

t jow shop solic

208

Tilburg University

CBM R 8414

1998

nr.46

for

Center for Economic Research

No. 9846

A NOTE ON GAMES CORRESPONDING TO SEQUENCING SITUATIONS WITH DUE DATES

By Peter Borm and Herbert Hamers

May 1998

ISSN 0924-7815

-

.

•

A NOTE ON GAMES CORRESPONDING TO SEQUENCING SITUATIONS WITH DUE DATES

PETER BORM* HERBERT HAMERS*

Abstract

It is shown that sequencing situations in which all jobs have equal processing times, the due date date of each job is a multiple of its processing time and the cost of each job is linear in its completion time, yield the same class of convex games as the sequencing situations in in which all jobs have equal processing times, the ready time of each job is a multiple of its processing time and the cost of each job is linear in its completion time.

Journal of Economic Literature Classification Number: C71

KEYWORDS: Convex cooperative games, one-machine sequencing situations, due dates, ready times.

In a one-machine sequencing situation there is a queue of agents, each with one job, before a machine. Each job has to be processed on the machine. The finite set of agents is denoted by N and |N| = n. By a bijection $\sigma : N \to \{1, ..., n\}$ we can describe the position of the agents in the queue. Specifically, $\sigma(i) = j$ means that player i is in position j. The due date d_i of the job of agent i is the latest time the processing of this job has to be completed. The processing time p_i of the job of agent i is the time the machine takes to handle this job. We assume that every agent has a linear cost function $c_i : [0, \infty) \to IR$ defined by $c_i(t) = \alpha_i t$ with $\alpha_i > 0$ the cost coefficient of player i. The completion time $C(\sigma, i)$ of the job of agent i if processed according to a bijection σ (in a semi-active way) is the sum of the earliest time the job can start w.r.t. σ and its processing time. In this note we concentrate on sequencing situations that satisfy

(A1) $d_i \in \{1, ..., n\}$ and $p_i = 1$ for all $i \in N$ Further, it is assumed that there is an initial bijection $\sigma_0 : N \to \{1, ..., n\}$ on the jobs of the players before the processing of the machine starts with the properties

 $(A2) \quad d_i \leq d_j \text{ for all } i, j \in N \text{ with } \sigma_0(i) < \sigma_0(j), \text{ and } C(\sigma_0, i) \leq d_i \text{ for all } i \in N \text{ and } i \in N$

(A3) $\sigma_0(i) = C(\sigma_0, i)$ for all $i \in N$.

Note that the assumptions (A1) - (A2) imply that in the initial bijection there is no time gap in the job processing and that in particular the last job that is processed

^{*}Tilburg University, Department of Econometrics, P.O.Box 90153, 5000 LE Tilburg, The Netherlands

according to σ_0 is completed at time *n*. In spite of the conclusion that assumption (A3) is superfluous, we have added it here for the sake of convenience and symmetry with ready time sequencing situations discussed later on. A sequencing situation as described above is denoted by $(N, \sigma_0, d, p, \alpha)$ and will be referred to as a *d*-sequencing situation.

The total costs $c_{\sigma}(S)$ of a coalition $S \subseteq N$ w.r.t. a bijection σ are given by

$$c_{\sigma}(S) := \sum_{i \in S} \alpha_i(C(\sigma, i)).$$

The (maximal) cost savings of a coalition S depend on the set of admissible rearrangements of this coalition. Since each job has to be completed before its due date, we will consider only those $\sigma: N \to \{1, ..., n\}$ that satisfy $C(\sigma, i) \leq d_i$. Such a bijection $\sigma: N \to \{1, ..., n\}$ will be called *admissible* for S if it satisfies $P(\sigma, i) = P(\sigma_0, i)$ for all $i \in N \setminus S$, where $P(\sigma, i) = \{j \in N \mid \sigma(j) < \sigma(i)\}$. Hence, we consider an order to be admissible for S if each agent outside S has the same starting time as in the initial order. Moreover, the agents of S are not allowed to jump over players outside S. The set of all admissible rearrangements for a coalition S is denoted by Σ_S . Note that by the assumptions on the initial and admissible bijections we have for any $\sigma \in \Sigma_S$ that $\sigma(i) = C(\sigma, i)$ for all $i \in N$.

Given a sequencing situation $(N, \sigma_0, d, p, \alpha)$ the corresponding sequencing game is defined in such a way that the the worth of a coalition S is equal to the maximal cost savings the coalition can achieve by means of admissible rearrangements. Formally we have

$$v(S) = \max_{\sigma \in \Sigma_S} \{ \sum_{i \in S} \alpha_i C(\sigma_0, i) - \sum_{i \in S} \alpha_i C(\sigma, i) \}$$
(1)

From the definition of admissible rearrangements it follows that the essential coalitions for sequencing games are the connected ones. A coalition S is called *connected* with respect to σ_0 if for all $i, j \in S$ and $k \in N$, $\sigma_0(i) < \sigma_0(k) < \sigma_0(j)$ implies $k \in S$.

Next, we describe the special class of one-machine sequencing situations, in which all jobs have equal processing times and the ready time of each job is a multiple of the processing time and the corresponding class of games. The description of these sequencing games is identical to the sequencing situations corresponding to due dates. The only difference is that there is no due date imposed on a player but a ready time. The ready time r_i of the job of agent i is the earliest time that the job can be processed on the machine. We will concentrate on sequencing situations that satisfy

(B1) $r_i \in \{0, ..., n-1\}$ and $p_i = 1$ for all $i \in N$. The initial order σ_0 has the properties

 $(B2) \quad r_i \leq r_j \text{ for all } i,j \in N \text{ with } \sigma_0(i) < \sigma_0(j) \text{ and } C(\sigma_0,i) \geq r_i+1 \text{ for all } i \in N \text{ and } i \in N \text{ and } i \in N \text{ or } i \in N \text$

(B3) $\sigma_0(i) = C(\sigma_0, i)$ for all $i \in N$.

Note that the assumptions (B1) - (B3) imply that in the initial bijection σ_0 there are no time gaps in the job processing and that the job that is processed last is completed at time n. A sequencing situation as described above is denoted by $(N, \sigma_0, r, p, \alpha)$ and will be referred to as an r-sequencing situation.

In r-sequencing situations we will only consider those bijections $\sigma: N \to \{1, ..., n\}$ that satisfy $C(\sigma, i) \ge r_i + 1$ for all $i \in N$. The set of admissible rearrangements, denoted by

 \mathcal{A}_S , has the same restrictions with respect to interchanging positions between players of a coalition S as before. Hence, we may again conclude that for any $\sigma \in \mathcal{A}_S$ we have that $\sigma(i) = C(\sigma, i)$. The corresponding sequencing game is defined by

$$v(S) = \max_{\sigma \in \mathcal{A}_S} \{ \sum_{i \in S} \alpha_i C(\sigma_0, i) - \sum_{i \in S} \alpha_i C(\sigma, i) \}$$
(2)

Hamers, Borm and Tijs (1995) show that sequencing games arising from r-sequencing situations are convex by establishing relations between optimal orders of subcoalitions. These relations are obtained by analysing the procedure described in Rinnooy Kan (1976) that provides an optimal order. For the optimal order in d-sequencing situations we can use the procedure of Smith (1956), which operates similar to the procedure of Rinnooy Kan (1976). Both procedures aim for having the jobs with the largest cost coefficient α_i as far as possible at the front of the queue. The Smith-procedure has to take into account the due dates, whereas the Rinnooy Kan-procedure has to take into account the ready times. For this reason the Smith-procedure starts at the end of the queue, whereas the the Rinnooy Kan-procedure starts at the front of the queue. In spite of this difference it is possible for d-sequencing situations to establish similar relations between optimal orders of various subcoalitions as for r-sequencing situations. However, where in the Rinnooy Kan-procedure these relations are established if a player is added at the end of a (sub)queue, in the Smith-procedure these relations can be established if a player is added at the front of a (sub)queue. Following exactly the same line of argument it can be infered that sequencing games arising from d-sequencing situations are convex games.

In fact, we will show even a stronger result: both classes of sequencing situations generate the same class of sequencing games.

Theorem 1 Let R(N) and D(N) be the class of sequencing games that arise from rsequencing situations and d-sequencing situations, respectively. Then R(N) = D(N).

PROOF: We show that $R(N) \subseteq D(N)$. Let $(N, v) \in R(N)$. Let $(N, \sigma_0, r, p, \alpha)$ be an *r*-sequencing situation that generates the game (N, v). W.l.o.g. we can take $\sigma_0(i) = i$ for all $i \in N$. Let $S = \{i, i+1, ..., j\}$, be a connected set w.r.t. σ_0 . Then

$$v(S) = \max\{\sum_{k=i}^{j} \alpha_k k - \sum_{k=i}^{j} \alpha_k x_k \mid x_k \ge r_k + 1 \ \forall k \in S, \{x_i, ..., x_j\} = \{i, ..., j\}\}.$$
 (3)

Consider the d-sequencing situation (N, τ_0, d, p, β) in which for all $i \in N$ we define $\tau_0(i) = n + 1 - i$, $d_i = n - r_i$ and $\beta_i = c + (\alpha_n - \alpha_i)$ with $c = \max_{i \in N} \alpha_i$.

We first show that (N, τ_0, d, p, β) satisfies the assumptions (A1) - (A3). Obviously, (A3) is a consequence of (B1), while (A1) follows immediately from the definition of d and (B1). If $\tau_0(l) < \tau_0(m)$ then m < l which implies that $r_m \leq r_l$. The definition of d yields immediately that $d_l \leq d_m$. Further, we have for any $l \in N$ that $\sigma_0(l) = l \geq r_l + 1 = n + 1 - d_l$. This implies that $d_l \geq n + 1 - l = \tau_0(l) = C(\tau_0, l)$. Hence (A2) is satisfied.

Note that from the definition of τ_0 it follows that S is also connected w.r.t. τ_0 . Then for the game (N, w) corresponding to (N, τ_0, d, p, β) it holds that

$$w(S) = \max\{\sum_{k=i}^{j} \beta_{k}(n+1-k) - \sum_{k=i}^{j} \beta_{k}y_{k} \mid y_{k} \le d_{k} \forall k \in S, \\ \{y_{i}, ..., y_{j}\} = \{n+1-j, ..., n+1-i\}\}$$
(4)

Let \hat{y} be an optimal solution of (4). By defining \hat{x} by $\hat{x}_k = n + 1 - \hat{y}_k$ for all $k \in \{i, ..., j\}$ we have

$$\begin{split} w(S) &= \sum_{k=i}^{j} \beta_{k}(n+1-k) - \sum_{k=i}^{j} \beta_{k} \hat{y}_{k} \\ &= \sum_{k=i}^{j} (c+\alpha_{n}-\alpha_{k})(n+1-k) - \sum_{k=i}^{j} (c+\alpha_{n}-\alpha_{k})(n+1-\hat{x}_{k}) \\ &= (c+\alpha_{n}) \sum_{k=i}^{j} (\hat{x}_{k}-k) + \sum_{k=i}^{j} \alpha_{k}(k-\hat{x}_{k}) \\ &= \sum_{k=i}^{j} \alpha_{k}(k-\hat{x}_{k}) \\ &< v(S), \end{split}$$

where the first equality holds since \hat{y} is optimal, the second equality by the definition of τ_0 , β and \hat{x} , the third equality and fourth equality by straightforward calculations. The inequality holds by (3) since $\hat{x}_k = n + 1 - \hat{y}_k \ge n + 1 - d_k = n + 1 - (n - r_k) = r_k + 1$ and $\{\hat{x}_i, ..., \hat{x}_j\} = \{i, ..., j\}$.

Let \hat{x} be an optimal solution of (3). By defining \hat{y} by $\hat{y}_k = n + 1 - \hat{x}_k$ for all $k \in S$ we can show in the same way as above that $v(S) \leq w(S)$, which completes the first part of this proof.

Obviously, the second part, $D(N) \subseteq R(N)$, can be dealt with in an analogous way. \Box

References:

9

HAMERS, BORM, AND TIJS (1995), On games corresponding to sequencing situations with ready times, *Mathematical Programming*, **69**, 471-483.

RINNOOY KAN A. (1976), Machine Scheduling Problems. Martinus Nijhof, The Hague. SMITH W. (1956), Various Optimizers for single-stage production. Naval Research Logistics Quarterly, 3, 59-66.

No.	Author(s)	Title
9773	H. Huizinga and S.B. Nielsen	The Taxation of Interest in Europe: A Minimum Withholding Tax?
9774	E. Charlier	Equivalence Scales for the Former West Germany
9775	M. Berliant and T. ten Raa	Increasing Returns and Perfect Competition: The Role of Land
9776	A. Kalwij, R. Alessie and P. Fontein	Household Commodity Demand and Demographics in the Netherlands: a Microeconometric Analysis
9777	P.J.J. Herings	Two Simple Proofs of the Feasibility of the Linear Tracing Procedure
9778	G. Gürkan, A.Y. Özge and S.M. Robinson	Sample-Path Solutions for Simulation Optimization Problems and Stochastic Variational Inequalities
9779	S. Smulders	Should Environmental Standards be Tighter if Technological Change is Endogenous?
9780	B.J. Heijdra and L. Meijdam	Public Investment in a Small Open Economy
9781	E.G.F. Stancanelli	Do the Rich Stay Unemployed Longer? An Empirical Study for the UK
9782	J.C. Engwerda and R.C. Douven	Local Strong <i>d</i> -Monotonicity of the Kalai-Smorodinsky and Nash Bargaining Solution
9783	J.C. Engwerda	Computational Aspects of the Open-Loop Nash Equilibrium in Linear Quadratic Games
9784	J.C. Engwerda, B. van Aarle J.E.J. Plasmans	The (In)Finite Horizon Open-Loop Nash LQ-Game: An Application to EMU
9785	J. Osiewalski, G. Koop and M.F.J. Steel	A Stochastic Frontier Analysis of Output Level and Growth in Poland and Western Economies
9786	F. de Jong	Time-Series and Cross-Section Information in Affine Term Structure Models
9787	G. Gürkan, A.Y. Özge and S.M. Robinson	Sample-Path Solution of Stochastic Variational Inequalities
9788	A.N. Banerjee	Sensitivity of Univariate AR(1) Time-Series Forecasts Near the Unit Root
9789	G. Brennan, W. Güth and H. Kliemt	Trust in the Shadow of the Courts
9790	A.N. Banerjee and J.R. Magnus	On the Sensitivity of the usual <i>t</i> - and <i>F</i> -tests to AR(1) misspecification
9791	A. Cukierman and M. Tommasi	When does it take a Nixon to go to China?

-

Ŧ

No.	Author(s)	Title
9792	A. Cukierman, P. Rodriguez and S.B. Webb	Central Bank Autonomy and Exchange Rate Regimes - Their Effects on Monetary Accommodation and Activism
9793	B.G.C. Dellaert, M. Prodigalidad and J.J. Louvriere	Family Members' Projections of Each Other's Preference and Influence: A Two-Stage Conjoint Approach
9794	B. Dellaert, T. Arentze,M. Bierlaire, A. Borgersand H. Timmermans	Investigating Consumers' Tendency to Combine Multiple Shopping Purposes and Destinations
9795	A. Belke and D. Gros	Estimating the Costs and Benefits of EMU: The Impact of External Shocks on Labour Markets
9796	H. Daniëls, B. Kamp and W. Verkooijen	Application of Neural Networks to House Pricing and Bond Rating
9797	G. Gürkan	Simulation Optimization of Buffer Allocations in Production Lines with Unreliable Machines
9798	V. Bhaskar and E. van Damme	Moral Hazard and Private Monitoring
9799	F. Palomino	Relative Performance Equilibrium in Financial Markets
9 7 100	G. Gürkan and A.Y. Özge	Functional Properties of Throughput in Tandem Lines with Unreliable Servers and Finite Buffers
97101	E.G.A. Gaury, J.P.C. Kleijnen and H. Pierreval	Configuring a Pull Production-Control Strategy Through a Generic Model
97102	F.A. de Roon, Th.E. Nijman and C. Veld	Analyzing Specification Errors in Models for Futures Risk Premia with Hedging Pressure
97103	M. Berg, R. Brekelmans and A. De Waegenaere	Budget Setting Strategies for the Company's Divisions
97104	C. Fernández and M.F.J. Steel	Reference Priors for Non-Normal Two-Sample Problems
97105	C. Fernández and M.F.J. Steel	Reference Priors for the General Location-Scale Model
97106	M.C.W. Janssen and E. Maasland	On the Unique D1 Equilibrium in the Stackelberg Model with asymmetric information
97107	A. Belke and M. Göcke	Multiple Equilibria in German Employment -Simultaneous Identification of Structural Breaks-
97108	D. Bergemann and U. Hege	Venture Capital Financing, Moral Hazard, and Learning
97109	U. Hege and P. Viala	Contentious Contracts
97110	P.JJ. Herings	A Note on "Stability of Tâtonnement Processes of Short Period Equilibria with Rational Expectations"

No.	Author(s)	Title
97111	C. Fernández, E. Ley, and M.F.J. Steel	Statistical Modeling of Fishing Activities in the North Atlantic
97112	J.J.A. Moors	A Critical Evaluation of Mangat's Two-Step Procedure in Randomized Response
97113	J.J.A. Moors, B.B. van der Genugten, and L.W.G. Strijbosch	Repeated Audit Controls
97114	X. Gong and A. van Soest	Family Structure and Female Labour Supply in Mexico City
97115	A. Blume, D.V. DeJong, YG. Kim and G.B. Sprinkle	Evolution of Communication with Partial Common Interest
97116	J.P.C. Kleijnen and R.G. Sargent	A Methodology for Fitting and Validating Metamodels in Simulation
97117	J. Boone	Technological Progress and Unemployment
97118	A. Prat	Campaign Advertising and Voter Welfare
9801	H. Gersbach and H. Uhlig	Debt Contracts, Collapse and Regulation as Competition Phenomena
9802	P. Peretto and S. Smulders	Specialization, Knowledge Dilution, and Scale Effects in an IO- based Growth Model
9803	K.J.M. Huisman and P.M. Kort	A Further Analysis on Strategic Timing of Adoption of New Technologies under Uncertainty
9804	P.JJ. Herings and A. van den Elzen	Computation of the Nash Equilibrium Selected by the Tracing Procedure in N-Person Games
9805	P.JJ. Herings and J.H. Drèze	Continua of Underemployment Equilibria
9806	M. Koster	Multi-Service Serial Cost Sharing: A Characterization of the Moulin-Shenker Rule
9807	F.A. de Roon, Th.E. Nijman and B.J.M. Werker	Testing for Mean-Variance Spanning with Short Sales Constraints and Transaction Costs: The Case of Emerging Markets
9808	R.M.W.J. Beetsma and P.C. Schotman	Measuring Risk Attitudes in a Natural Experiment: Data from the Television Game Show Lingo
9809	M. Bütler	The Choice between Pension Reform Options
9810	L. Bettendorf and F. Verboven	Competition on the Dutch Coffee Market
9811	E. Schaling, M. Hoeberichts and S. Eijffinger	Incentive Contracts for Central Bankers under Uncertainty: Walsh-Svensson non-Equivalence Revisited

1

.

.

No.	Author(s)	Title
9812	M. Slikker	Average Convexity in Communication Situations
9813	T. van de Klundert and S. Smulders	Capital Mobility and Catching Up in a Two-Country, Two-Sector Model of Endogenous Growth
9814	A.Belke and D. Gros	Evidence on the Costs of Intra-European Exchange Rate Variability
9815	J.P.C. Kleijnen and O. Pala	Maximizing the Simulation Output: a Competition
9816	C. Dustmann, N. Rajah and A. van Soest	School Quality, Exam Performance, and Career Choice
9817	H. Hamers, F. Klijn and J. Suijs	On the Balancedness of <i>m</i> -Sequencing Games
9818	S.J. Koopman and J. Durbin	Fast Filtering and Smoothing for Multivariate State Space Models
9819	E. Droste, M. Kosfeld and M. Voorneveld	Regret Equilibria in Games
9820	M. Slikker	A Note on Link Formation
9821	M. Koster, E. Molina, Y. Sprumont and S. Tijs	Core Representations of the Standard Fixed Tree Game
9822	J.P.C. Kleijnen	Validation of Simulation, With and Without Real Data
9823	M. Kosfeld	Rumours and Markets
9824	F. Karaesmen, F. van der Duyn Schouten and L.N. van Wassen- hove	Dedication versus Flexibility in Field Service Operations
9825	J. Suijs, A. De Waegenaere and P. Borm	Optimal Design of Pension Funds: A Mission Impossible
9826	U.Gneezy and W. Güth	On Competing Rewards Standards -An Experimental Study of Ultimatum Bargaining-
9827	M. Dufwenberg and U. Gneezy	Price Competition and Market Concentration: An Experimental Study
9828	A. Blume, D.V. De Jong and G.R. Neumann	Learning in Sender-Receiver Games
9829	B.G.C. Dellaert, J.D. Brazell and J.J. Louviere	Variations in Consumer Choice Consistency: The Case of Attribute-Level Driven Shifts in Consistency
9830	B.G.C. Dellaert, A.W.J. Borgers, J.J. Louviere and H.I.P. Timmermans	Consumer Choice of Modularized Products: A Conjoint choice Experiment Approach

.

\$

N	No.	Author(s)	Title
98	831	E.G.A. Gaury, H. Pierreval and J.P.C. Kleijnen	New Species of Hybrid Pull Systems
98	832	S.J. Koopman and H.N. Lai	Modelling Bid-Ask Spreads in Competitive Dealership Markets
98	833	F. Klijn, M. Slikker, S. Tijs and J. Zarzuelo	Characterizations of the Egalitarian Solution for Convex Games
98	834	C. Fershtman, N. Gandal and S. Markovich	Estimating the Effect of Tax Reform in Differentiated Product Oligopolistic Markets
98	835	M. Zeelenberg, W.W. van Dijk, J. van der Pligt, A.S.R. Manstead, P. van Empelen and D. Reinderman	Emotional Reactions to the Outcomes of Decisions: The Role of Counterfactual Thought in the Experience of Regret and Disappointment
98	836	M. Zeelenberg, W.W. van Dijk and A.S.R. Manstead	Reconsidering the Relation between Regret and Responsibility
98	837	M. Dufwenberg and G. Kirchsteiger	A Theory of Sequential Reciprocity
98	838	A. Xepapadeas and A. de Zeeuw	Environmental Policy and Competitiveness: The Porter Hypo- thesis and the Composition of Capital
98	839	M. Lubyova and J.C. van Ours	Unemployment Durations of Job Losers in a Labor Market in Transition
98	840	P. Bolton and X. Freixas	A Dilution Cost Approach to Financial Intermediation and Securities Markets
98	841	A. Rustichini	Minimizing Regret: The General Case
98	842	J. Boone	Competitive Pressure, Selection and Investments in Development and Fundamental Research
98	843	H.L.F. de Groot	Macroeconomic Consequences of Outsourcing. An Analysis of Growth, Welfare, and Product Variety
98	344	U. Gneezy, W. Güth and F. Verboven	Presents or Investments? An Experimental Analysis
98	845	A. Prat	How Homogeneous Should a Team Be?
98	346	P. Borm and H. Hamers	A Note on Games Corresponding to Sequencing Situations with Due Dates

.

.

.

4

.