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Abstract

The split core is a refinement of the core for sequencing games. The split core

arises from a generalization of the Equal Gain Splitting (EGS) rule that is intro-

duced by Curiel, Pederzoli and Tijs (1989). It is pointed out that the split core is

the convex hull of permutation based gain spitting allocations and the EGS allo-

cation is in the barycenter of the split core. Finally, an axiomatic characterization

of the split core is provided.
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1 Introduction

[n one-rnachine si~ctucncing situations each agent (player) has one job Lhat has to be

processed on a single machine. hach job is specified by its processing time, the tirne the

machine takes to handle the job. We assume that the cost of a player depends linearly

on the completion time of his job. Furthermore, there is an initial order on the jobs of

the agPnts heforP t.he processing of the machine starts.

Each group of agents (coalition) is allowed to obtain cost savings by rearranging

their jobs in a way that is admissible with respect to the initial order. An optimal

order of a coalition is an admissible rearrangement that maximizes the cost savings of

this coalition. By defining the worth of a coalition as the (maximum) cost savings a

coalition can make by an optimal rearrangement, we obtain a cooperative sequencing

game, related to the one machine sequencing situation. This game theoretic approach

has been taken in Curiel, Pederzoli and Tijs (1989). They introduced the equal gain

splitting (F;GS) rule on the class of sequencing situations. The EGS rule is ba.4ed on the

fact that the optirnal order of the grand coalition can be obtained from the initial order

by consecutive switching of neighbours. According to the EGS nile each agent obtains

half of the gains of all neighbour switches he is actually involved in to reach an optirnal

order. Note that the EGS rule is independent of the chosen optimal order and that the

gain of a neighbour switch is independent of the position of the neighbours in the queue.

It was shown that each EGS allocation is in the core oí the corresponding sequencing

game. Further, an axiomatic characterization of the EGS rule was provided. Curéel,

Potters, Rajendra Prassad, Tijs and Veltman (1993) showed that the EGS allocation

is the average of two marginal vectors of the corresponding sequencing game. Curiel,

Ilamers, Potters and Tijs(199,?~ presented an alternative characterization of the EGS

rule. Moreover, they introduced the head-tail core for sequencing games and showed that

the corresponding EGS allocation is in the barycenter of this core. They also showed

that the EGS rule can be regarded as a general nucleolus (Maschler, Potters and Tijs

(1992J).

This paper considers a generalization of the EGS rule. We study division rules for
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se,quencing situations where each player obtains an arbitrary non-negative part of the

gains of all neighbour switches he is actually involved in to reach the optimal order.

The union of all corresponding allocations is called the split core. Obviously, the GGS

allocation is an element of the split core. It is shown that the split core of a sequencing

situation is a subset of the core of the corresponding sequencing ganre. Further, it is

shown that the split core is the convex hull of so-called permutation based gain splitting

allocations and that the correspondiug EGS allocation is the average of these vectors.

Finally, it is shown that the split core is the largest set-va,lued solution concept satisfying

eHiciency, the durnmy property and a monotonicity condition.

2 Sequencing games

'1'his section recalls the definitions of a sequencing game and the LGS rule.

In a one machine sequencing situation there is a queue of agents, each with one job,

to be processed by one machine. The finite set of agents is denoted hy N-{1,...,n}.

The position of the agents in the queue is described by a bijection v: N--~ {1,...,n}.

Specifically, o(i) - j means that player i is in position j. We assume that there is an

initial order ao : N-~ {1,...,n} on the jobs of the players before the processing of the

machine starts. Z'he processing time p; of the job of player i is the time the machine takes

to handle this job. Further, it is assumed that every agent has an affine cost function

c; :[0, oo) --~ R defined by c;(t) - a;t -~ Ji; with ~; ~ 0„(3; E R. So c;(t) is the cost for

agent, i if hc has t units of tirnc in the system.

A seyuencing situation as described above is denoted by (N, vo, p, n), where N-

{1,..,n},ou : N -r {1,...,n},p - (p;);EN E (O,oo)" and ~ - (a;);EN E (O,oo)". The

vc~ctor ~i - (~i;);EN E R" is ornit.ted in the descript.ion of t.he seq~~ ~ncing situation sinm

Lhr fixed ~ us1.s it, rcprc~sents arc indepcndent of thc, posit.ions of f.he playc-rs in Lhe qucuc~.

'fhc set of predecessors (followers) of a player i E N w.r.t. a rearrangement Q is

defiued by P(v,i) - {7 ~ 0(7) C Q(t)} (F(a,r) -{7 ~ Q(7) ~ o(i)}).

If the processing order is given by a : N --~ {1,...,n} then the completion time of

player i is equal to C(a, i) -~~Epta,;l p~ t p;. The total costs cs(v) of a coalition S C N,
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is given bY cs(o) -~iES ai(C(a, a)) f Qi.

'I'he ( maximal) cost saviugs of a coalition S depend on the set of admissible rear-

rangements of this coalition. A bijection a: N~ {1,...,n} is called admissible for S if

P(oo,i) - P(v,i) for all i E N`S. This implies that the completion time in a of each

player outside the coalition S is equal to Iris completion time in the initial order. More-

over, players of S are not allowed to jump over players outside S. The set of admissible

rearrangements for a coalition S is denoted by Es.

A coopemtive game is a pair ( N, v) where N is a finite set of players and v is a mapping

v: 2N -~ R with v(g) - 0 and 2N denotes the collection of all subsets of N.

A game (N,v) is called convex if for all coalitions S,T E 2N and all i E N with

S C T C N`{i} it holds thaL

v(T U{i}) - v(T) ~ v(S U{i}} - v(S).

Cooperative game theory focuses on 'fair' and~or 'stable' division rules for the worth

v(N) of the grand coalition. A core element x -( x;);EN E RN is such that no coalition

has an incentive to split off, i.e.

~ x; - v(N) and x(S) 1 v(S) for all S E 2N.
iEN -

where x(S) -~;ES x;. The core C(v) consists of all core elements. A game is called

balanced if its core is non-empty.

Let (N, v) be a game and let IIN be the set of all permutations of N. Then the k- th

coordinate of the marginal vector mx(v), ~r E IIN, is defined by

mk(r') - t~({7 ~~(7) ~~(k)}) - v({J ~~(7) C a(k)}).

Siaapley ( 1971J and Ichiishi (1980J s}iowed that the marginal vectors are the extreme

points of the core if and only if thc game is convex. Siuce Lhe c:ore is a c:ouvex set we

have that the core of a convnx game is the convex hull of its marginals. Obviously, a

convex game is balanced.

Given a sequencing situation (N, oo, p, a) the worth of a coalition S of the corre-

sponding sequencing game(CurYel et al.(1989)J is defined as the maximal c.oet savings

the coalition can achieve by means of an admissible rearrangement. Formally,

v(S) - max{~(a;C(vo,i) ~ Q;) -~(a;C(a,i) f Q;)} (1)
oEEs iES iES
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A set S is called connected if for all i, j E S and k E N such that ao(i) c ao(k) C vo(j)

it holds that k E S. Curiel et al. (1989~ showed that expression ( 1) for any connected

coalition S is equivalent to

v(S) - ~ .9~„
~~IES:not~)C~otl)

where g;~ :- Inax{a~p; - c~;p„ 0} represents the gaiu attainable for playcr i aud j iu casc

player i is directly in front of player j. For a coalition T that is not connected it follows

that

v(T) - ~ v(S) (2)
SET`oo

where T`vo is the set of maximally connected components of T.

The Equal Gain Splitting (EGS) rule of a sequencing situation (N, Qo,p, ~) is defined

by
1 1

EGS~(N, ao, P, ~) -- ~ 9ti f- ~ 9t,~
2 ~:vo )~ao(; , 2 k:ou(~)coo(4

for all i E N. We note that t~e op~lmal order of a queue can be obtained from the

initial order by consecutive switches of neighbours i,j with g;~ 1 0 (cf. Smith (1956~~.

In the F,CS rule a player obtains half of the gains of all neighbour switches he is actually

involved in. Cu~iel et al. (1989J showed that sequencing games are convex games and

that the EGS rule assigns to each sequencing situation an allocation that is in the core

of the corresponding sequencing game.

Example 1 Let N- { 1, 2, 3}, vo(i) - i for all i E N, p-(2, 2, 1) and ~-(4, 6, 5).

It follows that g12 - g23 - 4 and g13 - 6. Then EGS~ (N, ao,p, a) - 2(4 -} 6) -

5, EGS2(N, vo, p, ~) - z (4 f 4) - 4 and EGS3(N, ao, p, a) - á (6 f 4) - 5.

3 The split core

'I'his sP.CLIOn introduces the split core corresponding to a sequencing situation. It is

shown that the core of a sequencing game contains the split core of the corresponding

sequencing situation as a subset. Further, we describe the extreme points of the split

core by introducing permutation based gain splitting allocations. It is shown that the

EGS allocation is in the barycenter of the corresponding split core. I'inally, the split

core is axiomatically characterized by efficiency, the dummy property and a form of

monotonicity.
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Generalizing the EGS rule we consider gain splitting ( GS) rules in which each player

obtains a non-negative part of the gain of all neighbour switches he is actually involved

in Lo reach t,he optimal order. 1'he total gain of a neighbour switch is divided arnong

bot.h players that áre involved. Formally, we define for all i E N and all a E A

GS~ (N,QO,P,~) - [J ~ijgij f ~ (1 - Aki)gki.

i-aoti)~ooti) k:ootk)~ootO

where A-{{a;j}i jEnri~j ~ 0 G a;j G 1}. Note that for each a E A wc possibly obtain

another allocation. Moreover, GSa(N, oo,p, n) - EGS(N, vo, p, ~) in ca.ve ai~ - 2 for

all i, j E{1,...,n},i ~ j.

Example 2 If we take a12 - á, ar~ - 3 and ~23 - 1 in the game of exarnple 1, Lhen

CS~ (N,QO,Ra) - 5,GS2(N,ao,P,~) - 5 and GS3(N,QO,P,~) - 4.

The split core of a sequencing situation (N, ao, p, a) is defined by

SPC(N,oo,P,~) - {GS~(N,ao,P,a) I ~ E A}.

First it is shown that the split core is a subset of the core.

Theorem 1 Let (N, oo, p, o) be a sequencing situation and let (N, v) be the correspond-

ing sequencing gavne. Then SPC(N, vo,p, a) C C, (v).

PROOF: Let ~ E A and let S be a connected set. Then

~GSi (N,QU,P,a) - [~~ ~ gij~ij f ~ gki(1 - ~ki)1
iES iES j:oot')Goot]) k:oo~k)Coo~i)

~ jJ~ L gij~ij ~ ~ gki(1 - ~ki)J
iES jE.S:ooti)Cooti) kES:notk)~oo~')

- ~ 9i; - v(S).
i.jES:ooti)Cootl)

In case S- N the inequality becomes an equality. Hence, GSa(N, oo, p, a) E C(v). o

For describing the extreme points of the split core we assign to each permutation r E Hrv

a vector a(r) E A in the following way. For all i,j E {1,...,n},i ~ j

0 if r(i) c T(j) (3)
~ij (T ) -

1 if r(i) ~ T(j)

Then for each sequencing situation (N, vo, p, a) the collection of permutation óased gain

splitting allocations is dcfincd by
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PBGS(N,~o,P,rr) -{GS~(')(N,QO,Ra) ~ r E HN}.

Let (N, vo, p, a) be a sequencing situation. Then the corresponding switching game

(N, w) is defined by

w(S) - ~ y;Í for all S C N.
iaES:vo(,)Gno(i)

With (N,v) the corresponding sequencing game we have that w(S) 1 v(S) if S is

disconnected and that w(S) - v(S) if S is a connected. Hence, C(w) C C(v). Further,

it is easy to verify that each switching game is a convex game.

Lemma 1 Let (N, oo, p, a) be a sequencing situation and (N, w) 6e the corresponding

switchíng game. 'fhen mT(w) - GSa(T)(N,oo,p,a) for each r E Iftv.

PxooF: Let i E N. Then

GSi(T)(N,oO,P,o)- ~ gii~ii(r)f ~ gki(1-Aki(r))
l:oo(i)Goo(Í) k:oo(k)Gvo(i)

- ~ gil~v(r) f ~ g'l~~l(r)
iEP(r,i)nF(oo,i) ,jEF(T,i)nF(oo,i)

f ~ gki(I - ~ki(~)) f ~ gki(1 - ~`ki(a))
kEP(r~i)nP(oo.i) kEl~ ( Td)n1'(oo~i)

- ~ 9,.i f ~ 9ki
~EY(~,i)nF(oo.i) kEP(r,i)nP(oo,i)

~ gkl - ~ gkl
k,IEP(i,i)u{i}:oo(k)Goo(I) k,IEP(~,i):oo(k)Guo(!)

- 411h(T, L) U{d}) - v(P(T, 2)) - mi (w)

whete the third equality follows from (3).

The following tl~eorem shows Lhat the the split core is the convex hull oC all corresponding

permutation based gain alloca(,ions.

Theorem 'l Lcl (N, oo,p,o) Ge a sequencing silualion.

Thr.n SPC'(N,rrwP,rs) - cusev{C.Sa(')(N,oo,P,~r) ~ r E [ilv}.

PROOF: Let (N, w) be the switching game corresponding to (N, rro, p, a). Since (N, w)

is a convex game we have that C(w) - conv{mT(w) ~ r E HN}. Lemma 1 implies that

conv{mT(w) ~ r E TIN} - conv{GS~(T)(N,ao,p,~) ~ r E IIN}. Since SPC(N,oo,p,a) is

a convex set we have C(w) C SPC(N, vo, p, a).

On the other hand, let a E A and let S C N. Then
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~GS; (N,QO,P,~) ~ ~~ ~ 9ij~ij -} ~ 9ki(1 - .`ki)~
iES iES jES:oo~i)~oaij) kES:oo~k)Goo~~)

- ~ ~ii.i - tll(.5~.

~,JEA':ao(,)C~oIJ)

In case S- N the inequality in the above calculation becomes an equality. Hence,

SPC(N, oo, p, a) C C(w). o

The next corollary follows from the proof of theorem 1.

Corollary 1 Let (N, ao, p, ~) 6e a sequencing situation. Then PBGS(N, ao, p, a) is the

set of all extreme points of SPC(N, Qo, p, a!).

The following theorem shows that the EGS allocation of a sequencing situation is the

average of all corresponding permutation based gain splitting allocations.

Theorem 3 Let(N, oo, p, ~) 6e a sequencing situation. Then

1
EGS(N,~o,P,~) - ~ GSaI')(N,ao,P,a).

n! rE~N

PROOF: For each r E IIN there exists a unique r` E HN such that a(r) ~~(r`) -~(e)

where a(e) E A with a(e);j - 1 for all i, j E N,i ~ j. Note that the definition

of a(r) implies that {r ~ r E HN} -{r` ~ r E IIN}. Since GSaI'1(N,ao,p,~) -f-

GS~I'`)(N, ao, p, a) - GS~I`)(N, oo, p, a) - 2ECS(N, vo, p, a) we have that

li ~ GSalrl(N,~o,P,~)
n. rEr1N

- ~i ~ (2GSalT)(N,oa,P,~) f 2GS~lT~)(N,oo,P,~))
rEnN

- 1~ ~ EGS(N, Qo, P, ~) - EGS(N, ~o, P, o)-
n. rEnN

Example 3 Let N - { 1, 2, 3} , ao(i) - i for all i E N, p- (2, 2, 1) and a -(4, 6, 5).

Then g12 - g23 - 4 and g~3 - 6 and the corresponding sequencing game is given by

v({1}) - v({2}) - v({3}) - O,v({1,2}) - v({2,3}) - 4,v({1,3}) - 0 and v({1,2,3}) -

14. The extreme points of SPC(N, vo, p, ~) are

GSaI~)(N, oo,p,a) - (0,4,10) where ro - (1,2,3)

GSaI~)(N,oo,p,~) - ( 0,8,6) where rt - ( 1,3,2)
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C.ti',~(~~)(N,ao,P,~) - ( 4,0, 10) whcrc r2 - ( l, 1,~;)

GS~(")(N,oo,p,a) - ( 10,0,4) where r3 - (2,3, 1)

G.S'~(")(N, oo, P, a) - ((i, 8, 0) wherc r~ - ( 3, 1, 2)

GSa(~)(N,oo,p,a) - (10,4,0) where rs - (3,2, 1)

and ECS(N, oo, P, ~) - s~,EnN GSa(r)(N, oo,R o) - ( 5, 4, 5).

Note that mT~(v) - GSa(T')(N, ocr, p, o) for i E{0,'l, 3, 5} and that

ra'~(v) ~ CSa(T')(N,oo,p,o) for i E {1,4}. ( see figure 1)

m's(v) Tn" v)
mT~ v)

figure 1

G'Sa(TS) G.g~('~)

In example 3 an extreme point of the core of a sequencing game coincides with an extreme

point of the corresponding split core if the corresponding pernmtation is connected. IIere,

a permutation r E 11N is called connected if for any i E N the set P(r,i) is a connected

se~t. The next proposition shows that this property holds for any sequerrcing situation.

Proposition 1 Let (N, oo,p, ~) be a sequencing situation and (N, v) the corresponding

sr.quencing game. Then rn'(v) - GSa(T)(N,ao,p,n) if r is connected.

PttooF: For any connected r E IIN we have m'(v) - m'(w). Lemma 1 completes the

proof. ~

Example 3 shows that in case a permutation is not connected the corresponding per-

mutat,ion ba.RCY1 gain splitting allocation does not necessarily coincide wit.h a marginal

vc,r~tor of Lh~, sr~qnc~nc in); ganu~. " I'hc~ following cxarnplo illusl.ral.cs t.hat a. a E A wil.h

1;~ E{0, 1} for all i, j E N,i ~ j that does not arise by a permutation r E Ilw as dcfined

in (3) is not necessarily an extreme point of SPC(N,oo,p,cY).
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Example 4 Consider the game of example 3. Consider ~ defined by a12 - 1,a13 - 0

.rnd a23 - I. Obviously a can not be constructed by means of a permutation r as in (3).

Note that GSa(N, vo, p, cr) -(4, 6, 4) is not an extreme point of SPC( N, ao, p, rz).

In the following we will give an axiomatic characterization of the split core. Let SEQ(N)

represent the class of all sequencing situations with player set N. A set-valued solution

concept ry assigns to each sequencing situation SEQ(N) a non-empty subset of RN. We

consider the following three properties of a solution concept y.

(i) G,fftciency: Let (N,oo,p,a) E.SF'Q(N) and let v be an optimal rearrartgement oC N.

Then for any x E ry((N, oo, p, a)) we have that ~kEN xk - CN(vo) - CN(á).

(ii) Durnrny property: Let (N,oo,p,a) E SEQ(N) and let á be an opt.imal rearrange-

rnent oC N. If P(oo, k) - P(b, k) for some k E N, then for all x E y((N, oo, p, cr)) it.

holds thaL ak - 0.

(iii) Monof.nnicity: Let (N,QO,p,a),(N,or,p,a) E SEQ(N) and i,j E N bc sur.h that

oo(t) - ao(J) - l~ar(z) - Qo(J),ai(J) -~o(i) and or(k) - oo(k) for all k E N`{i, j}.

Then for all x E y((N,oo,p,~)) there exists a y E ry((N,vr,p,a)) such that

(a) xk - yk for all k E N`{i, j} and x; ~ y;, x~ ~ y~

or

(b) xk - yk for all k E N`{i, j} and x; G y;, x~ C y~.

Efficiency states that the maximum cost savings of the grand coalition is divided

arnong the players. The dummy property states that if a player docs not contributc

to Lhc~ rust. savings of thc grand coalit,ion, then hc will obtain no aharc oC Lhcwc profit.s.

'I'wo scx~ucncing situations arc callcd nr,íghbour rrlaled iC thc iuitial ordcr of thc onc can

be obtained from the other by only one neighbour switch. Monotonicity staLe,~s tliat for

each solution (element) of a sequencing situation there exists a solution (element) for a

neighbour related sequencing situation such that all players that are in the same position

in both sequencing situations receive the same, and that the two players who switched

both will either gain or lose.



'I'he following theorem shows that the split core is thc maximal solution concept that

satisfies efficiency, the dummy property and monotonicity. Here, maximality means

that any solution concept that satisfies these three properties assigns to each sequencing

situation a subset of the split core.

Theorem 4 Í'he split core is a solution concept on SEQ(N) that satisfzes efficierzcy,

the dummy property and monotonicity. I,et ry be a solution concept on SEQ(N) that

salisfies e~ciency, the dummy property and monotonicity.

Then ry((N,oo,Ra)) C SPC(N,vo,p,a) for all ( N,vo,p,a) E SEQ(N).

PROOF: Obviously, the split core assigns to each sequencing situation in SEQ(N) a

uon-crnpt.y subset of RN. ['irst we show that thc split core satisfies the thrce proper-

tii~s. Lct (N,oo,p,cr) E.S1;Q(N). Ffficiency follows irnrncdiatcly frorn Lhc Cact that.

SPC(N, ao, p, a) is a subset of the core of the corresponding sequencing game. If player

k is a dummy player we have that g;k - 0 for all i E N with ~o(i) G o~r(k) and gki - 0

for all j E N with o-o(k) G vo(j). This implies that GSk(N,ao,p,a) - 0 for any

~ E A and consequently the, split core satisfies the dummy property. For monotonoc-

ity, Iet a E A and let i, j E N be such that vo(i) - oo(j) - I and take vi such that

v~(i) - Qo(j),ar(j) - oo(i) and or(k) - vo(k) for all k E N`{i, j}. h'rom the definition

of a gain splitting allocation it readily follows that

GSk(N,oo,p,a) - GSk(N,o~,p,a) for all k E N`{i, j}. (4)

Further, we have that

G.ti;~(N,au,P,~Y) - l;.ti~(N,~i,P,rY) - gt;~„ - g;;(I - 1,~) (~~)

and

GS~ ( N, ~o, P, a) - CS~ (N, ar,R a) - 9ti ( I - ~ti ) - .9it~i~. (6)

If aip; - a;pi 1 0 then g;i ? 0 and gi; - 0 which implies that GSm(N,QO,p,a) 1

CSm(N,o~, p,a) for m E{i, j}. On the other hand, if aip; - a;pi G 0 then g;i - 0 and

gi; ~ 0 which implies GS,a„(N,ao,p,a) G GSn,(N,ol,p,a) for m E {i,j}. Hence, the

split core satisfies monotonicity.

Let y be a set-valued solution concept on SEQ(N) that satisfies efficiency, the

dumrny property and monotonicity, and let (N,ao,p,a) E SEQ(N). To show that
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y((N, a~, p, a)) C .SPC, ( N, ap, p, a) we proceed by induction to the number of misplace-

ments M„ -{(i, j ) ~ ao(i) G ap(j),g;~ ~ 0}. Ií ~ Moo ~- U then oo is an optimal order

and the dummy property implies that ry((N, ao, p, a)) -{(0, ..., 0)} - SPC(N, oo, p, a).

Assume that y(N, a, p, a) C SPC(N, a,p, a) for all a E EN with ~ Mo ~C m. Let a~

be such that ~ Moa (- m~- I . We show that y(N, ao, p, a) C SPC ( N, ao, p, a). '1'akc

x E ry((N,oo,p,~)) and let i, j E N be such that oo(i) - ao(j) - 1 and (i, j) is a mis-

placement of ao. Take a~ such that a~(á) - ao(j), al(j) - oo(i) and ar(k) - ao(k) for all

k E N`{i, j}. Note that q;i 1 0 since ( i, j) is a misplacement. For any z E ry((N, al, p, ~))

we have by efficiency that

~ xk - ~ Z k - GN(a0) - ~~N(al) - gij (7)

kEN kEN

where the last equality follows from the definition of a~ and the fact that ( í, j) is a

misplacement. From ( 7) and monotonicity follows that there exists a y E ry((N, a~, p, a))

such that

(xi .{- xi) - ( y; ~- yi) - 9;i and xi ~ y;, xi ? yi, xk - yk for all k E N`{i, j}. (8)

Since ~ Mo, ~- m the induction hypothesis yields that there exist a a E A such that

y- GSt((N,a~,P,~r)). Substitution in (8) gives

x;~xi - GS~(N,ai,Ra)~-GS~((N,at,P,~))f9ii

x, 1 GS,(N,ai,P,~)

xi 1 GS~(N,a~,p,a)

xk - CSk(N,a~,p,a) for all k E N`{i, j}.

Since x is a solution of the system (9), there exists an s' E[0,1] such that

xi - Gsi ( N, al f P, a) } S. 9ii

x - GS~ N,o~,p,a)-}.(1-s')g;ii i(

xk - GSk(N,al,p,a) for all k E N`{i,j}

Take a' E A such that a;i - s' and .~k~ - ak~ for all k,1 E{ 1, ..., n}, k

and (k,l) ~(i, j). Then from ( 4), (5),(6), (10) and the fact that gi; - 0 we

x- GSa~ ( N, ao, p, a). Consequently, x E SPC( N, ao, p, a).

(9)

(10)

~ 1

havc
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