

Center
for
Economic Research

No. 9448

THE SPLIT CORE FOR SEQUENCING GAMES

by Herbert Hamers, Jeroen Suijs, Stef Tijs and Peter Borm

June 1994

THE SPLIT CORE FOR SEQUENCING GAMES

Herbert Hamers ${ }^{1,2}$ Jeroen Suijs ${ }^{1}$ Stef Tijs ${ }^{1}$
Peter Borm ${ }^{1}$

May 31, 1994

Abstract

The split core is a refinement of the core for sequencing games. The split core arises from a generalization of the Equal Gain Splitting (EGS) rule that is introduced by Curiel, Pederzoli and Tijs (1989). It is pointed out that the split core is the convex hull of permutation based gain splitting allocations and the EGS allocation is in the barycenter of the split core. Finally, an axiomatic characterization of the split core is provided.

Keywords: Sequencing games, EGS-rule, Scheduling, Split core.

[^0]
1 Introduction

In one-machine sequencing situations each agent (player) has one job that has to be processed on a single machine. Each job is specified by its processing time, the time the machine takes to handle the job. We assume that the cost of a player depends linearly on the completion time of his job. Furthermore, there is an initial order on the jobs of the agents before the processing of the machine starts.

Each group of agents (coalition) is allowed to obtain cost savings by rearranging their jobs in a way that is admissible with respect to the initial order. An optimal order of a coalition is an admissible rearrangement that maximizes the cost savings of this coalition. By defining the worth of a coalition as the (maximum) cost savings a coalition can make by an optimal rearrangement, we obtain a cooperative sequencing game, related to the one machine sequencing situation. This game theoretic approach has been taken in Curiel, Pederzoli and Tijs (1989). They introduced the equal gain splitting (EGS) rule on the class of sequencing situations. The EGS rule is based on the fact that the optimal order of the grand coalition can be obtained from the initial order by consecutive switching of neighbours. According to the EGS rule each agent obtains half of the gains of all neighbour switches he is actually involved in to reach an optimal order. Note that the EGS rule is independent of the chosen optimal order and that the gain of a neighbour switch is independent of the position of the neighbours in the queue. It was shown that each EGS allocation is in the core of the corresponding sequencing game. Further, an axiomatic characterization of the EGS rule was provided. Curiel, Potters, Rajendra Prassad, Tijs and Veltman (1993) showed that the EGS allocation is the average of two marginal vectors of the corresponding sequencing game. Curiel, Hamers, Potters and Tijs(1993) presented an alternative characterization of the EGS rule. Moreover, they introduced the head-tail core for sequencing games and showed that the corresponding EGS allocation is in the barycenter of this core. They also showed that the EGS rule can be regarded as a general nucleolus (Maschler, Potters and Tijs (1992)).

This paper considers a generalization of the EGS rule. We study division rules for
sequencing situations where each player obtains an arbitrary non-negative part of the gains of all neighbour switches he is actually involved in to reach the optimal order. The union of all corresponding allocations is called the split core. Obviously, the EGS allocation is an element of the split core. It is shown that the split core of a sequencing situation is a subset of the core of the corresponding sequencing game. Further, it is shown that the split core is the convex hull of so-called permutation based gain splitting allocations and that the corresponding EGS allocation is the average of these vectors. Finally, it is shown that the split core is the largest set-valued solution concept satisfying efficiency, the dummy property and a monotonicity condition.

2 Sequencing games

This section recalls the definitions of a sequencing game and the EGS rule.
In a one machine sequencing situation there is a queue of agents, each with one job, to be processed by one machine. The finite set of agents is denoted by $N=\{1, \ldots, n\}$. The position of the agents in the queue is described by a bijection $\sigma: N \rightarrow\{1, \ldots, n\}$. Specifically, $\sigma(i)=j$ means that player i is in position j. We assume that there is an initial order $\sigma_{0}: N \rightarrow\{1, \ldots, n\}$ on the jobs of the players before the processing of the machine starts. The processing time p_{i} of the job of player i is the time the machine takes to handle this job. Further, it is assumed that every agent has an affine cost function $c_{i}:[0, \infty) \rightarrow \mathbf{R}$ defined by $c_{i}(t)=\alpha_{i} t+\beta_{i}$ with $\alpha_{i}>0, \beta_{i} \in \mathbf{R}$. So $c_{i}(t)$ is the cost for agent i if he has t units of time in the system.

A sequencing situation as described above is denoted by $\left(N, \sigma_{0}, p, \alpha\right)$, where $N=$ $\{1, \ldots, n\}, \sigma_{0}: N \rightarrow\{1, \ldots, n\}, p=\left(p_{i}\right)_{i \in N} \in(0, \infty)^{n}$ and $\alpha=\left(\alpha_{i}\right)_{i \in N} \in(0, \infty)^{n}$. The vector $\beta=\left(\beta_{i}\right)_{i \in N} \in \mathbf{R}^{\mathbf{n}}$ is omitted in the description of the sequencing situation since the fixed costs it represents are independent of the positions of the players in the quene.

The set of predecessors (followers) of a player $i \in N$ w.r.t. a rearrangement σ is defined by $P(\sigma, i)=\{j \mid \sigma(j)<\sigma(i)\} \quad(F(\sigma, i)=\{j \mid \sigma(j)>\sigma(i)\})$.

If the processing order is given by $\sigma: N \rightarrow\{1, \ldots, n\}$ then the completion time of player i is equal to $C(\sigma, i)=\sum_{j \in P(\sigma, i)} p_{j}+p_{i}$. The total costs $c_{S}(\sigma)$ of a coalition $S \subset N$,
is given by $c_{S}(\sigma)=\sum_{i \in S} \alpha_{\mathbf{i}}(C(\sigma, i))+\beta_{\mathbf{i}}$.
The (maximal) cost savings of a coalition S depend on the set of admissible rearrangements of this coalition. A bijection $\sigma: N \rightarrow\{1, \ldots, n\}$ is called admissible for S if $P\left(\sigma_{0}, i\right)=P(\sigma, i)$ for all $i \in N \backslash S$. This implies that the completion time in σ of each player outside the coalition S is equal to his completion time in the initial order. Moreover, players of S are not allowed to jump over players outside S. The set of admissible rearrangements for a coalition S is denoted by Σ_{S}.

A cooperative game is a pair (N, v) where N is a finite set of players and v is a mapping $v: 2^{N} \rightarrow \mathbf{R}$ with $v(\emptyset)=0$ and 2^{N} denotes the collection of all subsets of N.

A game (N, v) is called convex if for all coalitions $S, T \in 2^{N}$ and all $i \in N$ with $S \subset T \subset N \backslash\{i\}$ it holds that

$$
v(T \cup\{i\})-v(T) \geq v(S \cup\{i\})-v(S) .
$$

Cooperative game theory focuses on 'fair' and/or 'stable' division rules for the worth $v(N)$ of the grand coalition. A core element $x=\left(x_{i}\right)_{i \in N} \in \mathbf{R}^{\mathbf{N}}$ is such that no coalition has an incentive to split off, i.e.

$$
\sum_{i \in N} x_{i}=v(N) \text { and } x(S) \geq v(S) \text { for all } S \in 2^{N}
$$

where $x(S)=\sum_{i \in S} x_{i}$. The core $C(v)$ consists of all core elements. A game is called balanced if its core is non-empty.

Let (N, v) be a game and let Π_{N} be the set of all permutations of N. Then the $k-t h$ coordinate of the marginal vector $m^{\pi}(v), \pi \in \Pi_{N}$, is defined by

$$
m_{k}^{\pi}(v)=v(\{j \mid \pi(j) \leq \pi(k)\})-v(\{j \mid \pi(j)<\pi(k)\}) .
$$

Shapley (1971) and Ichiishi (1980) showed that the marginal vectors are the extreme points of the core if and only if the game is convex. Since the core is a convex set we have that the core of a convex game is the convex hull of its marginals. Obviously, a convex game is balanced.

Given a sequencing situation $\left(N, \sigma_{0}, p, \alpha\right)$ the worth of a coalition S of the corresponding sequencing game(Curiel et al.(1989)) is defined as the maximal cost savings the coalition can achieve by means of an admissible rearrangement. Formally,

$$
\begin{equation*}
v(S)=\max _{\sigma \in \Sigma_{S}}\left\{\sum_{i \in S}\left(\alpha_{i} C\left(\sigma_{0}, i\right)+\beta_{i}\right)-\sum_{i \in S}\left(\alpha_{i} C(\sigma, i)+\beta_{i}\right)\right\} \tag{1}
\end{equation*}
$$

A set S is called connected if for all $i, j \in S$ and $k \in N$ such that $\sigma_{0}(i)<\sigma_{0}(k)<\sigma_{0}(j)$ it holds that $k \in S$. Curiel et al. (1989) showed that expression (1) for any connected coalition S is equivalent to

$$
v(S)=\sum_{i, j \in S: P_{i}(i)<o(j)} g_{i j},
$$

where $g_{i j}:=\max \left\{\alpha_{j} p_{i}-\alpha_{i} p_{j}, 0\right\}$ represents the gain attainable for player i and j in case player i is directly in front of player j. For a coalition T that is not connected it follows that

$$
\begin{equation*}
v(T)=\sum_{S \in T \backslash \sigma_{0}} v(S) \tag{2}
\end{equation*}
$$

where $T \backslash \sigma_{0}$ is the set of maximally connected components of T.
The Equal Gain Splitting (EGS) rule of a sequencing situation (N, σ_{0}, p, α) is defined by

$$
E G S_{i}\left(N, \sigma_{0}, p, \alpha\right)=\frac{1}{2} \sum_{j: \sigma_{0}(j)>\sigma_{0}(i) .} g_{i j}+\frac{1}{2} \sum_{k: \sigma_{0}(k)<\sigma_{0}(i)} g_{k i}
$$

for all $i \in N$. We note that the optimal order of a queue can be obtained from the initial order by consecutive switches of neighbours i, j with $g_{i j}>0$ (cf. Smith (1956)). In the EGS rule a player obtains half of the gains of all neighbour switches he is actually involved in. Curiel et al. (1989) showed that sequencing games are convex games and that the EGS rule assigns to each sequencing situation an allocation that is in the core of the corresponding sequencing game.
Example 1 Let $N=\{1,2,3\}, \sigma_{0}(i)=i$ for all $i \in N, p=(2,2,1)$ and $\alpha=(4,6,5)$. It follows that $g_{12}=g_{23}=4$ and $g_{13}=6$. Then $E G S_{1}\left(N, \sigma_{0}, p, \alpha\right)=\frac{1}{2}(4+6)=$ $5, E G S_{2}\left(N, \sigma_{0}, p, \alpha\right)=\frac{1}{2}(4+4)=4$ and $E G S_{3}\left(N, \sigma_{0}, p, \alpha\right)=\frac{1}{2}(6+4)=5$.

3 The split core

This section introduces the split core corresponding to a sequencing situation. It is shown that the core of a sequencing game contains the split core of the corresponding sequencing situation as a subset. Further, we describe the extreme points of the split core by introducing permutation based gain splitting allocations. It is shown that the EGS allocation is in the barycenter of the corresponding split core. Finally, the split core is axiomatically characterized by efficiency, the dummy property and a form of monotonicity.

Generalizing the EGS rule we consider gain splitting (GS) rules in which each player obtains a non-negative part of the gain of all neighbour switches he is actually involved in to reach the optimal order. The total gain of a neighbour switch is divided among both players that are involved. Formally, we define for all $i \in N$ and all $\lambda \in \Lambda$

$$
G S_{i}^{\lambda}\left(N, \sigma_{0}, p, \alpha\right)=\sum_{j: \sigma_{0}(i)<\sigma_{0}(j)} \lambda_{i j} g_{i j}+\sum_{k: \sigma_{0}(k)<\sigma_{0}(i)}\left(1-\lambda_{k i}\right) g_{k i} .
$$

where $\Lambda=\left\{\left\{\lambda_{i j}\right\}_{i, j \in N, i \neq j} \mid 0 \leq \lambda_{i j} \leq 1\right\}$. Note that for each $\lambda \in \Lambda$ we possibly obtain another allocation. Moreover, $G S^{\lambda}\left(N, \sigma_{0}, p, \alpha\right)=\operatorname{EGS}\left(N, \sigma_{0}, p, \alpha\right)$ in case $\lambda_{i j}=\frac{1}{2}$ for all $i, j \in\{1, \ldots, n\}, i \neq j$.

Example 2 If we take $\lambda_{12}=\frac{3}{4}, \lambda_{13}=\frac{1}{3}$ and $\lambda_{23}=1$ in the game of example 1, then $G S_{1}^{\lambda}\left(N, \sigma_{0}, p, \alpha\right)=5, G S_{2}^{\lambda}\left(N, \sigma_{0}, p, \alpha\right)=5$ and $G S_{3}^{\lambda}\left(N, \sigma_{0}, p, \alpha\right)=4$.

The split core of a sequencing situation $\left(N, \sigma_{0}, p, \alpha\right)$ is defined by

$$
S P C\left(N, \sigma_{0}, p, \alpha\right)=\left\{G S^{\lambda}\left(N, \sigma_{0}, p, \alpha\right) \mid \lambda \in \Lambda\right\}
$$

First it is shown that the split core is a subset of the core.
Theorem 1 Let (N, σ_{0}, p, α) be a sequencing situation and let (N, v) be the corresponding sequencing game. Then $S P C\left(N, \sigma_{0}, p, \alpha\right) \subset C(v)$.
Proof: Let $\lambda \in \Lambda$ and let S be a connected set. Then

$$
\begin{aligned}
& \sum_{i \in S} G S_{i}^{\lambda}\left(N, \sigma_{0}, p, \alpha\right)=\sum_{i \in S}\left[\sum_{j: \sigma_{0}(i)<\sigma_{0}(j)} g_{i j} \lambda_{i j}+\sum_{k: \sigma_{0}(k)<\sigma_{0}(i)} g_{k i}\left(1-\lambda_{k i}\right)\right] \\
& \geq \sum_{i \in S}\left[\sum_{j \in S: \sigma_{0}(i)<\sigma_{0}(j)} g_{i j} \lambda_{i j}+\sum_{k \in S: \sigma_{0}(k)<\sigma_{0}(i)} g_{k i}\left(1-\lambda_{k i}\right)\right] \\
& =\sum_{i, j \in S: \sigma_{0}(i)<\sigma_{0}(j)} g_{i j}=v(S) .
\end{aligned}
$$

In case $S=N$ the inequality becomes an equality. Hence, $G S^{\lambda}\left(N, \sigma_{0}, p, \alpha\right) \in C(v)$.

For describing the extreme points of the split core we assign to each permutation $\tau \in \Pi_{N}$ a vector $\lambda(\tau) \in \Lambda$ in the following way. For all $i, j \in\{1, \ldots, n\}, i \neq j$

$$
\lambda_{i j}(\tau)= \begin{cases}0 & \text { if } \tau(i)<\tau(j) \tag{3}\\ 1 & \text { if } \tau(i)>\tau(j)\end{cases}
$$

Then for each sequencing situation $\left(N, \sigma_{0}, p, \alpha\right)$ the collection of permutation based gain splitting allocations is defined by

$$
P B G S\left(N, \sigma_{0}, p, \alpha\right)=\left\{G S^{\lambda(\tau)}\left(N, \sigma_{0}, p, \alpha\right) \mid \tau \in \Pi_{N}\right\}
$$

Let $\left(N, \sigma_{0}, p, \alpha\right)$ be a sequencing situation. Then the corresponding switching game (N, w) is defined by

$$
w(S)=\sum_{i, j \in S: \sigma_{0}(i)<\sigma_{0}(j)} g_{i j} \text { for all } S \subset N .
$$

With (N, v) the corresponding sequencing game we have that $w(S) \geq v(S)$ if S is disconnected and that $w(S)=v(S)$ if S is a connected. Hence, $C(w) \subset C(v)$. Further, it is easy to verify that each switching game is a convex game.
Lemma 1 Let $\left(N, \sigma_{0}, p, \alpha\right)$ be a sequencing situation and (N, w) be the corresponding switching game. Then $m^{\tau}(w)=G S^{\lambda(\tau)}\left(N, \sigma_{0}, p, \alpha\right)$ for each $\tau \in \Pi_{N}$.
Proof: Let $i \in N$. Then

$$
\begin{aligned}
& G S_{i}^{\lambda(\tau)}\left(N, \sigma_{0}, p, \alpha\right)=\sum_{j: \sigma_{0}(i)<\sigma_{0}(j)} g_{i j} \lambda_{i j}(\tau)+\sum_{k: \sigma_{0}(k)<\sigma_{0}(i)} g_{k i}\left(1-\lambda_{k i}(\tau)\right) \\
& =\sum_{j \in P(\tau, i) \cap F\left(\sigma_{0}, i\right)} g_{i j} \lambda_{i j}(\tau)+\sum_{j \in F(\tau, i) \cap F\left(\sigma_{0}, i\right)} g_{i j} \lambda_{i j}(\tau) \\
& +\sum_{k \in P(\tau, i) \cap P\left(\sigma_{0}, i\right)} g_{k i}\left(1-\lambda_{k i}(\sigma)\right)+\sum_{k \in F(\tau, i) \cap P\left(\sigma_{0}, i\right)} g_{k i}\left(1-\lambda_{k i}(\sigma)\right) \\
& =\sum_{j \in P(\tau, i) \cap F\left(\sigma_{0}, i\right)} g_{i j}+\sum_{k \in P(\tau, i) \cap P\left(\sigma_{0}, i\right)} g_{k i} \\
& =\sum_{k, l \in P(\tau, i) \cup\{i\}: \sigma_{0}(k)<\sigma_{0}(l)} g_{k l}-\sum_{k, l \in P(\tau, i): \sigma_{0}(k)<\sigma_{0}(l)} g_{k l} \\
& =v(P(\tau, i) \cup\{i\})-v(P(\tau, i))=m_{i}^{\tau}(w)
\end{aligned}
$$

where the third equality follows from (3).

The following theorem shows that the the split core is the convex hull of all corresponding permutation based gain allocations.
Theorem 2 Let $\left(N, \sigma_{0}, p, \alpha\right)$ be a sequencing siluation.
Then $S P C\left(N, \sigma_{0}, p, \alpha\right)=\operatorname{conv}\left\{G S^{\lambda(\tau)}\left(N, \sigma_{0}, p, \alpha\right) \mid \tau \in \Pi_{N}\right\}$.
Proof: Let (N, w) be the switching game corresponding to (N, σ_{0}, p, α). Since (N, w) is a convex game we have that $C(w)=\operatorname{conv}\left\{m^{\tau}(w) \mid \tau \in \Pi_{N}\right\}$. Lemma 1 implies that $\operatorname{conv}\left\{m^{\tau}(w) \mid \tau \in \Pi_{N}\right\}=\operatorname{conv}\left\{G S^{\lambda(\tau)}\left(N, \sigma_{0}, p, \alpha\right) \mid \tau \in \Pi_{N}\right\}$. Since $\operatorname{SPC}\left(N, \sigma_{0}, p, \alpha\right)$ is a convex set we have $C(w) \subset S P C\left(N, \sigma_{0}, p, \alpha\right)$.

On the other hand, let $\lambda \in \Lambda$ and let $S \subset N$. Then

$$
\begin{aligned}
& \sum_{i \in S} G S_{i}^{\lambda}\left(N, \sigma_{0}, p, \alpha\right) \geq \sum_{i \in S}\left[\sum_{j \in S: \sigma_{0}(i)<\sigma_{0}(j)} g_{i j} \lambda_{i j}+\sum_{k \in S: \sigma_{0}(k)<\sigma_{0}(i)} g_{k i}\left(1-\lambda_{k i}\right)\right] \\
& =\sum_{i, j \in:: \sigma_{0}(i)<\sigma_{0}(j)} g_{i j}=w(S) .
\end{aligned}
$$

In case $S=N$ the inequality in the above calculation becomes an equality. Hence, $S P C\left(N, \sigma_{0}, p, \alpha\right) \subset C(w)$.

The next corollary follows from the proof of theorem 1.
Corollary 1 Let $\left(N, \sigma_{0}, p, \alpha\right)$ be a sequencing situation. Then $\operatorname{PBGS}\left(N, \sigma_{0}, p, \alpha\right)$ is the set of all extreme points of $\operatorname{SPC}\left(N, \sigma_{0}, p, \alpha\right)$.

The following theorem shows that the EGS allocation of a sequencing situation is the average of all corresponding permutation based gain splitting allocations.
Theorem $3 \operatorname{Let}\left(N, \sigma_{0}, p, \alpha\right)$ be a sequencing situation. Then

$$
E G S\left(N, \sigma_{0}, p, \alpha\right)=\frac{1}{n!} \sum_{\tau \in \Pi_{N}} G S^{\lambda(\tau)}\left(N, \sigma_{0}, p, \alpha\right)
$$

Proof: For each $\tau \in \Pi_{N}$ there exists a unique $\tau^{c} \in \Pi_{N}$ such that $\lambda(\tau)+\lambda\left(\tau^{c}\right)=\lambda(e)$ where $\lambda(e) \in \Lambda$ with $\lambda(e)_{i j}=1$ for all $i, j \in N, i \neq j$. Note that the definition of $\lambda(\tau)$ implies that $\left\{\tau \mid \tau \in \Pi_{N}\right\}=\left\{\tau^{c} \mid \tau \in \Pi_{N}\right\}$. Since $G S^{\lambda(\tau)}\left(N, \sigma_{0}, p, \alpha\right)+$ $G S^{\lambda\left(\tau^{c}\right)}\left(N, \sigma_{0}, p, \alpha\right)=G S^{\lambda(e)}\left(N, \sigma_{0}, p, \alpha\right)=2 E G S\left(N, \sigma_{0}, p, \alpha\right)$ we have that

$$
\begin{aligned}
& \frac{1}{n!} \sum_{\tau \in \Pi_{N}} G S^{\lambda(\tau)}\left(N, \sigma_{0}, p, \alpha\right) \\
& =\frac{1}{n!} \sum_{\tau \in \Pi_{N}}\left(\frac{1}{2} G S^{\lambda(\tau)}\left(N, \sigma_{0}, p, \alpha\right)+\frac{1}{2} G S^{\lambda\left(\tau^{c}\right)}\left(N, \sigma_{0}, p, \alpha\right)\right) \\
& =\frac{1}{n!} \sum_{\tau \in \Pi_{N}} E G S\left(N, \sigma_{0}, p, \alpha\right)=E G S\left(N, \sigma_{0}, p, \alpha\right)
\end{aligned}
$$

Example 3 Let $N=\{1,2,3\}, \sigma_{0}(i)=i$ for all $i \in N, p=(2,2,1)$ and $\alpha=(4,6,5)$. Then $g_{12}=g_{23}=4$ and $g_{13}=6$ and the corresponding sequencing game is given by $v(\{1\})=v(\{2\})=v(\{3\})=0, v(\{1,2\})=v(\{2,3\})=4, v(\{1,3\})=0$ and $v(\{1,2,3\})=$ 14. The extreme points of $\operatorname{SPC}\left(N, \sigma_{0}, p, \alpha\right)$ are

$$
\begin{array}{ll}
G S^{\lambda\left(\tau_{0}\right)}\left(N, \sigma_{0}, p, \alpha\right)=(0,4,10) & \text { where } \tau_{0}=(1,2,3) \\
G S^{\lambda\left(\tau_{1}\right)}\left(N, \sigma_{0}, p, \alpha\right)=(0,8,6) & \text { where } \tau_{1}=(1,3,2)
\end{array}
$$

$$
\begin{array}{ll}
G S^{\lambda\left(\tau_{2}\right)}\left(N, \sigma_{0}, p, \alpha\right)=(4,0,10) & \text { where } \tau_{2}=(2,1,3) \\
G S^{\lambda\left(\tau_{3}\right)}\left(N, \sigma_{0}, p, \alpha\right)=(10,0,4) & \text { where } \tau_{3}=(2,3,1) \\
G S^{\lambda\left(\tau_{4}\right)}\left(N, \sigma_{0}, p, \alpha\right)=(6,8,0) & \text { where } \tau_{4}=(3,1,2) \\
G S^{\lambda\left(\tau_{5}\right)}\left(N, \sigma_{0}, p, \alpha\right)=(10,4,0) & \text { where } \tau_{5}=(3,2,1)
\end{array}
$$

and $\operatorname{EGS}\left(N, \sigma_{0}, p, \alpha\right)=\frac{1}{6} \sum_{\tau \in \Pi_{N}} G S^{\lambda(\tau)}\left(N, \sigma_{0}, p, \alpha\right)=(5,4,5)$.
Note that $m^{\tau_{i}}(v)=G S^{\lambda\left(\tau_{i}\right)}\left(N, \sigma_{0}, p, \alpha\right)$ for $i \in\{0,2,3,5\}$ and that $m^{\tau_{i}}(v) \neq G S^{\lambda\left(\tau_{i}\right)}\left(N, \sigma_{0}, p, \alpha\right)$ for $i \in\{1,4\}$. (see figure 1)

figure 1
In example 3 an extreme point of the core of a sequencing game coincides with an extreme point of the corresponding split core if the corresponding permutation is connected. Here, a permutation $\tau \in \Pi_{N}$ is called connected if for any $i \in N$ the set $P(\tau, i)$ is a connected set. The next proposition shows that this property holds for any sequencing situation.

Proposition 1 Let $\left(N, \sigma_{0}, p, \alpha\right)$ be a sequencing situation and (N, v) the corresponding

 sequencing game. Then $m^{\tau}(v)=G S^{\lambda(\tau)}\left(N, \sigma_{0}, p, \alpha\right)$ if τ is connected.Proof: For any connected $\tau \in \Pi_{N}$ we have $m^{\tau}(v)=m^{\tau}(w)$. Lemma 1 completes the proof.

Example 3 shows that in case a permutation is not connected the corresponding permutation based gain splitting allocation does not necessarily coincide with a marginal vector of the sexuencing game. 'The following example illustrates that a $\lambda \in \Lambda$ with $\lambda_{i j} \in\{0,1\}$ for all $i, j \in N, i \neq j$ that does not arise by a permutation $\tau \in \mathrm{II}_{N}$ as defined in (3) is not necessarily an extreme point of $S P C\left(N, \sigma_{0}, p, \alpha\right)$.

Example 4 Consider the game of example 3. Consider λ defined by $\lambda_{12}=1, \lambda_{13}=0$ and $\lambda_{23}=1$. Obviously λ can not be constructed by means of a permutation τ as in (3). Note that $G S^{\lambda}\left(N, \sigma_{0}, p, \alpha\right)=(4,6,4)$ is not an extreme point of $\operatorname{SPC}\left(N, \sigma_{0}, p, \alpha\right)$.

In the following we will give an axiomatic characterization of the split core. Let $S E Q(N)$ represent the class of all sequencing situations with player set N. A set-valued solution concept γ assigns to each sequencing situation $\operatorname{SEQ}(N)$ a non-empty subset of \mathbf{R}^{N}. We consider the following three properties of a solution concept γ.
(i) Efficiency: Let $\left(N, \sigma_{0}, p, \alpha\right) \in S E Q(N)$ and let $\hat{\sigma}$ be an optimal rearrangement of N. Then for any $x \in \gamma\left(\left(N, \sigma_{0}, p, \alpha\right)\right)$ we have that $\sum_{k \in N} x_{k}=C_{N}\left(\sigma_{0}\right)-C_{N}(\hat{\sigma})$.
(ii) Dummy property: Let $\left(N, \sigma_{0}, p, \alpha\right) \in S E Q(N)$ and let $\hat{\sigma}$ be an optimal rearrangement of N. If $P\left(\sigma_{0}, k\right)=P(\hat{\sigma}, k)$ for some $k \in N$, then for all $x \in \gamma\left(\left(N, \sigma_{0}, p, \alpha\right)\right)$ it holds that $x_{k}=0$.
(iii) Monotonicity: Let $\left(N, \sigma_{0}, p, \alpha\right),\left(N, \sigma_{1}, p, \alpha\right) \in \operatorname{SEQ}(N)$ and $i, j \in N$ be such that $\sigma_{0}(i)=\sigma_{0}(j)-1, \sigma_{1}(i)=\sigma_{0}(j), \sigma_{1}(j)=\sigma_{0}(i)$ and $\sigma_{1}(k)=\sigma_{0}(k)$ for all $k \in N \backslash\{i, j\}$. Then for all $x \in \gamma\left(\left(N, \sigma_{0}, p, \alpha\right)\right)$ there exists a $y \in \gamma\left(\left(N, \sigma_{1}, p, \alpha\right)\right)$ such that
(a) $x_{k}=y_{k}$ for all $k \in N \backslash\{i, j\}$ and $x_{i} \geq y_{i}, x_{j} \geq y_{j}$
or
(b) $x_{k}=y_{k}$ for all $k \in N \backslash\{i, j\}$ and $x_{i} \leq y_{i}, x_{j} \leq y_{j}$.

Efficiency states that the maximum cost savings of the grand coalition is divided among the players. The dummy property states that if a player does not contribute to the cost savings of the grand coalition, then he will obtain no share of these profits. Two sequencing situations are called neighbour related if the initial order of the one can be obtained from the other by only one neighbour switch. Monotonicity states that for each solution (element) of a sequencing situation there exists a solution (element) for a neighbour related sequencing situation such that all players that are in the same position in both sequencing situations receive the same, and that the two players who switched both will either gain or lose.

The following theorem shows that the split core is the maximal solution concept that satisfies efficiency, the dummy property and monotonicity. Here, maximality means that any solution concept that satisfies these three properties assigns to each sequencing situation a subset of the split core.

Theorem 4 The split core is a solution concept on $\operatorname{SEQ}(N)$ that satisfies efficiency, the dummy property and monotonicity. Let γ be a solution concept on $\operatorname{SEQ}(N)$ that satisfies efficiency, the dummy property and monotonicity.
Then $\gamma\left(\left(N, \sigma_{0}, p, \alpha\right)\right) \subset S P C\left(N, \sigma_{0}, p, \alpha\right)$ for all $\left(N, \sigma_{0}, p, \alpha\right) \in S E Q(N)$.
Proof: Obviously, the split core assigns to each sequencing situation in $\operatorname{SEQ}(N)$ a non-empty subset of $\mathbf{R}^{\mathbf{N}}$. First we show that the split core satisfies the three properties. Let $\left(N, \sigma_{0}, p, \alpha\right) \in S E Q(N)$. Efficiency follows immediately from the fact that $S P C\left(N, \sigma_{0}, p, \alpha\right)$ is a subset of the core of the corresponding sequencing game. If player k is a dummy player we have that $g_{i k}=0$ for all $i \in N$ with $\sigma_{0}(i)<\sigma_{0}(k)$ and $g_{k j}=0$ for all $j \in N$ with $\sigma_{0}(k)<\sigma_{0}(j)$. This implies that $G S_{k}^{\lambda}\left(N, \sigma_{0}, p, \alpha\right)=0$ for any $\lambda \in \Lambda$ and consequently the split core satisfies the dummy property. For monotonocity, let $\lambda \in \Lambda$ and let $i, j \in N$ be such that $\sigma_{0}(i)=\sigma_{0}(j)-1$ and take σ_{1} such that $\sigma_{1}(i)=\sigma_{0}(j), \sigma_{1}(j)=\sigma_{0}(i)$ and $\sigma_{1}(k)=\sigma_{0}(k)$ for all $k \in N \backslash\{i, j\}$. From the definition of a gain splitting allocation it readily follows that

$$
\begin{equation*}
G S_{k}^{\lambda}\left(N, \sigma_{0}, p, \alpha\right)=G S_{k}^{\lambda}\left(N, \sigma_{1}, p, \alpha\right) \text { for all } k \in N \backslash\{i, j\} . \tag{4}
\end{equation*}
$$

Further, we have that

$$
\begin{equation*}
\left(i S_{i}^{\lambda}\left(N, \sigma_{0}, p, \alpha\right)-G S_{i}^{\lambda}\left(N, \sigma_{1}, p, \alpha\right)=g_{i j} \lambda_{i j}-g_{j i}\left(1-\lambda_{j i}\right)\right. \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
G S_{j}^{\lambda}\left(N, \sigma_{0}, p, \alpha\right)-G S_{j}^{\lambda}\left(N, \sigma_{1}, p, \alpha\right)=g_{i j}\left(1-\lambda_{i j}\right)-g_{j i} \lambda_{j i} . \tag{6}
\end{equation*}
$$

If $\alpha_{j} p_{i}-\alpha_{i} p_{j} \geq 0$ then $g_{i j} \geq 0$ and $g_{j i}=0$ which implies that $G S_{m}^{\lambda}\left(N, \sigma_{0}, p, \alpha\right) \geq$ $G S_{m}^{\lambda}\left(N, \sigma_{1}, p, \alpha\right)$ for $m \in\{i, j\}$. On the other hand, if $\alpha_{j} p_{i}-\alpha_{i} p_{j}<0$ then $g_{i j}=0$ and $g_{j i}>0$ which implies $G S_{m}^{\lambda}\left(N, \sigma_{0}, p, \alpha\right) \leq G S_{m}^{\lambda}\left(N, \sigma_{1}, p, \alpha\right)$ for $m \in\{i, j\}$. Hence, the split core satisfies monotonicity.

Let γ be a set-valued solution concept on $\operatorname{SEQ}(N)$ that satisfies efficiency, the dummy property and monotonicity, and let $\left(N, \sigma_{0}, p, \alpha\right) \in S E Q(N)$. To show that
$\gamma\left(\left(N, \sigma_{0}, p, \alpha\right)\right) \subset S P C\left(N, \sigma_{0}, p, \alpha\right)$ we proceed by induction to the number of misplacements $M_{\sigma}=\left\{(i, j) \mid \sigma_{0}(i)<\sigma_{0}(j), g_{i j}>0\right\}$. If $\left|M_{\sigma_{0}}\right|=0$ then σ_{0} is an optimal order and the dummy property implies that $\gamma\left(\left(N, \sigma_{0}, p, \alpha\right)\right)=\{(0, \ldots, 0)\}=S P C\left(N, \sigma_{0}, p, \alpha\right)$. Assume that $\gamma(N, \sigma, p, \alpha) \subset \operatorname{SPC}(N, \sigma, p, \alpha)$ for all $\sigma \in \Sigma_{N}$ with $\left|M_{\sigma}\right| \leq m$. Let σ_{0} be such that $\left|M_{\sigma_{0}}\right|=m+1$. We show that $\gamma\left(N, \sigma_{0}, p, \alpha\right) \subset \operatorname{SPC}\left(N, \sigma_{0}, p, \alpha\right)$. Take $x \in \gamma\left(\left(N, \sigma_{0}, p, \alpha\right)\right)$ and let $i, j \in N$ be such that $\sigma_{0}(i)=\sigma_{0}(j)-1$ and (i, j) is a misplacement of σ_{0}. Take σ_{1} such that $\sigma_{1}(i)=\sigma_{0}(j), \sigma_{1}(j)=\sigma_{0}(i)$ and $\sigma_{1}(k)=\sigma_{0}(k)$ for all $k \in N \backslash\{i, j\}$. Note that $g_{i j}>0$ since (i, j) is a misplacement. For any $z \in \gamma\left(\left(N, \sigma_{1}, p, \alpha\right)\right)$ we have by efficiency that

$$
\begin{equation*}
\sum_{k \in N} x_{k}-\sum_{k \in N} z_{k}=C_{N}\left(\sigma_{0}\right)-C_{N}\left(\sigma_{1}\right)=g_{i j} \tag{7}
\end{equation*}
$$

where the last equality follows from the definition of σ_{1} and the fact that (i, j) is a misplacement. From (7) and monotonicity follows that there exists a $y \in \gamma\left(\left(N, \sigma_{1}, p, \alpha\right)\right)$ such that

$$
\begin{equation*}
\left(x_{i}+x_{j}\right)-\left(y_{i}+y_{j}\right)=g_{i j} \text { and } x_{i} \geq y_{i}, x_{j} \geq y_{j}, x_{k}=y_{k} \text { for all } k \in N \backslash\{i, j\} \tag{8}
\end{equation*}
$$

Since $\left|M_{\sigma_{1}}\right|=m$ the induction hypothesis yields that there exist a $\lambda \in \Lambda$ such that $y=G S^{\lambda}\left(\left(N, \sigma_{1}, p, \alpha\right)\right)$. Substitution in (8) gives

$$
\left\{\begin{align*}
x_{i}+x_{j} & =G S_{i}^{\lambda}\left(N, \sigma_{1}, p, \alpha\right)+G S_{j}^{\lambda}\left(\left(N, \sigma_{1}, p, \alpha\right)\right)+g_{i j} \tag{9}\\
x_{i} & \geq G S_{i}^{\lambda}\left(N, \sigma_{1}, p, \alpha\right) \\
x_{j} & \geq G S_{j}^{\lambda}\left(N, \sigma_{1}, p, \alpha\right) \\
x_{k} & =G S_{k}^{\lambda}\left(N, \sigma_{1}, p, \alpha\right) \quad \text { for all } k \in N \backslash\{i, j\} .
\end{align*}\right.
$$

Since x is a solution of the system (9), there exists an $s^{*} \in[0,1]$ such that

$$
\begin{align*}
& x_{i}=G S_{i}^{\lambda}\left(N, \sigma_{1}, p, \alpha\right)+s^{*} g_{i j} \\
& x_{j}=G S_{j}^{\lambda}\left(N, \sigma_{1}, p, \alpha\right)+\left(1-s^{*}\right) g_{i j} \tag{10}\\
& x_{k}=G S_{k}^{\lambda}\left(N, \sigma_{1}, p, \alpha\right) \quad \text { for all } k \in N \backslash\{i, j\}
\end{align*}
$$

Take $\lambda^{*} \in \Lambda$ such that $\lambda_{i j}^{*}=s^{*}$ and $\lambda_{k l}^{*}=\lambda_{k l}$ for all $k, l \in\{1, \ldots, n\}, k \neq l$ and $(k, l) \neq(i, j)$. Then from (4), (5),(6), (10) and the fact that $g_{j i}=0$ we have $x=G S^{\lambda^{*}}\left(N, \sigma_{0}, p, \alpha\right)$. Consequently, $x \in S P C\left(N, \sigma_{0}, p, \alpha\right)$.

References:

Curiel I., Pederzoli G., Tiss S. (1989), Sequencing games, European Journal of Operational Research, 40, 344-351.

Curiel I., Hamers H., Potters J. and Tijs S.(1993), The equal gain splitting rule for sequencing situations and the general nucleolus, Research Memorandum F'EW, Tilburg University, no. 629, 1-13.

Curiel I., Potters J., Prasad R., Tijs S. and Veltman B.(1993), Cooperation in one machine scheduling, Zeitschrift für Operations Research,38, 113-131.

ICHIISHI T.(1981), Super-modularity: Applications to convex games and the greedy algorithm for LP. Journal of Economic Theory,25,283-286.

Maschler M., Potters J. and Tijs S.(1992), The general nucleolus and the reduced game proerty, International Journal of Game Theory, 21, 85-106.

Shapley L.(1971), Cores of convex games.International Journal of Game Theory 1,11-26.

Smith W. (1956), Various optimizers for single-stage production. Naval Research Logistics Quarterly, 3, 59-66.

Discussion Paper Series, CentER, Tilburg University, The Netherlands:		
(For previous papers please consult previous discussion papers.)		
No.	Author(s)	Title
9340	T.C. To	Export Subsidies and Oligopoly with Switching Costs
9341	A. Demirgüc-Kunt and	
	B. Huizinga	

No.	Author(s)	Title
9356	E. van Damme and S. Hurkens	Commitment Robust Equilibria and Endogenous Timing
9357	W. Güth and B. Peleg	On Ring Formation In Auctions
9358	V. Bhaskar	Neutral Stability In Asymmetric Evolutionary Games
9359	F. Vella and M. Verbeek	Estimating and Testing Simultaneous Equation Panel Data Models with Censored Endogenous Variables
9360	W.B. van den Hout and J.P.C. Blanc	The Power-Series Algorithm Extended to the $B M A P / P H / 1$ Queue
9361	R. Heuts and J. de Klein	An (s, q) Inventory Model with Stochastic and Interrelated Lead Times
9362	K.-E. Wärneryd	A Closer Look at Economic Psychology
9363	P.J.-J. Herings	On the Connectedness of the Set of Constrained Equilibria
9364	P.J.-J. Herings	A Note on "Macroeconomic Policy in a Two-Party System as a Repeated Game"
9365	F. van der Ploeg and A. L. Bovenberg	Direct Crowding Out, Optimal Taxation and Pollution Abatement
9366	M. Pradhan	Sector Participation in Labour Supply Models: Preferences or Rationing?
9367	H.G. Bloemen and A. Kapteyn	The Estimation of Utility Consistent Labor Supply Models by Means of Simulated Scores
9368	M.R. Baye, D. Kovenock and C.G. de Vries	The Solution to the Tullock Rent-Seeking Game When $\mathrm{R}>2$ Mixed-Strategy Equilibria and Mean Dissipation Rates
9369	T. van de Klundert and S. Smulders	The Welfare Consequences of Different Regimes of Oligopolistic Competition in a Growing Economy with FirmSpecific Knowledge
9370	G. van der Laan and D. Talman	Intersection Theorems on the Simplotope
9371	S. Muto	Alternating-Move Preplays and $v N-M$ Stable Sets in Two Person Strategic Form Games
9372	S. Muto	Voters' Power in Indirect Voting Systems with Political Parties the Square Root Effect
9373	S. Smulders and R. Gradus	Pollution Abatement and Long-term Growth
9374	C. Fernandez, J. Osiewalski and M.F.J. Steel	Marginal Equivalence in v-Spherical Models

No.	Author(s)	Title
9375	E. van Damme	Evolutionary Game Theory
9376	P.M. Kort	Pollution Control and the Dynamics of the Firm: the Effects of Market Based Instruments on Optimal Firm Investments
9377	A. L. Bovenberg and F. van der Ploeg	Optimal Taxation, Public Goods and Environmental Policy with Involuntary Unemployment
9378	F. Thuijsman, B. Peleg, M. Amitai \& A. Shmida	Automata, Matching and Foraging Behavior of Bees
9379	A. Lejour and H. Verbon	Capital Mobility and Social Insurance in an Integrated Market
9380	C. Fernandez, J. Osiewalski and M. Steel	The Continuous Multivariate Location-Scale Model Revisited: A Tale of Robustness
9381	F. de Jong	Specification, Solution and Estimation of a Discrete Time Target Zone Model of EMS Exchange Rates
9401	J.P.C. Kleijnen and R.Y. Rubinstein	Monte Carlo Sampling and Variance Reduction Techniques
9402	F.C. Drost and B.J.M. Werker	Closing the Garch Gap: Continuous Time Garch Modeling
9403	A. Kapteyn	The Measurement of Household Cost Functions: Revealed Preference Versus Subjective Measures
9404	H.G. Bloemen	Job Search, Search Intensity and Labour Market Transitions: An Empirical Exercise
9405	P.W.J. De Bijl	Moral Hazard and Noisy Information Disclosure
9406	A. De Waegenaere	Redistribution of Risk Through Incomplete Markets with Trading Constraints
9407	A. van den Nouweland, P. Borm, W. van Golstein Brouwers, R. Groot Bruinderink. and S. Tijs	A Game Theoretic Approach to Problems in Telecommunication
9408	A.L. Bovenberg and F. van der Ploeg	Consequences of Environmental Tax Reform for Involuntary Unemployment and Welfare
9409	P. Smit	Arnoldi Type Methods for Eigenvalue Calculation: Theory and Experiments
9410	J. Eichberger and D. Kelsey	Non-additive Beliefs and Game Theory
9411	N. Dagan, R. Serrano and O . Volij	A Non-cooperative View of Consistent Bankruptcy Rules

No.	Author(s)	Title		
9412	H. Bester and E. Petrakis	Coupons and Oligopolistic Price Discrimination		
9413	G. Koop, J. Osiewalski and M.F.J. Steel	Bayesian Efficiency Analysis with a Flexible Form: The AIM Cost Function		
9414	C. Kilby	World Bank-Borrower Relations and Project Supervision		
9415	H. Bester	A Bargaining Model of Financial Intermediation		
9416	J.J.G. Lemmen and			
	S.C.W. Eijffinger		\quad	The Price Approach to Financial Integration: Decomposing
:---				
9417		European Money Market Interest Rate Differentials		
:---				

| No. | Author(s) | Title |
| :--- | :--- | :--- | :--- |
| 9432 | C. Dang, D. Talman and
 Z. Wang | A Homotopy Approach to the Computation of Economic
 Equilibria on the Unit Simplex |
| 9433 | R. van den Brink | An Axiomatization of the Disjunctive Permission Value for
 Games with a Permission Structure |
| 9434 | C. Veld | Warrant Pricing: A Review of Empirical Research |
| 9435 | V. Feltkamp, S. Tijs and
 S. Muto | Bird's Tree Allocations Revisited |
| 9436 | G.-J. Otten, P. Borm,
 B. Peleg and S. Tijs | The MC-value for Monotonic NTU-Games |

Ph nnv nation rannir Tilnion TiIT AIrTiIRQLAND Bibliotheek K. U. Brabant

17000011588226

[^0]: ${ }^{1}$ CentER and Department of Econometrics, Tilburg University, P.O. Box 90153, 5000 LE Tilburg, The Netherlands.
 ${ }^{2}$ Herbert Hamers is financially supported by the Dutch Organization for Scientific Research(NWO).

