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Abstract

This paper studies the application of the simulated method of moments (SMM) for
the estimation of nonlinear dynamic stochastic general equilibrium (DSGE) models.
Monte Carlo analysis is employed to examine the small-sample properties of SMM in
speci�cations with di�erent curvature. Results show that SMM is computationally
e�cient and delivers accurate estimates, even when the simulated series are relatively
short. However, asymptotic standard errors tend to overstate the actual variability
of the estimates and, consequently, statistical inference is conservative. A simple
strategy to incorporate priors in a method of moments context is proposed. An empir-
ical application to the macroeconomic e�ects of rare events indicates that negatively
skewed productivity shocks induce agents to accumulate additional capital and can
endogenously generate asymmetric business cycles.
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1 Introduction

The econometric analysis of nonlinear dynamic stochastic general equilibrium (DSGE) mod-

els opens exciting possibilities in macroeconomics and �nance because they relax the cer-

tainty equivalence and linear propagation that characterize linear models (that is, mod-

els solved using �rst-order approximations alone). Allowing uncertainty to e�ect economic

choices is essential to study, among others, asset prices and optimal policy, and nonlinear

dynamics are necessary to capture asymmetries, time-varying volatility, and other nonlinear

features of the data.1 As in the case of linear models, estimation means that parameters are

obtained by imposing on the data the restrictions of the model of interest,2 that parameter

uncertainty may be explicitly incorporated in impulse-response analysis, and that statistical

inference may be used for hypothesis testing and model selection.

This paper studies the application of the simulated method of moments (SMM) to the

estimation of nonlinear DSGE models. Two theoretical results suggest that SMM is an

attractive strategy to follow. First, Du�e and Singleton (1993) show that under general

regularity conditions the SMM estimator is consistent and asymptotically normal. Of course,

other estimators, for example maximum likelihood (ML), have these desirable properties and

the di�erence between them is, therefore, one of statistical e�ciency and computational ease.3

Second, Santos and Peralta-Alva (2006) show that the moments computed using simulated

observations from an approximate solution to the model converge to those of the invariant

distribution of the model as the approximation error tends to zero. This continuity property

is important because �nding the exact solution of DGSE models is usually not possible and

so the best a researcher can do is to derive and estimate an approximate solution.

More speci�cally, this paper is concerned with the small-sample properties and computa-

tional e�ciency of SMM. Both issues are of practical importance. Small-sample properties

are important because the time series available to estimate DSGE models are relatively short

and there may well be discrepancies between the asymptotic and �nite-sample distributions

of the estimates. In turn, these discrepancies may have implications for statistical inference.

In order to study this issue, I follow the usual Monte-Carlo approach standard in economet-

rics and consider various con�gurations of a simple dynamic economy based on Brock and

Mirman (1972). Computational e�ciency is also important because a quick evaluation of the

1For example, Kim and Ruge-Murcia (2009) estimate a nonlinear DSGE model where nominal wages are
downwardly rigid and �nd that productivity shocks induce asymmetric e�ects on the rates of price and wage
ination, as was conjectured by Tobin (1972).

2This addresses the concern that the assumptions of the micro studies that generate calibration parameters
might be inconsistent with those of the model.

3For a discussion of the issues concerning the ML estimation of nonlinear DSGE models, see Fern�andez-
Villaverde and Rubio-Ramirez (2007).
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statistical objective function permits the use of genetic algorithms for its optimization and

of numerically-intensive methods, like the block bootstrap, for the construction of accurate

con�dence intervals.

This paper also proposes a simple strategy to incorporate prior information in a method

of moments framework. The strategy is inspired by the mixed estimation approach due

to Theil and Goldberger (1961), where priors are treated as additional observations and

combined with the data to deliver a penalized statistical objective function. In the same

spirit, I treat priors as additional moments and write a penalized objective function where

the penalty increases as the parameters deviate from the priors. The small-sample properties

of this quasi-Bayesian SMM estimate are also studied using Monte-Carlo analysis.

Monte-Carlo results show that SMM delivers accurate parameter estimates, even when

the simulated series are relatively short. However, asymptotic standard errors tend to over-

state the true variability of the estimates and, consequently, statistical inference is conser-

vative. The computational cost of SMM increases approximately linearly with the length

of the simulated series used to calculate the moments implied by the model but, overall,

the procedure is computationally e�cient because the evaluation of the statistical objective

function is cheap. For example, the average time required to estimate the growth model

varies between 30 and 95 seconds, depending on whether the simulated series are �ve or

twenty times larger than the sample size.

In addition, this paper contributes to the literature on the solution to dynamic general

equilibrium models by showing how to derive third-order polynomial approximations to the

policy functions, studying the economic implications of the third-order terms, and making

available MATLAB codes to implement this approximation. In particular, it is shown that

third-order approximate solutions allow the skewness of the shocks to a�ect agents' choices.

This idea is explored empirically by estimating the model of an economy subject to asym-

metric productivity shocks. Rietz (1988) and Barro (2006, 2009) argue that extreme, low

probability events|presumably arising from an asymmetric distribution|have substantial

implications for asset pricing. The application here focuses on the consequences of rare events

for consumption, capital accumulation, and labor supply. This application also illustrates

the use of SMM for the estimation of a nonlinear dynamic model using actual data and shows

that it can easily accommodate non-Normal distributions. Results show that in an economy

where productivity shocks are negatively skewed, agents accumulate more capital than those

in an economy where shocks are symmetric. In turn, the larger capital stock �nances more

leisure and consumption in the former compared with the latter. In addition, higher-order

moments are closer to those in the data, and impulse-responses to equally-likely positive and

negative productivity shocks are asymmetric.
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The rest of the paper is organized as follows. Section 2 presents the data generating

process (DGP) and discusses the implications of third-order approximate solutions to dy-

namic general equilibrium models. Section 3 describes the simulated method of moments,

proposes a simple strategy to incorporate prior information, and compares SMM with the

generalized method of moments. Section 4 outlines the Monte-Carlo design and reports the

results of various experiments involving di�erent model curvature, weighting matrices, and

degrees of approximation. Section 5 uses actual U.S. data to estimate a simple nonlinear

DSGE model with asymmetrically-distributed productivity innovations. Finally, Section 6

concludes. Codes and replication material for this paper are made separately available in

the author's Web page.

2 The Data Generating Process

This section describes the data generating process (DGP) used in the analysis. The DGP

consists of a simple dynamic stochastic general equilibrium model and its numerical solu-

tion. The model is a version of the stochastic growth model (Brock and Mirman, 1972)

augmented to incorporate inelastic labor supply and habit formation in consumption. The

model solution is obtained by means of a perturbation method.

2.1 Economic Model

Consider a benevolent central planner that maximizes

Es

1X
t=s

�t�s

 
(ct � act�1)1�

1�  + b(1� nt)
!
; (1)

where Es denotes the expectation conditional on information available at time s; � 2 (0; 1)
is the discount factor, ct is consumption, nt is hours worked,  and b are strictly positive

preference parameters, a 2 [0; 1) represents the importance of habit formation, and the time
endowment has been normalized to one. In the case where a = 0 utility is time separable

in consumption, while in the case where a > 0 consumptions in two consecutive periods are

complements. The linear representation of the disutility of labor is based on the indivisible-

labor model due to Hansen (1985). The population size is constant and normalized to one.

The only good in this economy is produced using the technology ztk
�
t n

1��
t ; where � 2

(0; 1) is a constant parameter, kt is the capital stock, and zt is an exogenous productivity

shock. The central planner is subject to the resource constraint

ct + kt+1 = ztk
�
t n

1��
t + (1� �)kt; (2)
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where � 2 (0; 1] is the rate of depreciation. The productivity shock follows the process

ln(zt) = � ln(zt�1) + �t; (3)

where � 2 (�1; 1); �t is an innovation assumed to be identically and independently distributed
(i.i.d.) with mean zero, standard deviation equal to �, and skewness equal to s.

In addition to the transversality condition, the �rst-order necessary conditions associated

with the optimal choice of ct and nt are

�t = �Et
�
�t+1(1 + �zt+1k

��1
t+1 n

1��
t+1 � �)

�
; (4)

b=�t = (1� �)ztk�t n��t ; (5)

where �t = (ct � act�1)��a�Et (ct+1 � act)� is the marginal utility of consumption. Condi-
tion (4) is the Euler equation of consumption that equates the marginal bene�t of consuming

an extra unit of good with the marginal bene�t of saving it in the form of capital. Condition

(5) equates the marginal rate of substitution of labor and consumption with the marginal

productivity of labor.

2.2 Solution Method

As it is well known, this model admits an exact solution only under stringent assumptions.4

More generally, the solution of dynamic general equilibrium models must be found numer-

ically and necessarily involves some degree of approximation. In this paper, I employ a

perturbation method that approximates the planner's decision rules by means of a polyno-

mial in the state variables and characterizes the local dynamics around the deterministic

steady state. Higher-order polynomial approximations capture the nonlinear relation be-

tween choice and state variables, and relax the certainty equivalence implicit in �rst-order

solution methods. In particular, I use here second- and third-order polynomial approx-

imations to the policy rules. For a general explanation of this approach and solvability

conditions, see Jin and Judd (2002).

Second-order polynomial approximations are studied in detail by Schmitt-Groh�e and

Uribe (2004), Kim, Kim, Schaumburg, and Sims (2008), and Lombardo (2010), who also

produce codes for the implementation of their respective approaches.5 Compared with a

linear approximation, a second-order approximation includes quadratic terms in the state

4Assumptions include, for example, complete depreciation and logarithmic consumption preferences.
5In this project, I use MATLAB codes adapted from those originally written by Stephanie Schmitt-Groh�e

and Martin Uribe for a second-order approximation to the policy rules. Their codes are also used to produce
the �rst- and second-order terms used as input for my third-order approximation.
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variables, including all possible cross products, and a risk-adjustment term that is propor-

tional to the variance of the shock innovations.

For the third-order polynomial approximation, I follow the recursive approach in Jin and

Judd (2002). That is, I take as input the previously-computed coe�cients of the �rst- and

second-order terms of the policy rule and a construct linear system of equations that can be

solved to deliver the coe�cients of the third-order terms. Provided that the non-singularity

condition in Theorem 3 of Jin and Judd (2002, p. 19) is satis�ed, the solution is unique.

Appendix A shows the analytical steps necessary to derive the third-order coe�cients and

describes MATLAB codes that can be used to compute them.

A third-order approximation to the policy rules includes, in addition to linear and

quadratic terms, four sets of terms (see Appendix A). First, cubic terms in the state vari-

ables, including all possible cross products. Second, cubic terms that involve cross products

between standard deviations and squares of the state variables. Appendix A shows, how-

ever, that the coe�cients of all these terms are zero. A comparable result for second-order

approximations is reported by Schmitt-Groh�e and Uribe (2004, p. 763) for the coe�cients

of cross products between standard deviations and levels of the state variables. Third, cubic

terms that involve cross products between variances and levels of the state variables. Finally,

terms proportional to the third moments of the shock innovations. Appendix A shows that

in the special case where the distribution of the innovations is symmetric|and, hence, the

skewness is zero|these terms are zero. However, in the more general case where the distri-

bution is asymmetric, these terms may be positive or negative depending on the skewness of

the innovations and the values of other structural parameters.

In order to develop the reader's intuition regarding the nonlinearity of the model, Figure 1

plots the policy functions of next-period capital, consumption and hours worked as a function

of the current capital stock and productivity shock. The policy functions are obtained using

�rst-, second- and third-order polynomial approximations. The parameters used to construct

this �gure are � = 0:36; � = 0:95; � = 0:025,  = 2, a = 0:9, � = 0:85; � = 0:1; and s = �2:
(In order to put the skewness in perspective, recall that a chi-squared distribution with 2

degrees of freedom has a skewness of +2.) The weight of leisure in the utility function, b,

is set so that the proportion of time spent working in the deterministic steady state is one-

third. In the �gure, vertical axes, and horizontal axes in the upper panels, are percentage

deviations from the deterministic steady state, while horizontal axes in the lower panels are

the standard deviation of the productivity shock.

Notice that under the higher-order approximations, consumption is generally lower, and

hours and next-period capital generally higher, than under the �rst-order approximation.

The reason is that higher-order approximations allow uncertainty to a�ect economic choices

[5]



and so a prudent agent consumes less, saves more, and works more than an agent in a

certainty-equivalent world. In the case of the third-order approximation, the skewness of the

shock also has a level e�ect on the policy rules. There is no appreciable di�erence between

the second- and third-order approximations to the decision rules of next-period capital, but

in the case of consumption and hours the di�erence can be large.

Finally, notice that (by construction) the relation between the endogenous variables and

the productivity shock is nonlinear under the second- and third-order approximations. This

has important implications for the impulse-response analysis of the DSGE model. For exam-

ple, it is clear in Figure 1 that a positive productivity shock of size +2 standard deviations

would induce a larger change (in absolute value) in the next-period capital stock than a shock

of size �2: Hence, in contrast to �rst-order approximate DSGE models, a normalization does
not summarize the dynamic responses to a shock. Instead, responses will typically depend

on the sign and size of the shock, and the state of the system when the shock occurs.6

3 The Simulated Method of Moments

The simulated method of moments (SMM) was originally developed by McFadden (1989)

and Pakes and Pollard (1989) to estimate discrete-choice models in i.i.d. environments,

and extended by Lee and Ingram (1991) and Du�e and Singleton (1993) to time-series

models with serially correlated shocks. Du�e and Singleton (1993) show the consistency

and asymptotic normality of the SMM estimators under fairly general conditions.

Consider a fully-speci�ed model with unknown parameters � 2 �; where � is a q � 1
vector and � � <q is a compact set. In our case, the model is a nonlinear DSGE model
and � may contain, for example, the structural parameters f�; �; �; �; �; ; ag. A sample of
T observations of economic data, fxtg; is available to estimate the model, with xt station-
ary and ergodic. The stationarity and ergodicity of xt may have been induced by a prior

transformation of the raw data, for example by means of a detrending procedure. Denote by

(1=T )

TX
t=1

m(xt) (6)

the p�1 vector of statistics or moments computed based on the time average of some function
of the data. A necessary, but not su�cient, condition for identi�cation is p > q: Under the

6For a complete treatment of impulse-response analysis in nonlinear systems, see Gallant, Rossi and
Tauchen (1993), and Koop, Pesaran, and Potter (1996).
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assumption of ergodicity and by the Law of large numbers

(1=T )
TX
t=1

m(xt)! E(m(xt)) almost surely, as T !1:

Provided that the model can be expressed in terms of trend-free processes, and under

the maintained hypothesis that the model is a correct description of (some aspect of) the

economy when � = �0; then there exists a synthetic counterpart of the observed data fxtg,
namely fx� (�0)g; obtained by simulating the model given a draw of random shocks. Loosely
speaking, the maintained assumption is that the simulated and observed data are drawn

from the same statistical distribution when the former is generated using the true parameter

values. More generally, consider the synthetic series fx� (�)g simulated using the parameter
values �: The length of the simulated series is �T; where � > 1 is an integer. Using these

data, it is possible to compute a p� 1 vector of moments analog to (6)

(1=�T )
�TX
�=1

m(x� (�)):

Under Assumption 2 in Du�e and Singleton (1993, p. 939), which states that for all � 2 �;
the process fx� (�)g is geometrically ergodic, and by Lemma 2 (p. 938), which is a Uniform
Weak Law of large numbers,

(1=�T )
�TX
�=1

m(x� (�))! E(m(x� (�)) almost surely, as �T !1;

for any � 2 �:7 Finally, under the assumption that the model is correctly speci�ed

E(m(x� (�0)) = E(m(xt)):

Then, the SMM estimator is de�ned as

b� = argmin
�2�

M(�)0WM(�); (7)

where

M(�) =

 
(1=T )

TX
t=1

m(xt)� (1=�T )
�TX
�=1

m(x� (�))

!
; (8)

and W is a positive-de�nite weighting matrix of dimension p � p. Intuitively, the SMM
estimator is the value of � that minimizes the (weighted) distance between the moments

7Additional restrictions are imposed on the simulated series fx� (�)g to account for the fact that the initial
draw may not necessarily come from its ergodic distribution and that the transition law of state variables
may be a�ected by the simulation. See Du�e and Singleton (1993) for details.

[7]



implied by the model and those computed from the observed data, where the former are

obtained using arti�cial data simulated from the model.

Under the regularity conditions spelled out in Du�e and Singleton (1993), b� is a consistent
estimator of �0; and its asymptotic distribution is

p
T (b� � �0)! N(0;(1 + 1=�)(J0WJ)�1J0WSWJ(J0WJ)�1); (9)

where

S = lim
T!1

V ar

 
(1=
p
T )

TX
t=1

m(xt)

!
; (10)

and J = E(@m(x� (�))=@�) is a �nite matrix of full column rank and dimension p � q.
Although b� is consistent for any positive-de�nite weighting matrix, the smallest asymptotic
variance in (9) is obtained when the weighting matrix is the inverse of the long-run variance

of the moments, that is, W = S�1: In this case the asymptotic distribution of the SMM

estimator simpli�es to

p
T (b� � �0)! N(0;(1 + 1=�)(J0WJ)�1): (11)

When p is strictly larger than q, that is when the model is over-identi�ed, it is possible

to construct a general speci�cation test using the chi-square statistic proposed in Lee and

Ingram (1991, p. 204) and based on Hansen (1982). The test statistic is easiest to compute

in the case whereW = S�1: Then,

T (1 + 1=�)
�
M(b�)0WM(b�)�! �2(p� q); (12)

where M(b�)0WM(b�) is the value of the objective function at the optimum. Hayashi (2000)
shows how to derive Wald, Lagrange and an analog to the Likelihood Ratio tests for method

of moments estimators.

3.1 Incorporating Priors

In many applications, the researcher may be interested in incorporating additional infor-

mation obtained from micro data or in ruling out parts of the parameter space that are

considered economically uninteresting. This section proposes a simple strategy to do so in

the context of method of moments estimation. The strategy is inspired by the mixed es-

timation approach in Theil and Goldberger (1961), where priors are treated as additional

observations and combined with the data to deliver a penalized statistical objective function.

Theil and Goldberger's approach was originally developed for the linear regression model

and leads to a Generalized Least Squares (GLS) estimator that optimally incorporates the

[8]



prior information. Stone (1954) gives a maximum likelihood interpretation to this GLS

estimator and Hamilton (1994, p. 359) shows that its mean and variance are exactly those

of the Bayesian posterior distribution. In the maximum likelihood framework, the mixed

estimation strategy yields a likelihood function that consists of the likelihood of the data

and a penalty function|that is, the likelihood of the priors|which increases as parameters

deviate from the priors. Hamilton (1991) and Ruge-Murcia (2007) study the application of

this strategy for the estimation of mixtures of normal distributions and linearized DSGE

models, respectively.

In the same spirit, the statistical objective function of the method of moments estimator

may be augmented with an extra term that explicitly incorporates prior information about

parameter values. In order to keep the notation simple, assume that the researcher has priors

about all structural parameters and write the penalized SMM objective function as

M(�)0WM(�) + (� � ��)0
(� � ��); (13)

where �� is a q � 1 vector of priors about �, and 
 is a q � q positive-de�nite weighting
matrix that represents the researcher's con�dence in the prior information.8 Thus, while

mixed estimation treats priors as additional observations, the function (13) treats priors as

additional moments. Notice that the penalty (� � ��)0
(� � ��) is monotonically increasing
in the distance between � and ��. Then, a quasi-Bayesian SMM estimate of the parameters

of the DSGE model is b� = argmin
�2�

[M(�) (� � ��)]0V[M(�) (� � ��)]; (14)

where [M(�) (� � ��)] is a (p+ q)� 1 vector and

V =

�
W 0
0 


�
:

The upper and lower o�-diagonal matrices of V are p � q and q � p; respectively, with
all elements equal to zero. For the Monte Carlo experiments in Section 4, the asymptotic

variance-covariance matrix of this quasi-Bayesian estimate is computed as

(1 + 1=�)(B0VB)�1B0VQVB(B0VB)�1;

where B = [J I]0; I is a q � q identity matrix, and

Q =

�
S 0
0 


�
:

8Although the discussion and Monte-Carlo experiments in this paper are for nonlinear DSGE models, it is
clear that this idea may also be applied to the estimation of linearized DSGE models and to other minimum
distance estimators, like the generalized method of moments, the extended method of simulated moments
(see Smith, 1993), and the matching of theoretical and empirical impulse responses.

[9]



3.2 Comparison with GMM

Let us consider the case where it is possible to derive analytical expressions for the un-

conditional moments as a function of the parameters. If one collects these expressions

in the p � 1 vector E(m(�)); and uses E(m(�)) instead of the simulation-based estimate

(1=�T )
�TP
i=1

mi(�) in the statistical objective function, then the resulting generalized method

of moments (GMM) estimator is

b� = argmin
�2�

M(�)0WM(�); (15)

where

M(�) =

 
(1=T )

TX
t=1

m(xt)� E(m(�))
!
;

and W is a p � p positive-de�nite weighting matrix. Under the regularity conditions in
Hansen (1982), this estimator is consistent and has asymptotic distribution

p
T (b� � �0)! N(0;(J0WJ)�1J0WSWJ(J0WJ)�1); (16)

where S was de�ned in (10) and J = @E(m(�))=@� is a p� q matrix of full column rank.
In the case of linearized models, it is possible to compute E(m(�)) from the (linear)

decision rules that solve the model, and so the GMM estimator is feasible. In general,

GMM delivers more statistically e�cient estimates than SMM because there is no simulation

uncertainty (see below). For small-scale models, GMM is also more computationally e�cient

than SMM (see Ruge-Murcia, 2007). However, for large-scale model the matrix inversions

required to go from the decision rules to the moments imply that simulation may be a faster

way to compute the moments and, thus, SMM may be preferable to GMM for that reason.

In the case of nonlinear models, it is not always possible to derive analytical expressions

for the unconditional moments. Simulation is then an attractive alternative because the

simulation-based estimate (1=�T )
�TP
i=1

mi(�) is consistent for E(m(�)) and simulation uncer-

tainty can be controlled by the econometrician through a judicious choice of �: To see the

latter point, compare the asymptotic variance-covariance matrices under SMM and GMM in

(9) and (16), respectively. Note that, sinceW and S depend only on the data and the sim-

ulated moments converge to the analytical ones as the size of the arti�cial sample increases,

the di�erence in the standard errors of both estimates is primarily due to the term (1+1=�)

in the distribution (9). This term captures the increase in sample uncertainty due to the

use of simulation to compute population moments. Note, however, that (1 + 1=�) decreases

quickly towards 1 as � increases: For example, when � = 5; 10 and 20; the asymptotic SMM

standard errors are 1:10; 1:05 and 1:025 times larger than those implied by GMM.

[10]



One instance where it is possible to derive analytical expressions for the second moments

predicted by a nonlinear model is when the solution is obtained using the pruning algorithm

proposed by Kim, Kim, Schaumburg and Sims (2008). Hence, in this instance the GMM

estimator is also feasible. However, in the case of second-order approximate solutions, the

second moments implied by the nonlinear solution are (by construction) the same as those

implied by the linear solution. Thus, the GMM estimates of the linear and nonlinear models

are identical. This equivalence does not arise in the case of third- and higher-order approxi-

mate solutions because their second moments depend on terms of order higher than two and

are, therefore, di�erent from those implied by the linear solution.

4 Monte-Carlo Experiments

4.1 Design

The basic model with no habit formation has seven structural parameters but, for reasons

to be made clear below, I concentrate on four of them in the Monte Carlo experiments.

These four parameters are the subjective discount factor (�), the autocorrelation coe�cient

of the technology shock (�), the standard deviation of the technology innovation (�), and

the curvature parameter of consumption () : Thus, � = (�; �; �; )0 is a 4� 1 vector. In all
experiments, the capital share (�) is �xed to 0:36, the depreciation rate (�) is �xed to 0:025;

and the weight of leisure in the utility function (b) is set so that the time spent working

in steady state is one third of the time endowment. Fixing the value of some parameters

replicates actual practice by researchers who estimate DSGE models, sidesteps the weak

identi�cation of � and � intrinsic to this model,9 and reduces the computational burden

in the Monte Carlo. The data from the model are generated using � = 0:95; � = 0:85;

� = 0:04, and three possible values for  (that is,  = 1; 2 and 5). The simulations of the

nonlinear model, both for data generating and for SMM estimation, are based on the pruned

version of the model, as suggested by Kim, Kim, Schaumburg and Sims (2008). The data

series are consumption and hours worked in deviations from their deterministic steady state

values and the moments are the variances, the covariance, and the �rst- and second-order

autocovariances of these series.

For the version of the model with habit formation � = (�; �; �; ; a)0 is a 5 � 1 vector
and the value of the habit parameter used to generate the data is a = 0:8: For these exper-

iments I use two possible values for the standard deviation of the productivity innovation,

9Canova and Sala (2009) show that the rational-expectations solution of a real business cycle model with
inelastic labor supply implies that the dynamics of the capital stock are only weakly inuenced by � and �;
and insensitive to proportional changes in � and �:
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namely � = 0:04 and � = 0:08, and the three possible values for  listed above. These

di�erent con�gurations allow me to study the properties of SMM in DSGE models with

di�erent curvature and departure from certainty equivalence. All experiments are based

on 200 replications using a sample of 200 observations. The sample size is comparable to

that employed in practice to estimate DSGE models (for example, it is equivalent to, say,

quarterly observations for a period of �fty years).

For all parameter con�gurations, I use three di�erent values for � , that is � = 5; 10; 20;

meaning that the simulated series are, respectively, �ve, ten and twenty times larger than

the sample size. Exploring the e�ects of using di�erent values of � is important for two

reasons. First, the asymptotic distribution of the estimates depends on � because simulation

uncertainty depends on the length of the simulated series relative to the sample size. Second,

since the computational cost is increasing in �; it is useful to know whether it is worthwhile

to use long arti�cial series.

Finally, for the weighting matrix W, I use the inverse of the matrix with the long-run

variance of the moments, that is W = S�1; where S was de�ned in (10) and is computed

using the Newey-West estimator with a Barlett kernel and bandwidth given by the integer

of 4(T=100)2=9. This weighting matrix is optimal in that it delivers the smallest possible as-

ymptotic variance among the class of positive-de�nite matrices. The asymptotic distribution

of the SMM estimator in the case where W = S�1 is given in (11). I also carry out exper-

iments using two other (sub-optimal) weighting matrices. They are 1) the identity matrix

and 2) the inverse of a matrix with diagonal elements equal to those of S and o�-diagonal

elements equal to zero. These experiments allow me to evaluate the e�ciency loss associated

with weighting matrices that are not optimal but which have practical advantages in actual

applications.10

4.2 Results

Results of Monte Carlos experiments for basic model are reported in Table 1 and those

for the models with habit formation are reported in Tables 2 and 3. In the tables, Mean

and Median are, respectively, the mean and median of the estimated parameters, A.S.E.

is the median of the asymptotic standard errors, and S.D. is the standard deviation of the

estimates. These statistics were computed using the 200 replications for each experiment.

Size is the proportion of times that the null hypothesis that the parameter takes its true

value is rejected using a t test with nominal size of �ve percent. Or, put di�erently, Size

10See, for example, Cochrane (2001, p. 215), who argues that in many instances it may be desirable to use
a weighting matrix that pays attention to economically, rather than only statistically, interesting moments.
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is the empirical size of the t test. S.E. is the standard error of this empirical size and is

computed as the standard deviation of a Bernoulli variable. Finally, OI is the empirical size

of the chi-square test of the overidenti�cation restrictions.

These tables support the following conclusions. First, SMM estimates are quantitatively

close to the true values used to generate the data in all cases. To the see this, note that

in all tables the mean and median of the estimated parameters are very similar to the true

values. This result, of course, is driven by the consistency of the SMM estimator, but it

is important to know that SMM delivers accurate parameter estimates for relatively small

samples and for versions of the model with di�erent curvature. Second, asymptotic standard

errors computed from (11) often overstate the actual variability of the parameter estimates.

To see this, note that in most cases the A.S.E. is larger than the standard deviation of

the estimates. This suggests a discrepancy between the small-sample and the asymptotic

distributions. A similar results is reported by Ruge-Murcia (2007) in the context of linear

DSGE models. Third, the empirical size of the t test of the null hypothesis that the parameter

takes its true value usually di�ers from the nominal size of �ve percent. Finally, note that

in all cases the empirical size of the chi-square test of the over-identi�cation restrictions is

well below its nominal size of �ve percent. The result that the chi-square test easily fails to

detect a misspeci�ed model is well known in the literature (see, for example, Newey, 1985),

but the results reported here indicate that this result also holds in the case of fully-speci�ed

nonlinear DSGE models.

Asymptotic standard errors and the empirical standard deviations of the estimates tend

to decline with size of the simulated sample (that is, with the value of �) as predicted by

the theory. This result is visually con�rmed by the empirical distributions of the estimates

reported Figures 2 through 4. (These �gures correspond to the experiments for  = 2 but

the distributions for experiments for  = 1; 5 support the same conclusions.) However, this

increase in statistical e�ciency needs to be balanced with the increased computational cost

associated with using a larger arti�cial sample (see Section 4.6).

Figures 2 through 4 also illustrate the earlier result that the asymptotic distribution

may not always be a good approximation to the small-sample distribution. For example,

the discount factor (�) is estimated much more precisely in practice than the asymptotic

approximation would have us believe. Also, in some cases the small-sample distributions

are skewed, rather than symmetric. For example, the small-sample distributions of the

autoregressive coe�cient (�) are mildly skewed to the left, and so the mean is usually smaller

than the median in Tables 1 through 3, and both are somewhat smaller than the true value

of 0.85 used to generate the data.

From Tables 1 through 3 it appears that small-sample distortions diminish somewhat
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as the consumption curvature increases. A priori one would have expected the asymptotic

approximation to worsen as the model becomes more nonlinear. However, the nonlinearity

also seems to sharpen identi�cation leading to smaller standard errors. To see this, consider

Figure 5, which plots the objective function of along the dimension of the discount factor (�),

the autoregressive coe�cient (�) and the standard deviation of the innovation (�) for each

of the three possible values of the curvature parameter () and holding the other parameters

�xed to their true value. From this Figure, it is apparent that as the consumption curvature

increases, the convexity of the statistical objective function increases as well.

4.3 Other Weighting Matrices

In this section I study the small-sample properties of SMM in the case where the weighting

matrix is 1) the identity matrix and 2) the inverse of the matrix with diagonal elements

equal to those of S and o�-diagonal elements equal to zero. In what follows, I denote the

latter matrix by D�1.

The identity matrix gives the same weight to all moments and the objective function

is, therefore, proportional to the (squared) Euclidean distance between the empirical and

theoretical moments. A potential problem with the identity matrix is that the objective

function is not scale independent. Thus, the algorithm used to numerically minimize the

objective function may converge either too quickly, before the true minimum is found, or

not converge at all, if the converge criterion is too tight given the units of the moments. An

easy way to deal with this problem is to appropriately scale the objective function or the

weighting matrix. For example, rather than using W = I, the researcher may use W =�I

where � is a scaling constant. The second weighting matrix (that is, D�1) is attractive

because the objective function is scale free and it gives a larger weight to moments that are

more precisely estimated.

Results of experiments using these two matrices are reported in Tables 4 and 5 and Fig-

ures 6 and 7. As in the previous experiments (whereW = S�1), SMM estimates are close to

the true values used to generate the data, asymptotic standard errors tend to overstate the

actual variability of the estimates, and the empirical size of the t test is often di�erent from

the nominal size. Comparing standard errors across di�erent weighting matrices, notice that

standard errors obtained when W = I are larger than when W = D�1, which in turn are

larger than whenW = S�1. This was the expected ranking since D shares (by construction)

the same diagonal as S and S�1 is the optimal weighting matrix. The di�erence between

standard errors is relatively small when the curvature parameter  = 1 but becomes sub-

stantial when  = 5. This suggests that the e�ciency gains associated with using the the

[14]



optimal weighting matrix increase with the nonlinearity of the model. On the other hand, at

least for the examples considered here, the di�erence between standard errors is not so large

as to overcome economic considerations that may motivate the use of alternative weighting

matrices (see, Cochrane, 2001 p. 215).

4.4 Third-Order Approximation

Since perturbation methods are only locally accurate, it is important to study the econo-

metric implications of estimating a model approximated to an order higher than two. These

results are reported in Table 6 and are similar to those previously reported in that estimates

are quantitatively close to the true values, there is a discrepancy between asymptotic and

small-sample standard errors, and the t test of the null hypothesis that the parameter takes

its true value is subject to size distortions.11

There are, however, two important di�erences. First, the standard deviations of the

empirical estimates are generally smaller than those obtained using a second-order approx-

imation. This may be seen by comparing the empirical distributions in Figures 8 and 2

and the S.D.'s in Tables 1 and 4. This suggests that parameters are more precisely esti-

mated when using a third- rather than a second-order approximation. The most striking

example of this observation is the estimate of the discount factor, �. On the other hand,

since asymptotic standard errors are similar in both cases, this means that the asymptotic

distribution is a poorer approximation to the small-sample distribution in this case than in

the ones reported in the previous sections. Second, although the chi-square test of the over-

identi�cation restrictions tends to over-reject, the discrepancy between actual and nominal

size are much smaller than for the second-order approximation.

Overall, these results indicate some statistical advantages in estimating a third- rather

than a second-order approximation to the model. A third-order solution is also attractive

because in addition to higher accuracy, it allows the explicit e�ect of skewness on economic

choices and permits the use of third-order moments for the estimation of the model. However,

there are two caveats. First, as will see below, the computational cost of estimating a third-

order approximation of the model is higher than that of estimating a second-order. Second,

while the pruning algorithm proposed by Kim, Kim, Schaumburg and Sims (2008) insures

the stability of the second-order system (provided �rst-order dynamics are stable), this is no

longer the case when this algorithm is applied to a third-order solution.

11Note that since the analysis is carried out under the null hypothesis, the DGP in these experiments is
not the same as in the previous ones: The data in the previous section is generated using a second-order
approximate solution, while the data here is generated using a third-order.
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4.5 Incorporating Priors

For the Monte-Carlo experiments concerning the small sample performance of the quasi-

bayesian SMM, I use as priors for �; � and  their true values and assume a at prior for �:

Results are reported in Table 7 and the empirical distributions (for the case where  = 2) are

plotted in Figure 9. Since the priors are exactly the same values used to generate the data,

the estimates are much closer to the true values than in the previous experiments without

priors. As before, I �nd that small-sample and asymptotic distributions di�er. In particular,

the asymptotic standard errors greatly overstate (understate) the actual variability of the

parameter estimates for which priors are (are not) imposed.

4.6 Computing Time

While there are no large di�erences in statistical e�ciency for the values of � studied here,

there does appear to be some di�erences in computational e�ciency. (Recall that � measures

the size of the arti�cial series compared with that of the data.) The left-hand side panel

of Figure 10 plots the average time required to estimate one replication of second-order

approximate models as a function of � . Notice that computing time increases approximately

linearly with the length of the simulated sample, and that, as one would expect, models with

additional state variables (for example, the model with habit formation) require additional

time. For example, the second-order approximate basic and habit models with � = 5 take

about 30 and 68 seconds, respectively.

The right-hand side panel of the same Figure includes the average time required to

estimate third-order approximate models and shows that it is one order of magnitude larger

than that of second-order models. For example, the third-order basic model with � = 5

takes 362 seconds, compared with 30 seconds for the second-order. As before, computing

time increases approximately linearly with the length of the simulated sample.

Overall, these results suggest that computing time is not a constraint for the estimation

of nonlinear DSGE models by the simulated method of moments.

5 The Macroeconomic E�ects of Rare Events

A standard assumption in macroeconomics is that shock innovations are drawn from a sym-

metric distribution. In symmetric distributions the shape of the left side of the central

maximum is a mirror image of the right side, and so (loosely speaking) negative realizations

of a given magnitude are as likely as positive realizations. Among symmetric distributions,

the Normal distribution is by far the most widely used in empirical research.
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On the other hand, quantitative results by Rietz (1988) and Barro (2006, 2009) suggest

that extreme, low probability events|presumably arising from an asymmetric distribution|

may have large economic implications in a setup where agents are risk averse. In particular,

Rietz and Barro are concerned with catastrophic events (e.g., wars) as a possible explanation

for the large return on equities compared with the riskless asset.

The goal of this Section is to study the implications of rare, though not necessarily

catastrophic, events for consumption, capital accumulation, and labor supply in the simple

economy described in Section 2.1. To that e�ect, I estimate versions of the model where pro-

ductivity innovations are drawn from asymmetric distributions that allow very large negative

realizations from time to time. I consider two asymmetric distributions, namely the Rayleigh

and the Skew normal distributions.12 The Rayleigh distribution is a one parameter distrib-

ution with support [0;1) and positive skewness equal to 2
p
�(�� 3)=(4� �)3=2 = 0:6311. I

work with the negative of the Rayleigh distribution (therefore the skewness is �0:6311) and
adjust its location so that the distribution has a zero mean. The Skew normal distribution

due to O'Hagan and Leonhard (1976) is a three parameter distribution (a location, a scale,

and a shape parameters) with support (�1;1): The skewness of the Skew normal distrib-
ution depends only on the scale and shape parameters and can take values between �1 and
1. I also adjust the location of this distribution so that it has a zero mean. As a benchmark,

I estimate a version of the model with normally distributed productivity innovations.

As was discussed in Section 2.2, neither a �rst- nor a second-order approximate solution

to the model can capture the e�ects of skewness on the agents' economic choices. Hence,

I solve and estimate here a third-order approximate solution to the model. In addition to

studying the economic implications of rare events, this Section illustrates the application of

simulated method of moments for the estimation of a nonlinear dynamic model using actual

data, and shows that it can easily accommodate non-Normal distributions.

5.1 Data and SMM Estimation

The model is estimated using 205 quarterly U.S. observations of the growth rate of consump-

tion, the growth rate of investment, and hours worked for the period 1959:Q2 to 2010:Q2.

The raw data were taken from the FRED database available at the Federal Reserve Bank

of St. Louis Web site (www.stls.frb.org). Hours worked is measured by the quarterly av-

erage of the weekly hours of production and non-supervisory employees in manufacturing.

Consumption is measured by personal consumption expenditures on nondurable goods and

services, and investment is measured by private nonresidential �xed investment plus per-

12The use of the Skew normal distribution was suggested to me by Bill McCausland.
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sonal consumption expenditures on durable goods. The latter two measures are closest to

the de�nitions of consumption and investment in the model. Since the raw data are nominal,

I converted them into real per capita terms by dividing the series by the quarterly average

of the consumer price index (CPI) for all urban consumers and the mid-month U.S. popula-

tion estimate produced by the Bureau of Economic Analysis (BEA). All data are seasonally

adjusted at the source.

In this application, I use the identity matrix as the weighting matrix in the statistical

objective function, and compute the long-run variance of the moments using the Newey-West

estimator with a Barlett kernel and bandwidth given by the integer of 4(T=100)2=9 where

T is the sample size. Since T = 205 the bandwidth is, therefore, four. The number of

simulated observations is �ve times larger than the sample size, that is � = 5: As seen in the

Monte-Carlo results, � = 5 is much more computationally e�cient than larger values of �

and only mildly less statistically e�cient. The simulations of the nonlinear model are based

on the pruned version of the third-order approximate solution, as suggested by Kim, Kim,

Schaumburg and Sims (2008). The moments used to estimate the model are the variances,

covariances, �rst- and second-order autocovariances, and the third-order moments of the

three data series|that is, �fteen moments.

I estimate the discount factor (�), the consumption curvature of the utility function

(), the autoregressive coe�cient of the productivity shock (�), and the parameters of the

innovation distribution. Since the mean of the innovations is �xed to zero, I only estimate

one parameter in the case of the Rayleigh and Normal distributions, and two (the scale

and shape parameters) in the case of the Skew Normal distribution. During the estimation

procedure, the production function parameter (�) was �xed to 0:36, which is in line with

share of capital in total income according to the National Income and Product Accounts

(NIPA), and the depreciation rate (�) was set to 0:025. Finally, the weight of leisure in the

utility function (b) was set so that the proportion of time spent working in the deterministic

steady state is one-third.

The theoretical results concerning the statistical properties of SMM were derived under

the assumption that the series are stationary (see Section 3 above). In order to verify

whether this assumption is appropriate for the data used to estimate the model, I performed

Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) unit-root tests. In all cases, the

estimated alternative was an autoregression with a constant intercept but no time trend.

The level of augmentation of the ADF test (that is, the number of lagged �rst di�erences in

the regression) was selected using recursive t tests and the Modi�ed Information Criterion

(MIC) in Ng and Perron (2001). The truncation lag of the PP test was set to four in all

cases, but conclusions are robust to using other number of lags.
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Unit-root test results are reported in Table 8. The null hypothesis of a unit root in

consumption growth and in investment growth can be safely rejected at the �ve percent

signi�cance level using either test. Regarding hours worked, the null hypothesis can be

rejected at the �ve percent level using the PP test and at the ten percent level using the

ADF test with augmentation selected by the MIC. The null hypothesis cannot be rejected at

the ten percent level using the ADF test with augmentation selected using recursive t tests,

but this conclusion is marginal because the test statistic is �2:53 while the critical value is
�2:58. Overall, these results suggest that the data may be well represented by stationary
processes around a constant mean.

5.2 Parameter Estimates

Parameter estimates are reported in Table 9. Estimates of the discount factor are very

similar across distributions, ranging only from 0:9942 (Rayleigh) to 0:9972 (Skew normal).

On the other hand, there are some di�erences in the estimates of the consumption curvature

parameter and the autoregressive coe�cient of the productivity shock. In particular, the

consumption parameter is smaller when the innovation distributions are asymmetric than

when they are normally distributed. (Still, it is important to note that standard errors are

large enough that the statistical di�erence among estimates is probably nil.)

The most obvious di�erence is, of course, in the estimates of the innovation distributions.

The standard deviations are 0:0061, 0:0059, and 0:0041 for the Normal, Rayleigh, and Skew

normal distributions, respectively, while the skewness are 0, �0:6311, and �0:8539. In the
two former cases, the skewness is �xed (by construction), while in the latter case it depends

on the estimated shape and slope parameters. Histograms of the estimated distributions,

computed on the basis of a simulation of 5000 observations, are plotted in Figure 11. The

negative skewness of the Rayleigh and Skew normal distributions are apparent from this Fig-

ure: Extreme negative realizations of the productivity innovation may occasionally happen

but extreme positive realizations are relatively uncommon (or not possible in the case of the

Rayleigh distribution, which is bounded from above). In contrast, the symmetric Normal

distribution allows both possible and negative realizations with the same frequency. Notice

that in order to accommodate the large negative realizations of the innovations, which seem

to be a feature of the data (see below), the Normal distribution may overstate the actual

standard deviation of the productivity innovations.
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5.3 Medians

Table 10 reports the median percentage deviation from the deterministic steady state for

some key variables. Recall that since certainty equivalence does not hold in this model,

the variance and skewness of the shocks a�ect the agents' decisions. Table 10 shows that

when productivity shocks are normally distributed, median consumption is about 1 percent

below what it would be in a certainty-equivalent world. The median investment and capital

stock are also below the deterministic steady state by about around 1.3 percent, while hours

worked are above by 0.4 percent. Since the shock distribution is symmetric (and, thus, the

skewness is zero), these e�ects are primarily due to the variance of the shocks. Results for

the mildly skewed Rayleigh distribution are similar.

In contrast, when shocks follow a Skew normal distribution, agents protect themselves

against volatility and possible large decreases in productivity by accumulating more capital

and working more hours compared with the certainty-equivalent case. The increase in wealth

actually allows a small increase in consumption (0.15 percent) above the deterministic steady

state.

Since the estimates of the preference parameters are not drastically di�erent across the

three versions of the model, the di�erences reported in Table 10 are attributable to the

di�erences in the shock distributions and the agents' reaction to their di�erent variance and

skewness.

5.4 Higher-Order Moments

I now derive and evaluate the model predictions concerning the higher-order moments of

consumption growth, investment growth, and hours worked. Table 11 compares the moments

predicted by the model (computed from a simulation of 5000 observations) and those of the

U.S. data. In the data, consumption growth is considerably less volatile than investment

growth and hours. All three models capture this feature of the data, but the Skew normal

distribution under-predicts the standard deviation of consumption growth. Also, in the data,

all three series are negatively skewed. Although the three models imply negative skewness,

the Normal distribution implies lower skewness than the data in all cases.13 In contrast, the

Rayleigh and Skew normal distributions imply skewness closer to the data. Notice, however,

that all three distributions tend to under-predict the skewness of hours worked and that

the Skew normal distribution over-predicts the skewness of investment growth. Finally, in

13Notice that in contrast to linear DSGE models that inherit their higher-order properties directly from
the shock innovations, the nonlinear propagation mechanism in this model means that economic variables
may be non-Normal, even if the productivity innovations are Normal.
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the data, the kurtosis is larger than the value of 3 implied by the Normal distribution. All

three models tend to under-predict kurtosis but the asymmetric distributions generally imply

kurtosis larger than 3 while the Normal distribution implies kurtosis smaller than 3 for all

variables.

Table 11 also reports the Jarque-Bera test statistic for the null hypothesis that a series

follows a Normal distribution (with unspeci�ed mean and variance). For all U.S. data series,

the hypothesis can be rejected at the �ve percent signi�cance level. In contrast, for arti�cial

series with 5000 observations from the model with normally distributed productivity innova-

tions, the hypothesis cannot be rejected for consumption and investment growth, although

it can be rejected for hours worked. When the arti�cial observations are generated using

either a Rayleigh or a Skew normal distribution, the hypothesis can be rejected in all cases.

In summary, these results suggest that asymmetric productivity innovations deliver higher-

order moments that are in better agreement with the U.S. data compared with a symmetric

Normal distribution.

5.5 Impulse-Response Analysis

In this Section, I study the economy responses to a productivity shock. Since in nonlinear

systems the e�ect of shocks generally depend on their sign, size, and timing (see Gallant,

Rossi and Tauchen, 1993, and Koop, Pesaran, and Potter, 1996), I consider shocks of di�erent

sign and sizes and assume that they take occur when the system is at the stochastic steady

state (i.e., when all variables are equal to their unconditional mean). Since the distributions

are not the same in each of the versions of the model, I �xed the percentile (rather than actual

size) of the shock. In particular, I consider innovations in the 25th and 75th percentiles, along

with rare events in the form of innovation in the 1st and 99th percentiles.

Results are reported in Figure 12 through 14 for the Normal, Rayleigh, and Skew normal

distributions respectively. In these �gures, the horizontal axes are periods and the vertical

axes are percentage deviations from the stochastic steady state. Notice that in all cases

a positive (negative) productivity shock induces an increase (a decrease) in consumption,

investment and hours worked. However, in the case of the Normal distribution responses are

close to symmetric despite the fact the model is nonlinear. That is, the rare bonanza due

to the large productivity innovation in the 99th percentile induces increases in the variables

which are (almost) mirror images of the decreases due to the rare loss when the innovation

is in the 1st percentile.

On the other hand, in the case of the asymmetric distributions, negative innovations

deliver larger decreases in consumption, investment, and hours worked than an equally-
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likely positive realization. Of course, the size (in absolute value) of innovation in the 1st

and 99th (and the 25th and 75th) percentile are not same because the distributions are

asymmetric. The point is, however, that the likelihood of these two realizations is the same.

For example, in the case of the Skew normal distribution, the rare bonanza due to a large

productivity innovation in the 99th percentile induces increases of 0.3, 3.5, and 1 percent

in consumption, investment, and hours worked, respectively, while the rare loss due an

innovation in the 1st percentile induces decreases of -0.5, 6.5 and 1.9 percent, respectively.

There is also asymmetry for the (smaller) innovations in the 25th and 75th percentiles,

but in this case, the positive innovations induce quantitatively larger responses than the

equally-likely negative innovation.

6 Conclusions

This paper describes in a pedagogical manner the application of the simulated method of

moments for the estimation of nonlinear DSGE models, studies its small-sample properties

in models with di�erent curvature, provides evidence about its computational e�ciency,

proposes a simple strategy to incorporate prior information based on the mixed-estimation

approach due to Theil and Goldberger (1961), and shows how to compute third-order ap-

proximate solutions to the decision rules of a DSGE model. Monte-Carlo results that SMM

is delivers accurate and computationally e�cient parameter estimates, even when the simu-

lated series are relatively short. However, asymptotic standard errors tend to overstate the

true variability of the estimates and, consequently, statistical inference is conservative.

An application to e�ects of rare events shows that relaxing the standard assumption

of symmetry in shock distributions may be important for economic and statistical reasons:

Skewed distributions allow agents to contemplate the possibility of extreme shock realizations

and make their economic choices accordingly, and deliver higher-order moments that are

generally closer to those in U.S. data.
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A Solving DSGE Models Using a Third-Order Ap-

proximation to the Policy Function

A.1 Analytics

As in Schmitt-Groh�e and Uribe (2004), the model solution is written as14

yt = g(xt; �);

xt+1 = h(xt; �) + ��"t+1

where yt is a ny � 1 vector of non-predetermined variables, xt is a nx � 1 vector of pre-
determined variables, "t is a n" � 1 vector of innovations to the exogenous state variables
in xt, � is nx � n" vector of (scaling) parameters, and � is a perturbation parameter. The
innovations are assumed to be i.i.d. with mean zero, variance-covariance matrix equal to the

identity matrix, I, and a cube of third moments, S, with possible non-zero values along the

main diagonal. The goal is to approximate the policy functions g(xt; �) and h(xt; �) with a

polynomial obtained by means of a Taylor series expansion around the deterministic steady

state where xt = x and � = 0: Exploiting the recursive nature of the problem, de�ne

F (x; �) = Etf(g(h(x; �) + ��"
0; �); g(x; �); h(x; �) + ��"0; x) = 0

where Etf(�) denote the set of equilibrium conditions of the model, Et is the expectation

conditional on information known in period t, and the prime indicates variables at time t+1:

Using tensor notation, the third-order approximation of g(xt; �) and h(xt; �) around (x; 0)

are of the form

[g(x; �)]i = [g(x; 0)]i + [gx(x; 0)]
i
a[(x� x)]a + [g�(x; 0)]i[�]

+(1=2)[gxx(x; 0)]
i
ab[(x� x)]a[(x� x)]b

+(1=2)[gx�(x; 0)]
i
a[(x� x)]a[�]

+(1=2)[g�x(x; 0)]
i
a[(x� x)]a[�]

+(1=2)[g��(x; 0)]
i[�][�]

+(1=6)[gxxx(x; 0)]
i
abc[(x� x)]a[(x� x)]b[(x� x)]c

+(1=6)[gxx�(x; 0)]
i
ab[(x� x)]a[(x� x)]b[�]

+(1=6)[gx�x(x; 0)]
i
ab[(x� x)]a[(x� x)]b[�]

+(1=6)[g�xx(x; 0)]
i
ab[(x� x)]a[(x� x)]b[�]

14In order facilitate the comparison with Schmitt-Groh�e and Uribe (2004), I adopt their notation in this
Appendix.
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+(1=6)[g��x(x; 0)]
i
a[(x� x)]a[�][�]

+(1=6)[g�x�(x; 0)]
i
a[(x� x)]a[�][�]

+(1=6)[gx��(x; 0)]
i
a[(x� x)]a[�][�]

+(1=6)[g���(x; 0)]
i[�][�][�];

and

[h(x; �)]j = [h(x; 0)]j + [hx(x; 0)]
j
a[(x� x)]a + [h�(x; 0)]j[�]

+(1=2)[hxx(x; 0)]
j
ab[(x� x)]a[(x� x)]b

+(1=2)[hx�(x; 0)]
j
a[(x� x)]a[�]

+(1=2)[h�x(x; 0)]
j
a[(x� x)]a[�]

+(1=2)[h��(x; 0)]
j[�][�]

+(1=6)[hxxx(x; 0)]
j
abc[(x� x)]a[(x� x)]b[(x� x)]c

+(1=6)[hxx�(x; 0)]
j
ab[(x� x)]a[(x� x)]b[�]

+(1=6)[hx�x(x; 0)]
j
ab[(x� x)]a[(x� x)]b[�]

+(1=6)[h�xx(x; 0)]
j
ab[(x� x)]a[(x� x)]b[�]

+(1=6)[h��x(x; 0)]
j
a[(x� x)]a[�][�]

+(1=6)[h�x�(x; 0)]
j
a[(x� x)]a[�][�]

+(1=6)[hx��(x; 0)]
j
a[(x� x)]a[�][�]

+(1=6)[h���(x; 0)]
j[�][�][�];

where i = 1; : : : ; ny; a; b; c = 1; : : : ; nx; and j = 1; : : : ; nx: Schmitt-Groh�e and Uribe (2004)

explain in detail how to compute the terms [g(x; 0)], [gx(x; 0)]
i
a, [g�(x; 0)]

i, [gxx(x; 0)]
i
ab,

[gx�(x; 0)]
i
a, [g�x(x; 0)]

i
a, [g��(x; 0)]

i, [h(x; 0)], [hx(x; 0)]
j
a, [h�(x; 0)]

j, [hxx(x; 0)]
j
ab, [hx�(x; 0)]

j
a,

[h�x(x; 0)]
j
a, and [h��(x; 0)]

j required for the second-order approximation to the policy rules.

Such terms are inputs to the computation of the third-order terms which I now derive.

Consider �rst gxxx(x; 0) and hxxx(x; 0): Since all order derivatives of F (x; �) should equal

zero (see Jin and Judd, 2002), the terms gxxx(x; 0) and hxxx(x; 0) can be obtained from the

solution to the system

[Fxxx(x; 0)]
i
jkm = [fy0y0y0 ]

i
��[gx]

�
� [hx]

�
m

�
[gx]


� [hx]

�
k[gx]

�
� [hx]

�
j

�
+[fy0y0y]

i
��[gx]

�
m

�
[gx]


� [hx]

�
k[gx]

�
� [hx]

�
j

�
+[fy0y0x0 ]

i
�� [hx]

�
m

�
[gx]


� [hx]

�
k[gx]

�
� [hx]

�
j

�
+[fy0y0x]

i
�m

�
[gx]


� [hx]

�
k[gx]

�
� [hx]

�
j

�
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+[fy0y0 ]
i
�

��
[gxx]


�� [hx]

�
m[hx]

�
k + [gx]


� [hxx]

�
km

�
[gx]

�
�

�
[hx]

�
j

+[fy0y0 ]
i
�[gx]


� [hx]

�
k[gxx]

�
�� [hx]

�
m[hx]

�
j

+[fy0y0 ]
i
�[gx]


� [hx]

�
k[gx]

�
� [hxx]

�
jm

+[fy0yy0 ]
i
��[gx]

�
� [hx]

�
m[gx]


k[gx]

�
� [hx]

�
j

+[fy0yy]
i
��[gx]

�
m[gx]


k[gx]

�
� [hx]

�
j

+[fy0yx0 ]
i
�� [hx]

�
m[gx]


k[gx]

�
� [hx]

�
j

+[fy0yx]
i
�m[gx]


k[gx]

�
� [hx]

�
j

+[fy0y]
i
�

��
[gxx]


km[gx]

�
� + [gx]


k[gxx]

�
�� [hx]

�
m

�
[hx]

�
j + [gx]


k[gx]

�
� [hxx]

�
jm

�
+[fy0x0y0 ]

i
���[gx]

�
� [hx]

�
m[hx]

�
k[gx]

�
� [hx]

�
j + [fy0x0y]

i
���[gx]

�
m[hx]

�
k[gx]

�
� [hx]

�
j

+[fy0x0x0 ]
i
��� [hx]

�
m[hx]

�
k[gx]

�
� [hx]

�
j + [fy0x0x]

i
��m[hx]

�
k[gx]

�
� [hx]

�
j

+[fy0x0 ]
i
��

��
[hxx]

�
km[gx]

�
� + [hx]

�
k[gxx]

�
�� [hx]

�
m

�
[hx]

�
j + [hx]

�
k[gx]

�
� [hxx]

�
jm

�
+[fy0xy0 ]

i
�k�[gx]

�
� [hx]

�
m[gx]

�
� [hx]

�
j + [fy0xy]

i
�k�[gx]

�
m[gx]

�
� [hx]

�
j

+[fy0xx0 ]
i
�k� [hx]

�
m[gx]

�
� [hx]

�
j + [fy0xx]

i
�km[gx]

�
� [hx]

�
j

+[fy0x]
i
�k

�
[gxx]

�
�� [hx]

�
m[hx]

�
j + [gx]

�
� [hxx]

�
jm

�
+[fy0y0 ]

i
�[gx]


� [hx]

�
m[gxx]

�
��[hx]

�
k[hx]

�
j + [gx]

�
� [hxx]

�
jk

+[fy0y]
i
�[gx]


m[gxx]

�
��[hx]

�
k[hx]

�
j + [gx]

�
� [hxx]

�
jk

+[fy0x0 ]
i
��[hx]

�
m[gxx]

�
��[hx]

�
k[hx]

�
j + [gx]

�
� [hxx]

�
jk

+[fy0x]
i
�m[gxx]

�
��[hx]

�
k[hx]

�
j + [gx]

�
� [hxx]

�
jk

+[fy0 ]
i
�

�
[gxxx]

�
��� [hx]

�
m[hx]

�
k + [gxx]

�
��[hxx]

�
km

�
[hx]

�
j

+[fy0 ]
i
�

�
[gxx]

�
��[hx]

�
k[hxx]

�
jm + [gxx]

�
�� [hx]

�
m[hxx]

�
jk + [gx]

�
� [hxxx]

�
jkm

�
+[fyy0y0 ]

i
��[gx]

�
� [hx]

�
m[gx]


� [hx]

�
k[gx]

�
j + [fyy0y]

i
��[gx]

�
m[gx]


� [hx]

�
k[gx]

�
j

+[fyy0x0 ]
i
�� [hx]

�
m[gx]


� [hx]

�
k[gx]

�
j + [fyy0x]

i
�m[gx]


� [hx]

�
k[gx]

�
j

+[fyy0 ]
i
�

��
[gxx]


�� [hx]

�
m[hx]

�
k + [gx]


� [hxx]

�
km

�
[gx]

�
j + [gx]


� [hx]

�
k[gxx]

�
jm

�
+[fyyy0 ]

i
��[gx]

�
� [hx]

�
m[gx]


k[gx]

�
j + [fyyy]

i
��[gx]

�
m[gx]


k[gx]

�
j

+[fyyx0 ]
i
�� [hx]

�
m[gx]


k[gx]

�
j + [fyyx]

i
�m[gx]


k[gx]

�
j

+[fyy]
i
�

�
gxx]


km[gx]

�
j + [gx]


k[gxx]

�
jm

�
+[fyx0y0 ]

i
���[gx]

�
� [hx]

�
m[hx]

�
k[gx]

�
j + [fyx0y]

i
���[gx]

�
m[hx]

�
k[gx]

�
j

+[fyx0x0 ]
i
��� [hx]

�
m[hx]

�
k[gx]

�
j + [fyx0x]

i
��m[hx]

�
k[gx]

�
j

+[fyx0y0 ]
i
��

�
[hxx]

�
km[gx]

�
j + [hx]

�
k[gxx]

�
jm

�
+[fyxy0 ]

i
�k�[gx]

�
� [hx]

�
m[gx]

a
j + [fyxy]

i
�k�[gx]

�
m[gx]

a
j

[25]



+[fyxx0 ]
i
�k� [hx]

�
m[gx]

a
j + [fyxx]

i
�km[gx]

a
j

+[fyx]
i
�k[gxx]

�
jm + [fyy0 ]

i
�[gx]


� [hx]

�
m[gxx]

a
jk

+[fyy]
i
�[gx]


m[gxx]

a
jk + [fyx0 ]

i
��[hx]

�
m[gxx]

a
jk

+[fyx]
i
�m[gxx]

a
jk + [fy]

i
�[gxxx]

�
jkm

+[fx0y0y0 ]
i
��[gx]

�
� [hx]

�
m[gx]


� [hx]

�
k[hx]

�
j + [fx0y0y]

i
��[gx]

�
m[gx]


� [hx]

�
k[hx]

�
j

+[fx0y0x0 ]
i
�� [hx]

�
m[gx]


� [hx]

�
k[hx]

�
j + [fx0y0x]

i
�m[gx]


� [hx]

�
k[hx]

�
j

+[fx0y0 ]
i
�

��
[gxx]


�� [hx]

�
m[hx]

�
k + [gx]


� [hxx]

�
km

�
[hx]

�
j + [gx]


� [hx]

�
k[hxx]

�
jm

�
+[fx0yy0 ]

i
��[gx]

�
� [hx]

�
m[gx]


k[hx]

�
j + [fx0yy]

i
��[gx]

�
m[gx]


k[hx]

�
j

+[fx0yx0 ]
i
�� [hx]

�
m[gx]


k[hx]

�
j + [fx0yx]

i
�m[gx]


k[hx]

�
j

+[fx0y]
i
�

�
[gxx]


km[hx]

�
j + [gx]


k[hxx]

�
jm

�
+[fx0x0y0 ]

i
���[gx]

�
� [hx]

�
m[hx]

�
k[hx]

�
j + [fx0x0y]

i
���[gx]

�
m[hx]

�
k[hx]

�
j

+[fx0x0x0 ]
i
��� [hx]

�
m[hx]

�
k[hx]

�
j + [fx0x0x]

i
��m[hx]

�
k[hx]

�
j

+[fx0x0 ]
i
��

�
[hxx]

�
km[hx]

�
j + [hx]

�
k[hxx]

�
jm

�
+[fx0xy0 ]

i
�k�[gx]

�
� [hx]

�
m[hx]

�
j + [fx0xy]

i
�k�[gx]

�
m[hx]

�
j

+[fx0xx0 ]
i
�k� [hx]

�
m[hx]

�
j + [fx0xx]

i
�km[hx]

�
j + [fx0x]

i
�k[hxx]

�
jm

+[fx0y0 ]
i
�[gx]


� [hx]

�
m[hxx]

�
jk + [fx0y]

i
�[gx]


m[hxx]

�
jk

+[fx0x0 ]
i
��[hx]

�
m[hxx]

�
jk + [fx0x]

i
�m[hxx]

�
jk + [fx0 ]

i
�[hxxx]

�
jkm

+[fxy0y0 ]
i
j�[gx]

�
� [hx]

�
m[gx]


� [hx]

�
k + [fxy0y]

i
j�[gx]

�
m[gx]


� [hx]

�
k

+[fxy0x0 ]
i
j� [hx]

�
m[gx]


� [hx]

�
k + [fxy0x]

i
jm[gx]


� [hx]

�
k

+[fxy0 ]
i
j

�
[gxx]


�� [hx]

�
m[hx]

�
k + [gx]


� [hxx]

�
km

�
+[fxyy0 ]

i
j�[gx]

�
� [hx]

�
m[gx]


k + [fxyy]

i
j�[gx]

�
m[gx]


k

+[fxyx0 ]
i
j� [hx]

�
m[gx]


k + [fxyx]

i
jm[gx]


k + [fxy]

i
j[gxx]


km

+[fxx0y0 ]
i
j��[gx]

�
� [hx]

�
m[hx]

�
k + [fxx0y]

i
j��[gx]

�
m[hx]

�
k

+[fxx0x0 ]
i
j�� [hx]

�
m[hx]

�
k + [fxx0x]

i
j�m[hx]

�
k + [fxx0 ]

i
j�[hxx]

�
km +

+[fxxy0 ]
i
jk�[gx]

�
� [hx]

�
m + [fxxy]

i
jk�[gx]

�
m + [fxxx0 ]

i
jk� [hx]

�
m + [fxxx]

i
jkm

= 0;

where i = 1; : : : ; n, j; k; �; �; �;m = 1; : : : ; nx, and �; ; � = 1; : : : ; ny: Note that this is a

linear system of equations in gxxx(x; 0) and hxxx(x; 0) and, provided the solvability conditions

in Jin and Judd (2002) are met, it has a unique solution.
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Similarly, g�xx(x; 0) and h�xx(x; 0) can be obtained from the solution to the system

[F�xx(x; 0)]
i
jm = [fy0 ]

i
�[gx]

�
� [h�xx]

�
jm + [fy0 ]

i
�[g�xx]

�
� [hx]

�
m[hx]


j + [fy]

i
�[g�xx]

�
jm + [fx0 ]

i
�[h�xx]

�
jm

= 0;

where i = 1; : : : ; n, j; �; �;m = 1; : : : ; nx, �;  = 1; : : : ; ny, and terms whose conditional

expectation is zero have been dropped to save space. Note that this is a homogeneous system

whose solution, if it exists, is g�xx = h�xx = 0. It follows that gx�x = hx�x = gxx� = hxx� = 0,

as well.

Consider now gx��(x; 0) and hx��(x; 0). Again, these terms can be obtained from the

solution to the system

[Fx��(x; 0)]
i
jm = [fy0y0y0 ]

i
�#[gx]

#
� [�]

�
& [gx]


� [�]

�
�[I]

�
& [gx]

�
� [Hx]

�
j

+[fy0y0x0 ]
i
��� [�]

�
& [gx]


� [�]

�
�[I]

�
& [gx]

�
� [Hx]

�
j

+[fy0y0 ]
i
�

�
[gx]


� [h��]

�[gx]
�
� [Hx]

�
j + [gxx]


�� [�]

�
& [�]

�
�[I]

�
& [gx]

�
� [Hx]

�
j

�
+[fy0y0 ]

i
�

�
[gx]


� [�]

�
�[gxx]

�
�� [�]

�
& [I]

�
& [Hx]

�
j + [g��]

�[gx]
�
�

�
+[fy0y]

i
�[g��]

[gx]
�
� [Hx]

�
j

+[fy0x0 ]
i
��[h��]

�[gx]
�
� [Hx]

�
j

+[fy0x0y0 ]
i
��#[gx]

#
� [�]

�
& [�]

�
�[I]

�
& [gx]

�
� [Hx]

�
j

+[fy0x0x0 ]
i
��� [�]

�
& [�]

�
�[I]

�
& [gx]

�
� [Hx]

�
j

+[fy0x0 ]
i
��[�]

�
�[gxx]

�
�� [�]

�
& [I]

�
& [Hx]

�
j

+[fy0y0 ]
i
�[gx]


� [�]

�
�[gxx]

�
�� [�]

�
& [I]

�
& [Hx]

�
j

+[fy0x0 ]
i
��[�]

�
�[gxx]

�
�� [�]

�
& [I]

�
& [Hx]

�
j

+[fy0 ]
i
�

�
[gxx]

�
�� [h��]

� [Hx]
�
j + [gxxx]

�
��� [�]

�
& [�]

�
& [I]

�
& [Hx]

�
j

�
+[fy0 ]

i
�

�
[gx��]

�
� [Hx]

�
j + [gx]

�
� [Hx��]

�
j

�
+[fyy0y0 ]

i
�#[gx]

#
� [�]

�
& [gx]


� [�]

�
�[I]

�
& [gx]

�
j

+[fyy0x0 ]
i
��� [�]

�
& [gx]


� [�]

�
�[I]

�
& [gx]

�
j

+[fyy0 ]
i
�

�
[gx]


� [h��]

�[gx]
�
j + [gxx]


�� [�]

�
& [�]

�
�[I]

�
& [gx]

�
j + [g��]

�[gx]
�
j

�
+[fyy]

i
�[g��]

[gx]
�
j

+[fyx0y0 ]
i
��#[gx]

#
� [�]

�
& [�]

�
�[I]

�
& [gx]

�
j

+[fyx0x0 ]
i
��� [�]

�
& [�]

�
�[I]

�
& [gx]

�
j

+[fyx0 ]
i
��[h��]

�[gx]
�
j

+[fy]
i
�[gx��]

�
j
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+[fx0y0y0 ]
i
�#[gx]

#
� [�]

�
& [gx]


� [�]

�
�[I]

�
& [Hx]

�
j

+[fx0y0x0 ]
i
�� [�]

�
& [gx]


� [�]

�
�[I]

�
& [Hx]

�
j

+[fx0y0 ]
i
�

�
[gx]


� [h��]

�[Hx]
�
j + [gxx]


�� [�]

�
& [�]

�
�[I]

�
& [Hx]

�
j + [g��]

�[Hx]
�
j

�
+[fx0y]

i
�[g��]

[Hx]
�
j

+[fx0x0y0 ]
i
��#[gx]

#
� [�]

�
& �]

�
�[I]

�
& [Hx]

�
j

+[fx0x0x0 ]
i
��� [�]

�
& �]

�
�[I]

�
& [Hx]

�
j

+[fx0x0 ]
i
��[h��]

�[Hx]
�
j

+[fx0 ]
i
�[Hx��]

�
j

= 0;

where i = 1; : : : ; n, j; �; � = 1; : : : ; nx, �;  = 1; : : : ; ny, and terms whose conditional expec-

tation is zero have been dropped to save space.

Finally, g���(x; 0) and h���(x; 0) can be obtained from the solution to the system

[F���(x; 0)]
i
j = [fy0y0y0 ]

i
�#[gx]

#
� [�]

�
& [gx]


� [�]

�
�[gx]

�
� [�]

�
�[S]

&
��

+[fy0y0x0 ]
i
��� [�]

�
& [gx]


� [�]

�
�[gx]

�
� [�]

�
�[S]

&
��

+[fy0y0 ]
i
�

�
[gxx]


�� [�]

�
& [�]

�
�[gx]

�
� [�]

�
�[S]

&
�� + [gx]


� [�]

�
�[gxx]

�
��[�]

�
�[�]
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= 0

where i = 1; : : : ; n, j; k; �; �; �;m = 1; : : : ; nx, and �; ; � = 1; : : : ; ny, and terms whose

conditional expectation is zero have been dropped to save space. In the especial case where

all elements along the of S are zero, meaning that the distributions of all structural shocks

are symmetric, then the system above is homogeneous and the solution if it exists, is g��� =

h��� = 0. More generally, however, when the distribution of shock is skewed, then solution

to the system will deliver non-zero coe�cients.

A.2 MATLAB Codes

MATLAB codes to compute the coe�cients of the third-order polynomial approximation to

the policy rules are available from myWeb site (www.cireq.umontreal.ca/personnel/ruge.html).

These codes are general in that they may be adapted to any DSGE model and are compat-

ible with those written by Stephanie Schmitt-Groh�e and Martin Uribe for a second-order

approximation. Note that their codes are used to produced the �rst- and second-order terms

used as input for my third-order approximation.

[29]



B Notes to Tables

Notes to Table 1: Mean is the average of the estimated parameter values; A.S.E. is the median

asymptotic standard error; Median and S.D. are, respectively, the median and standard

deviation of the empirical parameter distribution; Size is the empirical size of the t test, O.I.

is the empirical size of the chi-square test of the overidenti�cation restrictions, and S.E. is

the standard error of the empirical test size.

Notes to Table 2: See notes to Table 1.

Notes to Table 3: See notes to Table 1.

Notes to Table 4: See notes to Table 1.

Notes to Table 5: See notes to Table 1.

Notes to Table 6: See notes to Table 1.

Notes to Table 7: See notes to Table 1.

Notes to Table 8: The superscripts � and y denote the rejection of the null hypothesis of
a unit root at the �ve and ten percent signi�cance levels respectively. The alternative is a

stationary autoregression with a constant term.

Notes to Table 9: The superscripts � and y denote statistical signi�cance at the �ve and
ten percent signi�cance levels respectively. The location parameter of the Skew normal

distribution was �xed to zero.

Notes to Table 10: The medians predicted by the model were computed using simulated

samples of 5000 observations.

Notes to Table 11: The moments of the U.S. data were computed using quarterly observation

for the period 1959:Q2 to 2010:Q2. The moments predicted by the model were computed

using simulated samples of 5000 observations. The superscript � denotes the rejection of the
null hypothesis of Normality at the �ve percent signi�cance level.
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Table 1. Basic Model

� = 0:95 � = 0:85 � = 0:04  = 1; 2; 5
Mean Median Mean Median Mean Median Mean Median
A.S.E. S.D. A.S.E. S.D. A.S.E. S.D. A.S.E. S.D. O.I.
Size S.E. Size S.E. Size S.E. Size S.E. S.E.

 = 1; � = 5
0:9498 0:9502 0:8307 0:8355 0:0400 0:0399 1:0103 1:0080
0:0103 0:0084 0:0252 0:0369 0:0027 0:0031 0:0553 0:0400 0:0050
0:0250 0:0110 0:1900 0:0277 0:0950 0:0207 0:0100 0:0070 0:0050

 = 1; � = 10
0:9477 0:9499 0:8315 0:8358 0:0386 0:0386 0:9892 0:9888
0:0112 0:0086 0:0253 0:0402 0:0025 0:0026 0:0544 0:0389 0:0150
0:0250 0:0110 0:2000 0:0283 0:0900 0:0202 0:0150 0:0086 0:0086

 = 1; � = 20
0:9474 0:9499 0:8284 0:8324 0:0395 0:0385 0:9835 0:9849
0:0104 0:0084 0:0252 0:0399 0:0024 0:0029 0:0528 0:0384 0:0050
0:0200 0:0099 0:2100 0:0288 0:1750 0:0269 0:0550 0:0161 0:0050

 = 2; � = 5
0:9490 0:9501 0:8339 0:8405 0:0396 0:0394 2:0028 2:0023
0:0134 0:0079 0:0302 0:0317 0:0032 0:0040 0:1414 0:0619 0:0150
0:0100 0:0070 0:0900 0:0202 0:1100 0:0221 0:0000 0:0000 0:0086

 = 2; � = 10
0:9494 0:9501 0:8377 0:8399 0:0381 0:0383 1:9942 1:9939
0:0143 0:0073 0:0305 0:0339 0:0031 0:0032 0:1448 0:0614 0:0200
0:0000 0:0000 0:0700 0:0180 0:1350 0:0242 0:0000 0:0000 0:0099

 = 2; � = 20
0:9473 0:9500 0:8288 0:8343 0:0379 0:0379 1:9802 1:9857
0:0140 0:0078 0:0303 0:0374 0:0030 0:0034 0:1404 0:0647 0:0150
0:0100 0:0070 0:1350 0:0242 0:2000 0:0283 0:0000 0:0000 0:0086

 = 5; � = 5
0:9489 0:9502 0:8330 0:8386 0:0382 0:0378 4:9945 4:9901
0:0183 0:0101 0:0493 0:0401 0:0044 0:0041 0:4309 0:2405 0:0200
0:0150 0:0086 0:0700 0:0180 0:0950 0:0207 0:0100 0:0070 0:0099

 = 5; � = 10
0:9511 0:9503 0:8395 0:8394 0:0368 0:0367 5:0175 4:9825
0:0160 0:0115 0:0428 0:0423 0:0037 0:0041 0:3789 0:2785 0:0050
0:0100 0:0070 0:0850 0:0197 0:2050 0:0285 0:0000 0:0000 0:0050

 = 5; � = 20
0:9516 0:9503 0:8425 0:8422 0:0366 0:0365 5:0452 5:0098
0:0161 0:0110 0:0420 0:0419 0:0038 0:0037 0:3890 0:2665 0:0050
0:0100 0:0070 0:0750 0:0186 0:1700 0:0266 0:0050 0:0050 0:0050
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Table 2. Habit Formation

� = 0:95 � = 0:85 � = 0:04  = 1; 2; 5 a = 0:8
Mean Median Mean Median Mean Median Mean Median Mean Median
A.S.E. S.D. A.S.E. S.D. A.S.E. S.D. A.S.E. S.D. A.S.E. S.D. O.I.
Size S.E. Size S.E. Size S.E. Size S.E. Size S.E. S.E.

 = 1; � = 5
0:9484 0:9500 0:8325 0:8353 0:0393 0:0390 1:0474 1:0463 0:7360 0:7667
0:0140 0:0059 0:0261 0:0304 0:0039 0:0041 0:1647 0:1723 0:1070 0:1365 0:0050
0:0000 0:0000 0:1150 0:0226 0:0600 0:0168 0:0300 0:0121 0:0150 0:0086 0:0050

 = 1; � = 10
0:9475 0:9499 0:8304 0:8373 0:0384 0:0375 1:0119 1:0124 0:7642 0:7886
0:0118 0:0060 0:0257 0:0368 0:0038 0:0043 0:1321 0:1554 0:0791 0:1072 0:0050
0:0000 0:0000 0:1400 0:0245 0:1100 0:0221 0:0300 0:0121 0:0250 0:0110 0:0050

 = 1; � = 20
0:9470 0:9498 0:8302 0:8378 0:0392 0:0390 0:9905 0:9880 0:7696 0:7990
0:0115 0:0053 0:0262 0:0334 0:0038 0:0044 0:1370 0:1757 0:0746 0:1219 0:0000
0:0000 0:0000 0:1450 0:0249 0:1200 0:0230 0:0300 0:0121 0:0300 0:0121 0:0000

 = 2; � = 5
0:9463 0:9501 0:8310 0:8419 0:0390 0:0387 2:0466 2:0472 0:7609 0:7869
0:0182 0:0102 0:0470 0:0358 0:0062 0:0056 0:1744 0:2342 0:0646 0:0964 0:0050
0:0250 0:0110 0:0650 0:0174 0:0650 0:0174 0:1000 0:0212 0:1150 0:0226 0:0050

 = 2; � = 10
0:9475 0:9501 0:8319 0:8395 0:0373 0:0365 1:9748 1:9742 0:7886 0:8005
0:0160 0:0076 0:0437 0:0319 0:0058 0:0049 0:1761 0:1958 0:0479 0:0753 0:0050
0:0000 0:0000 0:0200 0:0099 0:1000 0:0212 0:0350 0:0130 0:0750 0:0186 0:0050

 = 2; � = 20
0:9473 0:9500 0:8336 0:8416 0:0379 0:0378 1:9938 2:0065 0:7833 0:7921
0:0151 0:0082 0:0415 0:0336 0:0058 0:0051 0:1736 0:2099 0:0482 0:0717 0:0100
0:0300 0:0121 0:0700 0:0180 0:1000 0:0212 0:0400 0:0139 0:1050 0:0217 0:0070

 = 5; � = 5
0:9475 0:9501 0:8384 0:8454 0:0383 0:0385 5:0675 5:1183 0:7800 0:7859
0:0208 0:0119 0:0601 0:0365 0:0073 0:0058 0:4770 0:3804 0:0453 0:0644 0:0000
0:0350 0:0130 0:0350 0:0130 0:0500 0:0154 0:0200 0:0099 0:1000 0:0212 0:0000

 = 5; � = 10
0:9480 0:9500 0:8388 0:8468 0:0368 0:0363 5:0049 5:0214 0:7892 0:7962
0:0172 0:0114 0:0499 0:0395 0:0062 0:0059 0:5000 0:3296 0:0344 0:0599 0:0050
0:0050 0:0050 0:0100 0:0070 0:1150 0:0226 0:0250 0:0110 0:1650 0:0262 0:0050

 = 5; � = 20
0:9484 0:9501 0:8403 0:8470 0:0368 0:0364 4:9848 4:9847 0:7928 0:7986
0:0171 0:0108 0:0500 0:0355 0:0063 0:0052 0:5062 0:3335 0:0355 0:0559 0:0050
0:0100 0:0070 0:0150 0:0086 0:0850 0:0197 0:0200 0:0099 0:1600 0:0259 0:0050
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Table 3. Habit Formation and High Variance

� = 0:95 � = :85 � = 0:08  = 1; 2; 5 a = 0:8
Mean Median Mean Median Mean Median Mean Median Mean Median
A.S.E. S.D. A.S.E. S.D. A.S.E. S.D. A.S.E. S.D. A.S.E. S.D. O.I.
Size S.E. Size S.E. Size S.E. Size S.E. Size S.E. S.E.

 = 1; � = 5
0:9484 0:9500 0:8340 0:8370 0:0789 0:0786 1:0414 1:0474 0:7320 0:7795
0:0147 0:0063 0:0269 0:0331 0:0080 0:0092 0:1678 0:1977 0:1051 0:1628 0:0100
0:0000 0:0000 0:1250 0:0234 0:0900 0:0202 0:0450 0:0147 0:0300 0:0121 0:0070

 = 1; � = 10
0:9475 0:9499 0:8331 0:8387 0:0776 0:0768 1:0077 1:0078 0:7635 0:7898
0:0119 0:0049 0:0258 0:0315 0:0078 0:0090 0:1288 0:1633 0:0776 0:1211 0:0150
0:0000 0:0000 0:1050 0:0217 0:1100 0:0221 0:0450 0:0147 0:0450 0:0147 0:0086

 = 1; � = 20
0:9478 0:9499 0:8284 0:8332 0:0767 0:0762 0:9958 0:9919 0:7746 0:7920
0:0115 0:0047 0:0254 0:0332 0:0075 0:0085 0:1280 0:1387 0:0719 0:0916 0:0000
0:0000 0:0000 0:1500 0:0252 0:1250 0:0234 0:0150 0:0086 0:0200 0:0099 0:0000

 = 2; � = 5
0:9470 0:9500 0:8334 0:8426 0:0784 0:0769 2:0420 2:0561 0:7702 0:7877
0:0184 0:0097 0:0473 0:0352 0:0124 0:0109 0:1708 0:2290 0:0640 0:0879 0:0000
0:0150 0:0086 0:0400 0:0139 0:0450 0:0147 0:0800 0:0192 0:1050 0:0217 0:0000

 = 2; � = 10
0:9480 0:9501 0:8371 0:8428 0:0756 0:0745 1:9698 1:9781 0:7926 0:8023
0:0157 0:0085 0:0425 0:0313 0:0116 0:0094 0:1779 0:2102 0:0468 0:0749 0:0100
0:0100 0:0070 0:0350 0:0130 0:0750 0:0186 0:0600 0:0168 0:1050 0:0217 0:0070

 = 2; � = 20
0:9498 0:9502 0:8404 0:8446 0:0741 0:0731 1:9902 2:0035 0:7906 0:7995
0:0161 0:0029 0:0430 0:0180 0:0113 0:0113 0:1758 0:2206 0:0467 0:0648 0:0000
0:0100 0:0070 0:0100 0:0070 0:1450 0:0249 0:0550 0:0161 0:0450 0:0147 0:0000

 = 5; � = 5
0:9507 0:9501 0:8491 0:8484 0:0753 0:0751 5:1258 5:1496 0:7828 0:7871
0:0224 0:0046 0:0629 0:0149 0:0153 0:0132 0:5427 0:5297 0:0480 0:0675 0:0250
0:0000 0:0000 0:0050 0:0050 0:0500 0:0154 0:0150 0:0086 0:0000 0:0000 0:0110

 = 5; � = 10
0:9507 0:9501 0:8493 0:8484 0:0708 0:0700 5:0637 5:0721 0:7892 0:7919
0:0177 0:0054 0:0520 0:0179 0:0129 0:0109 0:5538 0:4670 0:0375 0:0579 0:0100
0:0100 0:0070 0:0150 0:0086 0:1050 0:0217 0:0350 0:0130 0:0450 0:0147 0:0070

 = 5; � = 20
0:9505 0:9501 0:8482 0:8490 0:0711 0:0711 5:0593 5:0410 0:7890 0:7913
0:0177 0:0047 0:0507 0:0176 0:0126 0:0137 0:5593 0:4913 0:0379 0:0612 0:0150
0:0050 0:0050 0:0050 0:0050 0:1550 0:0256 0:0150 0:0086 0:0350 0:0130 0:0086
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Table 4. Diagonal Weighting Matrix

� = 0:95 � = :85 � = 0:04  = 1; 2; 5
Mean Median Mean Median Mean Median Mean Median
A.S.E. S.D. A.S.E. S.D. A.S.E. S.D. A.S.E. S.D.
Size S.E. Size S.E. Size S.E. Size S.E.

 = 1; � = 5
0:9507 0:9506 0:8247 0:8325 0:0394 0:0390 0:9699 0:9912
0:0145 0:0105 0:0328 0:0753 0:0054 0:0050 0:1394 0:1340
0:0500 0:0154 0:1800 0:0272 0:0350 0:0130 0:0150 0:0086

 = 1; � = 10
0:9498 0:9501 0:8299 0:8444 0:0373 0:0373 0:9624 0:9863
0:0166 0:088 0:0362 0:0662 0:0055 0:0050 0:1408 0:1269
0:0200 0:0099 0:1650 0:0262 0:0800 0:0192 0:0100 0:0070

 = 1; � = 20
0:9486 0:9501 0:8293 0:8378 0:0380 0:0381 0:9634 0:9820
0:0164 0:0120 0:0341 0:0574 0:0054 0:0046 0:1385 0:1143
0:0550 0:0161 0:1550 0:0256 0:01550 0:0256 0:0050 0:0050

 = 2; � = 5
0:9510 0:9505 0:8319 0:8343 0:0394 0:0394 1:9706 1:9897
0:0197 0:0044 0:0377 0:0343 0:0062 0:0048 0:1787 0:0963
0:0200 0:0099 0:0550 0:0161 0:0550 0:0161 0:0050 0:0050

 = 2; � = 10
0:9504 0:9502 0:8398 0:8437 0:0374 0:0372 1:9655 1:9804
0:0228 0:0036 0:0405 0:0347 0:0063 0:0044 0:1720 0:0883
0:0100 0:0070 0:0350 0:0130 0:0350 0:0130 0:0050 0:0050

 = 2; � = 20
0:9503 0:9502 0:8387 0:8430 0:0376 0:0374 1:9613 1:9735
0:0219 0:0025 0:0394 0:0312 0:0061 0:0048 0:1660 0:0881
0:0050 0:0050 0:0200 0:0099 0:0800 0:0192 0:0050 0:0050

 = 5; � = 5
0:9503 0:9500 0:8364 0:8498 0:0391 0:0386 4:9465 4:9974
0:0230 0:0008 0:0552 0:0291 0:0060 0:0061 0:4684 0:1770
0:0000 0:0000 0:0000 0:0000 0:0650 0:0174 0:0050 0:0050

 = 5; � = 10
0:9502 0:9500 0:8410 0:8499 0:0374 0:0371 4:9314 4:9619
0:0224 0:0007 0:0500 0:0253 0:0052 0:0053 0:4419 0:1719
0:0000 0:0000 0:0000 0:0000 0:1200 0:0230 0:0000 0:0000

 = 5; � = 20
0:9502 0:9500 0:8392 0:8500 0:0375 0:0369 4:9386 4:9643
0:0218 0:0006 0:0496 0:0231 0:0051 0:0056 0:4363 0:1557
0:0000 0:0000 0:0000 0:0000 0:1050 0:0217 0:0000 0:0000
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Table 5. Identity Weighting Matrix

� = 0:95 � = :85 � = 0:04  = 1; 2; 5
Mean Median Mean Median Mean Median Mean Median
A.S.E. S.D. A.S.E. S.D. A.S.E. S.D. A.S.E. S.D.
Size S.E. Size S.E. Size S.E. Size S.E.

 = 1; � = 5
0:9519 0:9510 0:8188 0:8284 0:0387 0:0385 0:9550 0:9822
0:0138 0:0125 0:0332 0:0711 0:0050 0:0055 0:1425 0:1578
0:0550 0:0161 0:1400 0:0245 0:0950 0:0207 0:0250 0:0110

 = 1; � = 10
0:9514 0:9505 0:8287 0:8389 0:0361 0:0364 0:9513 0:9801
0:0156 0:0102 0:0336 0:0675 0:0049 0:0046 0:1366 0:1369
0:0300 0:0121 0:1650 0:0262 0:1250 0:0234 0:0150 0:0086

 = 1; � = 20
0:9521 0:9503 0:8348 0:8472 0:0367 0:0368 0:9405 0:9782
0:0150 0:0120 0:0329 0:0623 0:0048 0:0047 0:1361 0:1338
0:0750 0:0186 0:1600 0:0259 0:1100 0:0221 0:0100 0:0070

 = 2; � = 5
0:9503 0:9504 0:8336 0:8363 0:0396 0:0393 1:9937 2:0044
0:0207 0:0008 0:0396 0:0302 0:0065 0:0047 0:1759 0:0772
0:0000 0:0000 0:0100 0:0070 0:0400 0:0139 0:0000 0:0000

 = 2; � = 10
0:9500 0:9501 0:8413 0:8455 0:0379 0:0374 1:9774 1:9901
0:0242 0:0009 0:0434 0:0341 0:0068 0:0040 0:1691 0:0806
0:0000 0:0000 0:0100 0:0070 0:0400 0:0139 0:0000 0:0000

 = 2; � = 20
0:9501 0:9502 0:8367 0:8401 0:0373 0:0373 1:9636 1:9849
0:0232 0:0008 0:0427 0:0341 0:0065 0:0043 0:1678 0:0980
0:0000 0:0000 0:0250 0:0110 0:0650 0:0174 0:0050 0:0050

 = 5; � = 5
0:9500 0:9500 0:8483 0:8500 0:0370 0:0370 5:1125 5:0029
0:0343 0:0003 0:0792 0:0159 0:0092 0:0066 0:5526 0:2706
0:0000 0:0000 0:0000 0:0000 0:0350 0:0130 0:0000 0:0000

 = 5; � = 10
0:9499 0:9500 0:8514 0:8500 0:0366 0:0368 5:0366 5:0000
0:0353 0:0003 0:0755 0:0145 0:0090 0:0066 0:5003 0:2513
0:0000 0:0000 0:0000 0:0000 0:0600 0:0168 0:0100 0:0070

 = 5; � = 20
0:9499 0:9500 0:8516 0:8500 0:0368 0:0372 5:0333 5:0000
0:0340 0:0003 0:0734 0:0112 0:0088 0:0056 0:4869 0:2151
0:0000 0:0000 0:0000 0:0000 0:0200 0:0099 0:0000 0:0000
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Table 6. Third-Order Approximation

� = 0:95 � = 0:85 � = 0:04  = 1; 2; 5
Mean Median Mean Median Mean Median Mean Median
A.S.E. S.D. A.S.E. S.D. A.S.E. S.D. A.S.E. S.D. O.I.
Size S.E. Size S.E. Size S.E. Size S.E. S.E.

 = 1; � = 5
0:9495 0:9503 0:8249 0:8256 0:0399 0:0396 1:0014 0:9987
0:0108 0:0072 0:0263 0:0385 0:0027 0:0032 0:0568 0:0408 0:0250
0:0150 0:0086 0:2250 0:0295 0:0900 0:0202 0:0350 0:0130 0:0110

 = 1; � = 10
0:9487 0:9500 0:8290 0:8352 0:0381 0:0380 0:9922 0:9950
0:0111 0:0049 0:0260 0:0392 0:0025 0:0029 0:0547 0:0309 0:0150
0:0150 0:0086 0:2000 0:0283 0:1950 0:0280 0:0250 0:0110 0:0086

 = 1; � = 20
0:9484 0:9501 0:0860 0:8310 0:0379 0:0380 0:9903 0:9937
0:0109 0:0058 0:0254 0:0416 0:0025 0:0031 0:0561 0:0332 0:0250
0:0150 0:0086 0:2300 0:0298 0:2300 0:0298 0:0200 0:0099 0:0110

 = 2; � = 5
0:9500 0:9503 0:8325 0:8336 0:0392 0:0394 2:0054 2:0015
0:0142 0:0021 0:0303 0:0287 0:0032 0:0039 0:1468 0:0477 0:0400
0:0000 0:0000 0:0500 0:0154 0:1500 0:0252 0:0000 0:0000 0:0139

 = 2; � = 10
0:9498 0:9501 0:8358 0:8399 0:0379 0:0374 1:9928 1:9920
0:0143 0:0031 0:0307 0:0279 0:0031 0:0035 0:1451 0:0472 0:0200
0:0000 0:0000 0:0650 0:0174 0:1550 0:0256 0:0000 0:0000 0:0099

 = 2; � = 20
0:9497 0:9501 0:8351 0:8412 0:0373 0:0373 1:9970 1:9990
0:0138 0:0030 0:0302 0:0315 0:0030 0:0038 0:1431 0:0484 0:0100
0:0100 0:0070 0:0650 0:0174 0:2400 0:0302 0:0000 0:0000 0:0070

 = 5; � = 5
0:9499 0:9502 0:8368 0:8408 0:0393 0:0392 4:9797 4:9838
0:0184 0:0061 0:0491 0:0272 0:0045 0:0042 0:4409 0:1635 0:0250
0:0100 0:0070 0:0150 0:0086 0:0800 0:0192 0:0000 0:0000 0:0110

 = 5; � = 10
0:9503 0:9502 0:8426 0:8449 0:0374 0:0372 5:0083 4:9976
0:0164 0:0026 0:0423 0:0210 0:0038 0:0042 0:3097 0:1175 0:0150
0:0050 0:0050 0:0050 0:0050 0:1450 0:0249 0:0000 0:0000 0:0086

 = 5; � = 20
0:9507 0:9502 0:8430 0:8439 0:0368 0:0365 5:0350 5:0128
0:0161 0:0045 0:0429 0:0244 0:0037 0:0040 0:3869 0:1833 0:0250
0:0050 0:0050 0:0150 0:0086 0:1700 0:0266 0:0000 0:0000 0:0110

[36]



Table 7. Incorporationg Priors

� = 0:95 � = 0:85 � = 0:04  = 1; 2; 5
Mean Median Mean Median Mean Median Mean Median
A.S.E. S.D. A.S.E. S.D. A.S.E. S.D. A.S.E. S.D. O.I.
Size S.E. Size S.E. Size S.E. Size S.E. S.E.

 = 1; � = 5
0:9504 0:9500 0:8497 0:8497 0:0381 0:0383 1:000 1:000
0:0021 0:0017 0:0024 0:0005 0:0021 0:0047 0:0024 0:0003 0:2450
0:0300 0:0121 0:0000 0:0000 0:3900 0:0345 0:0000 0:0000 0:0304

 = 1; � = 10
0:9505 0:9504 0:8497 0:8498 0:0367 0:0370 0:9999 1:0000
0:0020 0:0016 0:0023 0:0005 0:0019 0:0042 0:0024 0:0002 0:2150
0:0250 0:0110 0:0000 0:0000 0:4350 0:0351 0:0000 0:0000 0:0290

 = 1; � = 20
0:9507 0:9506 0:8497 0:8497 0:0362 0:0368 0:9999 0:9999
0:0020 0:0018 0:0023 0:0005 0:0019 0:0048 0:0023 0:0003 0:2300
0:0450 0:0147 0:0000 0:0000 0:4500 0:0352 0:0000 0:0000 0:0298

 = 2; � = 5
0:9507 0:9505 0:8496 0:8496 0:0383 0:0387 2:0000 2:0000
0:0021 0:0018 0:0024 0:0007 0:0021 0:0052 0:0024 0:0001 0:2600
0:0500 0:0154 0:0000 0:0000 0:3250 0:0331 0:0000 0:0000 0:0310

 = 2; � = 10
0:9508 0:9505 0:8497 0:8498 0:0370 0:0375 2:0000 2:0000
0:0020 0:0018 0:0023 0:0007 0:0019 0:0041 0:0023 0:0001 0:1950
0:0500 0:0154 0:0000 0:0000 0:4350 0:0351 0:0000 0:0000 0:0280

 = 2; � = 20
0:9509 0:9507 0:8495 0:8496 0:0362 0:0365 2:0000 2:0000
0:0020 0:0016 0:0023 0:0006 0:0018 0:0046 0:0023 0:0001 0:1850
0:0400 0:0139 0:0000 0:0000 0:5100 0:0353 0:0000 0:0000 0:0275

 = 5; � = 5
0:9507 0:9506 0:8494 0:8494 0:0376 0:0378 5:0000 5:0000
0:0019 0:0020 0:0024 0:0008 0:0021 0:0045 0:0024 0:0001 0:2150
0:0550 0:0161 0:0000 0:0000 0:3800 0:0343 0:0000 0:0000 0:0290

 = 5; � = 10
0:9509 0:9508 0:8494 0:8495 0:0365 0:0368 5:0000 5:0000
0:0018 0:0015 0:0023 0:0008 0:0019 0:0040 0:0023 0:0001 0:1900
0:0600 0:0168 0:0000 0:0000 0:4600 0:0352 0:0000 0:0000 0:0277

 = 5; � = 20
0:9506 0:9506 0:8496 0:8497 0:0366 0:0371 5:0000 5:0000
0:0018 0:0016 0:002 0:0008 0:0019 0:0043 0:0023 0:0001 0:1400
0:0450 0:0147 0:0000 0:0000 0:4450 0:0351 0:0000 0:0000 0:0245

[37]



Table 8. Unit-Root Tests

Test statistic
ADF

Variable t tests MIC PP

Growth rate of consumption �4:886� �4:904� �9:354�
Growth rate of investment �5:731� �5:104� �5:304�
Hours worked �2:532 �2:637y �3:402�

[38]



Table 9. SMM Estimates

Distribution
Description Normal Rayleigh Skew Normal

Discount factor 0:9955� 0:9942� 0:9972�

(0:0227) (0:0073) (0:0061)
Consumption curvature 1:4225y 1:0353� 0:9951

(0:7780) (0:2167) (1:2680)
Autoregressive coe�cient 0:9842� 0:9952� 0:9510�

(0:0117) (0:0082) (0:1024)
Standard deviation 0:0062� � �

(0:0015)
Rayleigh parameter � 0:0089� �

(0:0022)
Shape parameter � � 0:0066

(0:0053)
Slope parameter � � �0:9810�

(0:0607)

Skewness 0 �0:6311 �0:8539
Value of function at the minimum 49:19 4:63 4:06

[39]



Table 10. Median Deviation from Deterministic Steady State

Distribution
Variable Normal Rayleigh Skew Normal

Consumption �1:069 �1:095 0:168
Investment �1:297 �1:197 0:291
Capital stock �1:393 �1:034 0:278
Hours worked 0:409 0:081 0:063

[40]



Table 11. Implications for Higher-Order Moments

Distribution
Variable U.S. Data Normal Rayleigh Skew Normal

Standard Deviation
Growth rate of consumption 0:565 0:321 0:406 0:176
Growth rate of investment 2:243 2:183 2:097 2:239
Hours worked 1:541 1:570 1:387 1:511

Skewness
Growth rate of consumption �0:574 �0:267 �0:557 �0:632
Growth rate of investment �0:572 �0:357 �0:584 �0:726
Hours worked �0:475 �0:218 �0:245 �0:277

Kurtosis
Growth rate of consumption 5:644 2:845 3:045 3:309
Growth rate of investment 4:550 2:891 3:103 3:510
Hours worked 3:178 2:678 2:724 3:061

Jarque{Bera Test Statistic
Growth rate of consumption 68:33� 5:65 258:8� 352:6�

Growth rate of investment 5:99� 3:59 285:9� 493:0�

Hours worked 7:80� 61:44� 65:88� 64:67�

[41]
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Figure 1: Policy Rules Computed Using Different Polynomial Approximations
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Figure 2: Empirical Distributions (Basic Model)
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Figure 3: Empirical Distributions (Model with Habit Formation)
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Figure 4: Empirical Distributions (Model with Habit Formation and High Variance)
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Figure 5: Objective Functions
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Figure 6: Empirical Distributions (Diagonal Weighting Matrix)
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Figure 7: Empirical Distributions (Identity Weighting Matrix)
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Figure 8: Empirical Distributions (Third-Order Expansion)
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Figure 9: Empirical Distributions (Incorporating Priors)
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Figure 10: Computing Time
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Figure 11: Estimated Distributions
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Figure 12: Impulse Responses (Normal Innovations)
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Figure 13: Impulse Responses (Rayleigh Innovations)
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Figure 14: Impulse Responses (Skew Normal Innovations)


