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Abstract
The split core is a refinement of the core for sequencing games. The split core
arises from a generalization of the Equal Gain Splitting (EGS) rule that is intro-
duced by Curiel, Pederzoli and Tijs (1989). It is pointed out that the split core is
the convex hull of permutation based gain splitting allocations and the EGS allo-
cation is in the barycenter of the split core. Finally, an axiomatic characterization

of the split core is provided.
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1 Introduction

In one-machine sequencing situations each agent (player) has one job that has to be
processed on a single machine. Each job is specified by its processing time, the time the
machine takes to handle the job. We assume that the cost of a player depends linearly
on the completion time of his job. Furthermore, there is an initial order on the jobs of
the agents before the processing of the machine starts.

Each group of agents (coalition) is allowed to obtain cost savings by rearranging
their jobs in a way that is admissible with respect to the initial order. An optimal
order of a coalition is an admissible rearrangement that maximizes the cost savings of
this coalition. By defining the worth of a coalition as the (maximum) cost savings a
coalition can make by an optimal rearrangement, we obtain a cooperative sequencing
game, related to the one machine sequencing situation. This game theoretic approach
has been taken in Curiel, Pederzoli and Tijs (1989). They introduced the equal gain
splitting (EGS) rule on the class of sequencing situations. The EGS rule is based on the
fact that the optimal order of the grand coalition can be obtained from the initial order
by consecutive switching of neighbours. According to the EGS rule each agent obtains
half of the gains of all neighbour switches he is actually involved in to reach an optimal
order. Note that the EGS rule is independent of the chosen optimal order and that the
gain of a neighbour switch is independent of the position of the neighbours in the queue.
It was shown that each EGS allocation is in the core of the corresponding sequencing
game. Further, an axiomatic characterization of the EGS rule was provided. Curiel,
Potters, Rajendra Prassad, Tijs and Veltman (1993) showed that the EGS allocation
is the average of two marginal vectors of the corresponding sequencing game. Curiel,
Hamers, Potters and Tijs(1993) presented an alternative characterization of the EGS
rule. Moreover, they introduced the head-tail core for sequencing games and showed that
the corresponding EGS allocation is in the barycenter of this core. They also showed
that the EGS rule can be regarded as a general nucleolus (Maschler, Potters and Tijs
(1992)).

This paper considers a generalization of the EGS rule. We study division rules for



sequencing situations where each player obtains an arbitrary non-negative part of the
gains of all neighbour switches he is actually involved in to reach the optimal order.
The union of all corresponding allocations is called the split core. Obviously, the EGS
allocation is an element of the split core. It is shown that the split core of a sequencing
situation is a subset of the core of the corresponding sequencing game. Further, it is
shown that the split core is the convex hull of so-called permutation based gain splitting
allocations and that the corresponding EGS allocation is the average of these vectors.
Finally, it is shown that the split core is the largest set-valued solution concept satisfying

efficiency, the dummy property and a monotonicity condition.

2 Sequencing games

This section recalls the definitions of a sequencing game and the EGS rule.

In a one machine sequencing situation there is a queue of agents, each with one job,
to be processed by one machine. The finite set of agents is denoted by N = {1,...,n}.
The position of the agents in the queue is described by a bijection o : N — {1,...,n}.
Specifically, o(z) = j means that player i is in position j. We assume that there is an
initial order oo : N — {1,...,n} on the jobs of the players before the processing of the
machine starts. The processing time p; of the job of player i is the time the machine takes
to handle this job. Further, it is assumed that every agent has an affine cost function
¢; : [0,00) — R defined by c;(t) = a;t + §; with a; > 0,5; € R. So ¢(t) is the cost for
agent ¢ if he has ¢ units of time in the system.

A sequencing situation as described above is denoted by (N, 00,p,a), where N =
{1,..,n},00 : N = {1,..,n},p = (pi)ien € (0,00)" and a = (a;)ien € (0,00)". The
vector B = (f:)ien € R™ is omitted in the description of the sequencing situation since
the fixed costs it represents are independent of the positions of the players in the quene.

The set of predecessors (followers) of a player : € N w.r.t. a rearrangement o is
defined by P(0,i) = {j | o(i) < (i)} (F(0,) = i | o(4) > o()}).

If the processing order is given by ¢ : N — {1,...,n} then the completion time of

player i is equal to C(0,1) = ¥ ep(s,i) Pj +Pi- The total costs cs(o) of a coalition S C N,



is given by cs(0) = Lies @i(C(a,1)) + Bi.

The (maximal) cost savings of a coalition S depend on the set of admissible rear-
rangements of this coalition. A bijection o : N — {1,...,n} is called admissible for S if
P(0o,i) = P(0,1%) for all ¢ € N\S. This implies that the completion time in o of each
player outside the coalition S is equal to his completion time in the initial order. More-
over, players of S are not allowed to jump over players outside S. The set of admissible
rearrangements for a coalition S is denoted by ¥s.

A cooperative game is a pair (N, v) where N is a finite set of players and v is a mapping
v: 2V — R with v(@) = 0 and 2V denotes the collection of all subsets of N.

A game (N,v) is called convez if for all coalitions S,T € 2" and all i € N with
S c T c N\{i} it holds that

o(T' U {i}) — o(T) 2 (S U {i}) = v(5).
Cooperative game theory focuses on ’fair’ and/or ’stable’ division rules for the worth
v(N) of the grand coalition. A core element z = (z;)ien € RN is such that no coalition
has an incentive to split off, i.e.

> z;=v(N) and z(S)>v(S)forall S€ 2~
wherelez}?S) = YiesTi- The core C(v) consists of all core elements. A game is called
balanced if its core is non-empty.
Let (N,v) be a game and let IIy be the set of all permutations of N. Then the k — th
coordinate of the marginal vector m™(v), 7 € Ily, is defined by

mi(v) = v({j | 7(j) < =(k)}) — o({s | 7(5) <= (k)})-
Shapley (1971) and Ichiishi (1980) showed that the marginal vectors are the extreme
points of the core if and only if the game is convex. Since the core is a convex set we
have that the core of a convex game is the convex hull of its marginals. Obviously, a
convex game is balanced.

Given a sequencing situation (N, oo, p,a) the worth of a coalition S of the corre-
sponding sequencing game (Curiel et al.(1989)) is defined as the maximal cost savings

the coalition can achieve by means of an admissible rearrangement. Formally,

v(S) = Q%X{Z(O-C(Uo,i) +B) = 3 (aiC(0,3) + Bi)} (1)
S ies

i€S



A set S is called connected if for all 7,j € S and k € N such that oy(i) < oo(k) < oo(7)
it holds that k € S. Curiel et al. (1989) showed that expression (1) for any connected

coalition S is equivalent to

v(S) = i Yis»

i,j€S:0(i)<a0 ()

where g;; := max{a;p; — a;p;,0} represents the gain attainable for player 7 and j in case
player i is directly in front of player j. For a coalition T' that is not connected it follows
that

o(T)= 3 o(S) (2

S€T\oo
where T'\oy is the set of maximally connected components of 7.
The Equal Gain Splitting (EGS) rule of a sequencing situation (N, 0, p, a) is defined
by
1 1
EGSI(N7 0, Py a) = 5 Z 9i; + 5 Z Gki
. ij({l)>o°('2' k:ag(k)<oo(i) X

for all € N. We note that the optimal order of a queue can be obtained from the
initial order by consecutive switches of neighbours 7, with g;; > 0 (¢f. Smith (1956)).
In the EGS rule a player obtains half of the gains of all neighbour switches he is actually
involved in. Curiel et al. (1989) showed that sequencing games are convex games and
that the EGS rule assigns to each sequencing situation an allocation that is in the core
of the corresponding sequencing game.
Example 1 Let N = {1,2,3},00(i) = i for all : € N,p = (2,2,1) and a = (4,6,5).
It follows that g1, = g3 = 4 and g13 = 6. Then EGS;(N,00,p,a) = %(4 +6) =
5, EGSy(N,00,p,@) = }(4 +4) = 4 and EGS3(N,00,p,a) = 1(6+4) = 5.

3 The split core

This section introduces the split core corresponding to a sequencing situation. It is
shown that the core of a sequencing game contains the split core of the corresponding
sequencing situation as a subset. Further, we describe the extreme points of the split
core by introducing permutation based gain splitting allocations. It is shown that the
EGS allocation is in the barycenter of the corresponding split core. Finally, the split
core is axiomatically characterized by efficiency, the dummy property and a form of

monotonicity.



Generalizing the EGS rule we consider gain splitting (GS) rules in which each player
obtains a non-negative part of the gain of all neighbour switches he is actually involved
in to reach the optimal order. The total gain of a neighbour switch is divided among

both players that are involved. Formally, we define for all z € N and all A € A
GS}N,oo,p,0) = > XNjgii+ . (1= Mi)gwi-

j:o0(1)<oa(s) k:ao(k)<oo(i)
where A = {{X;;}ijen,izi | 0 < Aij < 1}. Note that for each A € A we possibly obtain

another allocation. Moreover, GS*(N,00,p,a) = EGS(N,00,p,@) in case A;; = + for
alli,5 € {1,...,n},2 # j.
Example 2 If we take Ay = %,)\13 = ;—5 and A3 = 1 in the game of example 1, then

GS}(N,00,p,@) = 5,GS3(N,00,p,a) =5 and GS3(N, 00, p, @) = 4.

The split core of a sequencing situation (N, 0o, p, @) is defined by
SPC(N,o0,p,a) = {GS*(N,00,p,a) | A € A}.
First it is shown that the split core is a subset of the core.
Theorem 1 Let (N, 0q,p,a) be a sequencing situation and let (N,v) be the correspond-
ing sequencing game. Then SPC(N,00,p,a) C C(v).
PROOF: Let A € A and let S be a connected set. Then

S GS)NN,o0,p,0) =3[ X girit+ Y gk(l— )]

i€S i€S j:a9(i)<oo(s) k:oo(k)<oo(i)
= Z[ Z Giihiy -+ Z gri(1 = Aki)]
i€S j€S:00(i)<ao(s) k€S:a0(k)<ao(i)

= Z gi; = U(S)
1,j€S:00(i)<o0(j)
In case S = N the inequality becomes an equality. Hence, GS*(N, 0, p,a) € C(v). O

For describing the extreme points of the split core we assign to each permutation 7 € Iy
a vector A(1) € A in the following way. For all 4,5 € {1,...,n},1 #j

0 if 7(z) < 7(4)
/\.]‘ T)= (3)
() { 1 if 7(2) > 7(4)

Then for each sequencing situation (N, oo, p, @) the collection of permutation based gain

splitting allocations is defined by



PBGS(N,00,p,a) = {GS*)(N,00,p,a) | € lIy}.
Let (N,o0,p,@) be a sequencing situation. Then the corresponding switching game
(N,w) is defined by

w(S) = Z gi; forall SC N.

1,J€S:00(1)<00(7)
With (N,v) the corresponding sequencing game we have that w(S) > v(S) if S is

disconnected and that w(S) = v(S) if S is a connected. Hence, C(w) C C(v). Further,
it is easy to verify that each switching game is a convex game.
Lemma 1 Let (N,00,p,a) be a sequencing situation and (N,w) be the corresponding
switching game. Then m™(w) = GS*(N, 00, p, @) for each T € Ty.
PROOF: Let i € N. Then

G} (Noopa)= ¥ gD+ X w1 = Au(n)

3:00(1) <00 (5) k:ao(k)<ao (i)

= Y giki(n)+ 2 gidi(n)

JEP(1,i)NF(00,i) JEF(78)NF(00,1)

- Z gri(1 = Mki(0)) + b gri(1 — Ari(0))

k€P(1)NP(00,i) k€F(7,i)NP(00,i)

= Z: gi; + 2 Gki

JEP(1,i)NF(00,) k€P(1,i)NP(00,i)

= Z Gkl — Z 9kl
kJeP(r,8)u{i}:ao(k)<ao(l) kJ€P(7,i):00(k)<oo(l)

=v(P(r,9) U {2}) — v(P(7,1)) = mi(w)

where the third equality follows from (3). O

The following theorem shows that the the split core is the convex hull of all corresponding
permutation based gain allocations.

Theorem 2 Lel (N,0q,p,a) be a sequencing silualion.

Then SPC(N, 04, p,a) = conv{GSMN(N,a0,p,a) | T € TIy}.

PROOF: Let (N,w) be the switching game corresponding to (N, 0o, p, @). Since (N, w)
is a convex game we have that C(w) = conv{m™(w) | 7 € lly}. Lemma 1 implies that
conv{m’(w) | 7 € Iy} = conv{GSM)(N,00,p,) | 7 € lIx}. Since SPC(N, 00, p, ) is
a convex set we have C(w) C SPC(N,00,p, ).

On the other hand, let A € A and let S C N. Then



ST GSXN,00,p,) 2 I S gijAij + b3 9ki(1 — Agi)]

i€S 1€S j€S:00(1)<a0(4) k€S:o0(k)<oo(t)

= Z gi; = w(S).

1,7€85:00(1)<o0(7)

In case S = N the inequality in the above calculation becomes an equality. Hence,

SPC(N,00,p,a) C C(w). (]

The next corollary follows from the proof of theorem 1.
Corollary 1 Let (N, 0o, p, ) be a sequencing situation. Then PBGS(N, 09, p, a) is the
set of all extreme points of SPC(N,00,p, a).

The following theorem shows that the EGS allocation of a sequencing situation is the
average of all corresponding permutation based gain splitting allocations.

Theorem 3 Let(N,o0,p,a) be a sequencing situation. Then

1

EGS(N,UQ,[J,Q) = g Z GSA(T)(Nyo'Ovpva)'
trelly

PROOF: For each 7 € Iy there exists a unique 7¢ € IIy such that A(7) + A(7°) = A(e)
where A(e) € A with A(e);; = 1 for all i,j € N,i # j. Note that the definition
of A(r) implies that {r | 7 € IIy} = {r° | 7 € Ily}. Since GS*")(N,00,p,a) +
GS*™)(N, 09, p,a) = GSM(N, 00, p, ) = 2EGS(N, 0, p, @) we have that

i, 3" GSM(N,00,p,0)

n:

T€lln
1 i A(7) |
S E ("GS (N,ao,p,a) + EGS (Nv UOaP»Q))
‘relly
1
== z EGS(N,o0,p,a) = EGS(N, 00, p, ).
“rely

Example 3 Let N = {1,2,3},00(:) = i for all 1 € N,p = (2,2,1) and & = (4,6,5).
Then gy = g3 = 4 and gi3 = 6 and the corresponding sequencing game is given by
o({1}) = v({2}) = v({3}) = 0, v({1,2}) = v({2,3}) = 4,v({1,3}) = 0 and v({1,2,3}) =
14. The extreme points of SPC(N, 0o, p, a) are

GSM™)(N,00,p,@) = (0,4,10) where 7 =(1,2,3)

GS*n)(N,oy,p,@) = (0,8,6) where 1y =(1,3,2)



GSM(N, 0y, p,@) = (4,0,10)  where 7, = (2, 1,3)
GSM™)(N, oo, p,a) = (10,0,4) where 73 = (2,3,1)
GSM™(N, 00, p,@) = (6,8,0) where 74 =(3,1,2)
GS™)(N,0q,p,a) = (10,4,0) where 75 = (3,2,1)
and EGS(N,00,p,@) = 1 ,eny GSM(N,00,p, @) = (5,4,5).
Note that m™(v) = GS™)(N, 09, p, a) for i € {0,2,3,5} and that
m™(v) # GSNW(N, 09,p, ) for i € {1,4}. (see figure 1)

GSA™) GS§Mm™)

/ GS§Mn)
GSMms) s

m™(v) mn }v; GSM™s) G grm)
v

figure 1

In example 3 an extreme point of the core of a sequencing game coincides with an extreme
point of the corresponding split core if the corresponding permutation is connected. Here,
a permutation 7 € Iy is called connected if for any ¢ € N the set P(7,1) is a connected
set. The next proposition shows that this property holds for any sequencing situation.
Proposition 1 Let (N, 00,p, ) be a sequencing situation and (N,v) the corresponding
sequencing game. Then m(v) = GS*(N,09,p,a) if T is connected.

PRrOOF: For any connected 7 € Iy we have m"(v) = m”(w). Lemma 1 completes the

proof. o

Example 3 shows that in case a permutation is not connected the corresponding per-
mutation based gain splitting allocation does not necessarily coincide with a marginal
veetor of the sequencing game. The following example illustrates that a A € A with
Xi; € {0,1} for all 7,5 € N,i # j that does not arise by a permutation 7 € Ily as defined

in (3) is not necessarily an extreme point of SPC(N, 0o, p, @).
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Example 4 Consider the game of example 3. Consider A defined by Aj; = 1,3 = 0
and Ay3 = 1. Obviously A can not be constructed by means of a permutation 7 as in (3).

Note that GS*(N, a0, p, @) = (4,6,4) is not an extreme point of SPC(N, 0y, p, a).

In the following we will give an axiomatic characterization of the split core. Let SEQ(N)
represent the class of all sequencing situations with player set N. A set-valued solution
concept 7 assigns to each sequencing situation SEQ(N) a non-empty subset of RN. We

consider the following three properties of a solution concept 7.

(i) Efficiency: Let (N, 00,p,@) € SEQ(N) and let & be an optimal rearrangement of N.
Then for any z € y((N, 0o, p, @)) we have that T"ycn zx = Cn(00) — Cn(5).

(ii) Dummy property: Let (N,o0,p,@) € SEQ(N) and let ¢ be an optimal rearrange-
ment of N. If P(oo, k) = P(6,k) for some k € N, then for all z € y((N,00,p,)) it
holds that z;, = 0.

(iii) Monotonicity: Let (N,oq,p,a),(N,01,p,a) € SEQ(N) and 2,5 € N be such that
o0(i) = 00(j) — 1,01(2) = 00(j),01(j) = 00(?) and oy(k) = go(k) for all k € N\{7,j}.
Then for all z € v((N, 00, p, «)) there exists a y € y((N, 01, p,«)) such that

(a) 7k = yx for all k € N\{i,j} and z; > y;, z; > y;

or

(b) zx = y& for all k € N\{¢,7} and z; < y;, z; < y;.

Efficiency states that the maximum cost savings of the grand coalition is divided
among the players. The dummy property states that if a player docs not contribute
to the cost savings of the grand coalition, then he will obtain no share of these profits.
Two sequencing situations are called neighbour relaled if the initial order of the one can
be obtained from the other by only one neighbour switch. Monotonicity states that for
each solution (element) of a sequencing situation there exists a solution (element) for a
neighbour related sequencing situation such that all players that are in the same position
in both sequencing situations receive the same, and that the two players who switched

both will either gain or lose.
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The following theorem shows that the split core is the maximal solution concept that
satisfies efficiency, the dummy property and monotonicity. Here, maximality means
that any solution concept that satisfies these three properties assigns to each sequencing
situation a subset of the split core.

Theorem 4 The split core is a solution concept on SEQ(N) that satisfies efficiency,
the dummy property and monotonicity. Let v be a solution concept on SEQ(N) that
satisfies efficiency, the dummy property and monotonicity.

Then ¥((N, 09, p,)) C SPC(N,00,p,a) for all (N,0q,p,a) € SEQ(N).

PROOF: Obviously, the split core assigns to each sequencing situation in SEQ(N) a
non-empty subset of RN. First we show that the split core satisfies the three proper-
tics. Let (N,o0,p,) € SEQ(N). Efficiency lollows immediately from the fact that
SPC(N,a¢,p, ) is a subset of the core of the corresponding sequencing game. If player
k is a dummy player we have that g;x = 0 for all : € N with o¢(7) < oo(k) and gx; = 0
for all j € N with oo(k) < 0o(j). This implies that GS}(N,00,p,a) = 0 for any
X € A and consequently the split core satisfies the dummy property. For monotonoc-
ity, let A € A and let 7,7 € N be such that oo(z) = 0¢(j) — 1 and take oy such that
a1(i) = 00(7),01(j) = 00(2) and o1(k) = oo(k) for all k € N\{7,5}. From the definition
of a gain splitting allocation it readily follows that

GS)(N,00,p,@) = GS}(N,01,p, ) for all k € N\{i,j}. (4)
Further, we have that

GSNN,o0,p, @) = GSNN, a1, p,0) = gi; Mi; — g;i(1 = Aji) (5)
and

GS;\(N,ao,p, a) — GS;\(N,al,p, a) = gi;(1 = Aij) — g;idi- (6)

If a;p; — a;p; > 0 then g;; > 0 and g;; = 0 which implies that GS), (N, 00, p, ) >
GS)(N,o01,p,a) for m € {i,j}. On the other hand, if a;p; — a;p; < 0 then g;; = 0 and
gji > 0 which implies GS)(N,00,p,a@) < GSA(N,01,p,a) for m € {7,5}. Hence, the

split core satisfies monotonicity.

Let 7 be a set-valued solution concept on SEQ(N) that satisfies efficiency, the
dummy property and monotonicity, and let (N, oo,p,a) € SEQ(N). To show that
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4((N, 00, p,@)) C SPC(N,0q,p, ) we proceed by induction to the number of misplace-
ments M, = {(z,7) | 00(?) < 00(j),9i; > 0}. If | My, |= 0 then gy is an optimal order
and the dummy property implies that y((N, 0o, p, @) = {(0,...,0)} = SPC(N, 0o, p, ).
Assume that v(N,o,p,a) C SPC(N,0,p,a) for all 0 € Ey with | M, |< m. Let oo
be such that | M,, |= m + 1. We show that (N, do,p,a) C SPC(N,00,p,a). Take
z € y((N,00,p,)) and let i,j € N be such that go(i) = 0o(j) — 1 and (,7) is a mis-
placement of ao. Take oy such that o1(z) = 00(7),91(j) = 0o(i) and o1(k) = oo(k) for all
k € N\{,7}. Note that g;; > 0 since (z, ) is a misplacement. For any z € Y((N,o1,p, @))
we have by efficiency that

S 2= Y 2z = Cn(90) — Cn(on) = gi (7)

keN keN
where the last equality follows from the definition of oy and the fact that (z,7) is a
misplacement. From (7) and monotonicity follows that there exists ay € 7((N,04,p,@))
such that

(zi + ;) — (yi +y;) = gij and z; 2 i, z; 2y, ax =yx forall k € N\{:,7}. (8)
Since | M,, |= m the induction hypothesis yields that there exist a A € A such that

= GS*(N,o1,p,)). Substitution in (8) gives

zi+z; = GSNN,o01,p,a)+GS)N(N,01,p,0)) +gij

z > GSMN,o1,p,a) ©)
@5 > GSJ’-\(N, 01,p, @)

T = GS)N,oy,p,e) forall ke N\{i,j}.

Since z is a solution of the system (9), there exists an s* € [0,1] such that
z; = GSNN,o1,p,a)+5%g;
z; GS}(N,o1,p,@) + (1 — s7)gi; (10)
zx = GSp(N,o1,p,@) forall ke N\{i,j}
Take A* € A such that A;; = s* and Ay = Aw for all k1 € {1,..,n},k # I
and (k,I) # (,). Then from (4), (5),(6), (10) and the fact that g;; = 0 we have
z = GS* (N, 00, p,a). Consequently, z € SPC(N,do,p, ). o
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