + r
,
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where L∗1 is the steady-state level of labor input in the final good sector. It can be shown that

ln
At

A∗t
= ln

at

a∗

and

ln
L1t

L∗1
= ln

L− L2t

L− L∗2
= ln

L− gt(at)
η

δ

L−
gf (a∗)

η

δ

≈ −
ηαgf

r
ln

at

a∗
−

α (1 + gf )

r
ln
1 + gt

1 + gf
.

Consequently

(47) ln
yt

y∗t
≈

(
σ − α

1− α
−

ηαgf

r

)
ln

at

a∗
−

α (1 + gf )

r
ln
1 + gt

1 + gf
−

α

1− α
ln
1 + rt

1 + r
,

i.e., ln yty∗t is a linear combination of the time series of ln ata∗ , ln
1+rt
1+r and ln 1+rt1+r , each of which follows

the AR(4) process described by eq. (45). As a result, ln yty∗t must also follow the same AR(4) process

described by eq. (45). Given that L1t and k̂t are stationary in steady state, from (27) it follows that

the steady-state growth rates of yt and At have the following relationship:

(48) gf = (1 + gy)
1−α
σ−α − 1.

Matching the theoretical and the empirical characteristic polynomials (44) and (11), we arrive at

the following four equations.

(49)






ψ1 = −φ1

ψ2 = −φ2

ψ3 = −φ3

ψ4 = −φ4

5.1 Calibration

Since parameters L and δ do not feature in the theoretical characteristic polynomial (44), we have seven

independent parameters to be determined. They are α, gy, ρ, η, σ, θ and d. We calibrate α, ρ and gy,

and then retrieve the values of θ, σ, η and d using the equations system (49) and the empirical values

of φ1, φ2, φ3 and φ4 reported in the section 2.

We set α = 0.3, which is the commonly agreed the value in the empirical growth literature. We set

gy = 0.02, which is very close to our own empirical result, and is also the commonly agreed value. We

choose two alternative values for ρ, namely, ρ = 0.03 and ρ = 0.05, which are by no means unusual.

The values of φ1, φ2, φ3 and φ4 come from the four alternative estimations (5)-(8) reported in Table 2.

Therefore we have eight alternative sets of estimations of θ, σ, η and d, as reported in Table 4.
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(I) (II) (III) (IV) (V) (VI) (VII) (VIII)

α 0.3 0 .3 0.3 0.3 0 .3 0 .3 0.3 0 .3

gy 0.02 0 .02 0.02 0.02 0 .02 0 .02 0.02 0 .02

ρ 0.03 0 .03 0.03 0.03 0 .05 0 .05 0.05 0 .05

η 0.031177 0 .031093 0.013545 0.02156 0 .020311 0 .020297 0.0089202 0 .009573

σ 1.2179 1 .2166 1.2417 1.2287 1 .2348 1 .233 1.2579 1 .2443

θ 0.025605 0 .02.4765 0.030704 0.027182 0 .038722 0 .037616 0.047414 0 .041473

d 0.091092 0 .097593 0.11254 0.10153 0 .079232 0 .08501 0.0009864 0 .088709

gf 0.015216 0 .01.5238 0.014829 0.015038 0 .014939 0 .014968 0.014576 0 .014788

r 0.030522 0 .03.0505 0.030626 0.030555 0 .050805 0 .050782 0.050986 0 .050863

γr 0.53161 0 .55415 0.54730 0.54581 0 .47678 0 .49508 0.47907 0 .48442

Table 4: Calibration and estimation of the model

The estimated values of σ are in the range between 1.21-1.26, which is significantly above 1. This

implies that future new products on average are direct complements rather than direct substitutes to

the existing products. Their introduction is likely to enhance of the value of existing products, and

cause capital gains to the existing stock shares. This result is consistent with the observation that the

stock indices, such as the Dow Jones, or the FTSE, have positive time trends.

The estimated values of η are rather small, in the range between 0.008-0.032. This suggests that

the strength of the trend-reversion of the domestic knowledge stock is rather weak. The parameters ρ

and d are to some extent substitutes. Larger ρ is offset by smaller d. The estimated values of θ are very

small, which implies that the consumers do not care too much about smoothing consumptions. The

implied supply elasticity of capital with respect to risk-free interest rate, consequently, is very high.

In Appendix C, a discrete-time Ramsey growth model is presented as a benchmark. Thereby, the

speed of convergence in the unique saddle-path-stable equilibrium, γr, is given by eq. (72). With

α = 0.3, gy = 0.02, ρ ∈ [0.03, 0.05], θ ∈ (0.02, 0.05), σ ∈ [1.21, 1.26] and d ∈ (0.07, 0.12), the Ramsey

growth model would predict a time-invariant speed of convergence in the range of 47-56% per year. This

indicates that the neoclassical capital deepening process per se would be a very fast non-cyclical trend-

reversion process. When interacting with the process of TFP growth, it should respond to the TFP

growth very swiftly. The slowness of the trend-reversion of per capita income, therefore, is primarily due

to the rather weak trend-reversion of the domestic knowledge stock, as is measured by η. To confirm

this intuition, we do the following exercise to highlight the role of the primary economic mechanism.
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5.2 Explaining the long cycles

By considering the limiting case: θ→ 0, we can completely trivialize the neoclassical capital deepening

mechanism. Now we have

(50) rt = r = ρ,

therefore the channel whereby capital deepening can interact with TFP growth through interest rate

variation is shut. Then eq. (37) becomes

(51) gt+1 =
δL

(at)
η
(
1+gt
1+gf

)η −
σ (1− α) (1 + ρ)

α (σ − α) (1 + gt)
σ−1
1−α

(
1+gt
1+gf

)η +
σ (1− α)

α (σ − α)

When η is small, we can use the following approximation
(
1 + gt

1 + gf

)η
≈ 1

and hence

(52) gt+1 ≈
δL

(at)
η −

σ (1− α) (1 + ρ)

α (σ − α) (1 + gt)
σ−1
1−α

+
σ (1− α)

α (σ − α)
.

It is more convenient to use the following the log-linearized approximation:

(53) ln
1 + gt+1

1 + gf
≈ −η

(ρ+ αgf )

α (1 + gf )
ln

at

a∗
+ (σ − 1)

σ (1 + ρ)

α (σ − α) (1 + gf )
σ−α
1−α

ln
1 + gt

1 + gf
.

The first term in the right-hand side of the above equation shows that a positive value of η tends

to lead to a trend-reversion of at to a∗ (or At to A∗t ). If At is below the trend A∗t , then At tends grow

faster than the trend. When η is small eq. (34) approximately becomes

Vt ≈
(1− α)α

2α
1−α (At)

σ−1
1−α

δσ
α

1−αd
α

1−α (1 + rt)
1

1−α

,

which implies that the expected reversion of At toward A∗t from below enhances the asset price appreci-

ation in the time series of Vt. The expected increase in capital gain accelerates the investments in R&D

and the growth in At, which then feed back positively on asset price appreciation in the time series of

Vt. This positive feedback loop is captured by the second term in the right-hand of eq. (53). The factor

(σ − 1) which affects the strength of this positive feedback mechanism is quite large in our empirical

result. Since parameter η which measures the strength of trend-reversion of at to a∗ (or At to A∗t ) is

small in the empirical result, the trend-reversion force is not strong enough to stop the time series of At

from overshooting its trend A∗t and then (transitorily) diverging from it. The smaller η is, the longer it

takes for the (transitory) divergence to end and for At to start reversing to A∗t from above. This kind of

repeated sequence of trend-reversion, over-shooting, (transitory) divergence, and then trend-reversion

again forms the long cycles in conditional convergence.
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5.3 Discussion

The purpose of the growth current model is to explain long term growth, i.e., the very low frequency

components in the time-series variance of per capita incomes. It is not designed to explain the usual

business cycle components in range of 2-8 years of period of oscillation. The fact that the model can

match the two separate empirical bands of frequencies indicates that the cycles in the range of 9-14 years

cyclical periods may be due to the interaction between the neoclassical capital accumulation/deepening

mechanism and the endogenous technological progress. Without the mechanism of endogenous techno-

logical progress, there would have been no long cycles; without the influence of the neoclassical capital

accumulation mechanism, all the cycles would have been in the very low frequency band. The above

analysis suggests that the shorter cycles are linked to the channel of interest rate variation through

which the two mechanisms interact.

In the current study, the steady-state trends of per capita GDP, comprising both the trend growth

rates and the intercepts, have been treated as time-invariant, as is common in the conditional con-

vergence literature. Presumably, the steady-state trends may be subject to random shocks that have

permanent effects, i.e., stochastic trend shifts, therefore it is important to know how restrictive this as-

sumption is when confronted to the data. The unit root tests results from this study suggest that when

coupled with a suitably-specified cyclical growth model, this assumption appears to be appropriate for

our sample as a first order approximation.

6 Conclusion

In this study we find strong evidence that the long term conditional convergence of per capita income

possesses low frequency cyclical components. This finding contradicts the conventional assumption

that the speed of convergence is time-invariant. Consequently, the study rejects growth models that

predict time-invariant speed of convergence, including a broad class of neoclassical growth models, as

explanations for long-term economic growth. We propose that the long cycles in the trend-reversion

process of per capita income can be explained by the endogenous growth of total factor productivity

under the influence of international technological diffusion.

With international technological diffusion, the opportunities for technologically backward economies

to emulate the more advanced economies tend to lead all economies to converge to parallel steady-state

trends of per capita incomes. The disparities in the steady-state trends are caused by country-specific

fixed effects, such as the quality of institutions. The focus of the current paper is to understand

the process of per capita incomes to revert to their steady-state trends. We analyze two economic
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mechanisms underlying this trend-reversion process, in their joint presence, and in isolation. The first is

the neoclassical capital deepening mechanism, the second is the mechanism of endogenous investments

in technological progress and total factor productivity. Our quantitative analysis shows that on the one

hand, the reversion of capital intensity to its steady-state trend per se would be a very fast non-cyclical

process; on the other hand, the reversion of total factor productivity to its steady-state trend is a slow

and cyclical process. The long-term conditional convergence of per capita incomes is primarily explained

by the trend-reversion process of the total factor productivity.

The focus of the current study has been on understanding the primary economic mechanism that

generates long growth cycles. This inevitably leaves the details about how TFP growth and capital

deepening interact, and the determinants of the shorter cycles under-explored. These remain interesting

open questions to be addressed by future research.
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Figure 11: The time series of speed of convergence and the deviation of ln yit from the linear trend for

21 countries (uncorrected)

A Deviation from Trend and Speed of Convergence (Uncorrected

Resulted)

B Difference Equations

The recursive difference equations system is:

(54)




at+1 = at
1+gt
1+gf

gt+1 =
δL(

at
1+gt
1+gf

)η −
σ(1−α)
α(σ−α)

(at)
η

(at)
η
−
δ(σ−α)d
α(1−α)

(
L−

gt(at)
η

δ

)

(1+gt)

(
1+ α2(1−d)

σd(1+rt)

)
+
δ(σ−α)σ

α
1−α d

1
1−α (1+rt)

α
1−α(

1+rt
1+ρ )

1
θ
ĉt

α

1+α
1−α (1−α)(1+gt)

+ σ(1−α)
α(σ−α)

1 + rt+1 =

(
at

1+gt
1+gf

)η(1−α)
(1+rt)

α(1+gt)
σ−1




(at)η− δ(σ−α)d

α(1−α)

(
L−

gt(at)
η

δ

)

(1+gt)

(
1+ α2(1−d)

σd(1+rt)

)
+
δ(σ−α)σ

α
1−α d

1
1−α (1+rt)

α
1−α(

1+rt
1+ρ )

1
θ
ĉt

α

1+α
1−α (1−α)(1+gt)






(1−α)

ĉt+1 =
(
1+rt
1+ρ

)1
θ ĉt

(1+gt)
σ−α
1−α

.
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The steady-state values of the four state variables are given by

(55)






a∗ =
(
αδL
r+αgf

) 1
η

g∗ = gf

r∗ = r = (1 + ρ) (1 + gf )
θ(σ−α)
1−α − 1

ĉ∗ =
α

2α
1−α (1−α)

(
(σ−α)(σd(1+r)+α2(1−d))

(1−α)(1+g)
−
σ(1+r)(σ−α)α2

r(σ−α)+σ(1−α)

)

Lr

(σ−α)σ
1

1−α d
1

1−α (1+r)
1

1−α (1+g)
σ−1
1−α (r+αg)

The log-linearized difference equations are:





ln at+1a∗ = ln ata∗ + ln
1+gt
1+g∗

ln 1+gt+11+g∗ = B1 ln
at
a∗ +B2 ln

1+gt
1+g∗ +B3 ln

1+rt
1+r∗ +B4 ln

ĉt
ĉ∗

ln 1+rt+11+r∗ = G1 ln
at
a∗
+G2 ln

1+gt
1+g∗ +G3 ln

1+rt
1+r∗ +G4 ln

ĉt
ĉ∗

ln ĉt+1ĉ∗ = D2 ln
1+gt
1+g∗ +D3 ln

1+rt
1+r∗ + ln

ĉt
ĉ∗

where

B1 = −η
r+αgf
α(1+gf)

−
η
σ(1−α)
α(σ−α)

(1+r)

(1+gf)(1+gf)
σ−1
1−α

+

σ(1−α)
α(σ−α)

(1+r)2

(

η+η
(σ−α)d
α(1−α)

gf

(1+gf)

(
1+

α2(1−d)
σd(1+r)

))

(1+gf)
(
(1+gf)

σ−1
1−α

)2

B2 = −η
r+αgf
α(1+gf)

+

σ(1−α)
α(σ−α)

(1+r)2



 (σ−α)d
α(1−α)

(
1+

α2(1−d)
σd(1+r)

)
−
(1+gf)

σ−1
1−α

(1+r)
+1





(1+gf)
(
(1+gf)

σ−1
1−α

)2

B3 =

σ(1−α)
α(σ−α)

(1+r)2



 (σ−α)d
α(1−α)

r

(1+gf)

(
α2(1−d)
σd(1+r)

)
+( α

1−α
+ 1
θ )



α(1+gf)
σ−1
1−α

(1+r)
−α+

(σ−α)d
α(1−α)

r

(1+gf)

(
1+

α2(1−d)
σd(1+r)

)







α(1+gf)
(
(1+gf)

σ−1
1−α

)2

B4 =

σ(1−α)
α(σ−α)

(1+r)2



α(1+gf)
σ−1
1−α

(1+r)
−α+

(σ−α)d
α(1−α)

r

(1+gf)

(
1+

α2(1−d)
σd(1+r)

)



α(1+gf)
(
(1+gf)

σ−1
1−α

)2

G1 = η (1− α)−
(1−α)(1+r)

(

η+η
(σ−α)d
α(1−α)

gf

(1+gf)

(
1+

α2(1−d)
σd(1+r)

))

(1+gf)
σ−1
1−α

G2 = (η (1− α) + (σ − 1))−

(1−α)(1+r)



 (σ−α)d
α(1−α)

(
1+

α2(1−d)
σd(1+r)

)
−
(1+gf)

σ−1
1−α

(1+r)
+1





(1+gf)
σ−1
1−α

G3 = α−

(1−α)(1+r)



 (σ−α)d
α(1−α)

r

(1+gf)

(
α2(1−d)
σd(1+r)

)
+( α

1−α
+ 1
θ )



α(1+gf)
σ−1
1−α

(1+r)
−α+

(σ−α)d
α(1−α)

r

(1+gf)

(
1+

α2(1−d)
σd(1+r)

)







α(1+gf)
σ−1
1−α

G4 = −

(1−α)(1+r)



α(1+gf)
σ−1
1−α

(1+r)
−α+ (σ−α)d

α(1−α)
r

(1+gf)

(
1+α2(1−d)

σd(1+r)

)



α(1+gf)
σ−1
1−α

D2 = −
σ−α
1−α

D3 =
1
θ
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The linear difference equations system has the following characteristic polynomial:

X4 + ψ1X
3 + ψ2X

2 + ψ3X + ψ4

where

ψ1 = (−B2 −G3 − 2)

ψ2 = (2B2 −B1 +G3 +G3 (B2 + 1)−D2B4 −D3G4 −B3G2 + 1)

ψ3 = B1 −B2 −G3 (B2 + 1) + (D2B4 +D3G4) (B2 +G3 + 1)

−B3G1 +B3G2 −D2 (B2B4 +B3G4)−D3 (B4G2 +G3G4)

+G3 (B1 −B2) +B3G2 (B2 + 1)−B2B3G2

ψ4 = (D2B4 +D3G4) (B1 −B2 −G3 (B2 + 1) +B3G2)

−D3 (B4G1 +G2 (B2B4 +B3G4) +G3 (B4G2 +G3G4))

−D2 (B1B4 +B2 (B2B4 +B3G4) +B3 (B4G2 +G3G4)) +B3G1 −G3 (B1 −B2)

+ (D2 (B2B4 +B3G4) +D3 (B4G2 +G3G4)) (B2 +G3 + 1)

−B3G2 (B2 + 1) +B2B3G2

C Ramsey Growth Model

We consider a Ramsey model with exogenous technological progress. The aggregate production function

is given by

(56) Yt = L1−α (At)
σ (xt)

α ,

and can be rewritten as

(57) Yt = L1−α (At)
σ−α (Kt)

α ,

where Kt ≡ Atxt, At = A0 (1 + gf )
t. Define Nt � (At)

σ−α
1−α as the labor augmenting factor, hence the

steady-state growth rate of Nt is

(58) gN = (1 + gf )
σ−α
1−α − 1.

and the production function can be rewritten as:

(59) Yt = L1−α (Nt)
1−α (Kt)

α .

Define ŷt � Yt
LNt

and k̂t � Kt
LNt

, we have

(60) ŷt = k̂αt .
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The Euler condition for optimal consumption is

(61)
Ct+1

Ct
=

(
1 + rt

1 + ρ

) 1
θ

.

The law of motion for capital stock is

(62) Kt+1 = Kt (1− d) + It+1

where d is the depreciation rate, It+1 is investment. Define ı̂t+1 � It+1
LNt+1

. Hence we have

(63) k̂t+1 = k̂t
1− d

1 + gN
+ ı̂t+1.

The market clearing condition is:

(64) Yt = Ct+1 + It+1

which implies

(65)
ŷt

1 + gN
= ĉt+1 + ı̂t+1

and

(66) k̂t+1 = k̂t
1− d

1 + gN
+

ŷt

1 + gN
− ĉt+1

where ĉt+1 ≡
Ct+1
LNt

.

The first order condition for profit maximization entails that

(67) rt + d = αk̂α−1t .

The laws of motion for k̂t, ĉt are given by

(68)






k̂t+1 =
1−d
1+gN

k̂t +
k̂αt
1+gN

−
(
1+αk̂α−1t −d

1+ρ

)1
θ ĉt
1+gN

ĉt+1 =
(
1+αk̂α−1t −d

1+ρ

)1
θ ĉt
1+gN

The steady state is characterized by

(69)






gN = gy = (1 + gf )
σ−α
1−α − 1

r∗ = (1 + ρ) (1 + gy)
θ − 1

k̂∗ = α
1

1−α

((1+ρ)(1+gy)θ−(1−d))
1

1−α

ĉ∗ =
α

1
1−α ((1+ρ)(1+gy)θ−(1−d)−α(d+gy))

α(1+gy)((1+ρ)(1+gy)θ−(1−d))
1

1−α

.
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Log-linearizing the system around the steady state, we arrive at the following linear equations:

(70)





ln k̂t+1

k̂∗
= J1 ln

k̂t
k̂∗
+ J2 ln

ĉt
ĉ∗

ln ĉt+1ĉ∗ =M ln k̂t
k̂∗
+ ln ĉtĉ∗

where

J1 =

(

(1−d)+
((1+ρ)(1+gy)θ−(1−d))

α
+
(1−α)((1+ρ)(1+gy)θ−(1−d))((1+ρ)(1+gy)θ−(1−d)−α(d+gy))

θα(1+ρ)(1+gy)
θ

)

1+gy
> 0

J2 = −
((1+ρ)(1+gy)θ−(1−d)−α(d+gy))

α(1+gy)
< 0

M = −
(1−α)((1+ρ)(1+gy)θ−(1−d))

θ(1+ρ)(1+gy)
θ < 0

The characteristic polynomial is

(71) χ2 − (1 + J1)χ+ (J1 − J2M) .

There is a unique root that is below 1, related to the saddle-path-stable equilibrium, and the speed

of convergence thereof is given by

(72) γr = 1−
(1 + J1)−

√
(1− J1)

2 + 4J2M

2
.
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