СвМ
 Discussion paper

||||||||||||||||||||||||||||||||||||

Tilburg University

Center
for
Economic Research

No. 9846
 A NOTE ON GAMES CORRESPONDING TO SEQUENCING SITUATIONS WITH DUE DATES

By Peter Borm and Herbert Hamers

May 1998

A NOTE ON GAMES CORRESPONDING TO SEQUENCING SITUATIONS WITH DUE DATES

Peter Borm* Herbert Hamers*

Abstract

It is shown that sequencing situations in which all jobs have equal processing times, the due date date of each job is a multiple of its processing time and the cost of each job is linear in its completion time, yield the same class of convex games as the sequencing situations in in which all jobs have equal processing times, the ready time of each job is a multiple of its processing time and the cost of each job is linear in its completion time.

Journal of Economic Literature Classification Number: C71

Keywords:

Convex cooperative games, one-machine sequencing situations, due dates, ready times.

In a one-machine sequencing situation there is a queue of agents, each with one job, before a machine. Each job has to be processed on the machine. The finite set of agents is denoted by N and $|N|=n$. By a bijection $\sigma: N \rightarrow\{1, \ldots, n\}$ we can describe the position of the agents in the queue. Specifically, $\sigma(i)=j$ means that player i is in position j. The due date d_{i} of the job of agent i is the latest time the processing of this job has to be completed. The processing time p_{i} of the job of agent i is the time the machine takes to handle this job. We assume that every agent has a linear cost function $c_{i}:[0, \infty) \rightarrow I R$ defined by $c_{i}(t)=\alpha_{i} t$ with $\alpha_{i}>0$ the cost coefficient of player i. The completion time $C(\sigma, i)$ of the job of agent i if processed according to a bijection σ (in a semi-active way) is the sum of the earliest time the job can start w.r.t. σ and its processing time. In this note we concentrate on sequencing situations that satisfy
(A1) $\quad d_{i} \in\{1, \ldots, n\}$ and $p_{i}=1$ for all $i \in N$
Further, it is assumed that there is an initial bijection $\sigma_{0}: N \rightarrow\{1, \ldots, n\}$ on the jobs of the players before the processing of the machine starts with the properties
(A2) $\quad d_{i} \leq d_{j}$ for all $i, j \in N$ with $\sigma_{0}(i)<\sigma_{0}(j)$, and $C\left(\sigma_{0}, i\right) \leq d_{i}$ for all $i \in N$ and
(A3) $\quad \sigma_{0}(i)=C\left(\sigma_{0}, i\right)$ for all $i \in N$.
Note that the assumptions $(A 1)-(A 2)$ imply that in the initial bijection there is no time gap in the job processing and that in particular the last job that is processed

[^0]according to σ_{0} is completed at time n. In spite of the conclusion that assumption (A3) is superfluous, we have added it here for the sake of convenience and symmetry with ready time sequencing situations discussed later on. A sequencing situation as described above is denoted by $\left(N, \sigma_{0}, d, p, \alpha\right)$ and will be refered to as a d-sequencing situation.

The total costs $c_{\sigma}(S)$ of a coalition $S \subseteq N$ w.r.t. a bijection σ are given by

$$
c_{\sigma}(S):=\sum_{i \in S} \alpha_{i}(C(\sigma, i))
$$

The (maximal) cost savings of a coalition S depend on the set of admissible rearrangements of this coalition. Since each job has to be completed before its due date, we will consider only those $\sigma: N \rightarrow\{1, \ldots, n\}$ that satisfy $C(\sigma, i) \leq d_{i}$. Such a bijection $\sigma: N \rightarrow\{1, \ldots, n\}$ will be called admissible for S if it satisfies $P(\sigma, i)=P\left(\sigma_{0}, i\right)$ for all $i \in N \backslash S$, where $P(\sigma, i)=\{j \in N \mid \sigma(j)<\sigma(i)\}$. Hence, we consider an order to be admissible for S if each agent outside S has the same starting time as in the initial order. Moreover, the agents of S are not allowed to jump over players outside S. The set of all admissible rearrangements for a coalition S is denoted by Σ_{S}. Note that by the assumptions on the initial and admissible bijections we have for any $\sigma \in \Sigma_{S}$ that $\sigma(i)=C(\sigma, i)$ for all $i \in N$.

Given a sequencing situation ($N, \sigma_{0}, d, p, \alpha$) the corresponding sequencing game is defined in such a way that the the worth of a coalition S is equal to the maximal cost savings the coalition can achieve by means of admissible rearrangements. Formally we have

$$
\begin{equation*}
v(S)=\max _{\sigma \in \Sigma_{S}}\left\{\sum_{i \in S} \alpha_{i} C\left(\sigma_{0}, i\right)-\sum_{i \in S} \alpha_{i} C(\sigma, i)\right\} \tag{1}
\end{equation*}
$$

From the definition of admissible rearrangements it follows that the essential coalitions for sequencing games are the connected ones. A coalition S is called connected with respect to σ_{0} if for all $i, j \in S$ and $k \in N, \sigma_{0}(i)<\sigma_{0}(k)<\sigma_{0}(j)$ implies $k \in S$.

Next, we describe the special class of one-machine sequencing situations, in which all jobs have equal processing times and the ready time of each job is a multiple of the processing time and the corresponding class of games. The description of these sequencing games is identical to the sequencing situations corresponding to due dates. The only difference is that there is no due date imposed on a player but a ready time. The ready time r_{i} of the job of agent i is the earliest time that the job can be processed on the machine. We will concentrate on sequencing situations that satisfy
(B1) $\quad r_{i} \in\{0, \ldots, n-1\}$ and $p_{i}=1$ for all $i \in N$.
The initial order σ_{0} has the properties
(B2) $\quad r_{i} \leq r_{j}$ for all $i, j \in N$ with $\sigma_{0}(i)<\sigma_{0}(j)$ and $C\left(\sigma_{0}, i\right) \geq r_{i}+1$ for all $i \in N$ and

$$
\text { (B3) } \quad \sigma_{0}(i)=C\left(\sigma_{0}, i\right) \text { for all } i \in N \text {. }
$$

Note that the assumptions $(B 1)-(B 3)$ imply that in the initial bijection σ_{0} there are no time gaps in the job processing and that the job that is processed last is completed at time n. A sequencing situation as described above is denoted by ($N, \sigma_{0}, r, p, \alpha$) and will be refered to as an r-sequencing situation.
In r-sequencing situations we will only consider those bijections $\sigma: N \rightarrow\{1, \ldots, n\}$ that satisfy $C(\sigma, i) \geq r_{i}+1$ for all $i \in N$. The set of admissible rearrangements, denoted by
\mathcal{A}_{S}, has the same restrictions with respect to interchanging positions between players of a coalition S as before. Hence, we may again conclude that for any $\sigma \in \mathcal{A}_{S}$ we have that $\sigma(i)=C(\sigma, i)$. The corresponding sequencing game is defined by

$$
\begin{equation*}
v(S)=\max _{\sigma \in \mathcal{A}_{S}}\left\{\sum_{i \in S} \alpha_{i} C\left(\sigma_{0}, i\right)-\sum_{i \in S} \alpha_{i} C(\sigma, i)\right\} \tag{2}
\end{equation*}
$$

Hamers, Borm and Tijs (1995) show that sequencing games arising from r-sequencing situations are convex by establishing relations between optimal orders of subcoalitions. These relations are obtained by analysing the procedure described in Rinnooy Kan (1976) that provides an optimal order. For the optimal order in d-sequencing situations we can use the procedure of Smith (1956), which operates similar to the procedure of Rinnooy Kan (1976). Both procedures aim for having the jobs with the largest cost coefficient α_{i} as far as possible at the front of the queue. The Smith-procedure has to take into account the due dates, whereas the Rinnooy Kan-procedure has to take into account the ready times. For this reason the Smith-procedure starts at the end of the queue, whereas the the Rinnooy Kan-procedure starts at the front of the queue. In spite of this difference it is possible for d-sequencing situations to establish similar relations between optimal orders of various subcoalitions as for r-sequencing situations. However, where in the Rinnooy Kan-procedure these relations are established if a player is added at the end of a (sub)queue, in the Smith-procedure these relations can be established if a player is added at the front of a (sub)queue. Following exactly the same line of argument it can be infered that sequencing games arising from d-sequencing situations are convex games.

In fact, we will show even a stronger result: both classes of sequencing situations generate the same class of sequencing games.
Theorem 1 Let $R(N)$ and $D(N)$ be the class of sequencing games that arise from r sequencing situations and d-sequencing situations, respectively. Then $R(N)=D(N)$.
Proof: We show that $R(N) \subseteq D(N)$. Let $(N, v) \in R(N)$. Let $\left(N, \sigma_{0}, r, p, \alpha\right)$ be an r-sequencing situation that generates the game (N, v). W.l.o.g. we can take $\sigma_{0}(i)=i$ for all $i \in N$. Let $S=\{i, i+1, \ldots, j\}$, be a connected set w.r.t. σ_{0}. Then

$$
\begin{equation*}
v(S)=\max \left\{\sum_{k=i}^{j} \alpha_{k} k-\sum_{k=i}^{j} \alpha_{k} x_{k} \mid x_{k} \geq r_{k}+1 \forall k \in S,\left\{x_{i}, \ldots, x_{j}\right\}=\{i, \ldots, j\}\right\} \tag{3}
\end{equation*}
$$

Consider the d-sequencing situation $\left(N, \tau_{0}, d, p, \beta\right)$ in which for all $i \in N$ we define $\tau_{0}(i)=n+1-i, d_{i}=n-r_{i}$ and $\beta_{i}=c+\left(\alpha_{n}-\alpha_{i}\right)$ with $c=\max _{i \in N} \alpha_{i}$.
We first show that $\left(N, \tau_{0}, d, p, \beta\right)$ satisfies the assumptions $(A 1)-(A 3)$. Obviously, (A3) is a consequence of (B1), while (A1) follows immediately from the definition of d and (B1). If $\tau_{0}(l)<\tau_{0}(m)$ then $m<l$ which implies that $r_{m} \leq r_{l}$. The definition of d yields immediately that $d_{l} \leq d_{m}$. Further, we have for any $l \in N$ that $\sigma_{0}(l)=l \geq r_{l}+1=$ $n+1-d_{l}$. This implies that $d_{l} \geq n+1-l=\tau_{0}(l)=C\left(\tau_{0}, l\right)$. Hence (A2) is satisfied. Note that from the definition of τ_{0} it follows that S is also connected w.r.t. τ_{0}. Then for the game (N, w) corresponding to (N, τ_{0}, d, p, β) it holds that

$$
\begin{align*}
& w(S)=\max \left\{\sum_{k=i}^{j} \beta_{k}(n+1-k)-\sum_{k=i}^{j} \beta_{k} y_{k} \mid y_{k} \leq d_{k} \forall k \in S\right. \\
&\left\{y_{i}, \ldots, y_{j}\right\}=\{n+1-j, \ldots, n+1-i\}\} \tag{4}
\end{align*}
$$

Let \hat{y} be an optimal solution of (4). By defining \hat{x} by $\hat{x}_{k}=n+1-\hat{y}_{k}$ for all $k \in\{i, \ldots j\}$ we have

$$
\begin{aligned}
w(S) & =\sum_{k=i}^{j} \beta_{k}(n+1-k)-\sum_{k=i}^{j} \beta_{k} \hat{y}_{k} \\
& =\sum_{k=i}^{j}\left(c+\alpha_{n}-\alpha_{k}\right)(n+1-k)-\sum_{k=i}^{j}\left(c+\alpha_{n}-\alpha_{k}\right)\left(n+1-\hat{x}_{k}\right) \\
& =\left(c+\alpha_{n}\right) \sum_{k=i}^{j}\left(\hat{x}_{k}-k\right)+\sum_{k=i}^{j} \alpha_{k}\left(k-\hat{x}_{k}\right) \\
& =\sum_{k=i}^{j} \alpha_{k}\left(k-\hat{x}_{k}\right) \\
& \leq v(S)
\end{aligned}
$$

where the first equality holds since \hat{y} is optimal, the second equality by the definition of τ_{0}, β and \hat{x}, the third equality and fourth equality by straightforward calculations. The inequality holds by (3) since $\hat{x}_{k}=n+1-\hat{y}_{k} \geq n+1-d_{k}=n+1-\left(n-r_{k}\right)=r_{k}+1$ and $\left\{\hat{x}_{i}, \ldots, \hat{x}_{j}\right\}=\{i, \ldots, j\}$.
Let \hat{x} be an optimal solution of (3). By defining \hat{y} by $\hat{y}_{k}=n+1-\hat{x}_{k}$ for all $k \in S$ we can show in the same way as above that $v(S) \leq w(S)$, which completes the first part of this proof.
Obviously, the second part, $D(N) \subseteq R(N)$, can be dealt with in an analogous way.

References:

Hamers, Borm, and Tijs (1995), On games corresponding to sequencing situations with ready times, Mathematical Programming, 69, 471-483.
Rinnooy Kan A. (1976), Machine Scheduling Problems. Martinus Nijhof, The Hague. Smith W. (1956), Various Optimizers for single-stage production. Naval Research Logistics Quarterly, 3, 59-66.

No.	Author(s)	Title
9773	H. Huizinga and S.B. Nielsen	The Taxation of Interest in Europe: A Minimum Withholding
Tax?		

No.	Author(s)	Title		
9792	A. Cukierman, P. Rodriguez			
and S.B. Webb			\quad	Central Bank Autonomy and Exchange Rate Regimes - Their
:---				
Effects on Monetary Accommodation and Activism				

No.	Author(s)	Title
97111	C. Fernández, E. Ley, and M.F.J. Steel	Statistical Modeling of Fishing Activities in the North Atlantic
97112	J.J.A. Moors	A Critical Evaluation of Mangat's Two-Step Procedure in Randomized Response
97113	J.J.A. Moors, B. B. van der Genugten, and L.W.G. Strijbosch	Repeated Audit Controls
97114	X. Gong and A. van Soest	Family Structure and Female Labour Supply in Mexico City
97115	A. Blume, D.V. DeJong, Y.-G. Kim and G.B. Sprinkle	Evolution of Communication with Partial Common Interest
97116	J.P.C. Kleijnen and R.G. Sargent	A Methodology for Fitting and Validating Metamodels in Simulation
97117	J. Boone	Technological Progress and Unemployment
97118	A. Prat	Campaign Advertising and Voter Welfare
9801	H. Gersbach and H. Uhlig	Debt Contracts, Collapse and Regulation as Competition Phenomena
9802	P. Peretto and S. Smulders	Specialization, Knowledge Dilution, and Scale Effects in an IO based Growth Model
9803	K.J.M. Huisman and P.M. Kort	A Further Analysis on Strategic Timing of Adoption of New Technologies under Uncertainty
9804	P.J.-J. Herings and A. van den Elzen	Computation of the Nash Equilibrium Selected by the Tracing Procedure in N-Person Games
9805	P.J.-J. Herings and J.H. Drèze	Continua of Underemployment Equilibria
9806	M. Koster	Multi-Service Serial Cost Sharing: A Characterization of the Moulin-Shenker Rule
9807	F.A. de Roon, Th.E. Nijman and B.J.M. Werker	Testing for Mean-Variance Spanning with Short Sales Constraints and Transaction Costs: The Case of Emerging Markets
9808	R.M.W.J. Beetsma and P.C. Schotman	Measuring Risk Attitudes in a Natural Experiment: Data from the Television Game Show Lingo
9809	M. Bütler	The Choice between Pension Reform Options
9810	L. Bettendorf and F. Verboven	Competition on the Dutch Coffee Market
9811	E. Schaling, M. Hoeberichts and S. Eijffinger	Incentive Contracts for Central Bankers under Uncertainty: Walsh-Svensson non-Equivalence Revisited

No. Author(s)
9812 M. Slikker
9813 T. van de Klundert and S. Smulders

9814 A. Belke and D. Gros

9815 J.P.C. Kleijnen and O. Pala
9816 C. Dustmann, N. Rajah and A. van Soest

Title

Average Convexity in Communication Situations

Capital Mobility and Catching Up in a Two-Country, Two-Sector Model of Endogenous Growth

Evidence on the Costs of Intra-European Exchange Rate Variability

Maximizing the Simulation Output: a Competition
School Quality, Exam Performance, and Career Choice

9817 H. Hamers, F. Klijn and J. Suijs On the Balancedness of m-Sequencing Games
9818 S.J. Koopman and J. Durbin Fast Filtering and Smoothing for Multivariate State Space Models

9819 E. Droste, M. Kosfeld and
Regret Equilibria in Games
M. Voorneveld

9820 M. Slikker
A Note on Link Formation
9821 M. Koster, E. Molina, Y. Sprumont and S. Tijs

9822 J.P.C. Kleijnen Validation of Simulation, With and Without Real Data
9823 M. Kosfeld Rumours and Markets
9824 F. Karaesmen, F. van der Duyn Dedication versus Flexibility in Field Service Operations Schouten and L.N. van Wassenhove

9825 J. Suijs, A. De Waegenaere and Optimal Design of Pension Funds: A Mission Impossible P. Borm

9826 U.Gneezy and W. Güth On Competing Rewards Standards -An Experimental Study of Ultimatum Bargaining-

9827 M. Dufwenberg and U. Gneezy Price Competition and Market Concentration: An Experimental Study

9828 A. Blume, D.V. De Jong and Learning in Sender-Receiver Games
G.R. Neumann

9829 B.G.C. Dellaert, J.D. Brazell and J.J. Louviere

Variations in Consumer Choice Consistency: The Case of
Attribute-Level Driven Shifts in Consistency Attribute-Level Driven Shifts in Consistency

9830 B.G.C. Dellaert, A.W.J. Consumer Choice of Modularized Products: A Conjoint choice Borgers, J.J. Louviere and H.J.P. Timmermans

No. Author(s) Title
9831 E.G.A. Gaury, H. Pierreval New Species of Hybrid Pull Systems and J.P.C. Kleijnen

9832 S.J. Koopman and H.N. Lai Modelling Bid-Ask Spreads in Competitive Dealership Markets
9833 F. Klijn, M. Slikker, S. Tijs Characterizations of the Egalitarian Solution for Convex and J. Zarzuelo Games

9834 C. Fershtman, N. Gandal and Estimating the Effect of Tax Reform in Differentiated Product S. Markovich Oligopolistic Markets

9835 M. Zeelenberg, W.W. van Dijk, Emotional Reactions to the Outcomes of Decisions: The Role J. van der Pligt, A.S.R. of Counterfactual Thought in the Experience of Regret and Manstead, P. van Empelen Disappointment and D. Reinderman

9836 M. Zeelenberg, W.W. van Dijk Reconsidering the Relation between Regret and Responsibility and A.S.R. Manstead

9837 M. Dufwenberg and G. Kirchsteiger

9838 A. Xepapadeas and Environmental Policy and Competitiveness: The Porter HypoA. de Zeeuw thesis and the Composition of Capital

9839 M. Lubyova and J.C. van Ours Unemployment Durations of Job Losers in a Labor Market in Transition

9840 P. Bolton and X. Freixas A Dilution Cost Approach to Financial Intermediation and Securities Markets

9842 J. Boone Competitive Pressure, Selection and Investments in Development and Fundamental Research
H.L.F. de Groot Macroeconomic Consequences of Outsourcing. An Analysis of Growth, Welfare, and Product Variety

9844 U. Gneezy, W. Güth and Presents or Investments? An Experimental Analysis F. Verboven
A. Prat
How Homogeneous Should a Team Be?

9846 P. Borm and H. Hamers
A Note on Games Corresponding to Sequencing Situations with Due Dates

[^0]: *Tilburg University, Department of Econometrics, P.O.Box 90153, 5000 LE Tilburg, The Netherlands

