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1. The Kernel Method

There is general agreement on what we mean with a parametric econometric

model: The distribution of observed data is indexed by a set of parametera. The

best model "explaining" the data is found by determining the parameters that

minimize an empirical distance between the data and the model. The equared

deviation leads to least squares estimation of parameters. The minimization of

the Kuhlback-Leibler distance is equivalent to the Maximum Likelihood method.

In a nonparametric model we do not have, and thus do not estimate, parameters.

We rather estimate the distribution or functionals of it directly from the data

without explicit reference to a proposed (low-dimensional parametric) model.

How can this be doné? If we are only interested in the distribution of the
observations itself, we would take the empirical distribution function but it would
not tell us a lot on the relationship between variables. For instance, it is hard to
infer directly from the joint distribution function of two variables if one variable
influences another in a specific way. Such an influence could be that "on the
average" one variable is monotone dependent on the other, or whether a variable
conditioned on the other is bigger than a certain level. In this case we are asking
after the structure and behavior of the regression function, a functional of the,joint
distribution.

It is simplest to dc~cribe the nonparametric approach in the setting of density

estimation, so we begin with that. A typical eoonomic application for this is the

estimation of income densities. Suppose we are given i.i.d. observations {X;}; ~ E

Ot with density f. 'I'hc functional we are interested in, for the moment, is the

density j(x) at a fixed point x. The distribution function of x

F(x) - If j(n)du
.l o0

can be estimated by the empirical distribution function (edf)
n

Fn(x) - n'1~ I(x; C x).
l-1

This estimate is a step function and cannot be differentiated to obtain an approx-
imation to j(x). If the edf were smooth though, one could hope that also the
derivative would give a good estimator for j(x). Since this is not the csse we need
to smooth.
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We present three approaches here for smoothing in density estimation. The

first stems directly from the histogram, the second one from averaging histograms,

the third one from considering the estimation of j(x) as an ill-posed problem.

1.1 Kernels as windows

Suppase that we are interested in estimating f(0). lf f is smooth in a small

neighborhood ~-h, h] of x- 0, we justify by the mean value theorem,

2h. j(~) ~ f h f(u)du- P(x E I-2~ 2]). (1.1)
h

The rightrhand side of (1.1) can be approximated by counting the number of X,'s

in this small interval of length 2h. Let K(u) -~ I(~u~) ~ 1), then (1.1) can be

rewritten as

J(~) ~ (nh)-' ~ K(~X;I c h).
.-i

This argument can be repeated for arb'ttrary x. An estimator for f(x) is therefore

Íh(x) - n ~ ~ Kh(x - X~) (1.2)
.-r

with Kh(.) - h-'K(.~h). This is ptecisely the kernel density estimator of f(x)

with kernel K(u) - z 1(~u~ C 1) and ónndvridth h. A histogram is a kernel

estimator evaluated only at the discrete bin midpoints with binlengl.h h. The

kernel estimator is obtained by "sliding the kernel window" amtinuously over the

range of observations.

We motivated this particular estimator (1.2) by a smoothness assumption

on J. The estimator fh with the step Cunction kernel z I(~u~ ~ 1) is by its very

nature a rough approximation to f. A smoother approximation can be obtained by

choosing a smoother "window function" K as kernel. One example is the so-called

quartic kernel

K(u)- 16(1 -u~)~ I(~u~ G 1). (1.3)

Obviously, the smoothness of the kernel determines the smoothness of the density

estimate fh.

How does this work with real data?
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Figure 1 shows a scatterplot of log quantities vs. log prices Cor sardines during

a trade period of August-September in 1987 in the Marseille fish market. For the

moment we are interested in estimating the two marginal densities.

F'igure'la,b shows a kernel dt:nsity t~Lirnatc for Lhe distribution of lish pricus

and sold quantity prices. }br these estimates, a bandwidth of h- 0.247 was

seh.cted for the quantity data and h- 0.085 for the price data. Thesr, srnoothing

parameters correspond to the "rule oC thumb" estimatea of Silverman (1986).

Flgun 1. Log quantltis va. Iog prios for wdirw during tha moneha or Auguct-
September In 1fl87 In ehs M.n.llla fleh msrkat. Tha eolld Ilne la a kernsl eatimats of
the rognrion af log quaMltiee on log prid.

Figure Ya. Kernel deneity eetlmate of fleh quantlty data. Quartlc Iosrnel, h-0.447,
n-381Y. Daea kindly provided by Alan Kirmen.

Flgure 46. Kernel denalty astlmate of priu quantity data. Quartic karnel, h-0.085,
n-381Y. Data kindly proNded by Alen Klrman.

The bimodal structure of the quantity density beeomes evident in this plot.

A parametric model like the log Normal distribution for the quantity data would

not be able to capture that particular feature of the quantity distribution. The

bimodal structure in fact gave reasons to investigate this data further and led to

certain buyer~seller combinations.

11 Ktrnels jrom averaging binned data

We have already introduced the hístogram with binwidth 2h. For that defini-

tion, we have tacitly assumed that the bin mesh B~ -[(j - 1)h, jh) was centered

at the origin xo - 0. The sensitivity of histograms with respect to choice of ori-

gin is well known, see c.g., }líirdle (1991, Fig. 1.16). For the fish data of Figure

1, the dependence on the origin becomes evident if we compute histograms with

binwidth h- 0.5 and origins xo - 0.1, 0.2, 0.3, 0.4. The five histograms with this

same binwidth but different origins are shown in Figure 3.

Figure 3. Ffve hietograme of Mareeflle flah data. Orlglna In sa-0,0.1,...,0.4 and
bVnwidth h-0.5.

Although the histograms use the same amount of smoothing, they give differ-
ent impressions on the location of the peaks in the density. Note that in comparison
with Figure 2, the binwidth is larger but, for ease of interpretation, only the bin
centers have been connected. An ensemble of histograms, with different origins,
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becomes independent of the"u origins if they are averaged. To this end, let

Bi,e-1lj-1-~~~h,~jfM~h~,IE{0,...,M-I} (1.4)

denote a smaller bin mesh with origin ~. We have now M histograms

fn,t(x) - (~)-~ ~ I ~ [ (x E Bj,t) I (Xi E Bj,r) I , l - 0, . . . , M - 1.
i-1 ` j J

The idea is to average these M histograms to obtain independence of the origin
t

xo.t - ~,

M-1 n
fk(x) - M-' ~(nh)-' ~ ~ I ( x E Bi,r) I(X, E Bj,i)l

e-o ~-i j J
M-1

- n-' ~(Mh)-' ~~ I(x E Bi,r) I ( X, E Bi,r)~ (1.5)
~-i t-o i

n M-1
- (nh)-' ~ ~ I (x E B~ ) ~ I (X, E B~tk)(M - IkU~

f-1 j k-1-M

with B~ -[~, }' n) the smaller bins with width 6-~. F7om (1.5) we see

that averaging the shifted histograms leads again to a kernel like averaging process.
Indeed (1.5) can be rewritten as

M-1

(nh)-' ~ 1 (x E Bj ) ~ wM(k)nitk, (1.6)
j k-1-M

with ni - ~; ~ I(X, E B~ ) and effective kernel weight wM(k) - 1 - M. What

we have used here is the technique of WARI'ing ( Weighted Averaging oC }tnunded

Points), see H~rdle and Scott ( 1990). It consists of discretizing a kernel and then

weighting the frequencies in the fine bins B~. In (1.5) above the triangle kernel

K(u) -(1 - ~u~ I(~u~ G 1)) wes used. T'he kernel estimate ( 1.2) is obtained

by letting M tend to infinity, for details, see Chapters 1, 2 in Hërdle ( 1991).

The effective weight function for the quartic kernel ( 1.3), for example, is given

b w t 'SM~ ( 1 -~~~~)~, 1- 1- M,...,0,..., M- 1. So we see thatY M()-~
forming a weighted average of histograms leads to a kernel estimate.
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l~ Ktrntls aad iU-posed problems

Taking the derivative of a distribution F is a linear operation, Af - F. In
more mathematical language one calls the equation

Aj - J ~ f(u ~ x) f( u)du - F(x),

a Fredholm equation with the integral operator Aj - f'm j. Estimating the

density is the same as inverting (1.7). This Fredholm problem is ill-posed since

for a sequence F„ tending to F the "solutions" ( satisfying Aj„ - F) do not

necessarily converge to f: The inverse operator in (1.7) is not aontinuous, see

Vapnik (1982, p. 22).

Solutions to ill-posed problems can be obtained using the Tikhonov (1963)
regularisation method. Let Sl(j) be a lower semicontinuous functional called the
stabilizer. The idea of the regularisation method is to 6nd indirectly a solution
to AJ - F by use of the stabilizer. Note that the solution of Af - F minimizes

(w.r.t. j)

r~ [ I(x ? u) j( u)du - F(x)]~dx.
.1 m

The stabilizer f2(j) - IUII~ is now added to this equation with a Lagrange param-

eter a,

Ra(l, F) -.~ m I~ m 1(x ~ u) Í( u)du - F(xi1 ~ dx f a ~ m j~(u)du.

Since we do not know F(x), we replace it by the edf F„(x) and obtain the problem
to minimize, with respect to J, the functionnal Ra(f, F„).

The minimum condition for a solution f is

j~ I(x ? u) I J ~ [(x 1 s) j(s)ds - F(x)J dx t a f(n) - 0.
L o0

Applying the Fourier transform for generalized functions and noting that the

Fourier transform of 1(u 7 0) is W t n6(r~) ( with 6(~) the delta function),

we obtain

(.~~ f(-i~~ r(~) - n-''~ ~-e'~~~ J f ar(w),
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with I'(m) the Fourier trans[orm of J(~).
Solving this equation for I' and then, applying the inverse Fburier transform,

we obtain

j( )- n rn 1 el~-X~IIf,
x -'~'2f

Thus we obtain a kernel estimator with kernel

K(u) - 2 exP(-~u~)

and bandwidth h- f. This approach is described in Vapnik ( 1982, p. 302).

1.4 Prop~rdts oj kernsla

We have derived in the first three sections different approaches to kernel

smoothing. Here we would like to collect and summarize some properties of ker-

nels. A kernel is a continuous function, symmetric around zero, integrating to

one:
K(u) - K(-u)

I K(u)du - 1.
(1.8)

In most applicationa K is a poaitive probability density function. For theoret-
ical reasons it is sometimes useful to consider kernels that take on negative values.

The order p of a kernel is defined as the fvst nonzero moment,

I K(u)u~du - 0, j- 1,...,p - 1

I K(u)updu ~ 0.

A positive kernel can be at most of order 2. A higher order kernel (of order
4) is for example

K(u) - 32(7u~ - 10u~ f 3) I(~u~ G 1).

A list oC common kerncl furctions is given below; we shall comment later on

the values in the third cuiumn.
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Kernel K(u) D(Koyi, K)
Epanechnikov ( 3J4)(1 - u~)I (~u~) G 1) 1
Quartic ( 15J16)(1 - u~)~ 1(~u~) C 1) 1.005
Triangular (1 - IuU t(lu~ c 1) l.oll

Gauss ( 2a)-r~~exp(-u~J2) 1.041
Uniform (1J2) I(~u~ C 1) 1.060

Table 1.1. Common kernel functions.

IS Regresslon exrve esdn~adox

The most common method for studying the relationship between two variables

x and y is to estimate the conditional expectation function m(x) - E(y ~ x). Given

i.i.d. data {(X„Y,)}; 1 we can then write

Y: - m(X, ) ~- e.,

with an error term satisfying E(e ~ X) - 0. Given the technique of kernel density

estimation, a natural way to estimate m(.) is to compute first an estimate of the

joint density f(x,y) of (X,Y) and then to integrate it according to the formula

m(x) - f ?l!(x, y)dy (1.10)
f Í(x,y)dy

The kernel density estimate fh(x, y) of f( x, y) is constructed in complete analogy

to the one-dimensional kernel estimate described earlier. One takes a product of

two kernel functions and forms the two-dimensional density estimate

fn(x, y) - n-r ~ Kn(x - X.)Kn(y - Y.).
{-1

Note that by (1.8)

J fn(x, y)dy - n-r ~ Kn(x - X.)
~-i

f yfn(x, y)dy - n-' ~ Kn(x - X.)Y..
.-i
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Plugging these into numerator and denominator of (1.10) we obtain the Nadaraya-
Watson kernel estimate

mn(x) - n 1~n ~ Kn(x - X:)Yi
n- ~: 1 Kn(x - X.)

Figure 1 shows a kernel regression estimate mh for the Marseille fish data. The
bandwidth was chosen to h- 0.5. We shall mmment later on how to choose this
emoothing parameter. The bandwidth h determines the degree of smoothness of
m~. Thia can be immediately seen by considering the limits for h tending to zero
or to infinity, respectively. Indeed, at an observation X;,

mn(Xi) ~ K(0)Y - Y.~ ~ h~ 0,K(0)
and at an arbitrary point x,

mn(x) -. n 1~nnl K(0)Y - Y, as h-. oo.
n-1 ~.i-1 K(0)

These two limit considerations make it clear that the smoothing parameter h in

relation to the sample size n should not converge to zero too rapidly nor too slow.

Conditions for mnsistency of m~ are given in the following theorem.

Theorem 1.

Let o~(x) - var ( Y ~ x) and K(~) satisfy f ~K~ G oo. If n -ti oo, h- h(n) y

0, nh -. oo, then at every point of continuity of m(x), j(x), o~(x) ,

mh(x) y m(x).

The kernel estimate has asymptotic normal distribution.

Theorem 2.

Lct m nnd f bc Ewice dilferentiablc, and K(~) satisfy J ~K(u)~l`ndu ~ cxi, for
some rl ~ 0. Ifn ~ oo, h~ n-~15, then at every continuity point o(m(x), (f(x),
o'(x), E(IYI'f~, ~ x), v~ o.

nh (mn(z) - m(x) - B(x)) ~ N(O,V(x))
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where with pz(K) - f u~K(u)du, IIKIIs -.!r K2(u)du,

B(x) - 21~z(K, fm'(x, t 2m (x)
(f'~2~ ) J~

v(x) - uKII,o'(lx).
r(x)

(1.12)

The bandwidth has been fixed here at a speed pmportional to n-l~b. The

reason is that at this speed the squared bias and the variance of the kernel smoother

have the same magnitude. In practice, it is desirable to have a bandwidth h-

cn-'~5 with a constant c possibly to be computed from the data. There is indeed an

"optimal" data driven, estimated constant c which is discussed later in Section 4.

The optimal constant is the one balancing squared bias B~(x) and variance V(z).

FYom Theorem 2 we obtain for h- cn-l~s an approximate mean squared error

(MSE) expansion,

MSE [mh(x)J N n-lh-1V(x) ~- h4B(x). (1.13)

'1'hc bandwidth minimizing this pointwise MSE is given by

ho - r V(x) 1'~5 ( I~KIIi 11~5 n-'~5.l4B(x)2 f `~s~l
(1.14)

'1'he cunstant c is therefore a funetion of the unknowns V(x) and B(x). The

minimal MSE is a function of

T(K) - I~KI~s l~z(K). (1.15)

This functional can be minimized with respect to K if a scale standardization of

K is performed, for details see Casser, Muller, and Mammitzsch (1985). A kernel

is said to be optimal if it minimizes (1.15). The optimal kernel of order 2 is the

Epanechnikov kernel given in Table 1.1. The third column of this table denotes

the loss in efficiency of the other kernel with respect to this optimal one. One sees

that over a wide class of kernel estimators, the loss in efficiency is not that drastic.

More important is the choice of h than the choice of K.
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2. k-Neareat Neighbor Eatimatea

I.l. Onlleary k-NN esdwwtes

The kernel estimate was defined as a weighted average of the response vari-
ables in a fixed neighborhood of x. The k-nearest neighbor (k-NN) estimate is
defined as a weighted average of the response variables in a varying neighbor-

hood. This neighborhood is defined through thoae X-variables which are among
the k-nearest neighbors of a point x.

Let ,7~ -{i : X, is one of the k-NN to x} be the set of indices of the k-nearest
neighbors of x. The k-NN estimate is the average of Y's with index in ,7~,

mk(x) - k ~ Y,. (2.1)
~E.7.

Connections to kernel smoothing can be made by considering (2.1) as a kernel
smoother with unifotm kernel K(u) - z I(IuI G 1) and variable bandwidth
h- R(k), the distance between x and its furthest k-NN,

mk~x) - (nR)-~ ~.ni K ~~`Í Y .

(nR)- ~.-i K ~~~~
(2.2)

NoLc: that in (2.2), for Lhis specifir, kerncl, the denominat.or is equal to ~ thc k-NN
density estimate of j(x). F'ormula (2.2) can be generalized to arbitrary kernels.

The bias and variance of this more general k-NN estimator is given in a theorem
by Mack (1981).

Theorem 3.

If n~ oo, k~n -. 0, then for (2.2), asymptotic expreasions of the k-NN bias
and variance are given by

k ~ f m"(x) t 2m'(x) ( ~ ~ ) l
Bk(x) -(n) us(K) L 8 j,(x) J ~

~(x) - 2a~kx) IIKII~'

In contrast to kernel smoothing, the variance of the k-NN regression smoother does
not depend on f, the density of X. This makes sense since the k-NN estimator
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always averages over exactly k observations independent of distribution of the

X-variables. The bias formula in (2.3) is also different from the one for kernel

cstirnaturs given in ~'hrarrem 2. An approximatc identity be.twoen k-NN and kernel

smuuthcrs can be ubtainc~d by scLting

or equivalently

k - 2nhf(a), (2.4)

k
h - (2nÍ(t))

Fot this choice of k or h respectively, the asymptotic mean squared error formulas
are identical.

2.2. Symmehtud k-NN tstinwtts

A computationally interesting modification of mk is to rrstrict the k-nearest

neighbots always to symmetric neighborhoods, i.e., one takes k~2 neighbors to

the left and k~2 neighbors to the right. !n each neighborhood, we perform a

locsl linear fit. In this case weight updating formulas can be given, see Hiirdle

(1990, Section 3.2). The bias formulas are slightly different, see Hazdle and Carroll

(1989), but ( 2.4) remains true. In an example later, we ahall use this estimator

and compare it with the kernel estimator and the spline.

3. Spline Eatimatea

3.1 Tht eubk splint

For an estimate m of m, the residual sum of squares ( RSS) is defined as

~~-r(Y; - m(X,))~. I( any curve m is allowed as an estimator for m the RSS

is minimized by an m interpolating the data. Again this can be viewed as an

íll-poscd problem and s~i a regularization tcrm is added in order to givc reasonable

estimates. 1'he widely used cubic spline estimators are based on the stabilizer

H(m) - IIm"IIz. Analog to the techníque described earlier for density estimation,

the spline estimator is defined as the ( unique) minimizer ma of

R~(m,m) -~(Y, - m(X,))~ f J~ J ( m'(u))~du. (3.1)
~-r

The spline ma has the following properties: It is a cubic polynomiel between two

successive X-values; at the observation points ma(~) and its first two detivatives

are continuous; at the boundary of the observation interval the spline is linear.
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The smoothing parameter a controls the de~ee of smoothness of the estimator

ma. If a tends to zero the stabilizer is given less weight and thus the spGne is
very rough and interpolatea in the limit thc obscrvations. Tf 1 tends to infinity
increasing importance in (3.1) is given to the stabilizer (~m"~~~ and hence ma has

almost no curvature and so in the Gmit is equal to a least squares regression line.

Splines are asymptotically equivalent to kernel amoothers as has been shown
by Silverman (1984). The equivalent kernel is given by

K(u)-2~`-If~~n `If } 4~

and the equivalent bandwidth h- h(a; X,) by

h(a; X.) - al~~n-t~~ I(X.)-1~~. (3.3)

The spline kernel is a function with negative sidelobes and thus cannot be a second-
order kernel as defined in (1.9). In fact it is a fourth-order kernel since it is
symmetric and has zero second moment, Taz(K) - 0.

31 Kernels, kNN, and spUnes

The similarity of spline and kernel smoothing becomes evident from the fol-
lowing figure where we apply kernel, k-NN and splines to the car data set (Table 7,
p. 352-355 in Chambers, Cleveland, Kleiner and T11key ( 1983)).

Ffgure 4. Scatterylot of cu priu (s) and mila per galbn (y) wlth three diHerent
amooth approzimstiom (n-74, A-Y000, k-11, A-109).

In the upper left plot of this figure we see a scatterplot of x- price of car

(in 1979) ven~lls y- miles per gallon of that car. In total we have n- 79

observations. In thelowerleft we have plotted together with the raw data a kernel

smoother mA with a bandwidth of h- 2000 and quartic kernel. Very similar to

this is the spline smoother (a - 109) although it is asymptotically equivalent to

a kernel estimator with a kernel different from the quartic. The similarity oomes

also from the fact that the effective local bandwidth for the spline smoother from

(3.3) is only a function of J"1~~. In the scatterplot one sees that the marginal

X's are nonuniform but not too far from uniform so the hocal character" of splinr.

smoothing does not really show up. Of course at the right end with the isolated

observation at x- 15906 and y- 21 (Cadillac Seville) both kernel and splines

must have difficulties. Both work essentially with a window of fixed width.
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In cuntrast to these two regression estimators stands the k-NN smoothcr (k -

11) in the upper right corner. We used the symmetrized k-NN estimator for this

plot. By formula (2.4) the dependence of k on J is much stronger than for the

spline. At the right end of the price scale no local effect from the outlier described

above is visible. By contrast in the main body of the data where the density is

high this k-NN smoother tends to be wiggly since here k is too small by (2.4).

4. Choice of Smoothing Parameter

4.7 CrossvaUdatton

Given a certain method of nonparametric regression estimation, the choice of
how much to smooth has to be made in practice. In Sections 2 and 3 we have

scen that k-NN and splinc estimation are asymptotically equivalent to the kernel
method, so we describe here only the selection of bandwidth h for kernel regression
smoothing. A convenient measure of accuracy for m~ is the averaged squared error

d~(h) - n-~ ~(mn(X~) - m(X~))~w(X~) (4.1)
~-i

with a weight function w. This weight function allows to oontrol and downweight

boundary eftects. For a discussion of the boundary eftects, see Gasser and Miiller

(1979).

The minimization of(4.1) with respect to h can of course only be based on an

estimate of d~(h). A naive estimate would be to just replace the unknown values

m(X~) by the observations Y~. This makes in a sense use of the same observation

twice, indeed the response variable Y~ is used in mh(X~) to provide itselL This

must in practive lead to an undersmooth function, a curve with a too small band-

width. In theoretica] terms this can be expressed via asymptotic expressions for

variance and aquared bias: The naive re-substitution estimate (where we use Y~

twice) generates a term of the order of the variance with negative sign. Thus the

variance term of da is wrongly underestimated and therefore creates a too low

bandwidth.

The simplest way to avoid the problems of using Y~ twice is to use it only once.
Instead of evaluating mh(X~) with the j-th observation ones take this observation
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out,

n-~ ~i;F, Kn(Xi - X~)Yi
mn,i(Xi) - n i

Kn(Xi - X:)- ~i;f~

7~en this leave-one-out estimate is used to farm the so-called crossvalidation func-

tion

~(h) -n 1 ~(mn.i(Xi) -Yi)~w(Xi). (4.2)
i-i

Choosing an h that minimized CV(h) is asymptotically optimal in the following

sense.

a:y~proa~ opu~ury

A bandwidth selection rule h is asymptotically optimal if

d~(h) ti 1.infn d~(h)

The infinum here is taken over a set of h's that is specified in the following theorem.
ln practice it is advisable to perform minimization of CV(h) over a log-scale range
of h's since h is really a scaling parameter.

Theorem 4. Suppose that

(AI) for n- 1, 2, ..., H„ -[~, h], where

~t ? C-1n6-1, h c Cn-6

for some constants C, 6 E(0,1 ~2);

(A2) K is Hólder continuous, that is, for some L~ 0, { E(0, 1)

~K(u) - K(v)~ 5 L ~u - v~E ,

and also I ~u~f ~K(u)~du G oo;

(A3) the regression function m and the marginal density f are Hófder continuous;
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(A4) the conditional moments of Y given X- x are bounded in the sense that
there are positive constants Cl, Cz, .., such that for k- 1, 2, ..., E(Yk ~ X-
x) c Ck for all x;

(A5) the marginal density f(x) of X is bounded from below on the support of w;

(A6) the marginal density j(x) of X is compactly supported.
Then the bandwidth selection rule, "Choose h to minimize CV (h)" is asymptoti-
cally optimal.

ProoE The Hiilder continuity of K, m, f ensures that it suftices to consider a
discrete subset N;, oF K,,. The existence of all conditional moments of order k
givcs ovcr this sufficiently dense subset H;, of H,,:

~p d~(h) - d~(h~) -(CV(h) - CV(h~)) ay.. p~ (4.3)
n,A'EHt dM(h) f d,~(h')

where d,y(h) - f MSE(mh(x))J(x)dx and MSE(x) is defined in (1.13). A key
step in pmving ( 4.3) is Whittle's inequality (Whittle 1960) on bounding higher

momenta of quadratic forms of independent random variables. Using the Hi)lder
continuity of K, m and f and Theorem 4.1.1 of Hërdle (1990) gives

da(h) - d~(h') - (CV(h) - CV(h')) o.a.
(4.4)sup ti 0.

n,n~EH. d~(h) f dA(h')

Now let e~ 0 be given and let

ho - arg min(dA(h)J,
AE H„

h - arg min~CV(h)J.
ne x„

Ftom (4.4) we have with probability 1,

d~(h) - dn(ha) - (CV(h) -CV(ib)) ~ e.
da(h) f d~(ho) -

This implies

0 ~ CV(h) - CV(ho) ~( 1 - e)d~(h) - (1 f e)d~(ho),
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which entails

Since e was arbitrary, so

1 G dA(h) G 1} E
- dA(ho) - 1 - e

P { hm
l n o0

G6 1 -1 Vó~O,dA(h) - 1
dA(ho)

whid~ meana that h is asymptotically optimal.

42 Otker data drtven seketors

There are a number of different automatic bandwidth selectors that produce

asymptotically optimal kernel smoothers. They are bssed on the idea to mrrect

the downwards bias of the reaubstitution estimate of dA(h). This method is most

easily described in the setting of uniformly spaced X's. Suppose that X, - i~n and

let us compute the downwards bias of the (nonoptimal) resubstitution estimate

p(h) - n r~(mn(X.) - Y:)~w(X.).
~-: i

The expected value is approximated as

E(p(h)~ ~EdA(h) } ro~(x)w(x)dx
Jl r (4.5)

-2n-lh-'K(0) J o~(x)w(x)dx.

The idea is now to correct for this third term in (4.5) which is the reason for the
above mentioned downward bias. The function p(h) is multiplied by a correction
factor that in a sense penalizes the too small h's. The general form of this selector
is

G(h) - P(h) - (n-lh-rK(~))~

where 3 is thc cortection function with first-order Taylor expansion

-(u) - I.} 2u t O(u7), u y 0.

Simple examples are:
(i) Genernlized Crvss-validation (Craven and Whaba 1979; Li 1985),

-ccv (u) - (i - u)-~;



(ii) Akaike's Informntion Crtterion ( Akaike 1970)

-~rc(u) - ~P (2u):

(iii) Finilc !'rediction Ermr (Akaike 1974),

-FP6(u) - (1 } 1t)~(1 - tt):

(iv) Shibata's ( 1981) model selector,

~s(u) - 1 f 2u;

(v) Rice's (198~) bandwidth selector,

`.T(tt) - (1 - iu)-1.

Note that the correction function is different for the random design case where X

has an arbittary and unknown distribution. The correction works for the uniform

design case since by (4.5),(4.6),

EC(h) ~ I Ed~(h) f I o~(x)w(x)dx

t -2n-~h-J~K(0) fa2( x)w(x)~J - (n-th-tK(0)) (4.7)

a Ed~(h) f Jo~(x)w(x)dx } O(n-~h-~).

The constant term f o~(x)w(x)dx is independent of h, so minimizing G(h) gives

in the limit also asymptotically optimal smoothing parameters.

It is intcresting Lo note that thc abovc penalty method docs not apply im-

m~diately w the case of random X's and heteruscedastic error distribution. 'Che

rcason is in the fact that the downwards bias is not correctly cancelled out. [n

order to see this note that in the random design case the formula (4.7) changes to

EC(h) ~ I Ed~ (h) }~ o7(x)f(x)w(x)dx

` -2n-lh-1K(0) f o~(x)w(x)~, -(n lh-1K(0)).

I~ence the bias term does not cancel:A modification of the penalty method is nec-

essary. [f one uses the correction factor ~(n-~h'~K(0)~f~(X~)) inside the sum of
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p(h), this cancellation will still work. For this form of wrrection the Generafized

Crossvalidation criterion is actually formally equivalent to ordinary crossvalida-
tion. Notc that this notation of generalized aassvalidation GCV stands in con-

trast to notation used in the spline literature. If ma - A(a)h denotes the spline

smoothing operator, the spline GCV is defined as GCV(h) -~-n-~ ~ a . This

cannot give optimal estimates though for random X and heterascedastic errors!

The method of crossvalidation was applied to the car data set to find the
optimal smoothing parameter h. A plot of the crossvalidation function is given in
Figure 5. The computation is for the quartic kernel using the WARPing method,
sec liërdle (1991). The minimal h - arg minCV(h) is at 1800 which shows that
in Figure 5 we used a slightly too large bandwidth.

Figuro 5. The vouvelidstion function CV(h) for the ur dats. Quartic kernel.
Computation mede with Xp1oRa ( 1D91).

The question of how far the crossvalidation optimal h is from the true optimum

ho that minimized dA(h) has been investigated by Hiirdle, liall and Marron (1988).

One of the main results of this paper is that the random variables

n~~fo ~h ~~~

have an asymptotic Normal distribution with mean aero and variance independent

of the actually used optimisation method. It does not matter whether one used

Shibata's, Akaike's or any other optimizer, they are asymptotically equivalent.

Another interesting result is that the estimated h and optimum ho are actually

negatively correlated ! It has been very recently that Hall and Johnstone (1992)

corrected for this efiect in density estimation and regression with uniform X's. It is

still open how to improve this for the general regression setting we are considering

here.

13 Canontcal ktrrtels

A comparison of smoothers for different kernels can only be made if the es-
timators are brought to the "same scale". tndeed a kernel can be rescaled as
K'(.) - s-~K(.s) which of course changes the value of the optimal bandwidth.

Note however that the kernel constants are

IIK'll? - s-'llKll~
Wi(K') - 3'Irs(K).
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So we can uncouple the scaling eHect by using for each kernel K that K' with

9 - d~ - (~~K~J~Yl J5.
`!h(K) I

Thus across kernels we shall have

wi(K~) - ~~K~IIz - ih'~6(K)II K~~~i~s
So if we need to decide whether one curve (with kernel 1) is smoother than the
other (kernel 2), we have to transform both bandwidths to the canonical scale
h~ - h~~s~, j - 1,2.

5. Application to Time Seriea

In the theoretical development described up to this point, one important as-

sumption about the stochastic nature of the observations was the independence.

The smoothing methods can also be applied to correlated data, in particular to

nonparametric prediction of time series. We first consider the nonparametric pre-

diction problem, then we turn to the analysis of regreasion curve estimation with

correlated errors.

5.1 Pndiclion

We relax the assumption on the independence of the sequence of observations

(Xi, Yl), (X~,Yz), .... We assume the process is a-mixing,

~P(Af1B) - P(A)P(B)~ G ~(k) (5.1)

holds for all n, k E dV and any set A[resp. BJ which is o((Xt, Y,), ...,(X,,, Y„))
(resp. o((X„~k, Y„tk, .. .J measurable, the sequence a(k) tending to zero for k-.
oo. It the process is stationary the best predictor ( in a quadratic sense) for Y
given X - x is the wnditional expectation

m(a) - E(Y ~ X- x).

Our aim is to estimate m(~) from data {(X„Y;)}~ ~. This nonparametric esti-

mation technique is also good for ptocesses like {Z; : i~ 1}, and that one is

interested in predicting Z„t, from Z„ for some s ~ 0. The predictor is provided

by the autoregression function

M(z) - E(Z„t, ~ Zo - z) b' n? 1. (5.2)
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The autoregression function M can then be interpreted as a regression curve of

Y on X if we define X, - Z;, Y, - Z;t„ V i? 1. Clearly {(X;, Y;), i~ 1} is

a-mixinq when {7,,, i ? 1} hae this pmpcrty.

For which mncerns examplea of proccsst~ satisfying this t~-mixing condition

we refer to Gyórfi et al. (1990), Chapters 11.2 and IlI.4. Fbr instance any Markov

procxss satisfying Doeblin's condition is o:-mixing with coef6cients that verify (5.1)

above. Also linear proceas of the form

00

Zn - ~ ~Yi Tn-;~
he

where (T~ )~E~r is a sequence o( i.i.d. variables, can be shown to be a-mixing under

appropriate summability conditions on (ry,) (see Chanda (1974) and Garodetskii

(1977). Hii,rdle and Vieu (1991) showed that crossvalidation also works in this

case, "choose" h- arg minCV(h) gives asymptotically optimal estimates.

To give some insight into this process we simulated an autoregressive process
Z: - M(Z.-1) t e, with

M(x) - x~P(-z~)~

where the innovations e, were uniformly distributed over the interval (-1~2, 1~2).

Such a process is o-mixing with geometrically decreasing ~(n) a.s shown by Doukhan

and Ghindès (1980) and GySrfi et al. (1990, Section III.4.4). The sample size in-

vestigated was n - 100. The quartic kernelfunction ( 1.3) was used.

A plot of the generated time series (Zo-uniform in (-1~2,1~2)) is given in Fíg-

ure 6 as a function of the time index. We are interested in finding the dependence

structure between 7.n-~ and Zn.

Flsure 6. The simuleted efma seris .vith M(z)-z exp(-:~), e~U(- ]~7,1 ~7).

When we plot Zn-~ versus 'Ln we obtain Figure 7. The (unifotm) error

structure become quite visible here but the shape of M(x) may be guessed as

linear from this figure. Only at the far ends we seem to see a curved structure

of this point cloud. As an aid to interpret this picture we have added the true

curve M and have plotted the two-dimensional time path. The starting and the

end points are given as bullets.

Figure 7. The simuleted ee w fram Fisuro 6 plated u Z„-, ~anue Z,,. TM wlid
cur~e íe tha true function M.
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Since this is a simulated example we can also compute the distance d~(h). The

cross-validation function CV(h) and d~(h) are shown in Figure 8. The minimum

of CV(h) was h- 1.5, the optimum of d~(h) ia at 2.1. The curve d~(h) is very

flat for this example since we recall that there is almost no bias present.

Figuro 8. The functlo,u dw(h) (dubad Iiro) and CV(h) (.olld Iirw) for the simulsted
s:smpla.

The comparison oC the estimated curve with the time regression function

gives an impression of how well the smoothing method works. This comparison

is displayed in Figure 9 where we 6nd good coincidence with the time regression

curve.

F'Igun 9- The time regreulon tunction M(z)-s~p(-z~) for eha amulaed exunpls
(th~ IIn.) .nd tn. ~..n.i .m~eh.r (th~n un.).

It might be reasonable to leave out more than just one observation, especially

when the time series is strongly cortelated. Such a leave-out estimator where we,

in fact, sum over indexes ~i - j~ ~ pn for a slowly increasing sequence p„ is aLso

txwcred by our thettty. This "Icave-out-morc" technique is sometimes appealing

also in the independent setting, see the discussion of Hërdle, Hall and Marron

(1988). The examples treated in Hart and Vieu (1991) in the setting of density

estimation discuss also this point.

52 Correlated errors

Let us now consider the case of fixed design X, - i~n and correlated errors,
i.e., Yt - m(Xt) t e„ e, nonindependent. It is obvious that methods designed for
i.i.d. errors must fail for this case. Imagine that the errors e, follow an autore-
gression of order 1,

E.tf - pEt t u„ ut white noise

with p close to 1. The e(íect on the crossvalidation technique described in Section 4

must be drastic. The error process stays a long time on one side of the mean curve

and hence the leave-one-out technique must give undersmooth estimates since

the leave-out estimate of d~ "interprets" the little bumps of the error process as

elements of the regression curve. An example is given in H~rdle ( 1990, Figure 7.6,

7.7).

For a theoretical treatment of this problem let us assume that we have N
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collections of the time series,

Y.~-m(X.)fE.i~ :-f~-..~n~ 7-1,...,N.

An econometrical example for thia observation scheme is a collection oC time series
of clcx-trir.ity dcmand whici, vw: ot,sc:rvc rcpeatc:dly ovcr days ur w,r.ks. Suppnsr:
nuw Lhat Lhc crrors havc thc fullowing cx,rrclatiun structuro

ozp(X; - Xk), if j- l
cov (e.i, fkt) -{

0 if j~ l.

There is independence of errors over repetitions of the series but correlation only
within the series. Fbr p assume that p(0) - 1, p(u) - p(-u), ~p(u)~ c 1 for
u E [-1, lJ.

Hart and Wehrly ( 1986) computed the variance of kernel estimators for this
model and showed that the bias is the same. In fact the variance changes from
jv~~K~~~ to

~N~ J ' J 1 p(h(u - v))K(u)K(v)dudv.

Nate that the k`ernel estimator is applied here to the averaged data Y;. -
NN-~ ~~-1 Y;~.

A Taylor expansion in terms of p gives yet another approximation to the
variance,

~N~ (1 f hzP ~(~)l~z(K)).

Sínce the bias stays the sam`e as in the independent case, we obtain the following
optimal bandwidth

ho,N - j -2ozp"(0) 1 N-llz (5.3)
ll~á(K)[m„(x)1z J

which minimizes the MSE as a function oC N.
In practice one has oC course to estimate the correlation function p(k). Hart

and Wehrly ( 1986) used the canonical estimate

PCk) - ~p~

where
[N~ n

~k) - (r~M-1 L~(}:i - Y..)(Y~ta.i - Y;tk,.).
~-i .-i

Estimates of second derivatives in formula (5.2) have to be constructed by difïer-
entiating a regression estimate mn with smooth enough kerncl.
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