
LEAST ORTHOGONAL DISTANCE ESTIMATION 

OF SIMULTANEOUS EQUATIONS: A SIMULATION EXPERIMENT

A. Naccarato     D. Zurlo

COLLANA DEL
DIPARTIMENTO DI ECONOMIA

Working Paper n° 90, 2007



- I “Working Papers” del Dipartimento di Economia svolgono la funzione di divulgare 
tempestivamente, in forma definitiva o provvisoria, i risultati di ricerche scientifiche
originali. La loro pubblicazione è soggetta all’approvazione del Comitato Scientifico.

- Per ciascuna pubblicazione vengono soddisfatti gli obblighi previsti dall’art. 1 del D.L.L.
31.8.1945, n. 660 e successive modifiche.

- Copie della presente pubblicazione possono essere richieste alla Redazione.

REDAZIONE:
Dipartimento di Economia
Università degli Studi Roma Tre
Via Silvio D'Amico, 77 - 00145 Roma
Tel. 0039-06-574114655  fax 0039-06-574114771
E-mail: dip_eco@uniroma3.it



DIPARTIMENTO DI ECONOMIA 

Comitato Scientifico:
Proff. M. Barbieri

L. Pieraccini
S. Terzi

* Dipartimento di Economia, Università degli Studi “Roma Tre”

LEAST ORTHOGONAL DISTANCE ESTIMATION 

OF SIMULTANEOUS EQUATIONS: A SIMULATION EXPERIMENT

A. Naccarato*     D. Zurlo*



 1 

 
 

Least Orthogonal Distance Estimation of simultaneous 
equations: a simulation experiment 
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Department of Economics 
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Abstract: the aim of this work is to estimate the structural parameters 
of a simultaneous equation system using both the Limited and Full 
Information Least Orthogonal Distance Estimator (Pieraccini, 1988; 
Naccarato, 2007). We compare the results - via  simulation 
experiments – of LODE estimates with those obtained by other 
methods (Maximum Likelihood, Least Squares). LODE estimators 
appear to be unbiased and (nearly always) more efficient. 
 
Keywords: Simultaneous equations models, Orthogonal distance, 
Principal Components. 
 
 

Introduction 
 

This paper aims at evaluating the features of the Least Orthogonal 
Distance Estimator (LODE) for the structural parameters of 
simultaneous equations systems (Pieraccini, 1988, Naccarato, 2007). 
Such evaluation has been conducted by comparing the results of 
LODE with Least Squares and Maximum Likelihood.  

In literature there are two main approaches to this kind of 
comparison: analytical ( that focuses on searching the theoretical 
distribution of parameter estimators), or computational (based on 
Monte Carlo simulations).  

As is well known, the difficulty in simultaneous equations 
estimation is the nonlinear relationship between Reduced Form (RF) 
and Structural Form (SF) coefficients. Least Squares, as well as 
Maximum Likelihood derives estimators under the hypothesis of  
identification restrictions.  Thus the analytical approach refers to 
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models that satisfy some sort of identification restrictions. This makes 
the analytical results unsuitable for more general applications.  

The computational approach it is suited to handle more general 
models. It consists in choosing a model and assuming one or more 
structures by assigning specific numerical values to the parameters 
and to the variance-covariance matrix of the SF errors. Subsequently, 
samples of different sizes are extracted from the assumed error 
distribution and from each of the predetermined structures. Exogenous 
variable are generated randomly and vary with each sample.  

In this paper we show, by means of a computational approach, that 
LODE estimators perform better than Least Squares and Maximum 
Likelihood estimators. In particular we compare Limited Information 
LODE with 2SLS  and LIML, and Full Information LODE with 3SLS 
and FIML. 

The outline of the paper is the following. After a brief introduction 
on the estimation of  systems of simultaneous equations (§ 1) and the 
LODE estimator (§ 2), we describe the plan of experiments (§ 3). We 
discuss the results in § 4, mainly that LODE estimator is unbiased and 
although not efficient it performs as well as (or not worse than) the 
other estimators we have considered. Finally in § 5 we draw some 
conclusions and suggest future developments. 

 

1. The simultaneous equations model 
 

Making use of standard notations, the structural form of a 
simultaneous equations model can be defined as follows: 

 

m,nm,nm,kk,nm,mm,n
0UXY =+Β+Γ     (1) 

 
where Y  is the mn ×  matrix of endogenous variables and Γ  is the 
corresponding mm×  matrix of structural parameters, X  is the kn ×  
matrix of exogenous variables and Β  is the mk ×  matrix of their 
structural parameters. Finally U  is the mn ×  matrix of disturbances 
for which standard hypotheses are supposed to hold: 
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is the variance-covariance matrix of the disturbances U , constant for 
all the observations. 

Furthermore it is generally assumed that: 
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Under non singularity condition for Γ  the reduced form of the 

equations is derived as: 
 

m,nm,kk,nm,n
VXY +Π=        (4) 

 
where: 
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The last equation in (5) represents the matrix of reduced form 

disturbances, for which it is possible to write: 
 

( )
( ) ( ) .
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Post-multiplying by  Γ  the first equation in (5) we obtain: 
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m,kn,mm,k
Β−=ΓΠ        (7) 

 
which represents the relation between reduced and structural form 
parameters. 

Since (7) is a system of k  equations with km +  unknowns, usual 
exclusion constraints are introduced in order to find the solution with 
respect to Γ  and Β  in terms of Π .  

If – as it usually happens – each equation does not include all the 
endogenous and exogenous variables, it is possible to consider the 
following partition of the overall matrix of endogenous variables with 
respect to i-th structural form equation: 
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where the first i1m  columns refer to the endogenous variables 
included in i-th equation and the last i2m  columns refer to those 
excluded. In the same way the vectors of Γ ’s in i-th equation can be 
reordered as: 
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where the first 

i
m
1

 elements of iΓ  refer to endogenous variables 
included in the i-th equation. Notice that defining the vector iΓ  no 
normalization rule has yet been introduced. 

Similarly, let us consider the partition: 
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where 

i
X
1

 and 
i

X
2

 are the sub-matrices corresponding to the 
exogenous variables included in and excluded from the i-th equation 
respectively. Accordingly let us define 
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where the first i1k  parameters are related to the exogenous variables 
included in the i-th equation. 

Therefore the i-th structural equation can be expressed as: 
 

iiiii
UXY =Β+Γ

1111
. 

 
Notice that different orderings of variables correspond to each 
equation of the system. 
 

 

2. Limited information and full information LODE 
 
LODE estimator is – in its original formulation – a limited 

information method, i.e. an estimator equation by equation of 
structural parameters (Pieraccini, 1988). Since it is well known that 
Full Information  estimators are asymptotically more efficient than 
Limited Information ones, (Goldberger, 1964, pp. 346-356, Judge et 
al., 1985) it is worthwhile to generalize LODE method to a full 
information context. 

Defining: 
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we have: 
 

ii
i

*
ˆ εδ =Π         (8) 

 
where: 
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( ) i

T1T

1,k
i UXXX

−=ε .       (9) 

 
Limited information LODE is given by the vector iδ  which 

minimizes the following quadratic form: 
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and it is then given by the eigenvector associated to the smallest 
eigenvalue of the matrix ( ) iT

T
i

i XX
**

2 ˆˆ ΠΠσ , divided by the element 
corresponding to the endogenous variable at  r. h. s. in the SF equation 
after introducing the normalization rule. 

 
It can be easily shown that (10) reduces to: 
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(where the meaning of the symbol 

ii
A  will become clear in few lines), 

and to  
iii

T

ii A δδσ 2         (12) 
 

so that LODE estimator iδ̂  is defined in terms of the eigenvalues and 
eigenvectors of matrix iiA . Notice that 2

iσ , being a constant, does not 
influence the minimization of the quadratic form (12).  

Relations between reduced and structural form parameters for the 
whole system of equations are given by:  
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or in a more compact form, using a self evident notation: 

 

1,mk1,ss,mk
*
ˆ εδ =Π         (14) 

 

where ( )∑
=

+=
m

1i

i1i1 kms . 

 
From equation (9) applied to the vector ε , the variance-covariance 

matrix of the error component is:  
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Full Information LODE is obtained by minimizing the quadratic 

form: 
 

( )( ) ( )( ) δδδδ *
T1T

*
T

1,SS,mk
*

mk,mk

11T

mk,S

T
*

S,1

T ˆXXˆˆXXˆ Π⊗ΩΠ=Π⊗ΩΠ −
−−   (16) 

 
i.e. by considering the eigenvector associated with the smallest 
eigenvalue of the matrix:  
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      (17) 

 
The block-diagonal elements of 

S,S
A  are of the form (11) – now it is 

clear the reason for using the proposed notation – whereas the extra-
diagonal block elements are: 
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The eigenvector associated with the smallest eigenvalue of matrix 

S,S
A  will then minimize  the quadratic form (16). 

Full Information LODE is given by this eigenvector multiplied 
through m  constants defined as the reciprocal of the elements 
corresponding to the endogenous variables at right hand sides in each 
SF equation. 

It has to be noticed that Full Information LODE could have 
computational advantages with respect to FIML which, in non 
standard problems, converges slowly to solutions or may achieve a 
local maximum instead of the absolute one. 

Equation (16), which defines explicitly the quadratic form to be 
minimized, is a function of disturbances variance-covariance matrix 
Ω  which is unknown. Then it is necessary to estimate it. 

As usual it is possible to go through a two stage procedure: in the 
first stage estimates of the parameters are obtained through Limited 
Information LODE and used to calculate Û  i. e. the matrix of 
disturbances of SF: 

 
Γ−= ˆˆˆ VU  

 
where V̂  is the matrix of residuals of OLS estimators of RF equations. 

 
In the second stage structural parameters estimates are obtained 

introducing Ω̂  in equation (16). Then Full Information LODE is 
proportional to the eigenvector associated to the smallest eigenvalue 
of : 

 
( )( ) *

1

*
ˆˆˆˆ Π⊗ΩΠ= −

XXA
TT  

 
It is possible to prove that Full Information LODE consistently 
estimates the parameters of the structural form (Naccarato, 2007). 
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3. The design of the experiment 
 

The simulation experiment has been conducted using the three 
equation model proposed by Cragg in 1967:  
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++++−=
+++−−=
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75312
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56.011.053.04029.0

06.096.070.06274.0
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The three equations show a different degree of parameter over-

identification. Such a feature, as well as the number of equations of 
the system, surely has an influence on the results and therefore must 
be considered as a factor whose variability affects simulation 
outcomes.  

 
Once values of γ  and β  parameters are fixed, the problem of 

generating exogenous variables and disturbances must be addressed. 
In our simulation, exogenous variables are generated from random 
uniform distributions and vary with sample dimension and other 
simulation conditions. 

Exogenous values are randomly generated and kept constant for 
each sample size. It will be observed that values taken by the 
endogenous variables are randomly generated from random uniform 
distributions in the intervals: [ ]20102 −=X , [ ]27153 −=X , 

[ ]1234 −=X , [ ]735 −=X  [ ]24116 −=X , [ ]1377 −=X . 
This problem does not relate to the endogenous variables, since 

they can be obtained from the relation  
Π= XY

*         (19) 
once that exogenous variables and parameters are known. Equation 
(19) gives  values of the endogenous variables unaffected by error. 

In order to obtain the observed endogenous variable values it is 
necessary to add to (19) the error component generated from a 
multivariate Normal distribution with given variance-covariance 
matrix  
According to the relation 

UXY −Β−=Γ  
 
we know that the variance of U is part of the variance of ZY =Γ  . 
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Thus, starting from Γ*Y  values, error variances can be obtained by 
imposing the relation 
 

iZii S
2σω =  

namely by assuming that disturbance variances are given by the 
variability of each exogenous variable multiplied by a proportionality 
coefficient iS . In our simulation proportionality coefficients iS  have 
been chosen randomly from three different intervals: [ ]25,02,0 − , 
[ ]5,04,0 − , [ ]8,075,0 − . 

However, a comparison among different estimation methods should 
be carried out as the disturbance variances change, i.e. repeating the 
experiment as the proportionality coefficients change. 
 

On the other hand, error covariances can be obtained from 
variances and correlation coefficients that can be obtained by 
generating ( ) 21−mm  (m is the number of equations) random numbers 
in the intervals [ ]2,01,0 − , [ ]5,04,0 − , [ ]9,08,0 −  to each of them is 
assigned a random sign. 
 
Now it is possible to construct the extra-diagonal elements of the SF 
disturbances variance-covariance matrix from the relation  
 

( ) 2
1

jjiiijij ωωρω =  
 
And subsequently the RF variance-covariance matrix from the relation  
 

( ) 11 −− ΩΓΓ=Σ T  
 
Once that Σ  is known, the matrix V  of the RF disturbances has to be 
generated  from a Normal multivariate distribution 

 
( )Σ≈ ,0NV . 
  

According to the Spectral Decomposition Theorem the symmetric 
matrix Σ  can be expressed as:  

T
PPΛ=Σ  
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Where P  e Λ  are respectively the matrix of eigenvectors and the 
diagonal matrix of eigenvalues matrices. 
 

Let : 
 

TPPQ 2
1

Λ=  
 

 
QQT=Σ  

 
 
and let the matrix C  be generated with normally independently 
distributed columns ( )1,0N . Then CQV =  is a (multivariate) normally 
distributed matrix with a variance-covariance matrix Σ .  

Adding the columns of C to the r.h.s. of (19), the matrix of 
observed endogenous variables is obtained. 

To each iS  and ijρ  samples of different size are taken from the 
assumed error distribution; in particular simulations have been 
conducted using samples of 20, 30, 50 and 100 observations. 

 
After reiterating the procedure for 500 samples, the features of the 

different estimation methods are analyzed and compared for each 
scenario. 

 
The experiment differ by the following factors: 
1. the percentage of unexplained variance, represented by the 

proportionally coefficient iS  
2. correlation coefficients ijρ ; 
3. sample sizes 
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The simulation design can be reassumed as follows: 
 

iS  
ijρ  0.20-0.25 0.4-0.5 0.75-0.80 

N=20 N=20 N=20 
N=30 N=30 N=30 
N=50 N=50 N=50 0.1-0.2 

N=100 N=100 N=100 
N=20 N=20 N=20 
N=30 N=30 N=30 
N=50 N=50 N=50 0.4-0.5 

N=100 N=100 N=100 
N=20 N=20 N=20 
N=30 N=30 N=30 
N=50 N=50 N=50 0.8-0.9 

N=100 N=100 N=100 
 
As a matter of fact, two further factors should be enlisted among 

those whose variability could affect results obtained by different 
methods. Such factors are the different degree of over-identification 
among equations and the type (endogenous or exogenous????) of 
estimated parameter.  
 

In this study, LODE estimators have been compared with other 
simultaneous equations estimators both in Limited Information and in 
Full Information context. Such estimators differ both in terms of 
estimation technique and in computational difficulty.  

All methods have been compared by varying the three factors that 
surely have an influence on their features, i.e. the disturbances’ 
variance, degree of correlation among them and the sample size. 

 

4. Results of the experiment 

 
The simulation analysis has been driven by two objectives: to 

compare different methods and to evaluate the effects of different 
experimental factors. 
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As for the former, we have taken into consideration: 
− Bias (divided by the fixed initial parameter value)  

 
( )θθθϕ −= ˆ  

 
where θ̂  is the average of estimated parameter over the 500 
samples where θ  is one of the γ  or β  parameters; 
− Root Mean Square Error (RMSE) (divided by the initial 

parameter value ) 
θψ RMSE=  

. 
In order to study the behaviour of LODE when simulation 

conditions vary we have set [ ]25,02,0 −∈iS  and [ ]2,01,0 −∈iρ  as a 
reference scenario for comparisons. In the following when referring to 
this situation, we will call it the basic experiment. 

Considering this scenario it has to be stressed that, apart from one 
exception, both Full Information and Limited Information LODE 
feature a lower bias than other estimators. 

The exception occurs in the third equation, only for a sample of 
size 20, when both Limited and Full Information LODE estimators 
have higher bias than the others. The bias converges to zero as the 
sample size increases. 
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Table 1a – Relative frequency distribution of FI LODE estimators presenting a lower ϕ  

than 3SLS estimators, grouped by iS , iρ  and sample sizes. 
iS  0.2-0.25 

iρ  0.1-0.2 0.4-0.5 0.8-0.9 
Sample size 20 30 50 100 20 30 50 100 20 30 50 100 
Relative frequency 0.73 0.73 0.93 0.80 0.67 0.87 0.93 1.00 0.73 0.87 0.67 0.73 
              

iS  0.4-0.5 

iρ  0.1-0.2 0.4-0.5 0.8-0.9 
Sample size 20 30 50 100 20 30 50 100 20 30 50 100 
Relative frequency 0.73 0.73 0.60 0.87 0.73 0.73 0.93 0.93 0.60 0.93 0.80 1.00 
              

iS  0.75-0.8 

iρ  0.1-0.2 0.4-0.5 0.8-0.9 
Sample size 20 30 50 100 20 30 50 100 20 30 50 100 
Relative frequency 0.93 0.73 0.93 1.00 0.80 0.67 1.00 0.80 0.87 0.93 0.60 0.53 

 
 
Table 1b – Relative frequency distribution of LI LODE estimators presenting a lower ϕ  

than 3SLS estimates, grouped by iS , iρ  and sample size. 

iS  0.2-0.25 

iρ  0.1-0.2 0.4-0.5 0.8-0.9 
Sample size 20 30 50 100 20 30 50 100 20 30 50 100 
Relative frequency 0.67 0.73 0.93 0.93 0.73 0.93 0.67 1.00 0.47 0.93 0.60 0.93 
              

iS  0.4-0.5 

iρ  0.1-0.2 0.4-0.5 0.8-0.9 
Sample size 20 30 50 100 20 30 50 100 20 30 50 100 
Relative frequency 0.67 0.67 0.67 0.93 0.47 0.60 1.00 1.00 0.93 0.80 0.80 0.93 
              

iS  0.75-0.8 

iρ  0.1-0.2 0.4-0.5 0.8-0.9 
Sample size 20 30 50 100 20 30 50 100 20 30 50 100 
Relative frequency 0.53 0.67 0.73 0.87 0.93 0.73 0.73 0.67 0.33 0.80 0.80 0.87 
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Graphs 1-2 show box-plots of equations’ parameters for the basic 
experiment. 

They clearly show that LODE performs better than the other 
methods. 

 
 
Graph 1a – Full  Information, Equation 1 
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Graph 1b – Full  Information, Equation 2 
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Graph 1c – Full  Information, Equation 3 
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Graph 2a – Limited  Information, Equation 1 
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 Graph 2b – Limited  Information, Equation 2 
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 Graph 2c – Limited  Information, Equation 3 
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Similar results have been obtained for the other scenarios (8 

combinations of iS  and iρ  and other sample sizes).  
In all these scenarios LODE estimators are unbiased or less biased 

than the others. When it comes to evaluating the MSE it is necessary 
to make a distinction between Full Information and Limited 
Information LODE.  

In the basic experiment, the number of FI LODE estimators 
showing a lowest MSE is always greater than (or at least equal to) 
3SLS estimates. In other word comparing relative efficiency FI LODE 
performs better than 3SLS. 

In particular, when the sample size is 20 3SLS and FI LODE have 
the same behaviour. As the sample size increases, the number of FI 
LODE estimators with lower MSE increases too.  

 
Vice-versa, when comparing MSE of LI LODE and of 2SLS, 2SLS 

presents lower MSE for samples of size 20 and 30, where as LI LODE 
is more efficient as soon as the sample size is greater or equal to 50.  
 

Extending the analysis to the other scenarios, FI LODE estimators 
show features similar to those observed in the basic experiment. As a 
matter of fact it must be noticed that their MSE decreases not only for 
increasing sample sizes, but also as iS  increases (see Tab. 2a). 

 
Also LI estimates show features similar to those observed in the 

basic experiment  
Moreover, results show that LI LODE estimators with a lower 

MSE then 2SLS or LIML decreases as iS  increase (see Tab. 2b).  
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Table 2a – Relative frequency distribution of FI LODE estimates presenting a lower ψ  

than 3SLS estimates, grouped by iS , iρ  and sample size. 
iS  0.2-0.25 

iρ  0.1-0.2 0.4-0.5 0.8-0.9 
Sample size 20 30 50 100 20 30 50 100 20 30 50 100 
Relative frequency 0.47 0.73 0.87 0.93 0.60 0.73 0.73 0.80 0.40 0.53 0.27 0.67 
              

iS  0.4-0.5 

iρ  0.1-0.2 0.4-0.5 0.8-0.9 
Sample size 20 30 50 100 20 30 50 100 20 30 50 100 
Relative frequency 0.60 0.33 0.60 0.40 0.40 0.33 0.67 0.80 0.60 0.53 0.67 0.73 
              

iS  0.75-0.8 

iρ  0.1-0.2 0.4-0.5 0.8-0.9 
Sample size 20 30 50 100 20 30 50 100 20 30 50 100 
Relative frequency 0.27 0.40 0.53 0.73 0.27 0.27 0.53 0.60 0.53 0.40 0.60 0.33 

 
 
Table 2b – Relative frequency distribution of LI LODE estimates presenting a lower ψ  

than 2SLS estimates, grouped by iS , iρ  and sample size. 

iS  0.2-0.25 

iρ  0.1-0.2 0.4-0.5 0.8-0.9 
Sample size 20 30 50 100 20 30 50 100 20 30 50 100 
Relative frequency 0.13 0.40 0.67 0.67 0.13 0.47 0.60 0.87 0.07 0.53 0.60 0.73 
              

iS  0.4-0.5 

iρ  0.1-0.2 0.4-0.5 0.8-0.9 
Sample size 20 30 50 100 20 30 50 100 20 30 50 100 
Relative frequency 0.00 0.27 0.53 0.60 0.00 0.33 0.60 0.80 0.00 0.33 0.67 0.80 
              

iS  0.75-0.8 

iρ  0.1-0.2 0.4-0.5 0.8-0.9 
Sample size 20 30 50 100 20 30 50 100 20 30 50 100 
Relative frequency 0.00 0.20 0.33 0.53 0.00 0.00 0.53 0.47 0.00 0.07 0.20 0.40 
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When it come to comparing the three limited information methods 
(LI LODE, 2SLS and LIML) it is important to notice that it is 2SLS 
that shows a lower MSE. However LI LODE is more efficient than  
LIML. 

It should also be noticed that in many cases where 2SLS is more 
efficient than LI LODE,  FI LODE is more efficient than 3SLS. 

It is as though when moving from limited to  full information 
estimation (and from 2 to 3 stages) there is an “efficiency gain” in the 
LODE estimators compared with Least Squares estimators. 
 

In order to study in more depth the θ RMSE  we have constructed 
three regression models, one for each equation. 
The dependant variable is represented by the values taken by the  

θ RMSE  of each parameter in each of the 9 scenarios.  
On the other hand explanatory variables are represented by  

- the disturbance variance of considered equation  
- the covariance with the other two equations 
- the sample size 
- a dummy variable that enables us to assess the extent to which 

the method is affected by the unknown parameter being of 
endogenous or exogenous variable. 

The regression outputs are shown in Tables 3a – 3c. The effect of 
the variance, the dummy variable and the sample size are all 
significantly different from zero. In particular, the sign (>0) of the 
variance coefficient confirms a result already mentioned in the 
descriptive analysis i.e. a direct relation between the disturbance 
variance and the MSE . As for the dummy coefficient (<0), it indicates 
that endogenous variable estimators are more efficient than their 
exogenous counterparts. Moreover , all three regressions show an 
inverse relation between MSE and sample size (negative, significant, 
coefficient for the sample size).  
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C 0.950897 0.190809 4.983507 0.0000 
VARIANCE1 0.080289 0.033263 2.413761 0.0168 

DUMMY1 -0.324763 0.134593 -2.412926 0.0169 
SAMPLE SIZE -0.008586 0.002216 -3.874478 0.0002 

R-squared 0.115335     Mean dependent var 0.782795 
Adjusted R-squared 0.100256     S.D. dependent var 0.932620 
S.E. of regression 0.884636     Akaike info criterion 2.614690 
Sum squared resid 137.7341     Schwarz criterion 2.685644 
Log likelihood -231.3221     F-statistic 7.648459 
Durbin-Watson stat 2.864256     Prob(F-statistic) 0.000078 

 
Table 3b 
Dependent Variable: MSE EQ2; Method: Least Squares; Included observations: 180 

Variable Coefficient Std. Error t-Statistic Prob.   
C 0.878926 0.401426 2.189508 0.0299 

VARIANCE2 0.185314 0.083208 2.227120 0.0272 
DUMMY2 -1.189987 0.309598 -3.843648 0.0002 

SAMPLE SIZE -0.008604 0.004157 -2.069855 0.0399 
R-squared 0.111733     Mean dependent var 1.039321 
Adjusted R-squared 0.096592     S.D. dependent var 1.748046 
S.E. of regression 1.661479     Akaike info criterion 3.875265 
Sum squared resid 485.8501     Schwarz criterion 3.946219 
Log likelihood -344.7738     F-statistic 7.379567 
Durbin-Watson stat 2.072380     Prob(F-statistic) 0.000110 

 
Table 3c 
Dependent Variable: MSE EQ3; Method: Least Squares; Included observations: 180 

Variable Coefficient Std. Error t-Statistic Prob.   
C 0.463829 0.172651 2.686517 0.0079 

VARIANCE3 0.339445 0.078677 4.314393 0.0000 
DUMMY3 -0.479939 0.115272 -4.163519 0.0000 

SAMPLE SIZE -0.007810 0.001510 -5.170919 0.0000 
R-squared 0.245591     Mean dependent var 0.655691 
Adjusted R-squared 0.232731     S.D. dependent var 0.706233 
S.E. of regression 0.618617     Akaike info criterion 1.899310 
Sum squared resid 67.35285     Schwarz criterion 1.970265 
Log likelihood -166.9379     F-statistic 19.09837 
Durbin-Watson stat 2.870870     Prob(F-statistic) 0.000000 

 

 
Table 3a 
Dependent Variable: MSE EQ1; Method: Least Squares; Included observations: 180 

Variable Coefficient Std. Error t-Statistic Prob.   

 

As for the second objective of our simulation experiment – namely 
evaluate the effects of different experimental factors - it has been 
pursued by means of a Multivariate Analysis of Variance. 

This analysis enabled us to assess whether the estimation of each 
single structural parameter is influenced by the simulation conditions. 
In the rest of the paragraph we will discuss results for FI LODE . Note 
that results shown can be extended to LI LODE  also.  

We considered the 15 structural coefficient estimators obtained 
using FI LODE as the dependant variables. The six different intervals 
from which iS  and iρ  values have been generated and the different 
sample sizes are considered as “effects”.  
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We assume that the number of equations, their specification as well 
as their degree of over-identification are all factors that could have an 
impact on parameter estimation. Thus we have included a further 
factor that takes into account “the nature” of the system, i.e. which 
equation the parameter  belongs to. 

Results obtained from 54000 observations – 500 samples generated 
for each of the 4 sample sizes and for each of the 9 simulation 
conditions – confirm the hypothesis that parameter estimation is 
influenced by all the above mentioned factors. 

The analysis was carried out in two steps. First of all an ANOVA 
was carried out considering all 15 parameters estimated with FI LODE 
separately; secondly a Multivariate ANOVA was performed also, 
considering all 15 parameters simultaneously. ANOVA results 
indicate that all factors have an impact on the estimation of each 
single parameter, expect for parameter b7 in second equation –  that 
seems to be uninfluenced by both iS  and iρ  – and parameter b4 in 
third equation – that seems to be uninfluenced by iS .  

Results of the Multivariate ANOVA are shown in tables 4a – 4d 
and confirm that all four considered factors have an influence on the 
simultaneous estimation of all 15 parameters. Note that the 
Multivariate ANOVA carried out in this study only takes into account 
the main effects of factors, i.e. it ignores all interactions of order 
higher than the 1st . 

It goes without saying that further analysis in this direction could 
lead to interesting conclusions on the joint effects of all factors.  
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Roy's Greatest Root 0.016 58.09 15 53978 <.0001 
 

Table 4b - MANOVA Test Criteria and F Approximation for Hypothesis of Overall 
iS  Effect 

N=26987      

Statistic Value F Value Num DF Den DF Pr > F 

Wilks ' Lambda 0.983 29.27 30 107952 <.0001 

Pillai's Trace 0.161 29.22 30 107954 <.0001 

Hotellin-Lawley Trace 0.016 29.32 30 95953 <.0001 

Roy's Greatest Root 0.013 48.57 15 53977 <.0001 
 
Table 4c - MANOVA Test Criteria and F Approximation for Hypothesis of Overall iρ  
Effect 
N=26987      
Statistic Value F Value Num DF Den DF Pr > F 
Wilks ' Lambda 0.961 43.72 30 107952 <.0001 
Pillai's Trace 0.023 43.54 30 107954 <.0001 
Hotellin-Lawley Trace 0.024 43.9 30 95953 <.0001 
Roy's Greatest Root 0.222 80.08 15 53977 <.0001 

 
Tabella 4d - MANOVA Test Criteria and F Approximation for Hypothesis of Equation Effect 
N=26987      
Statistic Value F Value Num DF Den DF Pr > F 
Wilks ' 
Lambda 0 5.08E+09 30 107952 <.0001 
Pillai's 
Trace 2 1.47E+09 30 107954 <.0001 
Hotellin-
Lawley 
Trace 3196072.531 5.75E+09 30 95953 <.0001 
Roy's 
Greatest 
Root 2351362.867 8.49E+09 15 53977 <.0001 

 

 
 
 

 
 

Table 4a - MANOVA Test Criteria and F Approximation for Hypothesis of Overall 
Sample Size Effect 
N=26987      
Statistic Value F Value Num DF Den DF Pr > F 
Wilks ' Lambda 0.977 27.12 45 160350 <.0001 
Pillai's Trace 0.022 27.05 45 161934 <.0001 
Hotellin-Lawley Trace 0.022 27.19 45 133510 <.0001 
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The simulation experiment on the estimation of a simultaneous 
equation system using LODE has highlighted some good features of 
the proposed method both in terms of MSE and in terms of  
unbiasedness. As a matter of fact, we show that in all our simulations  
LODE  has always a lower bias.   

As for the MSE, FI LODE is more efficient than 3SLS in almost all 
cases, whereas LI LODE are more efficient only for samples greater 
or equal to 50 (unless the explained variance is low, in which case LI 
LODE is more efficient than 2SLS even for a sample size of 30).  

Having found some evidence that the various simulation conditions 
have a significant impact on the LODE it is our intention to expand 
this study  e.g. by including more equations into the system with a 
higher degree of over-identification, generating observation from 
other types of distributions and considering the numerical value taken 
by the parameter estimate as a possible influencing  factor.   

Lastly it is to be noted that in this study a comparison between FI 
LODE and FIML could not be carried out. This lack is due to the fact 
that in our simulations Maximum Likelihood  Full Information 
estimation algorithm  did not converge to a maximum (it did not 
provide estimates). Besides the well known difficulties related to 
maximization of the likelihood function, this problem was likely due 
to the algorithm applied by the chosen Soft Ware application.  
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Appendice 
 
Table 1a [ ]25.02.0 −∈iS  [ ]2.01.0 −∈iρ  

n=20 
Equation 1 FI LODE 3SLS LI LODE 2SLS LI ML 

ϕ  -0.002 0.097 -0.042 0.091 0.125 g2 ψ  0.133 0.119 0.141 0.113 0.146 
ϕ  -0.104 -0.634 0.187 -0.575 -0.885 

g3 ψ  1.238 0.956 1.146 0.905 1.187 
ϕ  0.080 -0.368 0.222 -0.363 -0.434 

b0 ψ  0.462 0.443 0.543 0.436 0.498 
ϕ  0.018 -0.077 0.025 -0.066 -0.088 

b2 ψ  0.152 0.138 0.149 0.126 0.139 
ϕ  0.201 -1.029 0.537 -1.018 -1.241 

b5 ψ  2.038 1.799 2.281 1.786 1.907 
Equation 2 FI LODE 3SLS LI LODE 2SLS LI ML 

ϕ  -0.006 1.173 -0.027 0.074 0.084 
g1 ψ  0.070 0.102 0.071 0.084 0.092 

ϕ  0.027 0.123 0.150 -0.389 -0.438 
b0 ψ  0.384 0.541 0.388 0.442 0.484 

ϕ  0.014 0.784 0.014 -0.091 -0.102 
b3 ψ  0.159 0.190 0.159 0.151 0.156 

ϕ  0.013 0.554 0.063 -0.163 -0.184 
b5 ψ  0.297 0.351 0.297 0.270 0.280 

ϕ  -0.085 1.993 -0.898 1.279 1.450 
b7 ψ  4.315 4.046 4.043 3.245 3.253 
Equation 3 FI LODE 3SLS LI LODE 2SLS LI ML 

ϕ  -0.100 0.063 -0.183 0.099 0.119 
g2 ψ  0.297 0.229 0.611 0.158 0.173 

ϕ  0.273 -0.186 0.520 -0.282 -0.339 
b0 ψ  0.841 0.643 1.748 0.456 0.496 

ϕ  0.091 -0.042 0.150 -0.081 -0.099 
b3 ψ  0.324 0.329 0.509 0.200 0.208 

ϕ  -0.083 0.159 -0.480 0.164 0.199 
b4 ψ  1.697 1.865 2.002 1.161 1.163 

ϕ  0.040 0.001 0.056 -0.017 -0.024 
b6 ψ  0.204 0.243 0.249 0.154 0.155 
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Table 1b [ ]25.02.0 −∈iS  [ ]2.01.0 −∈iρ  
 n=30 
Equation 1 FI LODE 3SLS LI LODE 2SLS LI ML 

ϕ  -0.003 0.062 -0.010 0.043 0.058 
g2 ψ  0.056 0.075 0.057 0.059 0.073 

ϕ  -0.032 -0.454 0.030 -0.322 -0.444 
g3 ψ  0.489 0.595 0.494 0.500 0.604 

ϕ  0.046 -0.175 0.061 -0.125 -0.166 
b0 ψ  0.207 0.238 0.207 0.203 0.231 

ϕ  0.012 -0.154 0.018 -0.065 -0.088 
b2 ψ  0.126 0.203 0.127 0.125 0.139 

ϕ  0.150 -1.193 0.266 -0.724 -0.991 
b5 ψ  1.606 1.833 1.615 1.557 1.700 
Equation 2 FI LODE 3SLS LI LODE 2SLS LI ML 

ϕ  -0.003 1.203 -0.019 0.081 -0.605 
g1 ψ  0.063 0.110 0.057 0.088 0.607 

ϕ  0.015 0.054 0.093 -0.381 -0.369 
b0 ψ  0.304 0.527 0.273 0.415 0.430 

ϕ  0.005 0.391 0.045 -0.225 -0.245 
b3 ψ  0.201 0.340 0.186 0.259 0.307 

ϕ  -0.012 0.632 0.033 -0.181 -0.883 
b5 ψ  0.271 0.273 0.257 0.271 0.889 

ϕ  0.081 0.146 -0.063 0.166 8.406 
b7 ψ  2.774 2.477 2.606 2.148 8.464 
Equation 3 FI LODE 3SLS LI LODE 2SLS LI ML 

ϕ  -0.115 -0.016 -0.139 -0.026 0.007 
g2 ψ  0.218 0.163 0.351 0.126 0.126 

ϕ  0.304 0.039 0.371 0.066 -0.022 
b0 ψ  0.586 0.443 0.946 0.339 0.342 

ϕ  0.177 0.030 0.214 0.049 -0.002 
b3 ψ  0.369 0.325 0.536 0.246 0.245 

ϕ  -0.109 0.033 -0.136 -0.011 0.023 
b4 ψ  1.030 1.351 0.941 0.890 0.890 

ϕ  0.009 0.010 0.006 0.009 0.008 
b6 ψ  0.114 0.139 0.113 0.107 0.107 
 
 
 
 
 
 
 



 31 

Table 1c [ ]25.02.0 −∈iS  [ ]2.01.0 −∈iρ  
n=50 

Equation 1 FI LODE 3SLS LI LODE 2SLS LI ML 
ϕ  0.000 0.086 -0.009 0.049 0.076 

g2 ψ  0.057 0.096 0.056 0.063 0.088 
ϕ  -0.027 -0.623 0.051 -0.300 -0.533 

g3 ψ  0.533 0.743 0.521 0.489 0.684 
ϕ  0.021 -0.272 0.044 -0.194 -0.260 

b0 ψ  0.166 0.304 0.170 0.235 0.293 
ϕ  0.003 -0.130 0.006 -0.057 -0.080 

b2 ψ  0.082 0.155 0.082 0.093 0.110 
ϕ  -0.008 -0.717 0.044 -0.454 -0.668 

b5 ψ  1.118 1.222 1.100 1.089 1.197 
Equation 2 FI LODE 3SLS LI LODE 2SLS LI ML 

ϕ  -0.002 1.151 -0.008 0.065 0.075 
g1 ψ  0.038 0.079 0.034 0.069 0.079 

ϕ  0.009 0.294 0.037 -0.314 -0.361 
b0 ψ  0.182 0.385 0.165 0.334 0.378 

ϕ  0.007 0.610 0.021 -0.151 -0.174 
b3 ψ  0.107 0.212 0.100 0.168 0.189 

ϕ  -0.009 0.623 0.018 -0.140 -0.162 
b5 ψ  0.210 0.251 0.188 0.210 0.223 

ϕ  -0.061 0.028 0.035 -0.280 -0.327 
b7 ψ  1.477 1.198 1.361 1.199 1.190 
Equation 3 FI LODE 3SLS LI LODE 2SLS LI ML 

ϕ  -0.054 0.120 -0.086 0.147 0.188 
g2 ψ  0.152 0.164 0.164 0.175 0.212 

ϕ  0.146 -0.330 0.234 -0.394 -0.504 
b0 ψ  0.411 0.451 0.444 0.472 0.569 

ϕ  0.060 -0.104 0.093 -0.163 -0.209 
b3 ψ  0.206 0.199 0.212 0.223 0.260 

ϕ  0.018 0.028 -0.026 -0.004 -0.006 
b4 ψ  0.901 0.820 0.775 0.725 0.720 

ϕ  0.012 -0.052 0.022 -0.053 -0.067 
b6 ψ  0.128 0.139 0.125 0.121 0.127 
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Table 1d [ ]25.02.0 −∈iS  [ ]2.01.0 −∈iρ  

n=100 
Equation 1 FI LODE 3SLS LI LODE 2SLS LI ML 

ϕ  0.010 0.101 -0.005 0.087 0.106 
g2 ψ  0.043 0.103 0.034 0.089 0.108 

ϕ  -0.134 -0.740 0.027 -0.662 -0.832 
g3 ψ  0.452 0.772 0.333 0.694 0.861 

ϕ  0.005 -0.307 0.022 -0.254 -0.293 
b0 ψ  0.108 0.316 0.109 0.264 0.302 

ϕ  0.001 -0.186 0.013 -0.116 -0.140 
b2 ψ  0.066 0.194 0.065 0.125 0.147 

ϕ  -0.093 -1.312 0.069 -1.186 -1.417 
b5 ψ  0.864 1.456 0.809 1.347 1.551 
Equation 2 FI LODE 3SLS LI LODE 2SLS LI ML 

ϕ  0.004 1.220 -0.002 0.094 0.104 
g1 ψ  0.032 0.111 0.026 0.095 0.105 

ϕ  -0.013 -0.007 0.013 -0.434 -0.481 
b0 ψ  0.148 0.526 0.120 0.440 0.486 

ϕ  -0.010 0.380 0.004 -0.242 -0.268 
b3 ψ  0.096 0.317 0.084 0.249 0.273 

ϕ  -0.045 0.263 -0.002 -0.328 -0.362 
b5 ψ  0.197 0.382 0.143 0.343 0.375 

ϕ  -0.134 -0.102 -0.053 -0.526 -0.577 
b7 ψ  1.414 0.990 1.144 1.019 1.027 
Equation 3 FI LODE 3SLS LI LODE 2SLS LI ML 

ϕ  -0.016 0.042 -0.020 0.039 0.063 
g2 ψ  0.068 0.073 0.070 0.066 0.083 

ϕ  0.047 -0.109 0.058 -0.102 -0.167 
b0 ψ  0.184 0.194 0.190 0.176 0.221 

ϕ  0.012 -0.074 0.018 -0.059 -0.091 
b3 ψ  0.121 0.139 0.120 0.121 0.140 

ϕ  -0.056 -0.036 -0.036 -0.030 -0.033 
b4 ψ  0.532 0.537 0.511 0.509 0.509 

ϕ  -0.001 0.002 -0.003 -0.005 -0.006 
b6 ψ  0.070 0.072 0.068 0.067 0.068 

 


