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Abstract

We consider the problem of assessing new and existing technologies for their cost-effectiveness in

the case where data on both costs and effects are available from a clinical trial, and we address it by

means of the cost-effectiveness acceptability curve. The main difficulty in these analyses is that cost

data usually exhibit highly skew and heavy-tailed distributions, so that it can be extremely difficult to

produce realistic probabilistic models for the underlying population distribution, and in particular to

model accurately the tail of the distribution, which is highly influential in estimating the population

mean. Here, in order to integrate the uncertainty about the model into the analysis of cost data

and into cost-effectiveness analyses, we consider an approach based on Bayesian model averaging in

the particular case of weak prior informations about the unknown parameters of the different models

involved in the procedure. The main consequence of this assumption is that the marginal densities

required by Bayesian model averaging are undetermined. However in accordance with the theory of

partial Bayes factors and in particular of fractional Bayes factors, we suggest replacing each marginal

density with a ratio of integrals, that can be efficiently computed via Path Sampling. The results in

terms of cost-effectiveness are compared with those obtained with a semi-parametric approach that

does not require any assumption about the distribution of costs.

1 Introduction

The increasing burden on the budgets of health care providers has resulted in considerable interest in

assessing new and existing technologies for their clinical effectiveness and cost-effectiveness.

Suppose that we intend to compare two health care technologies T1 and T2 in a randomised controlled

trial, where data consist of the effect eij and the cost cij of treatment i on patient j (i = 1, 2; j =

1, 2, ..., ni).

In order to assess if T2 is more cost-effective than T1, we need to compare the expected effects µ1 and

µ2 as well as the expected costs γ1 and γ2. In particular, let ∆e = µ2 − µ1 and ∆c = γ2 − γ1 be the

effect and cost differentials. Moreover, let K be a decision-maker’s willingness to pay coefficient, that is

the units of money a decision maker is prepared to pay to obtain one unit of effectiveness.

The primary measure of cost-effectiveness of T2 relative to T1 is usually considered to be the net

monetary benefit K∆e − ∆c (O’Hagan et al., 2000): T2 is cost-effective relative to T1 if K∆e − ∆c > 0,

i.e. if in the plane of possible pairs of values of the population mean increments of effect and cost, (∆e, ∆c)

is below a sloping line of gradient K. This is usually referred as the Net Benefit approach (Stinnett and

Mullahy, 1998), and inference about the net monetary benefit is generally presented by means of a Cost-

Effectiveness Acceptability Curve (CEAC), that plots the probability Q (K) = P (K∆e − ∆c > 0 ) that
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the net benefit is positive against the coefficient K (van Hout et al., 1994), which is rarely unambiguously

determined in practice. In this sense, a Bayesian approach is particularly natural, since no such probability

exists or has any meaning in frequentist statistics (O’Hagan et al., 2000).

Clearly these cost-effectiveness analyses of clinical trial data rely on statistical models which describe

the distribution of costs and effects and their interrelation across individuals in the trial, which are rather

difficult to determine, mainly because cost data obtained for individual patients in health economic

studies typically exhibit highly skew and heavy tailed distributions. In fact, as discussed in O’Hagan

and Stevens (2002, 2003), non-parametric methods, such as those based on the asymptotic normality of

the sample mean or nonparametric bootstrapping, may be inefficient for analising such data and their

justification breaks down in small samples. See Dinh and Zhou (2006) for some recent developments

on such methods. On the other hand, parametric modelling may lead to more efficient inference (see,

among others, Al and van Hout, 2000, O’Hagan and Stevens, 2001, 2002, Fryback et al., 2001) but is

dependent on the population distribution matching the model adequately. The main difficulty in this

sense, as pointed out for instance in Nixon and Thompson (2004) and Thompson and Nixon (2005), is

that the high skewness and kurtosis usually found in cost data imply that the population mean can be

very sensitive to the tail of the distribution, that might be difficult to model accurately. One consequence

of this is that parametric models that fit the data equally well can produce very different answers;

conversely, in some cases models that fit badly can give similar inferences to those that fit well. For these

reasons, Thompson and Nixon (2005) recommend that the sensitivity of conclusions to the choice of the

model is always investigated, so that model uncertainty becomes a crucial aspect of analysing cost data.

A different proposal for overcoming these difficulties can be found in Conigliani and Tancredi (2005a),

that suggested to model the bulk of the data and the tails separately, with a distribution composed of

a piecewise constant density up to an unknown endpoint and a generalised Pareto distribution (GPD)

for the remaining tail data; this semi-parametric model, that is extremely flexible and able to fit data

set with very different shapes, has been applied to cost-effectiveness analyses in the simple case where

effects are measured as binary outcomes in Conigliani and Tancredi (2005b), and to more general settings

in Conigliani and Tancredi (2008), where the results of the semi-parametric model are compared with

those obtained with Bayesian model averaging (BMA). Note that an approach based on BMA in this

setting is somehow in the spirit of the sensitivity analyses advocated by Thompson and Nixon (2005).

In fact, it requires the specification of a set of plausible models for costs, but instead of studying how

the conclusions change with the different models, it takes into account the inferences obtained with all

the models that have a non-zero posterior probability. Obviously the main difficulty of this approach is

the specification of the set of plausible models, in the sense that it should include distributions with a
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wide range of shapes both for the bulk of data and for the tail. But another difficulty is represented by

the fact that Bayesian model averaging requires proper prior distributions for the unknown parameters

of the various models, even when there is not enough prior knowledge to elicit them.

Here, in order to focus the attention on the distribution of costs, we find convenient to write the

distribution for a single observation xij = (eij , cij)′ under treatment Ti as

f (xij |θi, φi ) = f (cij |θi ) f (eij |cij , φi )

where f (cij |θi ) is the unconditional distribution for the cost of patient j under Ti and f (eij |cij , φi ) is the

conditional distribution for the effect on patient j under Ti given the cost cij , that we assume independent

on the parameter θi of the distribution of costs. And in order to integrate the uncertainty about the model

for costs into cost-effectiveness analyses, we consider an approach based on Bayesian model averaging

in the particular case of weak prior informations for the unknown parameters of the different models.

This is presented in details in Section 2, together with the problems caused by the assumption of non-

informative priors, namely the fact that the marginal densities required by BMA are undetermined. In

the same section we recall the theory of partial Bayes factors and in particular of fractional Bayes factors,

and we suggest computing the required posterior model probabilities by replacing each (undetermined)

marginal density with a ratio of integrals. In Section 3 we revise some of the numerical methods usually

applied in Bayesian statistics to obtain inferences based on integrals, and focus our attention on Path

sampling, a particularly flexible and efficient simulation method introduced by Gelman and Meng (1994,

1998) for the direct computation of ratios of marginal densities. In Section 4 the proposed methodology is

compared with the semi-parametric approach of Conigliani and Tancredi (2005a) in an empirical context.

A few concluding remarks are presented in the final section.

2 Analysing cost data with Bayesian model averaging with weak

prior informations

Suppose that under each treatment group, instead of choosing a single parametric model for cost data,

we specify a set of plausible models M = {M1,M2, ...,Mk}. In particular, we assume that M is made of

the log-normal, gamma, Weibull, log-logistic, generalised Pareto and inverse Gaussian; the corresponding

probability density function and main summaries are shown in Table 1. Note that these distributions

are always positive and skewed to the right, and offer a range of different tail behaviours. Moreover,

we assume that all six distributions have finite first and second moment (which requires a constraint for

the shape parameter of the log-logistic and the generalised Pareto), so that they can be re-parametrized
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Table 1: Single parametric models included in the BMA procedure

Pdf Mean Variance

Log − normal
p (x |µ, σ ) =

1

x
�

2πσ2
e
− [log(x)−µ]2

2σ2 e
µ+ σ2

2 e2(µ+σ2) − e2µ+σ2

Gamma
p (x |ν, λ ) =

xν−1λν

ν (ν)
e−xλ

ν

λ

ν

λ2

Weibull
p (x |β, δ ) =

βxβ−1e−(x/δ)β

δβ

δ

β
Γ

�
1

β

�
δ2
�
Γ

�
2

β
+ 1

�
− Γ

�
1

β
+ 1

�2�

Log − logistic
p (x |β, ρ ) =

ρ(x/β)ρ

x [1 + (x/β)ρ)]2

πβ

ρ
csc

�
π

ρ

�
, ρ > 1

2πβ2

ρ
csc

�
2π

ρ

�
−

π2β2

ρ2

�
csc

�
π

ρ

��2
, ρ > 2

GPD
p (x |σ, ξ ) =

1

σ

�
1 +

xξ

σ

�−1/ξ−1 σ

(1 − ξ)
, ξ < 1

σ2

(1 − ξ)2 (1 − 2ξ)
, ξ <

1

2

InverseGaussian
p (x |µ, λ ) =

�
λ

2πx3
exp

�
− λ(x−µ)2

2xµ2

�
µ

µ3
λ

in terms of the mean cost γ and the variance σ2. Then the posterior marginal distribution of γ can

be obtained by Bayesian model averaging (Hoeting et al., 1999) as a mixture of its posterior marginal

distributions under each of the models in M, with weights given by the corresponding posterior model

probabilities.

Formally, let fl

(
c1, ..., cn

∣∣γ, σ2
)

and πl(γ, σ2) be respectively the distribution of the cost data and

the prior distribution of the parameters under model Ml in M. Moreover, let π(Ml) be the prior model

probability of Ml, such that
∑k

l=1 π(Ml) = 1. Then according to BMA the posterior marginal distribution

of γ can be written as

π(γ|c1, ..., cn) =
k∑

l=1

[∫
πl(γ, σ2|c1, ..., cn)dσ2

]
π(Ml|c1, ..., cn) (1)

where the posterior distribution of the parameters under Ml and the posterior model probability of Ml,

that need to be substituted in (1), can be obtained by means of Bayes’ theorem as

πl(γ, σ2|c1, ..., cn) =
fl

(
c1, ..., cn

∣∣γ, σ2
)
πl(γ, σ2)∫

fl (c1, ..., cn |γ, σ2 ) πl(γ, σ2)dγdσ2
(2)

and

π(Ml|c1, ..., cn) =
π(Ml)

∫
fl

(
c1, ..., cn

∣∣γ, σ2
)
πl(γ, σ2)dγdσ2∑k

l=1 π(Ml)
∫

fl (c1, ..., cn |γ, σ2 ) πl(γ, σ2)dγdσ2
(3)

respectively.

Note that this is more or less the setting of Conigliani and Tancredi (2008); in particular, they suggest

to re-parametrize all models in M in terms of the mean cost and the coefficient of variation (i.e. the

ratio of the standard deviation to the mean), so that the unknown parameters have a clear meaning and

the same prior distribution can be introduced under the various models in M.

However Bayesian model averaging requires proper prior distributions for the unknown parameters

under the various models in M, even when there is not enough prior knowledge to elicit them. In fact,
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if the prior for γ and σ2 under model Ml is improper, i.e. defined only up to an arbitrary constant,

then the marginal density
∫

fl

(
c1, ..., cn

∣∣γ, σ2
)
πl(γ, σ2)dγdσ2 is itself a multiple of such constant (l =

1, ..., k). Clearly this does not represent a problem for the computation of the posterior distribution of

the parameters under model Ml, given by (2), since the same prior distribution, and therefore the same

unknown constant, appears in the numerator and in the denominator of (2) and cancels out. Instead,

the posterior model probability for Ml, given by (3), depends not only on πl(γ, σ2), but also on the prior

distribution for γ and σ2 under the other models in M. And, as pointed out for instance in Berger

and Pericchi (1996), what appears to be the same parameter can have very different interpretations, and

therefore different prior distributions, under different models. It follows that in (3) the different unknown

constants do not cancel, and (3) cannot be computed.

Now, the fact that improper prior distributions result in undetermined marginal densities and repre-

sent a problem for computing posterior model probabilities, i.e. for Bayesian model selection, is a well

known fact and several suggestions can be found in the literature to overcome this difficulty, most of

which are based on the idea of training samples.

Formally, for each model Ml in M, divide the cost data c1, ..., cn into two parts, c(m) and c(n−m),

of size m and n − m respectively, with 0 < m < n. First, subsample c(m) is used to update the prior

πl

(
γ, σ2

)
and obtain the posterior distribution πl

(
γ, σ2 | c(m)

)
; in the second step, taking this as a prior

distribution, the remaining data c(n−m) are used to compute the marginal density:

∫
fl

(
c(n−m)

∣∣γ, σ2
)
πl(γ, σ2

∣∣c(m) )dγdσ2 =

∫
fl

(
c1, ..., cn

∣∣γ, σ2
)
πl(γ, σ2)dγdσ2∫

fl

(
c(m) |γ, σ2

)
πl(γ, σ2)dγdσ2

(4)

that clearly does not depend on an arbitrary constant if the prior distribution πl(γ, σ2) is improper.

Note that this is the idea that lead to the definition of partial Bayes factors. There is, however, a

difficulty with the use of (4), namely the selection of the training sample c(m) from the data. To avoid

the arbitrariness of choosing a particular training sample, O’Hagan (1995) suggested instead the use of

a proportion b = m/n of the data for training: if both m and n are large, the likelihood fl

(
c(m)

∣∣γ, σ2
)

based only on the training sample c(m) will approximate to the full likelihood fi

(
c1, ..., cn

∣∣γ, σ2
)

raised

to the power of b. By analogy with (4) is then:

∫
fl

(
c(n−m)

∣∣γ, σ2
)
πl(γ, σ2

∣∣c(m) )dγdσ2 ≈
∫

fl

(
c1, ..., cn

∣∣γ, σ2
)
πl(γ, σ2)dγdσ2∫

fl (c1, ..., cn |γ, σ2 )b
πl(γ, σ2)dγdσ2

(5)

which motivated the definition of the fractional Bayes factor (O’Hagan, 1995).

Now going back to the problem of deriving the posterior model probabilities (3) required by (1)

when there is not enough prior knowledge to elicit proper prior distributions for γ and σ2, the above
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approximation could be used to replace each marginal density in (3), leading to

π(Ml|c1, ..., cn) ≈
π(Ml)

∫
fl

(
ci, ..., cn

∣∣γ, σ2
)
πl(γ, σ2)dγdσ2∫

fl (c1, ..., cn |γ, σ2 )b
πl(γ, σ2)dγdσ2∑k

l=1 π(Ml)

∫
fl

(
c1, ..., cn

∣∣γ, σ2
)
πl(γ, σ2)dγdσ2∫

fl (c1, ..., cn |γ, σ2 )b
πl(γ, σ2)dγdσ2

(6)

One last issue is worth a few considerations. The choice of the size of the training sample has

been widely discussed in the literature; see for instance O’Hagan (1995, 1997). One simple and obvious

guidance, that has proved to be reliable in a range of problems involving improper priors, is to consider

the minimal training sample, i.e. the smallest sample size needed to update an improper prior so as

to obtain a proper prior distribution. Here, if we consider an improper prior for γ and σ2, a minimal

training sample is any subset made of two observations, so that b = 2/n.

3 Computing posterior model probabilities via path sampling

Computing marginal densities, or equivalently normalising constants of probability models, is a funda-

mental computational problem for many statistical and scientific studies; for a review of the methods

more widely used in Bayesian statistics see, for instance, Smith et al. (1985), Smith (1991), Tanner

(1993), O’Hagan and Forster (2004), and the references therein; for comparisons of these methods in

Bayesian model selection see, for example, Rosenkrantz (1992), Kass and Raftery (1995), Raftery (1996).

Approximations of marginal densities for well behaved problems of modest dimensionality can be

obtained by a number of different procedures; these include methods of analytic approximation, such as

Laplace’s method (De Bruijn, 1961; Tierney and Kadane, 1986), and numerical integration procedures,

such as adaptive Gaussian quadrature (Genz and Kass, 1993) and Bayesian quadrature (O’Hagan, 1991).

For complex models, however, the only methods available are those based on simulations.

Simulation-based procedures include Monte Carlo integration (Hammersley and Handscomb, 1979)

and importance sampling (Geweke, 1989); the idea is to learn about a complex probability distribution

by simulating a set of random numbers from it, or from an auxiliary distribution that approximates it. In

many fields, however, the complex probability systems encountered make these methods often unusable,

and more advanced and typically more efficient simulation procedures are in common use. In particular,

since the advent of Markov chain Monte Carlo methods (Gelfand and Smith, 1990, Tanner and Wong,

1987), several procedures have been proposed to obtain estimates of marginal densities by sampling from

the posterior distribution of the parameters; work along this line includes Newton and Raftery (1994),

Gelfand and Dey (1994), Chib (1995), Chib and Jeliazkov (2001).
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Notice that the majority of the procedures we have referred to only produce approximations of one

integral at a time. In various applications however, as in the case of computing posterior model probabil-

ities via (5), the real interest is often not the magnitude of the integral, but rather ratios, or equivalently

differences of the logarithms. Moreover such methods can be particularly unstable when the integrand is

diffuse, as it is typically the case with the denominator of (5) for small b. It follows that in this setting

procedures for the direct approximation of ratios of integrals, such as the Bridge Sampling of Meng and

Wong (1996) and the Path Sampling of Gelman and Meng (1994, 1998), may be more appropriate.

A different approach that leads to the direct approximation of ratios of marginal densities is related

to the specialized MCMC algorithms developed to handle problems involving inference about curves,

surfaces or images, where the dimension of the object of inference is not fixed. Work along this line

includes the product-space approach of Carlin and Chib (1995) and the reversible jump MCMC method

of Green (1995). However both methods require the specification of proper priors for the unknown

parameters, so that here we focus our attention on Path Sampling.

Thus, suppose we intend to compute the ratio of integrals (5) in order to obtain the posterior model

probabilities (6), and let λ(Ml) be the log of (5), i.e.

λ(Ml) = log

( ∫
fl

(
c1, ..., cn

∣∣γ, σ2
)
πl(γ, σ2)dγdσ2∫

fl (c1, ..., cn |γ, σ2 )b
πl(γ, σ2)dγdσ2

)
(7)

The fundamental idea underlying path sampling is that it is always possible to construct a continuous

path ql

(
γ, σ2 |ω)

, ω ∈ Ω, with normalising constant zl (ω) =
∫

ql

(
γ, σ2 |ω)

dγdσ2, connecting the two

functions that need to be integrated in (7). For instance in this setting it is quite obvious to choose

ql

(
γ, σ2 |ω)

= fl

(
c1, ..., cn

∣∣γ, σ2
)ω

πl(γ, σ2)

with ω ∈ [b, 1], so that (7) can be rewritten as

λ(Ml) = log

(∫
ql

(
γ, σ2 | 1)

dγdσ2∫
ql (γ, σ2 | b) dγdσ2

)
= log

(
zl(1)
zl(b)

)
. (8)

Following Gelman and Meng (1998), to derive the basic identity for path sampling, let pl

(
γ, σ2 |ω)

=

ql

(
γ, σ2 |ω)

/zl (ω). Taking logarithms of zl (ω) and differentiating with respect to ω yields

d

dω
log [zl (ω)] =

∫
pl

(
γ, σ2 |ω) d

dω
log ql

(
γ, σ2 |ω)

dγdσ2 = Eω

[
log fl

(
c1, ..., cn

∣∣γ, σ2
)]

where Eω denotes the expectation with respect to the sampling distribution pl

(
γ, σ2 |ω)

. It follows that

(8) can be rewritten as

λ(Ml) =
∫ 1

b

Eω

[
log fl

(
c1, ..., cn

∣∣γ, σ2
)]

dω, (9)
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which represents the key formula for path sampling: λ(Ml) can be expressed as the integral over Ω of an

expected value with respect to the conditional distribution pl

(
γ, σ2 |ω)

, of a function of the path.

Note that in order to evaluate (9), one must be able to compute the expected value

Eω

[
log fl

(
c1, ..., cn

∣∣γ, σ2
)]

for given ω, and to carry out the integration with respect to ω. In par-

ticular, the latter is usually obtained by standard numerical integration, that requires the integrand to

be evaluated at a set of fixed points ωr (r = 1, ..., N). Instead, the expected value is usually obtained by

simulation, i.e. by sampling values (γsr, σ
2
sr) (s = 1, ...,M) directly and independently from q

(
γ, σ2 |ωr

)
for given ωr or, when this is not practical, with an iterative Markov chain Monte Carlo sampler. The

corresponding estimate then has the form

λ̂(Ml) =
N∑

r=1

ar

{
1
M

M∑
s=1

[
log fl

(
c1, ..., cn

∣∣γsr, σ
2
sr

)]}
(10)

where a1, ..., aN is a set of weights.

Notice that an alternative to numerical integration is to evaluate the integral with respect to ω by

Monte Carlo importance sampling, by drawing ω1, ω2, ..., ωN randomly from an arbitrary density p (ω).

However this approach will typically be less efficient and more computationally demanding than numerical

integration, that usually involves studying the function we are trying to integrate, and choosing the points

ωr in some sensible way. Moreover, recall that in our approach inference on the mean cost γ is based

on the posterior marginal distribution (1), that depends on the posterior distributions of γ and σ2 under

the different models in M (as well as on the posterior model probabilities). And posterior summaries of

πl(γ, σ2|c1, ..., cn) will typically require simulating from it, i.e. from ql

(
γ, σ2 |ω = 1

)
. It follows that we

find working with a fixed grid (such that ωN = 1) preferable.

The main difficulty in this approach is that the evaluation of Eω

[
log fl

(
c1, ..., cn

∣∣γ, σ2
)]

requires

sampling from ql

(
γ, σ2 |ωr

)
for values of ωr that explore the whole interval [b, 1], and ql

(
γ, σ2 |ωr

)
will

typically be diffuse for ωr close to b. It follows that (10) can be rather unstable for small values of b. For

this reason, we suggest computing (10) with an adaptive procedure of some kind, and in particular with

an adaptive Metropolis-Hastings algorithm.

Consider first the problem of sampling from ql

(
γ, σ2 |ωN = 1

)
, i.e. from the posterior distribution of γ

and σ2 under model Ml; this is a standard computational problem and can be usually solved by proposing

from any sensible distribution. Then consider the problem of sampling from ql

(
γ, σ2 |ωN−1

)
; now the

target density is more diffuse than ql

(
γ, σ2 |ωN = 1

)
, but only slightly, so that useful indications about the

proposal distribution can be obtained by looking at the values (γ1N , σ2
1N ), ..., (γsN , σ2

sN ), ..., (γMN , σ2
MN )

simulated from ql

(
γ, σ2 |ωN = 1

)
. And so on: in order to sample from ql

(
γ, σ2 |ωr

)
, that is slightly

more diffuse than ql

(
γ, σ2 |ωr+1

)
, we can adapt the proposal distribution in the Metropolis algorithm by
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Figure 1: Data from the low back pain trial

looking at the values simulated from ql

(
γ, σ2 |ωr+1

)
(r = 1, ..., N −1). By doing so, as the target density

becomes more diffuse, also the proposal distribution becomes more diffuse, and (10) does not suffer from

stability problems for small values of b.

4 Analysis of the Low Back Pain Trial data

We present an example using a study on low back pain (Jarvik et al., 2003). A total of 380 patients

(out of which 328 were included in the health economic evaluation) were randomised in a 1:1 ratio to

investigation by standard X-ray investigation and rapid magnetic resonance imaging (rMRI), and were

followed for 12 months. Aim of the trial was to investigate whether rMRI would allow better diagnosis and

treatment, or lead to unnecessary treatment without improvement in symptoms. The primary clinical

endpoint was the change from baseline of the modified Roland back pain score (Patrick et al., 1995),

while the primary economic endpoint was the total health care cost (in US$).

The data are shown in Figure 1. Under both treatments the effects as well the marginal conditional
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Table 2: Low back pain trial: sample descriptive statistics of X-ray costs and rMRI costs

X ray rMRI

sample size 166 162

mean 1515 2187

standard deviation 1747 3378

median 926 871

minimum 44 49

maximum 9111 20664

skewness
�
µ3/σ3

�
1.8 2.7

kurtosis
�
µ4/σ4

�
6.4 10.9

distributions of the effects are apparently well represented by a normal distribution, so that we assume

eij |cij ∼ N
(
βi + δicij , σ

2
i

)
,

and the overall mean effect can be written as µi = βi + δiγi. Instead, the distribution of costs is clearly

highly skew and heavy-tailed, and this fact is confirmed also by the sample summaries shown in Table 2.

We now apply the approach of Section 2 and Section 3 to this data set, assuming for both treatment

groups equal prior model probabilities for the six distributions in M, and introducing the standard

non-informative prior πl(γ, σ2) ∝ 1
σ2

for the unknown parameters γ and σ2 under each model in M
(l = 1, ..., k). In particular, we computed the ratios (5) required by the posterior model probabilities (6)

via Path Sampling, applying the trapezoidal rule on a grid of N=10 points for integrating with respect

to ω, and with the adaptive Metropolis-Hastings algorithm outlined in the previous section sampling

M = 20000 values from each ql

(
γ, σ2 |ωr

)
(r = 1, ..., N). As proposal distributions for γ and σ2 we

used two independent skew-t distributions, that turned out to be flexible and (when necessary) heavy

tailed enough for this problem, allowing the adaptive procedure of Section 3 to work quite well as the

target density ql

(
γ, σ2 |ωr

)
became more diffuse. The results are presented in Table 3 and Table 4 for

the individual mean costs γ1 and γ2 respectively, and in Table 5 for the cost differential ∆c and effect

differential ∆e.

Note that Table 3 and Table 4 also show the posterior summaries that we obtain if, instead of applying

Bayesian model averaging, we model the X-ray costs and the rMRI costs with the single parametric models

included in M, and with the mixture model of Conigliani and Tancredi (2005a). In fact, the standard

parametric analysis is extremely helpfull to illustrate how sensitive inference about cost-effectiveness is

11



Table 3: Low back pain trial: posterior summaries of mean X-ray cost

Model for costs E (γ1 |c11...c1n1 ) PCI0.95 π (Ml1 |c11...c1n1 )

Log-normal 1603 1529; 1678 0

Gamma 1487 1438; 1540 0

Weibull 1548 1447; 1658 0

Loglogistic 1199 1132; 1266 1

GPD 1496 1423; 1579 0

Inverse Gaussian 1329 1281; 1376 0

BMA 1199 1132;1266 -

Mixture model 1555 1301;1837 -

Table 4: Low back pain trial: posterior summaries of mean rMRI cost

Model for costs E (γ2 |c21...c2n2 ) PCI0.95 π (Ml2 |c21...c2n2 )

Log-normal 2022 1941; 2105 0

Gamma 2159 2079; 2233 0.86

Weibull 2058 1914; 2209 0

Loglogistic 1362 1290; 1445 0.14

GPD 2019 1904; 2148 0

Inverse Gaussian 2104 2036; 2172 0

BMA 2052 1326;2230 -

Mixture model 2377 1840;3051 -

to the choice of the model for costs, and how an approach based on Bayesian model averaging can be

used to overcome this problem. On the other hand, although in the applications at least one of the

distributions in M will have a positive posterior model probability, there is no guarantee that either of

them fit the data well. For this reason we find interesting to compare the results obtained with Bayesian

model averaging also with those obtained with the mixture model of Conigliani and Tancredi (2005a),

that does not require any assumption about the distribution of costs, and allows inference on the mean

cost to take account of the uncertainty about the tail; details of the model and of the prior assumptions

can be found in Tancredi et al. (2006) and in Conigliani and Tancredi (2005a, 2008).

Consider first the results of the standard parametric analysis. According to the posterior model

probabilities shown in Table 3 and Table 4, while in the X-ray group the data definitely support the

12



Table 5: Low back pain trial: posterior summaries of cost differential and effect differential

Model for costs E (∆c |D ) PCI0.95 P (∆c> 0 |D ) E (∆e |D ) PCI0.95 P (∆e> 0 |D )

BMA 853 116; 1056 1.00 -0.12 -1.6;1.3 0.43

Mixture 822 212; 1538 1.00 0.02 -1.4;1.5 0.51

log-logistic distribution, in the rMRI group plausible models are the gamma (with the highest posterior

probability) and the log-logistic. These two models, however, lead to rather different posterior summaries

of the mean rMRI cost, and therefore to rather different conclusions in terms of the cost differential ∆c.

In fact, both models suggest that there is evidence of a higher mean cost in the rMRI group, but the

strengh of this evidence depends on which model we assume for the data. At one end, if we assume the

log-logistic for X-ray costs and the log-logistic for rMRI costs, for the mean cost difference we obtain a

point estimate of $163, and a posterior credible interval that includes the value ∆c = 0. At the other end,

if we assume the log-logistic for X-ray costs and the gamma for rMRI costs, for the mean cost difference

we obtain a point estimate of $960, and a posterior credible interval all on the positive line. It follows that

in terms of the analysis of costs and of cost-effectiveness here different models with non-zero posterior

probability produce rather different results. And this is exactly a situation where it seems appropriate to

apply model averaging: instead of choosing between different models, and then studying the sensitivity

of the conclusions in terms of cost-effectiveness, model averaging takes into account all models which are

plausible for the data. Notice that in the particular study we are presenting, taking into account both

the gamma and the log-logistic distribution for rMRI costs results is a rather wide credible interval for

γ2: with respect to the interval obtained under the gamma model, the one obtained with BMA includes

also smaller values of γ2, that receive a positive posterior probability under the log-logistic model.

Consider now the comparison between the results of Bayesian model averaging and those obtained

with the mixture model of Conigliani and Tancredi (2005a). Looking first at Table 3 and Table 4 we

notice that the point estimates of γ1 and γ2 obtained with the mixture model are higher than those

obtained with BMA, and the posterior credible intervals for γ1 and γ2 obtained with the mixture model

are wider than those obtained with BMA, so that under both treatment groups the mixture model seems

to give more weight to the upper tail of the cost distribution than any of the models included in M. Then

looking at Table 5 and at the two Cost-Effectiveness Acceptability Curves in Figure 2, we see that also in

terms of cost-effectiveness the two approaches lead to different conclusions. In particular, although the

point estimates of ∆c and the probability that ∆c > 0 are nearly identical (as a consequence of the fact

that BMA underestimates the mean costs with respect to the mixture model under both treatments), the
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Figure 2: Low back pain trial: cost-effectiveness acceptability curves

probability Q (K) that rMRI is cost-effective is always lower under BMA than under the mixture model.

And if we look at the values of K where Q (K) is at least 0.5, we find K ≥ $30.000 under the mixture

model, while no such values of K exist under BMA. As pointed out in Conigliani and Tancredi (2008), in

such cases is very difficult to decide which results one should believe, since these differences are mainly

related to the way the two methods deal with model uncertainty. This issue will be addressed further in

the final Section.

5 Discussion

Most of the recent literature on cost-effectiveness analyses of clinical trial data agrees that inferences are

significally sensitive to the choice of the model for costs, and especially to how the upper tail of the cost

distribution beyond the observed data is modelled. The proposal of Conigliani and Tancredi (2005a) to

overcome this problem combines the semi-parametric approach to density estimation based on mixture

models and the semi-parametric approach to tail estimation based on extreme value theory; the result is

a very flexible model able to fit data set with very different shapes both in the bulk of data and in the tail,
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but there is a price to pay for so much flexibility in terms of precision and efficiency of the corresponding

inferences.

In this paper we have considered an approach based on Bayesian model averaging, that is in the spirit

of the sensitivity analyses advocated by Thompson and Nixon (2005). It requires the specification of a

set M of plausible models for cost data, but instead of studying how the conclusions change with the

different models, it takes into account the inferences obtained with all the models in M that have a

non-zero posterior probability.

An approach based on Bayesian model averaging for cost-effectiveness analyses in health economics

was already proposed in Conigliani and Tancredi (2008), but it involved proper prior distributions for

the unknown parameters of the different parametric models. Here we have considered the particular

case of weak prior informations, and the main consequence of this assumption is that standard Bayesian

model averaging cannot be applied. However in accordance with the theory fractional Bayes factors, we

have introduced a new procedure that can deal with improper priors. The computational issues that we

encountered were dealt with Path Sampling together with an adaptive Metropolis-Hastings algorithm.

We believe that a BMA type procedure that can be applied even when there is not enough prior

knowledge to elicit proper prior distributions for the parameters is particularly relevant especially in

a setting like this, where it is difficult to determine plausible statistical models. In this sense, the

present approach is closer to the semi-parametric approach of Conigliani and Tancredi (2005a), that

does not require any assumption about the distribution of costs. However even if a priori we are not

introducing any informations, the specification of the set M has nevertheless the effect of reducing the

model uncertainty. It follows that Bayesian model averaging will generally lead to smaller intervals than

the semi-parametric approach, but the characteristics of these intervals significantly depends on which

models are included in the procedure, so that particular care should be devoted to specifying M.
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