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1. The Kernel Method

There is general agreement on what we mean with a parametric econometric
model: The distribution of observed data is indexed by a set of parameters. The
best model “explaining” the data is found by determining the parameters that
minimize an empirical distance between the data and the model. The squared
deviation leads to least squares estimation of parameters. The minimization of
the Kuhlback-Leibler distance is equivalent to the Maximum Likelihood method.
In a nonparametric model we do not have, and thus do not estimate, parameters.
We rather estimate the distribution or functionals of it directly from the data
without explicit reference to a proposed (low-dimensional parametric) model.

How can this be done? If we are only interested in the distribution of the
observations itself, we would take the empirical distribution function but it would
not tell us a lot on the relationship between variables. For instance, it is hard to
infer directly from the joint distribution function of two variables if one variable
influences another in a specific way. Such an influence could be that “on the
average” one variable is monotone dependent on the other, or whether a variable
conditioned on the other is bigger than a certain level. In this case we are asking
after the structure and behavior of the regression function, a functional of the joint
distribution.

It is simplest to describe the nonparametric approach in the setting of density
estimation, so we begin with that. A typical economic application for this is the
estimation of income densities. Suppose we are given i.i.d. observations {X;}™, €
IR with density f. The functional we are interested in, for the moment, is the
density f(z) at a fixed point z. The distribution function of z

F(z)= ./:o f(u)du

can be estimated by the empirical distribution function (edf)

Fp(z) =n"! i Iz < 2)-

=1
This estimate is a step function and cannot be differentiated to obtain an approx-
imation to f(z). If the edf were smooth though, one could hope that also the
derivative would give a good estimator for f(z). Since this is not the case we need
to smooth.



We present three approaches here for smoothing in density estimation. The
first stems directly from the histogram, the second one from averaging histograms,
the third one from considering the estimation of f(z) as an ill-posed problem.

1.1 Kernels as windows

Suppose that we are interested in estimating f(0). If f is smooth in a small
neighborhood [—h, h] of z = 0, we justify by the mean value theorem,

h
2h- £(0) ~ /_,. f(u)du=P(z € [-g, g]). 1)

The right-hand side of (1.1) can be approximated by counting the number of X,’s
in this small interval of length 2h. Let K(u) = 1 I (Ju|) < 1), then (1.1) can be
rewritten as =
J(0) = (nh)™' 3" K(1X:| < h).
=1

This argument can be repeated for arbitrary z. An estimator for f(z) is therefore

n
fa@) =013 Kn(z - X)) (1.2)

=1
with Ky(e) = h™1K(e/h). This is precisely the kernel density estimator of f(z)
with kernel K(u) = 3 I (Ju| < 1) and bandwidth h. A histogram is a kernel
estimator evaluated only at the discrete bin midpoints with binlength h. The
kernel estimator is obtained by “sliding the kernel window” continuously over the

range of observations.

We motivated this particular estimator (1.2) by a smoothness assumption
on f. The estimator ﬁ. with the step function kernel 1 I (Ju| < 1) is by its very
nature a rough approximation to f. A smoother approximation can be obtained by
choosing a smoother “window function” K as kernel. One example is the so-called
quartic kernel

K(w) = 1500~ 1 (] € 1), (1.3)

Obviously, the smoothness of the kernel determines the smoothness of the density
estimate ]';.

How does this work with real data?



Figure 1 shows a scatterplot of log quantities vs. log prices for sardines during
a trade period of August—September in 1987 in the Marseille fish market. For the
moment we are interested in estimating the two marginal densities.

Figure 2a,b shows a kernel density estimate for the distribution of fish prices
and sold quantity prices. For these estimates, a bandwidth of h = 0.247 was
selected for the quantity data and h = 0.085 for the price data. These smoothing
parameters correspond to the “rule of thumb” estimates of Silverman (1986).

Figure 1. Log quantities vs. log prices for sardines during the months of August—
September in 1987 in the Marseille fish market. The solid line is a kernel estimate of
the regression of log quantities on log price.

Figure 2a. Kernel density estimate of fish quantity data. Quartic kernel, h=0.247,
n=3812. Data kindly provided by Alan Kirman.

Figure 2b. Kernel density estimate of price quantity data. Quartic kernel, h=0.085,
n=3812. Data kindly provided by Alan Kirman.

The bimodal structure of the quantity density becomes evident in this plot.
A parametric model like the log Normal distribution for the quantity data would
not be able to capture that particular feature of the quantity distribution. The
bimodal structure in fact gave reasons to investigate this data further and led to
certain buyer/seller combinations.

1.2 Kernels from averaging binned data

We have already introduced the histogram with binwidth 2h. For that defini-
tion, we have tacitly assumed that the bin mesh B; = [(j — 1)h, jh) was centered
at the origin g = 0. The sensitivity of histograms with respect to choice of ori-
gin is well known, see c.g., Hardle (1991, Fig. 1.16). For the fish data of Figure
1, the dependence on the origin becomes evident if we compute histograms with
binwidth A = 0.5 and origins zo = 0.1,0.2,0.3,0.4. The five histograms with this
same binwidth but different origins are shown in Figure 3.

Figure 3. Five histograms of Marseille fish data. Origins in zp=0,0.1,...,0.4 and
binwidth h=0.5.

Although the histograms use the same amount of smoothing, they give differ-
ent impressions on the location of the peaks in the density. Note that in comparison

with Figure 2, the binwidth is larger but, for ease of interpretation, only the bin
centers have been connected. An ensemble of histograms, with different origins,



becomes independent of their origins if they are averaged. To this end, let

Bj,z=[(j—l+§)h.(j+%)h),te{0,‘..,M—1} (1.4)

denote a smaller bin mesh with origin -b We have now M histograms

n

Faa(@) =(mh)1Y" (z I(z€ Bl (Xie B,-,.)) L£=0,... M-1.

=1\ j

The idea is to average these M histograms to obtain independence of the origin
¢

ZoL = 3>

Fa(z) =M1 Z (nh)“z (Z 1 (z € Bj¢) 1 (X; € B, ,,))

=0 i=1

=1 =0 j

=n"! 2 ((Mh)‘ Z Y IxeBy)I(Xe B,_,)) (1.5)

— ()Y E l(ze B} 2 1 (X, € B}, W)(M - |K)
=1 k=1-M

with B} = [ﬁ,‘ﬁﬁ)ﬁ) the smaller bins with width § = §. From (1.5) we see
that averaging the shifted histograms leads again to a kernel like averaging process.
Indeed (1.5) can be rewritten as

M-1
(nh)7 Y Tz eB)) Y walk)nje, (1.6)
j

k=1-M

with n; = Y0, 1(X; € B) and effective kernel weight wps(k) = 1 — 1. What
we have used here is the technique of WARPing (Weighted Averaging of Rounded
Points), see Hardle and Scott (1990). It consists of discretizing a kernel and then
weighting the frequencies in the fine bins B}. In (1.5) above the triangle kernel
K(u) = (1 — |u| I (Ju| < 1)) was used. The kernel estimate (1.2) is obtained
by letting M tend to infinity, for details, see Chapters 1, 2 in Hirdle (1991).
The effective weight function for the quartic kernel (1.3), for example, is given
by ww(9) = i (1- () ) ,€=1-M,...,0,...,M — 1. So we see that
forming a weighted average of histograms leads to a kernel estimate.



13 Kernels and ill-posed problems

Taking the derivative of a distribution F is a linear operation, Af = F. In
more mathematical language one calls the equation

Ar= [~ Tws2) = Fe) a.n

a Fredholm equation with the integral operator Af = f_'w f. Estimating the
density is the same as inverting (1.7). This Fredholm problem is ill-posed since
for a sequence F, tending to F the “solutions” (satisfying Af, = F,) do not
necessarily converge to f: The inverse operator in (1.7) is not continuous, see
Vapnik (1982, p. 22).

Solutions to ill-posed problems can be obtained using the Tikhonov (1963)
regularisation method. Let Q(f) be a lower semicontinuous functional called the
stabilizer. The idea of the regularisation method is to find indirectly a solution
to Af = F by use of the stabilizer. Note that the solution of Af = F minimizes

(w.r.t. f)
f [ I(z2>u) f(u)du - F(z)]zd.':.

The stabilizer Q(F) = ||f]|? is now added to this equation with a Lagrange param-
eter A,

Rx(ﬁp)=/_: [/;: I(z>u) f(u.)du-F(z)]zdz+)\‘/j:f§(u)du.

Since we do not know F(z), we replace it by the edf F,(z) and obtain the problem
to minimize, with respect to f, the functionnal R,\(f, F).
The minimum condition for a solution fis

/_: I(z>u) [/_: I(z>53) f(s)ds—p,.(z)]dz+,\f‘(u)=o.

Applying the Fourier transform for generalized functions and noting that the
Fourier transform of I (u > 0) is & + 76(w) (with §(e) the delta function),
we obtain

B[ ()] e

=1




with I'(w) the Fourier transform of f{(e).
Solving this equation for I and then, applying the inverse Fourier transform,
we obtain

flz)=n"1 ; ﬁe”"""/"x.
Thus we obtain a kernel estimator with kernel
K() = 5 exp(~lu)
and bandwidth h = v/X. This approach is described in Vapnik (1982, p. 302).
14 Properties of kernels

We have derived in the first three sections different approaches to kernel
smoothing. Here we would like to collect and summarize some properties of ker-
nels. A kermel is a continuous function, symmetric around zero, integrating to
one:

K(u) = K(-u)
/ K(u)du = 1.

In most applications K is a positive probability density function. For theoret-
ical reasons it is sometimes useful to consider kernels that take on negative values.
The order p of a kernel is defined as the first nonzero moment,

(1.8)

/K(u)u’du=0, j=1,...,p—1
(1.9)
/ K(u)uPdu #0.

A positive kernel can be at most of order 2. A higher order kernel (of order
4) is for example

K(u) = ;—g(m‘ —10u? +3) I (Ju| < 1).

A list of common kernel functions is given below; we shall comment later on
the values in the third column.



Kernel K(u) D(Kopt, K)
Epanechnikov B/9)(1-uv)I(u) <) 1
Quartic (15/16)(1 —u?)? 1 (Ju]) < 1) 1.005
Triangular (=) 1 (lul <) 1.011
Gauss (2m)=Y2 exp(—u?/2) 1.041
Uniform (1/2) I(jul < 1) 1.060

Table 1.1. Common kernel functions.
1.5 Regression curve estimation

The most common method for studying the relationship between two variables
z and y is to estimate the conditional expectation function m(z) = E(y | z). Given
iid. data {(X;,Y:)}[., we can then write

Y.-=m(X.-)+e.-, i=1,uym

with an error term satisfying E(e | X) = 0. Given the technique of kernel density
estimation, a natural way to estimate m(e) is to compute first an estimate of the
joint density f(z,y) of (X,Y) and then to integrate it according to the formula

_ Jyf(z,y)dy
m(z) = oF e (1.10)

The kernel density estimate ]’;.(:c, y) of f(z,y) is constructed in complete analogy
to the one-dimensional kernel estimate described earlier. One takes a product of
two kernel functions and forms the two-dimensional density estimate

Pz y)=n"1Y Kn(z - X)Kn(y - ).

i=1
Note that by (1.8)

/ﬁ(x.y)du =n"1Y)" Ki(z - Xi)
=1

/yﬂ(z,y)dy =m1 ZK;.(:: = X\)¥;.

=1



Plugging these into numerator and denominator of (1.10) we obtain the Nadaraya—
Watson kernel estimate

g2 n 1YL Ka(z - X))

in(z) = gl AT T AT 111

SUTED Y ATES A G

Figure 1 shows a kernel regression estimate m, for the Marseille fish data. The
bandwidth was chosen to h = 0.5. We shall comment later on how to choose this
smoothing parameter. The bandwidth h determines the degree of smoothness of
mp. This can be immediately seen by considering the limits for h tending to zero
or to infinity, respectively. Indeed, at an observation X,

K(©)Y,

=Y, as h—0,

and at an arbitrary point z,
n YL, K(O)Y

—==l 2 =Y, as h— oo
n=1 Y K(0)

i (z) —

These two limit considerations make it clear that the smoothing parameter h in
relation to the sample size n should not converge to zero too rapidly nor too slow.
Conditions for consistency of m, are given in the following theorem.

Theorem 1.

Let 0*(z) = var (Y | z) and K(e) satisfy [ |K| < 0o. If n — 0o, h = h(n) —
0, nh — oo, then at every point of continuity of m(z), f(z), 0*(z) ,

mn(z) B m(z).

The kernel estimate has asymptotic normal distribution.
Theorem 2.

Let m and [ be twice dillerentiable, and K (e) satisly [ |K (u)|**"du < o0, for
somen > 0. If n — 00, h ~ n='/%, then at every continuity point of m(z), (f(z),
o*(z), E(IY[**" | ), 7 >0,

Vrnh (in(z) - m(z) - B(z)) 5 N(0,V(z))



where with p(K) = [u?K(u)dy, |K||3 = [ K*(u)du,

B(x) = Sm(K) [m"(z) +2m(2) (@)] ,

f(z)
IXll30*(z)
f(2)

(1.12)
V(z)=

The bandwidth has been fixed here at a speed proportional to n=1/5, The
reason is that at this speed the squared bias and the variance of the kernel smoother
have the same magnitude. In practice, it is desirable to have a bandwidth h =
cn~=1/5 with a constant c possibly to be computed from the data. There is indeed an
“optimal” data driven, estimated constant ¢ which is discussed later in Section 4.
The optimal constant is the one balancing squared bias B?(z) and variance V/(z).
From Theorem 2 we obtain for h = cn~'/% an approximate mean squared error
(MSE) expansion,

MSE [ ()] = n~*h~1V(z) + h*B(z). (1.13)

The bandwidth minimizing this pointwise MSE is given by

NALCR AL AN
o= (aatr) (o) s

The constant c is therefore a function of the unknowns V(z) and B(z). The
minimal MSE is a function of

T(K) = || KlI3 pa(K). (1.15)

This functional can be minimized with respect to K if a scale standardization of
K is performed, for details see Gasser, Miiller, and Mammitzsch (1985). A kernel
is said to be optimal if it minimizes (1.15). The optimal kernel of order 2 is the
Epanechnikov kernel given in Table 1.1. The third column of this table denotes
the loss in efficiency of the other kernel with respect to this optimal one. One sees
that over a wide class of kernel estimators, the loss in efficiency is not that drastic.
More important is the choice of h than the choice of K.
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2. k-Nearest Neighbor Estimates
2.1. Ordinary k-NN estimates

The kernel estimate was defined as a weighted average of the response vari-
ables in a fixed neighborhood of z. The k-nearest neighbor (k-NN) estimate is
defined as a weighted average of the response variables in a varying neighbor-
hood. This neighborhood is defined through those X-variables which are among
the k-nearest neighbors of a point z.

Let 7, = {i : X; is one of the k-NN to z} be the set of indices of the k-nearest
neighbors of z. The k-NN estimate is the average of Y’s with index in 7,

= 1
n(z) = ¢ - (2.1)
€.
Connections to kernel smoothing can be made by considering (2.1) as a kernel
smoother with uniform kernel K(u) = 3 I (Ju| < 1) and variable bandwidth
h = R(k), the distance between z and its furthest k-NN,

(R)'YLL K (554 Y
(R, K (255)

Note that in (2.2), for this specific kernel, the denominator is equal to T“R the k-NN
density estimate of f(z). Formula (2.2) can be generalized to arbitrary kernels.
The bias and variance of this more general k-NN estimator is given in a theorem
by Mack (1981).

n(z) = (2.2)

Theorem 3.

Ifn — oo, k/n — 0, then for (2.2), asymptotic expressions of the k-NN bias
and variance are given by

Bi(z) = (5)’ ) [m"(z) +2m'(z) (.%51)] |

8/%(z)

(2.3)
v =22 k|

In contrast to kernel smoothing, the variance of the k-NN regression smoother does
not depend on f, the density of X. This makes sense since the k-NN estimator
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always averages over exactly k observations independent of distribution of the
X-variables. The bias formula in (2.3) is also different from the one for kernel
estimators given in Theorem 2. An approximate identity between k-NN and kernel
smoothers can be obtained by setting

k = 2nhf(z), (2.4)
or equivalently
PR i
(2nf(z))

For this choice of k or h respectively, the asymptotic mean squared error formulas
are identical.

2.2. Symmetrized k-NN estimates

A computationally interesting modification of m is to restrict the k-nearest
neighbors always to symmetric neighborhoods, i.e., one takes k/2 neighbors to
the left and k/2 neighbors to the right. In each neighborhood, we perform a
local linear fit. In this case weight updating formulas can be given, see Hardle
(1990, Section 3.2). The bias formulas are slightly different, see Hirdle and Carroll
(1989), but (2.4) remains true. In an example later, we shall use this estimator
and compare it with the kernel estimator and the spline.

3. Spline Estimates
3.1 The cubic spline

For an estimate m of m, the residual sum of squares (RSS) is defined as
(Y — M(X))2. If any curve i is allowed as an estimator for m the RSS
is minimized by an M interpolating the data. Again this can be viewed as an
ill-posed problem and so a regularization term is added in order to give reasonable
estimates. The widely used cubic spline estimators are based on the stabilizer
Q(m) = ||m”||3. Analog to the technique described earlier for density estimation,
the spline estimator is defined as the (unique) minimizer my of

n
Ra(,m) = Y% - AKXV + ) [ (@) 31)
=1
The spline m, has the following properties: It is a cubic polynomial between two
successive X-values; at the observation points m,(e) and its first two derivatives
are continuous; at the boundary of the observation interval the spline is linear.
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The smoothing parameter A controls the degree of smoothness of the estimator
M. If A tends to zero the stabilizer is given less weight and thus the spline is
very rough and interpolates in the limit the observations. If A tends to infinity
increasing importance in (3.1) is given to the stabilizer ||”||2 and hence i, has
almost no curvature and so in the limit is equal to a least squares regression line.

Splines are asymptotically equivalent to kernel smoothers as has been shown
by Silverman (1984). The equivalent kernel is given by

K(u) = ,i—,exp (--"‘—') sin (% + -}) (3.2)

and the equivalent bandwidth h = h(); X;) by
h(X; X;) = AV 4n=14 f(X) A, (3.3)

The spline kernel is a function with negative sidelobes and thus cannot be a second-
order kernel as defined in (1.9). In fact it is a fourth-order kernel since it is
symmetric and has zero second moment, p2(K) = 0.

3.2 Kernels, kNN, and splines

The similarity of spline and kernel smoothing becomes evident from the fol-
lowing figure where we apply kernel, k-NN and splines to the car data set (Table 7,
p. 352-355 in Chambers, Cleveland, Kleiner and Tukey (1983)).

Figure 4. Scatterplot of car price (z) and miles per gallon (y) with three different
smooth approximations (n=74, h=2000, k=11, A=109).

In the upper left plot of this figure we see a scatterplot of z = price of car
(in 1979) versus y = miles per gallon of that car. In total we have n = 74
observations. In the lower left we have plotted together with the raw data a kernel
smoother M, with a bandwidth of h = 2000 and quartic kernel. Very similar to
this is the spline smoother (A = 109) although it is asymptotically equivalent to
a kernel estimator with a kernel different from the quartic. The similarity comes
also from the fact that the effective local bandwidth for the spline smoother from
(3.3) is only a function of f~'/4. In the scatterplot one sees that the marginal
X's are nonuniform but not too far from uniform so the “local character” of spline
smoothing does not really show up. Of course at the right end with the isolated
observation at z = 15906 and y = 21 (Cadillac Seville) both kernel and splines
must have difficulties. Both work essentially with a window of fixed width.
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In contrast to these two regression estimators stands the k-NN smoother (k =
11) in the upper right corner. We used the symmetrized k-NN estimator for this
plot. By formula (2.4) the dependence of k on f is much stronger than for the
spline. At the right end of the price scale no local effect from the outlier described
above is visible. By contrast in the main body of the data where the density is
high this k-NN smoother tends to be wiggly since here k is too small by (2.4).

4. Choice of Smoothing Parameter
4.1 Crossvalidation

Given a certain method of nonparametric regression estimation, the choice of
how much to smooth has to be made in practice. In Sections 2 and 3 we have
seen that k-NN and spline estimation are asymptotically equivalent to the kernel
method, so we describe here only the selection of bandwidth h for kernel regression
smoothing. A convenient measure of accuracy for m, is the averaged squared error

da(h) = n~' 3 (@a(X;) - m(X;))w(X;) 4.1)

i=1

with a weight function w. This weight function allows to control and downweight
boundary effects. For a discussion of the boundary effects, see Gasser and Miiller
(1979).

The minimization of (4.1) with respect to k can of course only be based on an
estimate of d4(h). A naive estimate would be to just replace the unknown values
m(X;) by the observations Y;. This makes in a sense use of the same observation
twice, indeed the response variable Y; is used in mx(X;) to provide itself. This
must in practive lead to an undersmooth function, a curve with a too small band-
width. In theoretical terms this can be expressed via asymptotic expressions for
variance and squared bias: The naive re-substitution estimate (where we use Y;
twice) generates a term of the order of the variance with negative sign. Thus the
variance term of d4 is wrongly underestimated and therefore creates a too low
bandwidth.

The simplest way to avoid the problems of using Y; twice is to use it only once.
Instead of evaluating i (X;) with the j-th observation ones take this observation
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out,
n~! ij#L Kh(xj - X\)Y;

113w Kn(Xj — Xi) .
Then this leave-one-out estimate is used to form the so-called crossvalidation func-
tion

;i (X;) =

CV(h) =n~1 3" (@ 5(X;) — ¥ w(X;). (4.2)

F=1
Choosing an h that minimized CV (k) is asymptotically optimal in the following
sense.

Asymptotic optimality
A bandwidth selection rule A is asymptotically optimal if

d"—(ﬁ) L
infrda(h) :

The infinum here is taken over a set of h’s that is specified in the following theorem.
In practice it is advisable to perform minimization of CV (h) over a log-scale range
of h’s since h is really a scaling parameter.

Theorem 4. Suppose that
(A1) forn=1,2,..., Hy = [h,h), where
h>C'nf!, h<ont
for some constants C,6 € (0,1/2);
(A2) K is Hélder continuous, that is, for some L > 0, £ € (0,1)

|K(u) - K(v)] € L|u—vf,

ﬁwmmm<w

(A3) the regression function m and the marginal density f are Hélder continuous;
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(A4) the conditional moments of Y given X = z are bounded in the sense that
there are positive constants Cy,Cy, ... such that for k= 1,2,..., E(Y* | X =
z) < Cy for all z;

(A5) the marginal density f(z) of X is bounded from below on the support of w;

(A6) the marginal density f(z) of X is compactly supported.
Then the bandwidth selection rule, “Choose h to minimize CV (h)” is asymptoti-
cally optimal.

Proof: The Holder continuity of K,m, f ensures that it suffices to consider a

discrete subset H, of H,. The existence of all conditional moments of order k
gives over this sufficiently dense subset H/, of H,:

da(h) = da(K') - (CV(h) — CV(H'))|a.s. 0
AN EH), du(h) +dpm(h) '

(4.3)

where duy(h) = [ MSE(n(z))f(z)dz and MSE(z) is defined in (1.13). A key
step in proving (4.3) is Whittle’s inequality (Whittle 1960) on bounding higher
moments of quadratic forms of independent random variables. Using the Holder
continuity of K, m and f and Theorem 4.1.1 of Hardle (1990) gives

da(h) — da(H) - (CV(h) - CV(K))|as.

A EH, da(h) +da(h') L

Now let € > 0 be given and let
ho = arg min[da(h)],
h€Hn

h=arg min[CV (h)].
heH,

From (4.4) we have with probability 1,

da(h) - da(ho) ~ (CV(R) ~CV(ho) _
da(h) +da(ho) -

This implies

0> CV(h) - CV(ho) 2 (1 —€)da(h) — (1 +€)da(ho),
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which entails N
1< da(h) _1+e
da(ho) ~ 1-¢
Since € was arbitrary, so
P{ lim d%(ﬂ—l <br=1 V6§>0,
n—oo dA(hO)

which means that % is asymptotically optimal.
42 Other data driven selectors

There are a number of different automatic bandwidth selectors that produce
asymptotically optimal kernel smoothers. They are based on the idea to correct
the downwards bias of the resubstitution estimate of d4(h). This method is most
easily described in the setting of uniformly spaced X’s. Suppose that X; = i/n and
let us compute the downwards bias of the (nonoptimal) resubstitution estimate

p(h) =071 Y (@a(X) - Ya)*w(Xy).
3=:1
The expected value is approximated as
Elp(h)] ~Eda(h) + / o (@)wlz)dz

(4.5)
—2n"'h1K(0) / o?(z)w(z)dz.

The idea is now to correct for this third term in (4.5) which is the reason for the
above mentioned downward bias. The function p(h) is multiplied by a correction
factor that in a sense penalizes the too small h’s. The general form of this selector
is

G(h) = p(h) E(n~ "R~ K(0)),

where = is the correction function with first-order Taylor expansion
Z(u) =1+2u+0(u?), u—0. (4.6)

Simple examples are:
(i) Generulized Cross-validation (Craven and Whaba 1979; Li 1985),

Zocv (u) = (1 -u)7%
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(ii) Akaike’s Information Criterion (Akaike 1970)

Zarc(u) = exp (2u);
(iii) Finite Prediction Error (Akaike 1974),

Eppe(u) = (1+u)/(1 —u);
(iv) Shibata's (1981) model selector,
Zs(u) =1+ 2y;

(v) Rice’s (1984) bandwidth selector,

Er(u) = (1-2u)"L

Note that the correction function is different for the random design case where X
has an arbitrary and unknown distribution. The correction works for the uniform
design case since by (4.5), (4.6),

EG(h) ~ [Ed,q(h) + / o?(z)w(z)dz
—2n"'h K (0) / a’(x)w(z)az] E(n~'h"1K(0)) 4.7
~ Eda(h) + / o?(z)w(z)dz + O(n~2h~2).

The constant term [ o?(z)w(z)dz is independent of A, so minimizing G(h) gives
in the limit also asymptotically optimal smoothing parameters.

It is interesting to note that the above penalty method does not apply im-
mediately to the case of random X’s and heteroscedastic error distribution. The
rcason is in the fact that the downwards bias is not correctly cancelled out. In
order to see this note that in the random design case the formula (4.7) changes to

EG(h) »~ [Ed,q(h) + / o*(z) f(z)w(z)dz
(4.8)
—2n"h"K(0)/62(z)w(:)dx] Z(n"h"1K(0)).

Hence the bias term does not cancel:A modification of the penalty method is nec-
essary. If one uses the correction factor Z(n~'h~1K(0)/ fa(x ;)) inside the sum of
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p(h), this cancellation will still work. For this form of correction the Generalized
Crossvalidation criterion is actually formally equivalent to ordinary crossvalida-
tion. Note that this notation of generalized crossvalidation GCV stands in con-
trast to notation used in the spline literature. If fiy = A(A)h denotes the spline
smoothing operator, the spline GCV is defined as GCV(h) = rr—=teararayyyr- This
cannot give optimal estimates though for random X and heteroscedastic errors!

The method of crossvalidation was applied to the car data set to find the
optimal smoothing parameter h. A plot of the crossvalidation function is given in
Figure 5. The computation is for the quartic kernel using the WARPing method,
sec Hiirdle (1991). The minimal h = arg min CV (k) is at 1800 which shows that
in Figure 5 we used a slightly too large bandwidth.

Figure 5. The crossvalidation function CV(h) for the car data. Quartic kernel.
Computation made with XploRe (1991).

The question of how far the crossvalidation optimal his from the true optimum
o that minimized d (h) has been investigated by Hardle, Hall and Marron (1988).
One of the main results of this paper is that the random variables

nl/10 ( ﬂ) (4.9)
ho

have an asymptotic Normal distribution with mean zero and variance independent
of the actually used optimisation method. It does not matter whether one used
Shibata’s, Akaike’s or any other optimizer, they are asymptotically equivalent.
Another interesting result is that the estimated h and optimum Tzn are actually
negatively correlated ! It has been very recently that Hall and Johnstone (1992)
corrected for this effect in density estimation and regression with uniform X’s. It is
still open how to improve this for the general regression setting we are considering
here.

4.3 Canonical kernels

A comparison of smoothers for different kernels can only be made if the es-
timators are brought to the “same scale”. Indeed a kernel can be rescaled as
K*(s) = s~1 K(es) which of course changes the value of the optimal bandwidth.

Note however that the kernel constants are

K13 = s~ I1K113
WA(K*) = (K.
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So we can uncouple the scaling effect by using for each kernel K that K* with

-~ ()"

Thus across kernels we shall have

KA(K*) = IK° 13 = w3 POl K13

So if we need to decide whether one curve (with kernel 1) is smoother than the
other (kernel 2), we have to transform both bandwidths to the canonical scale
hi =hj/s}, i=1,2

5. Application to Time Series

In the theoretical development described up to this point, one important as-
sumption about the stochastic nature of the observations was the independence.
The smoothing methods can also be applied to correlated data, in particular to
nonparametric prediction of time series. We first consider the nonparametric pre-
diction problem, then we turn to the analysis of regression curve estimation with
correlated errors.

5.1 Prediction
We relax the assumption on the independence of the sequence of observations
(X1,Y1),(X2,Y2),.... We assume the process is a-mixing,
|P(ANB) - P(A)P(B)| < a(k) (5.1)

holds for all n, k € IN and any set A [resp. B] which is o((X},Y;),...,(Xn, Ya))
[resp. o((Xn+k, Yn+x, . ..] measurable, the sequence a(k) tending to zero for k —
co. If the process is stationary the best predictor (in a quadratic sense) for Y
given X = z is the conditional expectation

m(z)=EY | X =z).

Our aim is to estimate m(e) from data {(X.-,Y.-) }:;l. This nonparametric esti-
mation technique is also good for processes like {Z; : i > 1}, and that one is
interested in predicting Z, ., from Z, for some s > 0. The predictor is provided
by the autoregression function

M(2)=E(Zn4s | Zn=2) Vn2>1. (5.2)
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The autoregression function M can then be interpreted as a regression curve of
Y on X if we define X; = Z;, Y; = Zi4,, Vi > 1. Clearly {(X;,Y:),i > 1} is
a-mixing when {Z;,i > 1} has this property.

For which concerns examples of processes satisfying this a-mixing condition
we refer to Gyorfi et al. (1990), Chapters 11.2 and I11.4. For instance any Markov
process satisfying Doeblin’s condition is a-mixing with coefficients that verify (5.1)
above. Also linear process of the form

00
Zn= 2 % Tn—iy
i=0
where (T}) ;¢ is & sequence of i.i.d. variables, can be shown to be a-mixing under
appropriate summability conditions on (7;) (see Chanda (1974) and Garodetskii
(1977). Hérdle and Vieu (1991) showed that crossvalidation also works in this
case, “choose” h = arg min CV (h) gives asymptotically optimal estimates.

To give some insight into this process we simulated an autoregressive process
Zi = M(Z.'-]) + €, with
M(z) = zexp(-2?),
where the innovations €; were uniformly distributed over the interval (—1/2,1/2).
Such a process is a-mixing with geometrically decreasing a(n) as shown by Doukhan
and Ghindes (1980) and Gyorfi et al. (1990, Section I11.4.4). The sample size in-
vestigated was n = 100. The quartic kernel function (1.3) was used.

A plot of the generated time series (Zp-uniform in (—1/2,1/2)) is given in Fig-
ure 6 as a function of the time index. We are interested in finding the dependence
structure between Z,_; and Z,.

Figure 6. The simulated time series with M (z)=z exp(—z?), e~U(-1/2,1/2).

When we plot Z,_; versus Z, we obtain Figure 7. The (uniform) error
structure become quite visible here but the shape of M(z) may be guessed as
linear from this figure. Only at the far ends we seem to see a curved structure
of this point cloud. As an aid to interpret this picture we have added the true
curve M and have plotted the two-dimensional time path. The starting and the
end points are given as bullets.

Figure 7. The simulated series from Figure 6 plotted as Z,_, versus Z,. The solid
curve is the true function M.
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Since this is a simulated example we can also compute the distance d4 (k). The
cross-validation function CV (h) and d4(h) are shown in Figure 8. The minimum
of CV(h) was h = 1.5, the optimum of d4(h) is at 2.1. The curve d(h) is very
flat for this example since we recall that there is almost no bias present.

Figure 8. The functions d 4 (h) (dashed line) and CV (h) (solid line) for the simulated
example.

The comparison of the estimated curve with the time regression function
gives an impression of how well the smoothing method works. This comparison
is displayed in Figure 9 where we find good coincidence with the time regression
curve.

Figure 9. The time regression function M(z)=x exp(—z?) for the simulated example
(thick line) and the kernel smoother (thin line).

It might be reasonable to leave out more than just one observation, especially
when the time series is strongly correlated. Such a leave-out estimator where we,
in fact, sum over indexes |i — j| > p, for a slowly increasing sequence py, is also
covered by our theory. This “leave-out-more” technique is sometimes appealing
also in the independent setting, see the discussion of Hardle, Hall and Marron
(1988). The examples treated in Hart and Vieu (1991) in the setting of density
estimation discuss also this point.

5.2 Correlated errors

Let us now consider the case of fixed design X; = i/n and correlated errors,
i.e., Y; = m(X;) + &, & nonindependent. It is obvious that methods designed for
i.i.d. errors must fail for this case. Imagine that the errors ¢, follow an autore-
gression of order 1,

Ei41 = PE; + 4, u; white noise

with p close to 1. The effect on the crossvalidation technique described in Section 4
must be drastic. The error process stays a long time on one side of the mean curve
and hence the leave-one-out technique must give undersmooth estimates since
the leave-out estimate of d4 “interprets” the little bumps of the error process as
elements of the regression curve. An example is given in Hardle (1990, Figure 7.6,
7.7).

For a theoretical treatment of this problem let us assume that we have N
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collections of the time series,
Y=m(X)+ej, i=1,...,n j=1,..,N.

An econometrical example for this observation scheme is a collection of time series
of clectricity demand which we observe repeatedly over days or weeks. Suppose
now that the errors have the following correlation structure

a?p(X; — Xi), if 3=1¢

0, if j#L

There is independence of errors over repetitions of the series but correlation only
within the series. For p assume that p(0) = 1, p(u) = p(—u), |p(u)| < 1 for
u€[-1,1].

cov (&5, €re) = {

Hart and Wehrly (1986) computed the variance of kernel estimators for this
model and showed that the bias is the same. In fact the variance changes from
. -
T3 to

o? s
(—) / / p(h(u — v)) K (u) K (v)dudv.
N ) d-ida
Note that the kernel estimator is applied here to the averaged data Y;, =
—1eN
N z::) Y‘J
A Taylor expansion in terms of p gives yet another approximation to the
variance,

2
(%) (1 + K26 (O)a(K)).

Since the bias stays the same as in the independent case, we obtain the following

optimal bandwidth )
—202p"(0) -1
={ g F NTU/2 ;
b = { S V7 e
which minimizes the MSE as a function of N.
In practice one has of course to estimate the correlation function p(k). Hart
and Wehrly (1986) used the canonical estimate
_ak)
5 =70

where
N n
k) = (nN)" 30N (Y — Yio)(Yisks — Yiwke)-
j=11=1
Estimates of second derivatives in formula (5.2) have to be constructed by differ-
entiating a regression estimate m, with smooth enough kernel.
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